Server IP : 172.16.15.8 / Your IP : 18.225.92.60 Web Server : Apache System : Linux zeus.vwu.edu 4.18.0-553.27.1.el8_10.x86_64 #1 SMP Wed Nov 6 14:29:02 UTC 2024 x86_64 User : apache ( 48) PHP Version : 7.2.24 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON Directory (0705) : /home/zwang/ |
[ Home ] | [ C0mmand ] | [ Upload File ] |
---|
%!PS-Adobe-2.0 %%Creator: dvips(k) 5.85 Copyright 1999 Radical Eye Software %%Title: DISSc.dvi %%Pages: 100 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%DocumentFonts: Helvetica %%EndComments %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips DISSc -o DISSc.ps %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2000.07.16:2245 %%BeginProcSet: texc.pro %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{ /Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT) (LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot} imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M} B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{ p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: texnansi.enc % @psencodingfile{ % author = "Y&Y, Inc.", % version = "1.1", % date = "1 December 1996", % filename = "texnansi.enc", % email = "help@YandY.com", % address = "45 Walden Street // Concord, MA 01742, USA", % codetable = "ISO/ASCII", % checksum = "xx", % docstring = "Encoding for fonts in Adobe Type 1 format for use with TeX." % } % % The idea is to have all 228 characters normally included in Type 1 text % fonts (plus a few more) available for typesetting. This is effectively % the character set in Adobe Standard Encoding, ISO Latin 1, plus a few more. % % Character code assignments were made as follows: % % (1) The character layout largely matches `ASCII' in the 32 -- 126 range, % except for `circumflex' in 94 and `tilde' in 126, to match `TeX text' % (`asciicircumflex' and `asciitilde' appear in 158 and 142 instead). % % (2) The character layout matches `Windows ANSI' in almost all places, % except for `quoteright' in 39 and `quoteleft' in 96 to match ASCII % (`quotesingle' and `grave' appear in 129 and 18 instead). % % (3) The character layout matches `TeX typewriter' used by CM text fonts % in most places (except for discordant positions such as hungarumlaut % (instead of braceright), dotaccent (instead of underscore) etc. % % (4) Remaining characters are assigned arbitrarily to the `control character' % range (0 -- 31), avoiding 0, 9, 10 and 13 in case we meet dumb software % - similarly one should really avoid 127 and 128 if possible. % In addition, the 8 open slots in Windows ANSI between 128 and 159 are used. % % (5) Y&Y Lucida Bright includes some extra ligatures and such; ff, ffi, ffl, % and `dotlessj,' these are included 11 -- 15, and 17. % % (6) Hyphen appears both at 45 and 173 for compatibility with both ASCII % and Windows ANSI. % % (7) It doesn't really matter where ligatures appear (both real, such as ffi, % and pseudo such as ---) since these should not be accessed directly, only % via ligature information in the TFM file. % % SAMPLE USAGE (in `psfonts.map' file for DVIPS): % % lbr LucidaBright "TeXnANSIEncoding ReEncodeFont" <texnansi.enc <lbr.pfb % % This tells DVIPS that the font called `lbr' in TeX has PostScript % FontName `LucidaBright.' It also asks DVIPS to expand the file `lbr.pfb' % into PFA form, to include the attached `texnansi.enc' encoding vector, % and to then actually reencode the font based on that encoding vector. % % Revised 1996 June 1 by adding second position for `fl' to avoid Acrobat bug. % Revised 1996 June 1 by adding second position for `fraction' for same reason. % /TeXnANSIEncoding [ /.notdef /uni20AC /.notdef /.notdef % 0, 1, 2, 3 /fraction % 4 /dotaccent % 5 /hungarumlaut % 6 /ogonek % 7 /fl % 8 /.notdef % /fraction % 9 not used (see 4), backward compatability only /cwm % 10 not used, except boundary char internally maybe /ff % 11 /fi % 12 /.notdef % /fl % 13 not used (see 8), backward compatability only /ffi % 14 /ffl % 15 /dotlessi % 16 /dotlessj % 17 /grave % 18 /acute % 19 /caron % 20 /breve % 21 /macron % 22 /ring % 23 /cedilla % 24 /germandbls % 25 /ae % 26 /oe % 27 /oslash % 28 /AE % 29 /OE % 30 /Oslash % 31 /space % 32 % /suppress in TeX text /exclam % 33 /quotedbl % 34 % /quotedblright in TeX text /numbersign % 35 /dollar % 36 /percent % 37 /ampersand % 38 /quoteright % 39 % /quotesingle in ANSI /parenleft % 40 /parenright % 41 /asterisk % 42 /plus % 43 /comma % 44 /hyphen % 45 /period % 46 /slash % 47 /zero % 48 /one % 49 /two % 50 /three % 51 /four % 52 /five % 53 /six % 54 /seven % 55 /eight % 56 /nine % 57 /colon % 58 /semicolon % 59 /less % 60 % /exclamdown in Tex text /equal % 61 /greater % 62 % /questiondown in TeX text /question % 63 /at % 64 /A % 65 /B % 66 /C % 67 /D % 68 /E % 69 /F % 70 /G % 71 /H % 72 /I % 73 /J % 74 /K % 75 /L % 76 /M % 77 /N % 78 /O % 79 /P % 80 /Q % 81 /R % 82 /S % 83 /T % 84 /U % 85 /V % 86 /W % 87 /X % 88 /Y % 89 /Z % 90 /bracketleft % 91 /backslash % 92 % /quotedblleft in TeX text /bracketright % 93 /circumflex % 94 % /asciicircum in ASCII /underscore % 95 % /dotaccent in TeX text /quoteleft % 96 % /grave accent in ANSI /a % 97 /b % 98 /c % 99 /d % 100 /e % 101 /f % 102 /g % 103 /h % 104 /i % 105 /j % 106 /k % 107 /l % 108 /m % 109 /n % 110 /o % 111 /p % 112 /q % 113 /r % 114 /s % 115 /t % 116 /u % 117 /v % 118 /w % 119 /x % 120 /y % 121 /z % 122 /braceleft % 123 % /endash in TeX text /bar % 124 % /emdash in TeX test /braceright % 125 % /hungarumlaut in TeX text /tilde % 126 % /asciitilde in ASCII /dieresis % 127 not used (see 168), use higher up instead /Lslash % 128 this position is unfortunate, but now too late to fix /quotesingle % 129 /quotesinglbase % 130 /florin % 131 /quotedblbase % 132 /ellipsis % 133 /dagger % 134 /daggerdbl % 135 /circumflex % 136 /perthousand % 137 /Scaron % 138 /guilsinglleft % 139 /OE % 140 /Zcaron % 141 /asciicircum % 142 /minus % 143 /lslash % 144 /quoteleft % 145 /quoteright % 146 /quotedblleft % 147 /quotedblright % 148 /bullet % 149 /endash % 150 /emdash % 151 /tilde % 152 /trademark % 153 /scaron % 154 /guilsinglright % 155 /oe % 156 /zcaron % 157 /asciitilde % 158 /Ydieresis % 159 /nbspace % 160 % /space (no break space) /exclamdown % 161 /cent % 162 /sterling % 163 /currency % 164 /yen % 165 /brokenbar % 166 /section % 167 /dieresis % 168 /copyright % 169 /ordfeminine % 170 /guillemotleft % 171 /logicalnot % 172 /sfthyphen % 173 % /hyphen (hanging hyphen) /registered % 174 /macron % 175 /degree % 176 /plusminus % 177 /twosuperior % 178 /threesuperior % 179 /acute % 180 /mu % 181 /paragraph % 182 /periodcentered % 183 /cedilla % 184 /onesuperior % 185 /ordmasculine % 186 /guillemotright % 187 /onequarter % 188 /onehalf % 189 /threequarters % 190 /questiondown % 191 /Agrave % 192 /Aacute % 193 /Acircumflex % 194 /Atilde % 195 /Adieresis % 196 /Aring % 197 /AE % 198 /Ccedilla % 199 /Egrave % 200 /Eacute % 201 /Ecircumflex % 202 /Edieresis % 203 /Igrave % 204 /Iacute % 205 /Icircumflex % 206 /Idieresis % 207 /Eth % 208 /Ntilde % 209 /Ograve % 210 /Oacute % 211 /Ocircumflex % 212 /Otilde % 213 /Odieresis % 214 /multiply % 215 % OE in T1 /Oslash % 216 /Ugrave % 217 /Uacute % 218 /Ucircumflex % 219 /Udieresis % 220 /Yacute % 221 /Thorn % 222 /germandbls % 223 % SS in T1 /agrave % 224 /aacute % 225 /acircumflex % 226 /atilde % 227 /adieresis % 228 /aring % 229 /ae % 230 /ccedilla % 231 /egrave % 232 /eacute % 233 /ecircumflex % 234 /edieresis % 235 /igrave % 236 /iacute % 237 /icircumflex % 238 /idieresis % 239 /eth % 240 /ntilde % 241 /ograve % 242 /oacute % 243 /ocircumflex % 244 /otilde % 245 /odieresis % 246 /divide % 247 % oe in T1 /oslash % 248 /ugrave % 249 /uacute % 250 /ucircumflex % 251 /udieresis % 252 /yacute % 253 /thorn % 254 /ydieresis % 255 % germandbls in T1 ] def %%EndProcSet %%BeginProcSet: special.pro %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState save N userdict maxlength dict begin/magscale true def normalscale currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts /psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{ psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2 roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{ CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR }{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N /@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end} repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginProcSet: color.pro %! TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll }repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def /TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{ setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{ /currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC /Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC /Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0 setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0 setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61 0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC /Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0 setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87 0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{ 0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{ 0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC /Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0 setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0 setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90 0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC /Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0 setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0 0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{ 0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{ 0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC /BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0 setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC /CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0 0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1 0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11 0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0 setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0 0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC /Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0 setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0 0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0 1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC /PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0 setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{ 0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor} DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70 setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0 setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1 setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end %%EndProcSet TeXDict begin 40258431 52099146 1000 600 600 (DISSc.dvi) @start %DVIPSBitmapFont: Fa cmmi10 10.95 4 /Fa 4 115 df<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A3120113 80120313005A120E5A1218123812300B1C798919>59 D<EC07F0EC7FFE903801FC0F9039 07E0038090390FC001C0D93F8013E090387F000701FE131F485A485A16C0485A000F1580 4990C7FC121F485AA3127F5BA312FF90C9FCA6007E1560007F15E01501ED03C06CEC0780 6DEB0F00001F141E6C6C137C3907E001F03901F01FC06CB5C7FCEB1FF023297DA727>99 D<01F8EB0FF0D803FEEB3FFC3A078F80F03E3A0F0F83C01F3B0E07C7800F80001CEBCF00 02FE80003C5B00385B495A127800705BA200F049131F011F5D00005BA2163F013F92C7FC 91C7FC5E167E5B017E14FE5EA201FE0101EB03804914F8A203031307000103F013005B17 0E16E000035E49153C17385F0007913801F1E0496DB45AD801C0023FC7FC31297EA737> 110 D<D801F0EB3F80D807FCEBFFE03A0F1F03C0F0000E90380F00F8391E0F9E03001C13 BC003CEBF807003813F0A226781FE013F000709038C001C092C7FC5C12F0133F000090C8 FCA35B137EA313FE5BA312015BA312035BA312075BA3120F5BEA038025297EA729>114 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fb cmti10 10.95 53 /Fb 53 122 df<15FCEC07FF91261F038014F091263E01C0EB01F84A6C6C13035C494813 70494816F0010716014948150091268001F014E0011F01071401030F15C0D93F001503F0 0780495C017EEE0F00DB0780131E92C85A01FE5E495EEF03E04D5A021F141FDAFFC0497E D9FBE1ECF8F0903AFFC0E001F00280903807C0780200EB0F80017E91381E0038D9FC0149 133C0001DAC038131C01FE14783A03FF03807048EB8700D9E3FE13F0260FE0F8EBE38049 C7EAEFC0001FED7FE0A2484815C0163F93380F003C007F92C7123890CAFCA21878187000 FE17F060127E4D5A170360007F16076C4CC7FC171E6C6C151C5F6C6C15F06C6C4A5A6C6C EC07C06C6C021FC8FCD8007E147C90391FC007F00107B512809026007FF8C9FC3D4375C0 46>38 D<EA01E0EA07F8120FA2EA1FFCA4EA0FF8EA0798EA001813381330A21370136013 E013C01201EA0380EA07001206120E5A5A5A5A5A0E1C7A891C>44 D<387FFFFCA3B5FCA21605799521>I<120FEA3FC0127FA212FFA31380EA7F00123C0A0A 77891C>I<15FE913807FF8091381F07C091387C01F0ECF000494813F849481378010714 7C495A49C7FC167E133E137EA25BA2485AA2000315FEA25B000715FCA2491301120FA348 48EB03F8A44848EB07F0A448C7EA0FE0A316C0007E141F12FE1680153FA2481500A2157E A25DA25D4813015D6C495A127C4A5A4A5A6C49C7FC143E6C5B380FC1F03803FFC0C648C8 FC273F76BC2E>48 D<15031507150F151F151E153E157EEC01FEEC03FC1407141FEB01FF 90380FFBF8EB1FC3EB0E07130015F0A2140FA215E0A2141FA215C0A2143FA21580A2147F A21500A25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CA2131FA25CEB7FE0B6 12F0A215E0203D77BC2E>I<15FE913803FFC091380F01F091383C00F84A137C4A7F4948 133F49487F4A148049C7FC5BEB0E0C011E15C0EB1C0EEB3C06133813781370020E133FD9 F00C148013E0141C0218137F00011600EBC0384A13FEEC600102E05B3A00E3C003F89039 FF0007F0013C495A90C7485A5E037FC7FC15FC4A5A4A5AEC0FC04AC8FC147E14F8EB03E0 495A011FC9FC133E49141801F0143C48481438485A1678485A48C85A120E001E4A5AD83F E0130301FF495A397C3FF01FD8780FB55AD8700391C7FCD8F0015B486C6C5A6E5AEC07C0 2A3F79BC2E>I<ED7F80913803FFE091380F80F891383C007C02F87FD901E07F49481480 4948130F49C7FC010E15C0131EEB1C18EB3C1CEB380C0178141F17801370A2021C133F6D 4814004A5BD91FE0137ED90F805B90C8FC4B5A4B5A4B5AED1F8003FFC7FCECFFFC15F0A2 EC00FC153E153F8182150F82A4151FA2121E127F153F485DA3484AC7FC12F800E014FE5D 14016C495A0070495A0078EB0FC00038495A6C017EC8FC380F01F83803FFE0C690C9FC2A 3F78BC2E>I<1638167E16FE16FCA3150116F8A3150316F0A2150716E0A2ED0FC0A3ED1F 80A216005DA2157EA2157C15FC5D14015D14035D4A5AA24A5AA24AC7FC143EED03809138 7C0FC014F8ECF01F01011480EB03E014C0903807803F010F1400EB1F00133E495B49137E 485A485A484813FE48B46C5A4813F04813FE267C00FF130800F090380FFFFC00601301C7 14E0913803F8005DA314075DA3140F5DA3141F5DA3020EC7FC274F7DBC2E>I<02C0EB01 8002F0130FD901FEEB7F0091B512FE5E5E4914E016804BC7FCECBFF8D90780C8FC91C9FC A35B130EA3131E131CA3133C9038381FC0ECFFF090383BE07C90387F003E017E133F017C 7F0178805B498090C7FCA6153FA4001F147F486C5C487EA24913FF00FF92C7FC90C7FC48 495A12E04A5A5D6C495A140F00705C0078495A6C495A003E01FEC8FC381F03FC380FFFF0 000313C0C648C9FC293F77BC2E>I<157F913801FFE0913807C0F091381F007C023C133C 4A133E4A131F1301495A5C1307A2495AA2163F011F143EA2167E6E137C16F8ECE00102F0 13F09138F803E09138FC07C090390FFE0F00ECFFBE6D13F86D5B7F6D7F8101037F90380F 9FFFD91F0F1380D97C0713C0497E48486C13E03903E0007F4848133F4848131F001F140F 90C7FC003E1407A2127E127CA200FC15C05AA2ED0F80A2ED1F00153E007C143C157C007E 5C6CEB03F0391F8007C0390FE03F802607FFFEC7FC000113F838003FC0283F78BC2E>56 D<15FF020713C091381F81E091383E00F002FC13F84948137C495A4948137E010F143E49 5A133F4A133F017F147F91C7FC5BA2485AA216FF12035B16FE150112075B1503A216FC49 1307A20003140F16F8151F12016D133F0000EC7FF015EF90387C01CF90393E079FE09038 0FFE1FD903F813C090C7123FA21680157F160015FEA24A5A001C5C007F1303485C4A5A4A 5A4A5A4849C7FC00F8137E00E05B6C485A387C07E0383FFFC06C90C8FCEA03F8283F77BC 2E>I<131EEB3F80137FEBFFC05AA214806C13005B133C90C7FCB3120FEA3FC0127FA212 FFA35B6CC7FC123C122777A61C>I<171C173C177CA217FCA216011603A21607A24C7EA2 161DA216391679167116E1A2ED01C1A2ED038115071601150EA2031C7FA24B7EA25D15F0 5D4A5AA24A5AA24AC7FC5C140E5C021FB6FC4A81A20270C7127FA25C13015C495AA249C8 FCA2130E131E131C133C5B01F882487ED807FEEC01FFB500E0017FEBFF80A25C39417BC0 44>65 D<49B712C018F818FE903B0003FC0001FF9438007F804BEC3FC0A2F01FE014074B 15F0180FA2140F5D181FA2021F16E05D183F19C0023FED7F804B14FF19004D5A027F4A5A 92C7EA07F0EF1FE0EF7F804AD903FEC7FC92B512F017FE4AC7EA3F800101ED1FE04A6E7E 17078401036F7E5CA30107825CA3010F5E4A1407A260011F150F5C4D5A60013F153F4A4A 5A4D5A017F4A90C7FC4C5A91C7EA0FF849EC3FF0B812C094C8FC16F83C3E7BBD40>I<93 39FF8001C0030F13E0033F9038F803809239FF807E07913A03FC001F0FDA0FF0EB071FDA 1FC0ECBF00DA7F806DB4FC4AC77E495AD903F86E5A495A130F4948157E4948157C495A13 FF91C9FC4848167812035B1207491670120FA2485A95C7FC485AA3127F5BA312FF5BA490 CCFCA2170FA2170EA2171E171C173C173817786C16706D15F04C5A003F5E6D1403001F4B 5A6D4AC8FC000F151E6C6C5C6C6C14F86C6C495A6C6CEB07C090397FC03F8090261FFFFE C9FC010713F0010013803A4272BF41>I<49B712C018F818FE903B0003FE0003FF943800 7F804BEC1FC0F00FE0F007F014074BEC03F8F001FCA2140F4BEC00FEA3141F4B15FFA314 3F5DA3027F5D5DA219FE14FF92C81203A34917FC4A1507A219F813034A150F19F0A20107 EE1FE05CF03FC0A2010FEE7F804A16006060011F4B5A4A4A5A4D5AA2013F4B5A4AEC3FC0 4DC7FC017F15FEEE03FC4AEB0FF001FFEC7FE0B8128004FCC8FC16E0403E7BBD45>I<49 B812F8A390260003FEC7121F18074B14031801F000F014075DA3140F5D19E0A2141F4B13 38A2EF7801023F027013C04B91C7FCA217F0027F5CED80011603160F91B65AA3ED001F49 EC07805CA3010392C8FC5CF003804C13070107020E14005C93C75A180E010F161E4A151C 183CA2011F5E5C60A2013F15014A4A5A1707017F150F4D5A4A147F01FF913807FF80B9FC A295C7FC3D3E7BBD3E>I<49B812F0A390260003FEC7123F180F4B1403A2F001E014075D A3140F5D19C0A2141F5D1770EFF003023F02E013804B91C7FCA21601027F5CED8003A216 0702FFEB1F8092B5FCA349D9003FC8FC4A7F82A20103140E5CA2161E0107141C5CA293C9 FC130F5CA3131F5CA3133F5CA2137FA25C497EB612E0A33C3E7BBD3B>I<49B6FC5BA2D9 000313005D5DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C7FCA35B5CA3 13035CA313075CA3130F5CA3131F5CA3133F5CA2137FA25C497EB67EA3283E7BBD23>73 D<4AB61280A2180091C713C0167F5FA216FF94C7FCA35D5EA315035EA315075EA3150F5E A3151F5EA3153F5EA3157FA25EA215FFA293C8FCA25CA25DA2380F8003EA3FC0D87FE05B A21407D8FFC05B140F01805B49485A12FC0070495A4A5A6C01FEC9FC383C01FC380F07F0 3807FFC0C648CAFC314079BD30>I<49B6903807FFFE605ED9000390C7000113E04B6E13 004B15FC4E5A19E002074B5A4BEC0F804EC7FC183C020F5D4B5C4D5AEF07C0021F4AC8FC 4B131E5F5F023F5C9238C003E0EE07804CC9FC027F5B4B5AEEFF801581ECFF834B7FED0F 7FED1E3F49017C7FECFEF89138FFE01F03C07F491380ED000F4A805C010714074A80A216 03010F815C160183131F4A6D7FA2177F013F825C173F017F82A24A81496C4A7EB6D8800F B512C0A261473E7BBD46>I<49B612C0A25FD9000390C8FC5D5DA314075DA3140F5DA314 1F5DA3143F5DA3147F5DA314FF92C9FCA35B5CA313035C18C0EF01E0010716C05C170318 80130F4A140718005F131F4A141EA2173E013F5D4A14FC1601017F4A5A16074A131F01FF ECFFF0B8FCA25F333E7BBD39>I<49B5933807FFFC496062D90003F0FC00505ADBBF805E 1A771AEF1407033F923801CFE0A2F1039F020FEE071F020E606F6C140E1A3F021E161C02 1C04385BA2F1707F143C023804E090C7FCF001C0629126780FE0495A02705FF00700F00E 0114F002E0031C5BA2F03803010116704A6C6C5D18E019070103ED01C00280DA03805BA2 943807000F13070200020E5C5FDB03F8141F495D010E4B5CA24D133F131E011CDAF9C05C EEFB80197F013C6DB4C7FC013895C8FC5E01784A5C13F8486C4A5CD807FE4C7EB500F049 48B512FE16E01500563E7BBD52>I<902601FFFE020FB5FC496D5CA2D900016D010013C0 4AEE3F00193E70141C193CEC07BFDB3FE01438151F1978020F7FDA0E0F15708219F0EC1E 07021C6D5CA203031401023C7FDA38015DA2701303EC7800027002805BA2047F130702F0 14C04A013F91C7FCA2715A0101141F4AECF00EA2040F131E010315F84A151C1607EFFC3C 0107140391C7143817FE040113784915FF010E16708218F0131E011C6F5AA2173F133C01 385E171F137813F8486C6F5AEA07FEB500F01407A295C8FC483E7BBD44>I<EEFFC00307 13F892383F80FE9238FC003FDA03F0EB0F804A486D7EDA1F80804AC76C7E027E6E7E4A81 494814004948811307495A4948157F133F5C49C9FC4917805B1201485AA212075B000F17 FFA25B121F190048485DA448484B5AA34D5AA25B4D5A12FF60171F60007F163F604D5AA2 4DC7FC5F003F15014C5A6D5D001F4B5A4C5A6C6C4A5A4C5A6C6C4AC8FC000315FC6C6C49 5A6C6CEB07E0017FEB1F8090261FC07EC9FC903807FFF801001380394273BF46>I<49B7 7E18F018FC903B0003FE0003FEEF00FF4BEC7F80F03FC00207151F19E05DA2020F16F0A2 5DA2141FF03FE05DA2023F16C0187F4B1580A2027FEDFF00604B495A4D5A02FF4A5A4D5A 92C7EA3FC04CB4C7FC4990B512FC17E04ACAFCA21303A25CA21307A25CA2130FA25CA213 1FA25CA2133FA25CA2137FA25C497EB67EA33C3E7BBD3E>I<49B612FCEFFF8018F0903B 0003FE000FF8EF03FE4BEB00FF8419800207ED3FC05DA219E0140F5DA3021FED7FC05DA2 F0FF80143F4B15004D5A60027F4A5A4B495A4D5AEF3F8002FF02FEC7FC92380007F892B5 12E01780499038000FE04A6D7E707E707E0103814A130083A213075CA25E130F5C5F1603 131F5CA3013F020714404A16E05F017F160119C04A01031303496C1680B6D88001130794 38FE0F009338007E1ECAEA3FFCEF07F03B407BBD42>82 D<92391FE00380ED7FFC913A01 FFFE0700913907F01F8F91390FC007DF4AC66CB4FC023E6D5A4A130014FC495A4948147C A2495AA2010F15785CA3011F1570A46E91C7FCA2808014FE90380FFFE015FC6DEBFF8016 E06D806D806D6C7F141F02037FEC003FED07FF1501A281A282A212075A167E120EA2001E 15FE5EA25E003E14015E003F14034B5A486C5C150F6D495A6D49C8FCD8F9F0137C39F8FE 01F839F03FFFF0D8E00F13C026C001FEC9FC314279BF33>I<48B9FCA25A903AFE001FF0 0101F89138E0007FD807E0163E49013F141E5B48C75BA2001E147FA2001C4B131C123C00 3814FFA2007892C7FC12704A153C00F01738485CC716001403A25DA21407A25DA2140FA2 5DA2141FA25DA2143FA25DA2147FA25DA214FFA292C9FCA25BA25CA21303A25CEB0FFE00 3FB67E5AA2383D71BC41>I<147E49B47E903907C1C38090391F80EFC090383F00FF017E 137F4914804848133F485AA248481400120F5B001F5C157E485AA215FE007F5C90C7FCA2 1401485C5AA21403EDF0385AA21407EDE078020F1370127C021F13F0007E013F13E0003E 137FECF3E1261F01E313C03A0F8781E3803A03FF00FF00D800FC133E252977A72E>97 D<EB1FC0EA0FFF5CA2EA003FA291C7FCA25BA2137EA213FEA25BA21201A25BA21203A25B 147E3907F1FF809038F783E09038EF01F013FE390FF800F8A24913FC49137C485A157E5B 15FE123FA290C7FCA248130115FC127EA2140300FE14F85AA2EC07F0A215E048130F15C0 141F15800078EB3F00127C147E003C5B383E01F8381E03E06C485A6CB4C7FCEA01F81F40 76BE2A>I<EC1FC0ECFFF0903803F03C903807C01E90381F800E90383F000F017E133F49 13FF485A485A000714FE5B000F14FC48481300A2485AA3127F90C8FCA35A5AA648140300 7E1407150F151E003E143C15786C14F0EC03E0390F800F803903E07E003801FFF838003F C0202977A72A>I<EE3F80ED1FFF1700A2ED007FA2167EA216FEA25EA21501A25EA21503 A25EA21507A25E147E903801FF8F903807C1CF90391F80EFC090383F00FF017E137F5B48 486D5A485AA2485A000F92C7FC5B001F5CA24848137EA215FE127F90C75AA214015A485C A2140316384814F0A21407167891380FE070127C021F13F0007E013F5B003E137FECF3E1 261F01E35B3A0F8781E3802703FF00FFC7FCD800FC133E294077BE2E>I<EC3F80903801 FFE0903807E0F890381F803CEB3E0001FC131E485A485A12074848133E49133C121F4848 137C15F8EC03F0397F000FE0ECFF809038FFFC00B512C048C8FCA45AA61506150E151E00 7C143C15786C14F0EC01E06CEB07C0390F801F003807C0FC3801FFF038007F801F2976A7 2A>I<167C4BB4FC923807C78092380F83C0ED1F87161FED3F3FA2157EA21780EE0E004B C7FCA414015DA414035DA30103B512F8A390260007E0C7FCA3140F5DA5141F5DA4143F92 C8FCA45C147EA414FE5CA413015CA4495AA4495AA4495A121E127F5C12FF49C9FCA2EAFE 1EEAF83C1270EA7878EA3FE0EA0F802A5383BF1C>I<EC03F0EC0FFC91383E0E1C9138FC 077E903901F003FE1303903807E001D90FC013FCEB1F80A2EB3F004914F8137E01FE1303 A2484814F0A2150712034914E0A2150F12074914C0A2151FA216805B153F1203ED7F006D 5BA200015B0000495A9038F80F7E90387C1EFEEB1FF8903807E0FC90C7FC1401A25DA214 03A25D001C1307007F5C48130F5D4A5A4AC7FC48137E00F85B387C03F0381FFFC0D803FE C8FC273B7CA72A>I<EB01FC13FF5CA21303A25CA21307A25CA2130FA25CA2131FA25CA2 133FA291C8FCEC03F890387F0FFE91383E0F80D97E7813C0ECE007D9FFC013E014801400 A2485A5BA25B0003140F16C05BA20007141F16805BA2000F143F16005B5D001F147EEDFE 074913FCA2003F0101130FEDF80E1300161E48ECF01CA2007E1538A200FE1570020013E0 48EC7FC00038EC1F0028407ABE2E>I<1478EB01FCA21303A314F8EB00E01400AD137C48 B4FC38038F80EA0707000E13C0121E121CEA3C0F1238A2EA781F00701380A2EAF03F1400 12005B137E13FE5BA212015BA212035B1438120713E0000F1378EBC070A214F0EB80E0A2 EB81C01383148038078700EA03FEEA00F8163E79BC1C>I<EB01FC13FF5CA21303A25CA2 1307A25CA2130FA25CA2131FA25CA2133FA291C8FCED03E049EB0FF8ED3C3C017EEB707C EDE1FC9038FE01C1EC03839038FC0703140E0001011C13F891383800E049481300146000 0313E0EBF9C0EBF78001FEC8FC1207EBFFE0EBE7F8EBE0FE000F137F6E7EEBC01F81001F 130F16701380A2003F15F0021F13E001001380A248148116C0007EEB0F83168000FE1487 9138078F0048EB03FE0038EB00F826407ABE2A>107 D<EB07F0EA03FF14E0A2EA000FA2 14C0A2131FA21480A2133FA21400A25BA2137EA213FEA25BA21201A25BA21203A25BA212 07A25BA2120FA25BA2121FA25BA2123FA290C7FCA25A1307127EA2EAFE0F130E12FCA213 1E131CA2EA7C381378EA3C70EA1FE0EA0780144079BE17>I<D801F0D93F80137F3D07FC 01FFE003FFC03D0F3E07C1F80F83F03D0E1F0F00FC1E01F8001E011C90387C3800001C49 D97E707F003C01F05C0038157F4A5C26783FC05C12704A91C7FC91C7127E00F003FE1301 494A5CEA007EA20301140301FE5F495CA203031407000160495C180F03075D0003051F13 E0494A1480A2030FEC3F810007F001C0495CA2031F91383E0380120F494AEC0700A2033F 150E001FEF1E1C4991C7EA0FF80007C7000EEC03E0432979A74A>I<D801F0EB3F803A07 FC01FFE03A0F3E07C1F83A0E1F0F00FC001E011C137C001C49137E003C13F012385C3878 3FC012705C91C7FC00F015FE495CEA007EA2150101FE5C5BA2150300015D5B15075E0003 020F13704914C0A2031F13F00007ED80E05B1681EE01C0120F49EC0380A2EE0700001FEC 0F0E49EB07FC0007C7EA01F02C2979A733>I<EC1FC0ECFFF8903803F07C90380FC01FEB 1F8090393F000F80017E14C0491307484814E0485A12075B000F15F0485AA2485AA2ED0F E0127F90C7FCA2151F4815C05AA2ED3F80A2ED7F00A248147E007C5C007E13015D4A5A00 3E495A6C495A4A5A260F803EC7FC3807C0FC3801FFF038003F80242977A72E>I<903903 E001F890390FF807FE903A1E7C1E0F80903A1C3E3C07C0013C137801389038E003E0EB78 3F017001C013F0ED80019038F07F0001E015F8147E1603000113FEA2C75AA20101140717 F05CA20103140F17E05CA20107EC1FC0A24A1480163F010F15005E167E5E131F4B5A6E48 5A4B5A90393FB80F80DA9C1FC7FCEC0FFCEC03E049C9FCA2137EA213FEA25BA21201A25B A21203A2387FFFE0B5FCA22D3A80A72E>I<D801F013FC3A07FC07FF803A0F3E0F03C026 0E1F1C13E0001EEB380F001C1370003CEBE01F123814C0D8783F14C00070903880070092 C7FC91C8FC12F05BEA007EA313FE5BA312015BA312035BA312075BA3120F5BA3121F5B00 07C9FC232979A726>114 D<EC7F80903801FFE0903807C0F890381F003C013E131C013C 131E017C133E49137E15FEA2000114FCA215706D13007FEBFFC014FC6C13FF15806D13C0 6D13E0010F13F01300140F14071403120C123F387F80011403D8FF0013E0A300FCEB07C0 00F0EB0F8012700078EB1F006C133C381F01F83807FFE0C690C7FC1F297AA725>I<EB01 C0EB03F01307A25CA2130FA25CA2131FA25CA2133FA291C7FCA2007FB51280B6FC1500D8 007EC7FC13FEA25BA21201A25BA21203A25BA21207A25BA2120FA25BA2121F141C1380A2 003F133C1438EB0078147014F05C495AEA1F03495A6C48C7FCEA07FCEA01F0193A78B81E >I<137C48B4141C26038F80137EEA0707000E7F001E15FE121CD83C0F5C12381501EA78 1F007001805BA2D8F03F1303140000005D5B017E1307A201FE5C5B150F1201495CA2151F 0003EDC1C0491481A2153F1683EE0380A2ED7F07000102FF13005C01F8EBDF0F00009038 079F0E90397C0F0F1C90391FFC07F8903907F001F02A2979A731>I<017CEB01C048B4EB 07F038038F80EA0707000E01C013F8121E001C1403EA3C0F0038EC01F0A2D8781F130000 705BA2EAF03F91C712E012005B017E130116C013FE5B1503000115805BA2ED0700120349 5B150EA25DA25D1578000114706D5B0000495A6D485AD97E0FC7FCEB1FFEEB03F0252979 A72A>I<017C167048B491387001FC3A038F8001F8EA0707000E01C015FE001E1403001C EDF000EA3C0F0038177C1507D8781F4A133C00701380A2D8F03F130F020049133812005B 017E011F14784C137013FE5B033F14F0000192C712E05BA2170100034A14C049137E1703 1880A2EF070015FE170E00010101141E01F86D131C0000D9039F5BD9FC076D5A903A3E0F 07C1E0903A1FFC03FFC0902703F0007FC7FC372979A73C>I<903903F001F890390FFC07 FE90393C1E0E0F9026780F1C138001F0EBB83FD801E013F89039C007F07FEA0380000714 E0D9000F140048151C000E4AC7FCA2001E131FA2C75BA2143F92C8FCA35C147EA314FE4A 131CA30101143C001E1538003F491378D87F811470018314F000FF5D9039077801C039FE 0F7C033A7C0E3C078027783C1E1EC7FC391FF80FFC3907E003F029297CA72A>I<137C48 B4143826038F8013FCEA0707000E7F001E1401001C15F8EA3C0F12381503D8781F14F000 701380A2D8F03F1307020013E012005B017E130F16C013FE5B151F1201491480A2153F00 0315005BA25D157EA315FE5D00011301EBF8030000130790387C1FF8EB3FF9EB07E1EB00 035DA21407000E5CEA3F80007F495AA24A5AD8FF0090C7FC143E007C137E00705B387801 F0383803E0381E0FC06CB4C8FCEA03F8263B79A72C>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc cmr10 10.95 81 /Fc 81 128 df<4AB4EB0FE0021F9038E03FFC913A7F00F8FC1ED901FC90383FF03FD907 F090397FE07F80494801FF13FF4948485BD93F805C137F0200ED7F00EF003E01FE6D91C7 FC82ADB97EA3C648C76CC8FCB3AE486C4A7E007FD9FC3FEBFF80A339407FBF35>11 D<EC03FE91383FFF809138FE03E0903903F800F0D90FE013384948137C90393F8001FE90 387F00035B5BA2485A6F5AED007093C7FCAA16FEB7FCA33901FC000315011500B3AC486C 497EB5D8F87F13FCA32E407EBF33>I<EC03FF023F13EE9138FE01FEEB03F090380FE003 EB1FC0EB3F80EB7F005B5B150148481300AEB7FCA3D801FCC7FCB3AE486C497EB5D8F87F 13FCA32E407EBF33>I<DA03FE49B4FC91273FFF801F13C0913BFE03E07F01F0903C03F0 00F1FC0078D90FE0D97FF0131C49484948133E4948484913FF494848495A5B491500A248 485C03016E5A0300153896C7FCAA197FBBFCA3D801FCC738FE00018485B3AC486C496CEC FF80B5D8F87FD9FC3F13FEA347407EBF4C>I<133E133F137F13FFA2EA01FEEA03FCEA07 F813F0EA0FE0EA1FC01380EA3E005A5A1270122010116EBE2D>19 D<EC0F80EC7FE0ECF870903803E0380107133CECC01CEB0F80011F131E150EA2EB3F00A5 5D1480A25D157815705D6D6C5A14C1ECC38002C7CAFC02EE91387FFFFCEB0FEC14FC4A02 0713C06D48913801FE006E5DEF00F06D7E01074B5A496C5D011D1503D939FF4A5A017093 C7FC496D5B0001017F140E496C6C131E00036E131C2607801F143C000F6E5B001F6D6C13 70263F000714F0486E485ADA03FE5B913801FF03486D495A0487C8FCED7FCFED3FFE6F48 14386D5C150F007F6E6C14786D6D6C1470003F4A6C14F06D496C6C13E0001F91393E3FC0 016C6C903AFC1FF003C03D07FC07F007FC1F800001B5D8C001B512006C6C90C7EA7FFCD9 0FF8EC0FF03E437CC047>38 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E0 13C0A312011380120313005A120E5A1218123812300B1C79BE19>I<1430147014E0EB01 C0EB03801307EB0F00131E133E133C5B13F85B12015B1203A2485AA2120F5BA2121F90C7 FCA25AA3123E127EA6127C12FCB2127C127EA6123E123FA37EA27F120FA27F1207A26C7E A212017F12007F13787F133E131E7FEB07801303EB01C0EB00E014701430145A77C323> I<12C07E12707E7E121E7E6C7E7F12036C7E7F12007F1378137CA27FA2133F7FA2148013 0FA214C0A3130714E0A6130314F0B214E01307A614C0130FA31480A2131F1400A25B133E A25BA2137813F85B12015B485A12075B48C7FC121E121C5A5A5A5A145A7BC323>I<121E EA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A120E5A 1218123812300B1C798919>44 D<B512FEA617067F961E>I<121EEA7F80A2EAFFC0A4EA 7F80A2EA1E000A0A798919>I<ED0180ED03C01507A21680150FA216005DA2151E153EA2 153C157CA2157815F8A25D1401A25D1403A25D1407A25D140FA24AC7FCA2141E143EA214 3C147CA2147814F8A25C1301A25C1303A25C1307A25C130FA291C8FC5BA2131E133EA25B A2137813F8A25B1201A25B1203A25B1207A25B120FA290C9FC5AA2121E123EA2123C127C A2127812F8A25A1260225B7BC32D>I<EB01FE90380FFFC090383F03F090387C00F84913 7C48487F48487F4848EB0F80A2000F15C04848EB07E0A3003F15F0A290C712034815F8A6 4815FCB3A26C15F8A56C6CEB07F0A3001F15E0A36C6CEB0FC0A26C6CEB1F80000315006C 6C133E6C6C5B017C5B90383F03F090380FFFC0D901FEC7FC263F7DBC2D>I<EB01C01303 1307131F137FEA07FFB5FC139FEAF81F1200B3B3ACEB7FF0B612F8A31D3D78BC2D>I<EB 07FC90383FFF8090B512E03903F01FF83907C007FC390F0001FE001E6D7E001C1580003C EC7FC05AED3FE01270B4FC6DEB1FF07FA56C5A6CC7FC120CC813E0153FA216C0157F1680 15FF16004A5A5D4A5A4A5A5D4A5A4A5A4AC7FC147E147C5C495A495A495A495A49C71270 133E133C5B4914E0485A485A485A48C7120148B6FCA25A4815C0B7FCA3243D7CBC2D>I< EB07FC90383FFF809038F80FE03901E003F839078001FCD80F007F000E6D7E001E1580D8 1F80137F486C14C07FA27F5BA2121F6C5AC8138015FF1600A24A5AA24A5A5DEC07E04A5A 023FC7FCEB1FFCECFF809038000FE0EC07F86E7E6E7E6E7E1680ED7FC0A216E0153FA216 F0A2120C123F487E487EA316E0A249137F6CC713C01278EDFF807E6C4913006C495A3907 C007FC3903F80FF0C6B55A013F1380D907F8C7FC243F7CBC2D>I<150E151E153EA2157E A215FE1401A21403EC077E1406140E141CA214381470A214E0EB01C0A2EB0380EB0700A2 130E5BA25B5BA25B5B1201485A90C7FC5A120E120C121C5AA25A5AB8FCA3C8EAFE00AC4A 7E49B6FCA3283E7EBD2D>I<00061403D80780131F01F813FE90B5FC5D5D5D15C092C7FC 14FCEB3FE090C9FCACEB01FE90380FFF8090383E03E090387001F8496C7E49137E497F90 C713800006141FC813C0A216E0150FA316F0A3120C127F7F12FFA416E090C7121F12FC00 7015C012780038EC3F80123C6CEC7F00001F14FE6C6C485A6C6C485A3903F80FE0C6B55A 013F90C7FCEB07F8243F7CBC2D>I<EC1FE0ECFFF8903803F03E90380FC00F90391F0007 80133E017EEB1FC049133F4848137F12035B12074848EB3F80ED1F00001F91C7FC5BA212 3FA3485AA214FE903887FF8039FF8F07E090389C01F09038B800FC01B0137E13F0497F16 804914C0A2ED1FE0A34914F0A5127FA6123F6D14E0A2121FED3FC0A26C6C1480A20007EC 7F006C6C137E6C6C5B6C6C485A90387E07F06DB45A010F1380D903FCC7FC243F7CBC2D> I<1238123C123F90B612FCA316F85A16F016E00078C712010070EC03C0ED078016005D48 141E151C153C5DC8127015F04A5A5D14034A5A92C7FC5C141EA25CA2147C147814F8A213 015C1303A31307A3130F5CA2131FA6133FAA6D5A0107C8FC26407BBD2D>I<EB03FC9038 1FFF8090387C07E09038F001F83901E0007C48487F48487F48C7FCED0F80121E16C0003E 1407A4123FA26DEB0F807F6C6C131F6D140001FC133E6C6C5B9038FF80786C6D5A6CEBF3 E06CEBFF806C91C7FC133F6D13C06D7F013F13F801787F48486C7E3903E01FFF48486C13 80260F800313C048487E489038007FE0003E143F007E141F007CEC0FF01507481403A315 01A46C15E0007C1403A2007E15C06C14076CEC0F806DEB1F006C6C133ED807F05B3901FC 03F86CB512E0011F1380D903FCC7FC243F7CBC2D>I<EB03FCEB1FFF90387E07C09038FC 03F048486C7E48486C7E4848137C000F147E4848137F81003F15805B007F15C0A2151F12 FF16E0A516F0A5127F153FA36C7EA2001F147F120F6C6C13FF6D13DF000313013900F803 9F90387E0F1FD91FFE13E0EB07F090C7FCA2ED3FC0A41680157FD80F801400487E486C13 FEA24A5A5D49485AEB8007391E000FE0001F495A260FC07FC7FC3803FFFE6C13F838003F C0243F7CBC2D>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3121EEA7F80A2EAFF C0A4EA7F80A2EA1E000A2779A619>I<15074B7EA34B7EA34B7EA34B7EA34B7E15E7A291 3801C7FC15C3A291380381FEA34AC67EA3020E6D7EA34A6D7EA34A6D7EA34A6D7EA34A6D 7EA349486D7E91B6FCA249819138800001A249C87EA24982010E157FA2011E82011C153F A2013C820138151FA2017882170F13FC00034C7ED80FFF4B7EB500F0010FB512F8A33D41 7DC044>65 D<B712FCEEFF8017F00001903980000FF86C6CC7EA03FE707E701380EF7FC0 EF3FE0A2EF1FF0A218F8A3170F171FA318F0A2EF3FE0177F18C0EFFF804C1300EE03FCEE 0FF8EE7FE091B6C7FC17E091C7EA07FCEE01FE933800FF80EF7FC0EF3FE0EF1FF018F817 0F18FC1707A218FEA718FC170FA2EF1FF818F0173FEF7FE0EFFFC00403138048486C9038 0FFE00B85A17E094C7FC373E7DBD40>I<DB3FF01306912603FFFE130E020F9038FF801E 913A3FF007E03E9139FF8000F8D903FEC7EA7C7ED907F8EC1EFE4948140FD93FE0140749 481403495A91C812014848150012034848167E5B000F173EA24848161EA2123F5B180E12 7FA349160012FFAC127F7F180EA2123FA27F001F171E181C6C7EA20007173C6D16386C6C 1678000117706C6C16F06EEC01E06D6C15C06D6C1403D90FF0EC07806D6CEC1F00D903FE 143E902600FF8013F891393FF007F0020FB512C0020391C7FC9138003FF037427BBF42> I<B712FCEEFF8017E000019039C0001FF86C6C48EB03FEEE00FF717E717EEF0FE084717E 717E170184717EA21980187F19C0A3F03FE0A519F0AB19E0A5F07FC0A21980A218FF1900 4D5AA24D5A6017074D5A4D5AEF7FC04DC7FCEE03FE48486CEB1FF8B85A178004FCC8FC3C 3E7DBD45>I<B912E0A300019038C000016C6C48EB001FEF0FF01703A217011700A31870 A418381638A41800A21678A216F81501150791B5FCA3EC8007150115001678A21638A218 0EA3181C93C7FCA4183C1838A21878A318F8EF01F0A21707170F173F48486CEB03FFB912 E0A3373E7DBD3E>I<B91280A300019038C000036C6C48EB007FEF1FC0170F1707A21703 A31701A4EF00E0A21638A31800A31678A216F81501150791B5FCA3EC8007150115001678 A21638A693C8FCAF3801FFE0B612F0A3333E7DBD3B>I<DB3FE0130C912603FFFE131C02 1F9038FF803C913A7FF00FC07C9139FF0001F0D903FC90380078FC4948143DD91FE0141F 4948140F4948140701FF15034890C8FC491501485A000716005B000F177C5B001F173CA2 485AA2181C127FA25B95C7FC12FFAB041FB512F0127FA26D9139000FFE00EF03FC123FA2 7F121FA26C7EA212077F12036C7E7F6C7F6D6C14076D7E6D6C140FD907F8141ED903FEEC 3C7C902600FF80EBF83C913A7FF007F01C021FB5EAC00C020391C8FC9138003FF03C427B BF47>I<B6D8C01FB512F8A3000101E0C7383FFC0026007F80EC0FF0B3A691B7FCA30280 C7120FB3A92601FFE0EC3FFCB6D8C01FB512F8A33D3E7DBD44>I<B612F0A3C6EBF000EB 3FC0B3B3B2EBFFF0B612F0A31C3E7EBD21>I<011FB512FCA3D9000713006E5A1401B3B3 A6123FEA7F80EAFFC0A44A5A1380D87F005B007C130700385C003C495A6C495A6C495A26 03E07EC7FC3800FFF8EB3FC026407CBD2F>I<B600C090387FFFFCA3000101E0C7000F13 8026007F80913807FE0018F818E0604D5A4DC7FC173E5F5F4C5A4C5A4C5A4C5A4CC8FC16 3E5E5E4B5A4B5AED07804B7E151F4B7E4B7E15FF913881EFF8913883C7FCEC878791388F 03FE91389E01FF14BCDAF8007F4A6D7E5C4A6D7E4A6D7EA2707E707EA2707E707EA2707F 717E84173F717E717EA2717E848419802601FFE04A13C0B600C090B6FCA3403E7DBD47> I<B612F8A3000101E0C9FC38007F80B3B0EF0380A517071800A45FA35FA25F5F5F4C5A16 0748486C133FB8FCA3313E7DBD39>I<B500C093B512C0A300016D4BEBE000D8007F1880 D977F0ED03BFA3D973F8ED073FA3D971FC150EA2D970FE151CA3027F1538A36E6C1470A3 6E6C14E0A26E6CEB01C0A36E6CEB0380A36E6CEB0700A26E6C130EA36E6C5BA3037F5BA2 6F6C5AA36F6C5AA392380FE1C0A3923807F380A26FB4C7FCA36F5AA213F8486C6D5AD807 FFEFFFE0B500F80178017FEBFFC0A34A3E7CBD53>I<B56C91B512F88080D8007F030713 006EEC01FC6E6E5A1870EB77FCEB73FEA2EB71FF01707FA26E7E6E7EA26E7E6E7EA26E7E 6E7EA26E7E6E7FA26F7E6F7EA26F7E6F7EA26F7E6F7EA26F7E6F1380A2EE7FC0EE3FE0A2 EE1FF0EE0FF8A2EE07FCEE03FEA2EE01FF7013F0A2177F173FA2171F170FA2170701F815 03487ED807FF1501B500F81400A218703D3E7DBD44>I<ED7FE0913807FFFE91391FC03F 8091397E0007E04948EB03F8D907F0EB00FE4948147F49486E7E49486E7E49C86C7E01FE 6F7E00018349150300038348486F7EA248486F7EA2001F188049167F003F18C0A3007F18 E049163FA300FF18F0AC007F18E06D167FA4003F18C0A26C6CEEFF80A36C6C4B1300A26C 6C4B5A00035F6D150700015F6C6C4B5A6D5E6D6C4A5A6D6C4A5A6D6C4AC7FC6D6C14FED9 01FCEB03F8D9007FEB0FE091391FC03F80912607FFFEC8FC9138007FE03C427BBF47>I< B712F8EEFF8017E000019039C0003FF86C6C48EB07FCEE01FE707EEF7F80EF3FC018E0A2 EF1FF0A218F8A818F0A2EF3FE0A218C0EF7F80EFFF004C5AEE07FCEE3FF091B612C04CC7 FC0280C9FCB3A73801FFE0B612C0A3353E7DBD3E>I<ED7FE0913807FFFE91391FC03F80 91397F000FE0D901FCEB03F8D907F0EB00FE4948147F49486E7E49486E7E49C86C7E4982 48486F7E49150300038348486F7EA2000F834981001F1880A24848EE7FC0A3007F18E0A2 49163FA200FF18F0AC007F18E0A26D167FA3003F18C0A26C6CEEFF80A3000F18006D5D00 07DA0F805B6C6C90393FE003FCED70706C6C496C485A6C6C48486C485A017FD9800E5BD9 3F819038061FC0D91FC19038073F80D90FE14AC7FCD907F1EB03FE902601FDC013F8903A 007EE007E091271FF03FC013180207B5FC9139007FE1E0DB0001143883711378A2706C13 F0EFFF0318FFA27113E0A37113C0711380711300715AEF01F83D527BBF47>I<B712C016 FCEEFF800001D9C00013E06C6C48EB1FF0EE07FCEE01FE707E84717EA2717EA284A76017 7F606017FF95C7FCEE01FCEE07F8EE1FE0EEFF8091B500FCC8FC16F091388001FCED003F EE1FC0707E707E83160383160183A383A484A4F0C004190EA28218E0057F131E2601FFE0 161CB600C0EB3FF094381FF83805071370CA3801FFE09438003F803F407DBD43>I<D907 FC131890391FFF8038017FEBE0783901FC03F83A03F0007CF8D807C0133F4848130F001F 140748C7FC003E1403007E1401A2007C140012FC1678A46C1538A27EA26C6C14007F7FEA 3FF8EBFF806C13F86CEBFF806C14F06C14FC6C14FF6C15C0013F14E0010714F0EB007F02 0713F89138007FFC150FED07FE15031501ED00FFA200E0157FA3163FA27EA3163E7E167E 6C157C6C15FC6C15F86D13016DEB03F06DEB07E0D8F9FCEB0FC03AF07F803F8090391FFF FE00D8E00713F839C0007FC028427BBF33>I<003FB91280A3903AF0007FE00101809039 3FC0003F48C7ED1FC0007E1707127C00781703A300701701A548EF00E0A5C81600B3B14B 7E4B7E0107B612FEA33B3D7DBC42>I<B600C090B512F8A3000101E0C70007130026007F 80EC01FC715A1870B3B3A4013F16F06E5DA21701011F5E80010F15036E4A5A010793C7FC 6D6C5C6D6C141E6D6C5C027F14F86E6C485A91390FF00FE00203B51280020049C8FCED1F F03D407DBD44>I<B691380FFFFEA3000301E0020113E06C01809138007F806CEF3F0001 7F163E181C6E153C013F1638A26E1578011F1670A26D6C5DA26E140101075EA26E140301 035EA26D6C4AC7FCA2806D150EA26F131E027F141CA26F133C023F1438A26E6C5BA26F13 F0020F5CA2EDF80102075CA26E6C485AA2EDFE07020191C8FCA26F5A6E130EA2ED7F9CA2 16DCED3FF8A36F5AA36F5AA26F5AA36F5A3F407EBD44>I<B500FE017FB5D88007B5FCA3 000301C0010101E0C713F86C90C849EC3FE07148EC0F807E7215006E143F017F190E84A2 6D6C60A24D7E6D6C60A2EFE7F86D6C60A2933801C3FC6E18F001076104037F6E02811401 01036104077F17006D6C4D5AA2040EEB7F806D6C4DC7FCA24CEB3FC0DA7F80160EA24CEB 1FE003C0161E023F171C047814F0DBE070010F133C021F173804F014F84C1307DA0FF05E A2DBF1C0EB03FCDA07F95EA2DBFB80EB01FEDA03FF6F5AA293C8FCA26E5FA24B157F0200 94C8FCA24B81037C153EA20378151E0338151C58407EBD5D>I<007FB5D8C003B512E0A3 C649C7EBFC00D93FF8EC3FE06D48EC1F806D6C92C7FC171E6D6C141C6D6C143C5F6D6C14 706D6D13F04C5ADA7FC05B023F13036F485ADA1FF090C8FC020F5BEDF81E913807FC1C16 3C6E6C5A913801FF7016F06E5B6F5AA26F7E6F7EA28282153FED3BFEED71FF15F103E07F 913801C07F0203804B6C7EEC07004A6D7E020E6D7E5C023C6D7E02386D7E14784A6D7E4A 6D7F130149486E7E4A6E7E130749C86C7E496F7E497ED9FFC04A7E00076DEC7FFFB500FC 0103B512FEA33F3E7EBD44>I<B66C0103B51280A3000101F0C8EBF8006C6C48ED3FC072 5A013F041EC7FC6D7E606D6C15386D6C1578606D6C5D6E14016D5E6D6D1303606E6C49C8 FC6E6C5B170E6E6C131E171C6E6C5B6E6C137817706E6C13F06F5B6E13016EEB83C05FED 7FC7DB3FE7C9FC16EFED1FFE5E150F6F5AB3A4ED1FFC020FB512FCA3413E7FBD44>I<00 3FB712F8A391C7EA1FF013F801E0EC3FE00180EC7FC090C8FC003EEDFF80A2003C4A1300 007C4A5A12784B5A4B5AA200704A5AA24B5A4B5AA2C8485A4A90C7FCA24A5A4A5AA24A5A A24A5A4A5AA24A5A4A5AA24990C8FCA2495A4948141CA2495A495AA2495A495A173C495A A24890C8FC485A1778485A484815F8A24848140116034848140F4848143FED01FFB8FCA3 2E3E7BBD38>I<EAFFFCA4EAF000B3B3B3B3ABEAFFFCA40E5B77C319>I<EAFFFCA4EA003C B3B3B3B3ABEAFFFCA40E5B7FC319>93 D<EA0180120313005A120E5A1218123812301270 1260A312E05AA412CFEAFFC013E0A3127FA2123F13C0EA0F000B1C7ABE19>96 D<EB0FF8EBFFFE3903F01F8039078007E0000F6D7E9038E001F8D81FF07F6E7EA3157F6C 5AEA0380C8FCA4EC1FFF0103B5FC90381FF87FEB7F803801FC00EA07F8EA0FE0485A485A A248C7FCEE038012FEA315FFA3007F5BEC03BF3B3F80071F8700261FC00E13CF3A07F03C 0FFE3A01FFF807FC3A003FC001F0292A7DA82D>I<EA01FC12FFA3120712031201B1EC03 FC91381FFF8091387C07E09039FDE001F09039FFC000FC4A137E91C77E49158049141F17 C0EE0FE0A217F0A2160717F8AA17F0A2160FA217E0161F17C06D1580EE3F006D5C6E13FE 9039F3C001F89039F1E003F09039E0780FC09026C03FFFC7FCC7EA07F82D407EBE33>I< 49B4FC010F13E090383F00F8017C131E4848131F4848137F0007ECFF80485A5B121FA248 48EB7F00151C007F91C7FCA290C9FC5AAB6C7EA3003FEC01C07F001F140316806C6C1307 6C6C14000003140E6C6C131E6C6C137890383F01F090380FFFC0D901FEC7FC222A7DA828 >I<ED01FC15FFA3150715031501B114FF010713E190381F80F990387E003D49131FD803 F81307485A49130348481301121F123F5B127FA290C7FCA25AAA7E7FA2123FA26C7E000F 14037F000714076C6C497E6C6C497ED8007C017913F890383F01F190380FFFC1903A01FE 01FC002D407DBE33>I<EB01FE90380FFFC090383F03F09038FC01F848486C7E4848137E 48487F000F158049131F001F15C04848130FA2127F16E090C7FCA25AA290B6FCA290C9FC A67EA27F123F16E06C7E1501000F15C06C6C13036DEB07806C6C1400C66C131E017E5B90 381F80F8903807FFE0010090C7FC232A7EA828>I<EC1FC0EC7FF8903801F83C903807E0 7E90380FC0FFEB1FC1EB3F811401137FEC00FE01FE137C1500AEB6FCA3C648C7FCB3AE48 7E007F13FFA320407EBF1C>I<167C903903F801FF903A1FFF078F8090397E0FDE1F9038 F803F83803F001A23B07E000FC0600000F6EC7FC49137E001F147FA8000F147E6D13FE00 075C6C6C485AA23901F803E03903FE0FC026071FFFC8FCEB03F80006CAFC120EA3120FA2 7F7F6CB512E015FE6C6E7E6C15E06C810003813A0FC0001FFC48C7EA01FE003E14004815 7E825A82A46C5D007C153E007E157E6C5D6C6C495A6C6C495AD803F0EB0FC0D800FE017F C7FC90383FFFFC010313C0293D7EA82D>I<EA01FC12FFA3120712031201B1EC01FE9138 07FFC091381E07E091387803F09138E001F8D9FDC07F148001FF6D7E91C7FCA25BA25BB3 A6486C497EB5D8F87F13FCA32E3F7DBE33>I<EA01E0EA07F8A2487EA46C5AA2EA01E0C8 FCACEA01FC127FA3120712031201B3AC487EB512F0A3143E7DBD1A>I<1478EB01FEA2EB 03FFA4EB01FEA2EB00781400AC147FEB7FFFA313017F147FB3B3A5123E127F38FF807E14 FEA214FCEB81F8EA7F01387C03F0381E07C0380FFF803801FC00185185BD1C>I<EA01FC 12FFA3120712031201B292B51280A392383FFC0016E0168093C7FC153C5D5D4A5AEC07C0 4A5A4AC8FC143E147F4A7E13FD9038FFDFC0EC9FE0140F496C7E01FC7F496C7E1401816E 7E81826F7E151F826F7EA282486C14FEB539F07FFFE0A32B3F7EBE30>I<EA01FC12FFA3 120712031201B3B3B1487EB512F8A3153F7DBE1A>I<2701F801FE14FF00FF902707FFC0 0313E0913B1E07E00F03F0913B7803F03C01F80007903BE001F87000FC2603F9C06D487F 000101805C01FBD900FF147F91C75B13FF4992C7FCA2495CB3A6486C496CECFF80B5D8F8 7FD9FC3F13FEA347287DA74C>I<3901F801FE00FF903807FFC091381E07E091387803F0 00079038E001F82603F9C07F0001138001FB6D7E91C7FC13FF5BA25BB3A6486C497EB5D8 F87F13FCA32E287DA733>I<14FF010713E090381F81F890387E007E01F8131F4848EB0F 804848EB07C04848EB03E0000F15F04848EB01F8A2003F15FCA248C812FEA44815FFA96C 15FEA36C6CEB01FCA3001F15F86C6CEB03F0A26C6CEB07E06C6CEB0FC06C6CEB1F80D800 7EEB7E0090383F81FC90380FFFF0010090C7FC282A7EA82D>I<3901FC03FC00FF90381F FF8091387C0FE09039FDE003F03A07FFC001FC6C496C7E6C90C7127F49EC3F805BEE1FC0 17E0A2EE0FF0A3EE07F8AAEE0FF0A4EE1FE0A2EE3FC06D1580EE7F007F6E13FE9138C001 F89039FDE007F09039FC780FC0DA3FFFC7FCEC07F891C9FCAD487EB512F8A32D3A7EA733 >I<02FF131C0107EBC03C90381F80F090397F00387C01FC131CD803F8130E4848EB0FFC 150748481303121F485A1501485AA448C7FCAA6C7EA36C7EA2001F14036C7E15076C6C13 0F6C7E6C6C133DD8007E137990383F81F190380FFFC1903801FE0190C7FCAD4B7E92B512 F8A32D3A7DA730>I<3901F807E000FFEB1FF8EC787CECE1FE3807F9C100031381EA01FB 1401EC00FC01FF1330491300A35BB3A5487EB512FEA31F287EA724>I<90383FC0603901 FFF8E03807C03F381F000F003E1307003C1303127C0078130112F81400A27E7E7E6D1300 EA7FF8EBFFC06C13F86C13FE6C7F6C1480000114C0D8003F13E0010313F0EB001FEC0FF8 00E01303A214017E1400A27E15F07E14016C14E06CEB03C0903880078039F3E01F0038E0 FFFC38C01FE01D2A7DA824>I<131CA6133CA4137CA213FCA2120112031207001FB512C0 B6FCA2D801FCC7FCB3A215E0A912009038FE01C0A2EB7F03013F138090381F8700EB07FE EB01F81B397EB723>I<D801FC14FE00FF147FA3000714030003140100011400B3A51501 A31503120015076DEB06FF017E010E13806D4913FC90381FC078903807FFE00100903880 FE002E297DA733>I<B539E00FFFE0A32707FE000313006C48EB00FC5E00015D7F00005D A26D13016D5CA26D6C485AA2ECC007011F91C7FCA290380FE00EA2ECF01E0107131CA26D 6C5AA2ECFC7801011370A2ECFEF001005BA2EC7FC0A36E5AA26EC8FCA3140E2B287EA630 >I<B53BC3FFFE03FFF8A3290FFE003FE00013C06C486D48EB3F806C4817006D010F141E 00016F131C15076D163C00004A6C1338A2017F5E4B7E151DD93F805DED3DFC1538D91FC0 4A5AED78FE9238707E03D90FE0017F5BEDE03F02F0140701070387C7FC9138F1C01F02F9 148F010315CE9138FB800F02FF14DE6D15FCED00076D5DA24A1303027E5CA2027C130102 3C5C023813003D287EA642>I<B539F01FFFE0A30003D9C00F1300C690388007F8D97F00 13E002805BD93FC05B011F49C7FC90380FE00EECF01E6D6C5A01035B6D6C5A6E5AEB00FF 6E5A6E5A81141F814A7E81147BECF1FC903801E1FEECC0FF01037F49486C7ED90F007F01 1E6D7E013E130F496D7E01FC80486C80000F4A7EB539803FFFF8A32D277FA630>I<B539 E00FFFE0A32707FE000313006C48EB01FC6F5A00015D7F00005DA2017F495AA2EC800301 3F5CA26D6C48C7FCA26E5A010F130EA26D6C5AA2ECF83C01031338A26D6C5AA2ECFEF001 005BA2EC7FC0A36E5AA36EC8FCA2140EA2141E141C143C1438A2147800181370127EB45B A2495AA248485AD87E07C9FCEA780EEA3C3CEA1FF8EA07E02B3A7EA630>I<001FB61280 A2EBE0000180140049485A001E495A121C4A5A003C495A141F00385C4A5A147F5D4AC7FC C6485AA2495A495A130F5C495A90393FC00380A2EB7F80EBFF005A5B4848130712074914 00485A48485BA248485B4848137F00FF495A90B6FCA221277EA628>I<B812F0A22C0280 982D>I<001C130E007FEB3F8039FF807FC0A5397F003F80001CEB0E001A0977BD2D>127 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fd cmtt9 9 85 /Fd 85 126 df<123C127E12FFAF127EAE123C1200A7123C127E12FFA4127E123C082F71 AE27>33 D<00101320007C13F838FE01FCAAEAFC00007C13F8A900381370161778AE27> I<90383C03C090387E07E0A7EBFE0F01FC13C0A2007FB512FEB7FCA4003F14FE3901F81F 80AC003FB512FEB7FCA46C14FE3903F03F00A200075BEBE07EA73803C03C202E7DAD27> I<000F1470486C13F8383FC001EA7FE0140315F038FFF00700F914E0A2140F15C0A2141F 00FF1480387FE03F1500A26C485A381F807E380F00FEC75AA213015CA213035C13075CA2 130F5C131F5CA2133F91C7FCA24913F090387E01F89038FE03FC9038FC07FEA212019038 F80FFF0003149F13F0A2120713E0A2000F14FF9038C007FE121F1380EC03FC000FEB01F8 6CC712F0203A7DB327>37 D<131FEB7FC0497E5A80EA03F1EBE1F8EA07E013C0A513C15C 9039C3F1FF80D9E3E113C03803E7E3EBEFC101FF1480913881F800EC01F0EA01FEEBFC03 01F85B00031307D807FC5B120F381FFE0FD83FBE5BEB3F1FD87E1F90C7FC149F38FC0FBF 14FE1307ECFC020103EB0F80EB01F8A238FE03FC387E07FE397F1FFF9F6CB61200149F6C EB0FFE390FFC03FC3903F000F822307EAE27>I<120FEA1FC0123F13E0A213F0121F120F 1201A4120313E01207EA0FC0A2EA3F80EA7F005A5A12F812700C1773AD27>I<EB01C0EB 03E0130F131FEB3FC0EB7F80EBFE00485A5B1203485A5B485AA2485AA248C7FCA3127EA4 5AAC127EA47EA36C7EA26C7EA26C7E7F6C7E12017F6C7EEB7F80EB3FC0EB1FE0130F1303 EB01C0133A73B327>I<127012F812FE7E6C7E6C7EEA0FE06C7E12037F6C7E1200137EA2 7FA2EB1F80A3EB0FC0A4EB07E0ACEB0FC0A4EB1F80A3EB3F00A2137EA25B1201485A5B12 07485AEA3FC0485A48C7FC5A12F81270133A7AB327>I<130F497EA60078EB81E000FEEB 87F000FF138FEBDFBF6CB512E06C14C0000F1400000313FCC613F0A2000313FC000F13FF 003F14C04814E039FFDFBFF0EB1F8F00FE13870078EB81E00000EB8000A66DC7FC1C207B A627>I<EB03C0497EAD007FB512FEB7FCA46C14FE390007E000AD6D5A20227DA727>I<12 0FEA3FC013E0EA7FF0A213F8A2123FA2120F120113F01203EA07E0121FEA7FC0EAFF8013 005A12700D14738927>I<007FB512F8B612FCA46C14F81E067C9927>I<121EEA7F80A2EA FFC0A4EA7F80A2EA1E000A0A728927>I<1538157C15FCA2140115F8140315F0140715E0 140F15C0141F1580143F1500A25C147E14FE5C13015C13035C13075C130F5CA2131F5C13 3F91C7FC5B137E13FE5B12015B12035BA212075B120F5B121F5B123F90C8FC5A127E12FE 5AA25A12781E3A7CB327>I<EB07E0EB3FFC497E90B5FC4814803903FC3FC03907F00FE0 390FE007F0EBC003391F8001F8A248C712FCA2003E147C007E147EA3007C143E00FC143F AC007E147EA46C14FCA2EB8001001F14F8EBC003000F14F0EBE0073907F00FE03903FC3F C06CB512806C14006D5A6D5AEB07E020307DAE27>I<130E131FA25B5BA25B5A5A127FB5 FCA213BFEA7E3F1200B3AA003FB512805A15C01580A21A2F79AE27>I<EB3FE03801FFF8 4813FE000FEBFF804814C0393FE07FE0EB800F397F0007F0007EEB03F800FE13015A6C14 FC1400A3127CC8FCA2140115F8A2140315F01407EC0FE0EC1FC0143FEC7F80ECFF00495A 495A495A495A495A495A495A01FEC7FC485AD807F81378484813FC485A485A48B5FCB6FC A36C14F81E2F7CAE27>I<EB1FF8EBFFFE0003EBFF80000F14C015E0391FF01FF0393FC0 07F8EB800115FC1400A26CC7FC1204C8FC140115F81403EC07F0140FEC3FE090381FFFC0 491380A215E06D13F09038001FF8EC03FC1401EC00FE157E157F153FA21238127C12FEA2 157F48147E6C14FE007FEB01FCEB8003393FF01FF86CB512F06C14E000031480C6EBFE00 EB1FF820307DAE27>I<EC3F804A7EA214FF5BA2EB03F7EB07E7A2EB0FC71487131FEB3F 07A2137E13FCA2EA01F813F01203EA07E0A2EA0FC0EA1F80A2EA3F00123E127E5AB71280 16C0A36C1580C73807C000A849B5FC491480A36D1400222F7EAE27>I<001FB512E04814 F0A315E090C8FCACEB1FF0EBFFFC14FF158015C09038F03FE09038C00FF0EB0007003EEB 03F8001C1301C7FC15FC1400A3127C12FEA2140115F84813036C14F0007F130F9038801F E0393FE07FC06CB512806C14006C5B000113F838007FC01E2F7CAD27>I<14FF010713C0 011F13F04913F890B5FC48EB81FC3803FE0113F8EA07F0EA0FE09038C000F8001F140048 5A90C8FCA25A127EEB0FF838FE3FFE48B51280B612C015E09038F80FF09038E007F89038 8001FC90C7FC15FE48147E157F153F5A7E127EA3127F6C147F157E6C6C13FE9038C001FC 120F9038F007F83907F81FF06CB512E06C14C06C148090383FFE00EB0FF820307DAE27> I<1278B612FE15FFA315FE39FC0001FCEC03F8EC07F0007814E0C7120FEC1FC01580143F EC7F00147E14FE5C13015C13035C13075CA2495AA3495AA3133F91C7FCA55B137EA9133C 20307DAE27>I<EB0FF0EB7FFE48B512804814C0000F14F0EBF81F391FE007F8393F8001 FC90C7FC4814FE007E147EA56C14FCEB8001391FC003F8390FE007F03907FC3FE00001B5 128039007FFE006D5A90B5FC000314C0390FF00FF0391FC003F8393F8001FC90C7FC007E 147EA248143FA6007E147EA2007F14FE393F8001FC391FE007F8EBF81F6CB512F06C14E0 0001148039007FFE00EB0FF020307DAE27>I<EB0FF0EB7FFC48B5FC4814804814C0390F F81FE0391FE007F0393FC003F8EB8001D87F0013FC007E130012FE48147EA4157F153F15 7F7E127E007F14FF7E6D5A381FE007380FF01F6CB6FC7E6C143F39007FFC7F90381FF07E 90C7FCA215FCA2140115F8001F1303393F8007F0EC0FE0141FEC3FC09038C0FF806CB512 005C6C13F8000313E0C6138020307DAE27>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00 C7FCAC121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A20729F27>I<120FEA3FC0A2EA7FE0 A4EA3FC0A2EA0F00C7FCAC120FEA3F8013C0127F13E0A3123FA2120F120713C0120FA2EA 3F80EA7F005A5A12F812700B2A739F27>I<153815FC14011407140FEC3FF8EC7FE0ECFF C001031300495AEB1FF8495A495A3801FF804890C7FCEA0FFC485AEA7FF0EAFFC05BA27F EA7FF0EA1FF86C7EEA03FF6C7F38007FE06D7E6D7EEB07FE6D7E010013C0EC7FE0EC3FF8 EC0FFC14071401140015381E287CAA27>I<007FB512FEB7FCA4003F14FEC9FCA6003FB5 12FEB7FCA46C14FE20127D9F27>I<127012FC7E6C7E7FEA7FF0EA1FF86C7EEA03FF6C7F 38007FE06D7E6D7EEB07FE6D7E010013C0EC7FE0EC3FF8EC0FFC1407A2140FEC3FF8EC7F E0ECFFC001031300495AEB1FF8495A495A3801FF804890C7FCEA0FFC485AEA7FF0EAFFC0 5B48C8FC5A12701E287CAA27>I<EBFFF8000313FF000F14C0003F14E04814F09038C01F F839FF0003FC4813011400A21401007C1303C7EA0FF8EC1FF0EC7FE0ECFFC0491300EB03 FC495A5C495A5C131F5CA76DC7FC90C8FCA7130F497E497EA46D5A6DC7FC1E2E7CAD27> I<EB03F0497EA2497EA4143CEB1F3EA5EB3F3FA3EB3E1FA2017E7FA4496C7EA548486C7E A390B5FCA24880A3EBF003A248486C7EA4000F803A7FFC0FFF8000FF15C06D5A497E007F 1580222F7EAE27>65 D<007FB5FCB612C08115F87E3907E003FCEC00FE157E157F81A615 7EA25D1403EC0FF890B55A15C015F081819038E000FE157FED3F80151FA2ED0FC0A6151F 1680153FED7F004A5A007FB55AB65A5D15E06C1480222E7FAD27>I<903803F80E90381F FE1F90383FFFBF90B6FC5A3803FE0F3807F803497E48487E485A49137FA248C7123FA25A 127E151E150012FE5AAA7E127EA2151E007F143F7EA26C7E157F6D137E6C6C13FE3907F0 01FCEBF8033903FE0FF86CB512F06C14E0013F13C06D1300EB03F820307DAE27>I<387F FFFC14FFB612C06C80813907E00FF81407EC01FC6E7EA2157E157F811680151FA316C015 0FABED1F80A3153F1600A25D15FEA24A5A4A5A140F007FB55A5DB65A6C91C7FC14FC222E 7FAD27>I<007FB61280B712C0A37E3907E0000FA6ED078092C7FCA4EC07804A7EA390B5 FCA5EBE00FA36E5A91C8FCA4ED03C0ED07E0A7007FB6FCB7FCA36C15C0232E7FAD27>I< 007FB61280B712C0A37E3907E0000FA6ED078092C7FCA4EC07804A7EA390B5FCA5EBE00F A36E5A91C8FCAC387FFF80B57EA36C5B222E7EAD27>I<903807F03890381FFC7C90387F FFFC90B5FC5A3803FC1F3807F00F380FE007EBC003001F13011380123F90C7FCA2127EA2 157892C7FC5AA8EC1FFF4A1380A3007E6D1300EC00FCA36C1301A21380121FEBC003120F EBE0073807F00F3803FC1F6CB5FC7EEB7FFE90381FFC78D907F0C7FC21307DAE27>I<00 7FB512E0B612F0A36C14E039001F8000B3B2007FB512E0B612F0A36C14E01C2E7BAD27> 73 D<90381FFFF84913FCA36D13F89038001F80B3AC127CA212FEA2EC3F005C387F81FE 13FF6C5B6C5B000713E0C690C7FC1E2F7BAD27>I<3A7FFC07FF8016C0486C5A6C487E16 803A07C001F80014035D4A5A4A5A141F5D4AC7FC147E14FE5CEBC1F8EBC3F013C75CEBCF F0EBDFF813FF8013FEEBFC7E143EEBF83F497E01E07F140F01C07F1407811403816E7EA2 6E7E157C157E3A7FFC01FFC016E0486C5A6C487E16C0232E7FAD27>I<387FFFC080B5FC 7E5CD803F0C8FCB3AAED0780ED0FC0A7007FB6FCA2B7FC7E1680222E7FAD27>I<D87FE0 EB7FE0486CEBFFF0A26D5A007F15E0000F150001B813DFEBBC03A3EBBE07019E139FA3EB 9F0FA2018F131FA2149FA2EB879EA4EB839C14FCA3EB81F8A2EB80F01400AAD87FF0EBFF E0486C4813F0A36C486C13E0242E7FAD27>I<3A7FF003FFE0486C4813F0A213FC007F6D 13E000079038003E0013DEA313CFA3148013C714C0A213C314E0A213C114F0A3EBC0F8A3 1478147CA2143C143EA2141E141F140FA3EC07BEA3EC03FEEA7FFCEAFFFE1401A26C486C 5A242E7FAD27>I<EBFFFC0007EBFF80001F14E0A24814F0EBC00F397F8007F8EB000300 7E1301A348EB00FCB3A76C1301007E14F8A3007F1303EB8007393FE01FF090B5FC6C14E0 A200071480C6EBFC001E307CAE27>I<007FB5FCB612E081816C803907E003FEEC00FF81 ED3F80151F16C0150FA6151F1680153FED7F005DEC03FE90B55A5D5D5D92C7FC01E0C8FC ADEA7FFEB5FCA36C5A222E7FAD27>I<EBFFFC0007EBFF80001F14E0A24814F0EBE01F39 7F8007F8EB0003007E1301A300FE14FC481300B3A4EB07E0A200FE13F1007E14F8EB03F9 A2387F01FF1381D83FE013F090B5FC6C14E0A200071480C6FC9038001FC0A2EC0FE0A2EC 07F0A2EC03F8A2EC01F01E397CAE27>I<387FFFF0B512FE6E7E816C803907E01FF01407 6E7E1401811400A514015D14034A5A141F90B55A5D5DA281EBE01F6E7E14076E7EA816F0 EDF1F8A4397FFE01FBB5EBFFF08016E06C48EB7FC0C8EA1F00252F7FAD27>I<90387FC0 E03901FFF1F0000713FF5A5AEA3FE0EB801F387F000F007E130712FE5A1403A3EC01E06C 90C7FC127E127FEA3FC013F86CB47E6C13F86C13FE6CEBFF80C614C0010F13E0010013F0 140FEC07F81403140115FC1400127812FCA46CEB01F8A26C130390388007F09038F01FE0 90B5FC15C0150000F85B38701FF81E307CAE27>I<007FB61280B712C0A439FC03F00FA6 0078EC0780000091C7FCB3AB90B512C04880A36C5C222E7EAD27>I<3A7FFE01FFF8B548 13FCA36C486C13F83A07E0001F80B3AB6D133F00031500A26D5B0001147E6D13FE6C6C48 5A90387F87F814FF6D5B010F13C06D5BD901FEC7FC262F80AD27>I<D87FE0EB7FE0486C EBFFF0A36C48EB7FE0001FC7EA0F80A76C6CEB1F00A614F0EB81F83907C3FC3EA4149CEB C79EA30003143CA301E7137CEBEF9FA2140FA200011478A49038FE07F8A300005CA2EBFC 0390387801E0242F7FAD27>87 D<393FFC1FFE387FFE3F815D383FFC1F3903F00FE001F8 5B1201EBFC1F00005CEBFE3F017E90C7FCEB7F7FEB3F7E14FE6D5AA26D5AA26D5AA21303 130780130F80131F80EB3F7E147F497E017E7F141F01FC7F140FD801F87F14071203496C 7E120701E07F3A7FFC0FFF8000FF15C06D5A497E007F1580222E7EAD27>I<387FFFF0B5 12F8A314F000FCC7FCB3B3ACB512F014F8A36C13F0153A71B327>91 D<127812F87EA27E127E127F7E7F121F7F120F7F12077F1203A27F12017F12007F137E13 7F7F80131F80130FA280130780130380130180130080147E147F80A21580141F15C0140F 15E0140715F0140315F8140115FC1400A2157C15381E3A7CB327>I<387FFFF0B512F8A3 7EEA0001B3B3ACEA7FFFB5FCA36C13F0153A7EB327>I<131C137E3801FF80000713E000 1F13F84813FC38FFE7FF13C3130000FC133F0078131E180B79AD27>I<007FB512F8B612 FCA46C14F81E067C7E27>I<3803FFC0000F13F04813FC4813FF811380EC1FC0381F000F 000480C71207A2EB0FFF137F0003B5FC120F5A383FFC07EA7FC0130012FE5AA46C130F00 7F131FEBC0FF6CB612806C15C07E000313F1C69038807F8022207C9F27>97 D<EA7FE0487EA3127F1203A914FF01F313C090B512F08181EC81FE49C67E49EB3F804913 1F16C049130FA216E01507A6150F16C07F151F6DEB3F80157F6DEBFF009038FF83FEECFF FC5D5D01F313C02601E0FEC7FC232E7FAD27>I<EB0FFF017F13C048B512E04814F05A38 0FF807EA1FE0393FC003E0903880008048C8FC127EA212FE5AA67E127EA2007F14F0393F 8001F813C0381FE003390FF80FF06CB5FC6C14E06C14C06C6C1300EB0FF81D207B9F27> I<EC3FF04A7EA3143F1401A9EB0FE1EB7FFD48B5FC5A5A380FF83F381FE00F383FC007EB 8003EA7F00007E1301A212FE5AA67E007E1303A2127F6C1307EB800F381FE01F380FF03F 6CB612C06C15E06C13FD38007FF9D91FE013C0232E7EAD27>I<EB0FF8EB3FFE90B51280 000314C04814E0390FFC0FF0391FE003F8EBC001D83F8013FC48C7FC127E157E12FEB612 FEA415FC00FCC8FC7E127E127F6C143C6D137E6C7E01F013FE390FFC07FC6CB5FC000114 F86C14F0013F13C0903807FE001F207D9F27>I<EC1FF0ECFFF84913FC4913FE5BEB0FF0 14C0011F137CEC8000A6007FB512F0B612F8A36C14F039001F8000B3A4003FB512C04814 E0A36C14C01F2E7EAD27>I<153F90391FC0FF80D97FF313C048B612E05A4814EF390FF0 7F873A1FC01FC3C0EDC000EB800F48486C7EA66C6C485AEBC01FA2390FF07F8090B5C7FC 5C485BEB7FF0EB1FC090C9FCA27F6CB5FC15E015F84814FE4880EB8001007EC7EA3F8000 7C140F00FC15C0481407A46C140F007C1580007F143F6C6CEB7F009038F807FF6CB55A00 0714F86C5CC614C0D90FFCC7FC23337EA027>I<EA7FE0487EA3127F1203A9147F9038F1 FFC001F713F090B5FC8114C1EC01FCEBFE005B5BA25BB03A7FFF83FFE0B500C713F0A36C 018313E0242E7FAD27>I<130F497E497EA46D5A6DC7FC90C8FCA7383FFF80487FA37EEA 000FB3A4007FB512F0B6FC15F815F07E1D2F7BAE27>I<143C147E14FFA4147E143C1400 A73801FFFE4813FFA37EC7123FB3B0147E1238007C13FE38FE01FC1303B512F814F06C13 E06C13803807FE0018407CAE27>I<EA7FE07F12FF127FA21201A991383FFFC04A13E0A3 6E13C0913803F8004A5A4A5A4A5A4A5A02FFC7FCEBF1FEEBF3FCEBF7F8EBFFFC8080143F 496C7E496C7E01F87FEBF0076E7E6E7E816E7E157E3A7FFFC1FFF002C313F8B512E36C13 C316F0252E80AD27>I<387FFF80B57EA37EEA000FB3B2007FB512F8B612FCA36C14F81E 2E7CAD27>I<397F07C01F3AFF9FF07FC09039FFF9FFE091B57E7E3A0FFC7FF1F89038F0 3FC001E0138001C01300A3EB803EB03A7FF0FFC3FF486C01E3138001F913E701F813E36C 4801C313002920819F27>I<387FE07F39FFF1FFC001F713F090B5FC6C80000313C1EC01 FCEBFE005B5BA25BB03A7FFF83FFE0B500C713F0A36C018313E024207F9F27>I<EB1FE0 EB7FF83801FFFE487F481480390FF03FC0391FC00FE0393F8007F0EB00034814F8007E13 01A248EB00FCA76C1301007E14F8A2007F1303393F8007F0A2391FE01FE0390FF03FC06C B512806C14006C5B38007FF8EB1FE01E207C9F27>I<387FE0FFD8FFF313C090B512F081 6C800003EB81FE49C67E49EB3F8049131F16C049130FA216E01507A6150F16C07F151F6D EB3F80157F6DEBFF009038FF83FEECFFFC5D5D01F313C0D9F0FEC7FC91C8FCAC387FFF80 B57EA36C5B23317F9F27>I<90380FF03C90383FFE7E90B5FC000314FE5A380FFC1F381F E007EBC003383F800148C7FC127EA200FE147E5AA67E007E14FEA2007F1301EA3F80EBC0 03381FE007380FF81F6CB5FC7E6C147E38007FFCEB0FF090C7FCAC91381FFFF8A24A13FC 6E13F8A226317E9F27>I<397FFC03FC39FFFE0FFF023F13804A13C0007F90B5FC39007F FE1F14F89138F00F809138E002004AC7FC5CA291C8FCA2137EAD007FB57EB67EA36C5C22 207E9F27>I<9038FFF3800007EBFFC0121F5A5AEB803F38FC000F5AA2EC07806C90C7FC EA7F8013FC383FFFF06C13FC000713FF00011480D8000F13C09038003FE014070078EB03 F000FC1301A27E14036CEB07E0EBE01F90B512C01580150000FB13FC38707FF01C207B9F 27>I<133C137EA8007FB512F0B612F8A36C14F0D8007EC7FCAE1518157EA415FE6D13FC 1483ECFFF86D13F06D13E0010313C0010013001F297EA827>I<397FE01FF8486C487EA3 007F131F00031300B21401A21403EBFC0F6CB612E016F07EEB3FFE90390FF87FE024207F 9F27>I<3A7FFC0FFF80486C4813C0A36C486C13803A07C000F800EBE00100035CA2EBF0 0300015CA2EBF80700005CA390387C0F80A36D48C7FCA3EB3F3FEB1F3EA214FE6D5AA36D 5AA26D5A22207E9F27>I<3A7FFE07FFE000FF15F06D5A497E007F15E03A0F80001F00A3 6D5B0007143EA414F0EBC1F83903E3FC7CA4EBE79EA200011478A301F713F8A2EBFF0F6C 5CA3EBFE0790387C03E024207F9F27>I<393FFC1FFF486C5A168016006C487E3901F807 E06C6C485A4A5A017E90C7FC6D5AEB1F7E5C6D5A13076D5A5C80497E130F497E143EEB3E 3FEB7E1F90387C0F8001F87F00016D7E3803F0033A7FFE1FFF80A2B54813C06C486C1380 A222207E9F27>I<3A7FFC0FFF80486C4813C0A36C486C13803A07E000F800000313015D 13F00001130301F85B1200A26D485A137CA290387E0F80133EA2011F90C7FC5CA2130F14 9E14BE130714FC1303A25C1301A25CA213035CA213075C1208EA3E0F007F5B131FD87E7F C8FCEA7FFE6C5A5B6C5AEA07C022317E9F27>I<001FB512FE4814FFA490380001FEEC03 FCEC07F8EC0FF0001EEB1FE0C7EA3FC0EC7F80ECFF00495A495A495AEB1FE0495A495A49 C7FC485A4848131E4848133F485A485A485A485AB7FCA46C14FE20207E9F27>I<EC07F8 EC3FFC14FF130315F8903807FE00EB0FF05C5CB0131FEB7F80EA3FFFB5C7FC5BA27F003F 7FEA007FEB1FC0130FB08080EB07FE903803FFF815FC1300143FEC07F81E3A7CB327>I< EA7F80EAFFF013FC13FF7E00017F38003FC0131F130FB080EB07F8ECFFF06D13FC7FA25B 4913F0ECF800EB0FE05CB0131F133F48B45A007F90C7FCB5FC13FC13F0EA7F801E3A7CB3 27>125 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fe eusm10 12 2 /Fe 2 67 df<F001FC181FF0FFF85F943807EFF0EF0F87EF1F07173E177C177817F01601 17E0160317C016071780160F17005EA2163EA25EA216FC5E1501A24B5AA34B5AA2150F5E A2151FA24B5AA293B6FC5DA303FEC712075D14015DA24A5AA24A5AA24B814A5A123C007E 49C8FCB4FC023E1880023C9338FC01C0027CEF07804A9338FE1F004948EEFFFED87F0360 D987E06F13F06CB4485F6C90C914806C487090C7FCD803F0EE00F84A4680C44D>65 D<15035D151F92387FFFF8020FB612C0027F15F8903B03FF7F807FFED90FE0EC07FFD93F 0002001380017CEE7FC04848EE3FE04848161F4848EE0FF0485A485A180748C7FC5AA348 18E0A2180F19C07FF01F8019006CC7153E60001C5FC8EC03F0EF0FC0057FC7FC93B5FC18 FCF0FF80DC800F13C093C7EA7FE0F01FF0F00FF8F007FC1803F001FE1800037E15FFA203 FE157FA25DA35D0201167E5DA24A4815FCA24B15F8020715014A4815F0021FED03E04AC8 EA07C0027EED0F804948ED3F00494815FE011FED0FF848B85A4817C095C7FC4816F81780 40477CC64C>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmmi6 6 6 /Ff 6 121 df<EC03E0EC3FC0A21403A2EC0780A4EC0F00A4EB1F1EEBFF9E3801E0DE38 03807E3807007C48133C121E123E003C5B127CA3485BA215401560903801E0C012781303 393807E180391C1CF300380FF87F3807E03C1B247EA220>100 D<1338137CA213781370 1300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0A3EA03C0A3EA0780A2EA0F0013041306 EA1E0CA21318121CEA1E70EA0FE0EA07800F237DA116>105 D<1418143C147CA2143814 00A7EB0780EB1FE01338EB60F013C0A2EA0180A2380001E0A4EB03C0A4EB0780A4EB0F00 A4131EA21238EA783CEAF8381378EA70F0EA7FC0001FC7FC162D81A119>I<000F13FC38 1FC3FF3931C707803861EC0301F813C0EAC1F0A213E03903C00780A3EC0F00EA0780A2EC 1E041506D80F00130C143C15181538001EEB1C70EC1FE0000CEB07801F177D9526>110 D<3801E01F3903F07FC0390639C1E0390C3F80F0EB3E00001814F8013C137815F8C65AA4 9038F001F0A3EC03E0D801E013C0EBF00715809038F80F003803DC3CEBCFF8EBC7E001C0 C7FC485AA448C8FCA2EA7FF012FF1D20809520>112 D<3801F01E3907FC7F80390E1CE1 C038180F8100301383007013071260EC0380D8001EC7FCA45BA21580003014C039787801 8012F8EC030038F0FC0638E19C1C387F0FF8381E03E01A177D9523>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fg cmr6 6 5 /Fg 5 55 df<13FF000313C0380781E0380F00F0001E137848133CA248131EA400F8131F AD0078131EA2007C133E003C133CA26C13786C13F0380781E03803FFC0C6130018227DA0 1E>48 D<13E01201120712FF12F91201B3A7487EB512C0A212217AA01E>I<EA01FC3807 FF80381C0FC0383003E0386001F0EB00F812F86C13FCA2147C1278003013FCC7FC14F8A2 EB01F0EB03E014C0EB0780EB0F00131E13385B5B3801C00CEA0380380600185A5A383FFF F85AB512F0A216217CA01E>I<13FF000313C0380F03E0381C00F014F8003E13FC147CA2 001E13FC120CC712F8A2EB01F0EB03E0EB0FC03801FF00A2380003E0EB00F01478147C14 3E143F1230127812FCA2143E48137E0060137C003813F8381E03F0380FFFC00001130018 227DA01E>I<EB0FC0EB7FF03801F0383803C0183807803C380F007C121E001C1338003C 1300A2127C1278EB7FC038F9FFE038FB80F038FE0038143C48131EA248131FA41278A36C 131EA2001C133C001E13386C1370380781E03801FFC038007F0018227DA01E>54 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fh cmsy6 6 3 /Fh 3 49 df<B712C0A322037A8D30>0 D<136013701360A20040132000E0137038F861 F0387E67E0381FFF803807FE00EA00F0EA07FE381FFF80387E67E038F861F038E0607000 40132000001300A21370136014157B9620>3 D<EA01E0EA03F0A4EA07E0A213C0120FA2 1380A2EA1F00A2121EA2123E123CA25AA3127012F05A12600C1A7E9B12>48 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmex10 12 22 /Fi 22 115 df<171E173E177C17F8EE01F0EE03E0EE07C0160FEE1F80EE3F00167E167C 16FC4B5A4B5A15075E4B5A4B5A153F93C7FC5D15FE5D14015D14034A5AA24A5AA24A5AA2 4A5AA24AC8FCA214FEA213015C13035C1307A25C130F5C131FA25C133FA3495AA349C9FC A35A5BA312035BA31207A25BA2120FA35BA3121FA35BA3123FA55BA2127FAB485AB3B06C 7EAB123FA27FA5121FA37FA3120FA37FA31207A27FA21203A37F1201A37F7EA36D7EA36D 7EA3131F80A2130F80130780A21303801301801300A2147FA26E7EA26E7EA26E7EA26E7E A26E7E140181140081157F8182151F6F7E6F7E8215036F7E6F7E167C167E82EE1F80EE0F C01607EE03E0EE01F0EE00F8177C173E171E2FEE6B8349>18 D<12F07E127C7E7E6C7E6C 7E7F6C7E6C7E6C7E137C137E7F6D7E80130F6D7E6D7E801301806D7E147E147F80816E7E A26E7EA26E7EA26E7EA26E7EA26E7EA2818182153F82A2151F82150F82A2150782A36F7E A36F7EA38281A31780167FA317C0A2163FA217E0A3161FA317F0A3160FA317F8A51607A2 17FCABEE03FEB3B0EE07FCAB17F8A2160FA517F0A3161FA317E0A3163FA317C0A2167FA2 1780A316FF1700A35D5EA34B5AA34B5AA35E150FA25E151F5E153FA25E157F93C7FC5D5D A24A5AA24A5AA24A5AA24A5AA24A5AA24A5A92C8FC5C147E14FE495A5C13035C495A495A 131F5C49C9FC137E137C13FC485A485A485A5B485A48CAFC123E5A5A5A2FEE7C8349>I< B612C0A600FCC8FCB3B3B3B3B3B3B3B3B3B3B3B3AAB612C0A61AEE678335>I<B612C0A6 C7120FB3B3B3B3B3B3B3B3B3B3B3B3AAB6FCA61AEE7F8335>I<170F173F17FF1603EE0F FCEE1FF0EE7FE0EEFF804B13004B5A4B5A4B5A4B5A4B5A4B5A15FF5E5C93C7FC5C5D1407 5DA3140F5DB3B3B3AE4A5AA3143F5DA24A5AA24A5AA24990C8FC495AA2495A495A495A49 5A495A49C9FC485AEA07FCEA0FF0EA3FC0B4CAFC12FCA2B4FCEA3FC0EA0FF0EA07FCEA01 FE6C7EEB7FC06D7E6D7E6D7E6D7E6D7EA26D7E6D7FA26E7EA26E7EA281141FA36E7EB3B3 B3AE811407A38114038180828082157F6F7E6F7E6F7E6F7E6F7E6F7E6F1380EE7FE0EE1F F0EE0FFCEE03FF1600173F170F30EE73834B>26 D<12F012FE6C7E7FEA3FF0EA0FFC6C7E 3801FF806C7F6D7EEB1FF06D7E6D7E806D7E7F6D7F81147F81143F81141FA381140FB3B3 B3AE6E7EA46E7EA26E7EA26E7FA26F7EA26F7E6F7E6F7E15076F7E6F7E923800FF80EE7F C0EE1FE0EE0FF8EE03FCEE00FF173FA217FFEE03FCEE0FF8EE1FE0EE7FC0EEFF80923801 FE004B5A4B5A150F4B5A4B5A4B5AA24B5AA24A90C7FCA24A5AA24A5AA44A5AB3B3B3AE14 1F5DA3143F5D147F5D14FF5D4990C8FC5B495A5C495A495AEB7FE0495A485BD807FEC9FC 485AEA3FF0EAFFC05B48CAFC12F030EE73834B>I[<EF03E01707EF0FC0EF1F80173F1800 177E5F16014C5A5F4C5A160F4C5A5F163F4CC7FC16FEA24B5A15035E4B5AA24B5A151F5E 153F5E157F93C8FC5D4A5AA24A5AA24A5AA24A5AA34A5AA24A5AA2147F5DA214FF92C9FC 5B5CA213035CA213075C130FA35C131FA25C133FA3495AA4495AA45A91CAFCA45A5BA312 07A35BA3120FA35BA3121FA55BA2123FA85BA2127FAD5B12FFB3B3A6127F7FAD123FA27F A8121FA27FA5120FA37FA31207A37FA31203A37F7EA4807EA46D7EA46D7EA3131F80A213 0F80A31307801303A2801301A2807F81147FA281143FA26E7EA26E7EA36E7EA26E7EA26E 7EA26E7E8182153F82151F82150F6F7EA26F7E8215016F7EA2167F707E161F83707E1607 707E83707E1600177E831880171FEF0FC0EF07E01703>51 298 104 131 79 32 D[<12F87E127E7E7F121F6C7E6C7E7F6C7E12016C7E7F137F7F806D7E6D7E A26D7E8013036D7EA26D7E808081143F81141F816E7EA26E7EA26E7EA26E7EA36E7EA26F 7EA282153FA282151F82150FA2821507A282150382A3150182A28183A3707EA4707EA483 161FA483160FA383A31607A383A31603A383A582A21880A882A218C0AD177F18E0B3B3A6 18C017FFAD1880A25EA81800A25EA55FA31607A35FA3160FA35FA3161F5FA4163F5FA44C 5AA44C5AA394C7FC5DA25E1503A35E15075EA2150F5EA2151F5E153F5EA2157F5EA24BC8 FCA24A5AA34A5AA24A5AA24A5AA24A5A5D143F5D147F92C9FC5C5C495AA2495A13075C49 5AA2495A495A91CAFC5B13FE5B485A1203485A5B485A485A123F90CBFC127E5A5A>51 298 125 131 79 I[<B612F8A600FCC8FCB3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B0B612F8 A6>29 298 101 131 58 I[<B612F8A6C71201B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B0B6 FCA6>29 298 127 131 58 I[<EF03E0170F173F177FEE01FF4C13804C1300EE1FFC4C5A 4C5A4C5A4B5B4B5B94C7FC4B5A150F4B5A5E4B5AA24B5AA24B5AA25C5EA25C93C8FCA35C 5DB3B3B3B3AD4A5AA54A5AA34A5AA24A5AA24A5AA2495BA24990C9FC495A5C130F495A49 5A495A495A485B4890CAFC485AEA0FF8EA3FF0EA7FC0485A48CBFCA26C7E6C7EEA3FF0EA 0FF8EA07FE6C7E6C7F6C7F6D7E6D7E6D7E6D7E1307806D7E6D7FA26D7FA26E7EA26E7EA2 6E7EA36E7EA56E7EB3B3B3B3AD8180A38280A28280A26F7EA26F7EA26F7E826F7E15076F 7E836F7F6F7F707E707E707EEE07FF7013807013E0EE007F173F170F1703>51 298 114 131 80 40 D<ED0F80153F15FF5C14074A1300EC1FFC4A5A4A5A49485A495B49 5B92C7FC495A495A495A137F5C495A5A5C5A5C5A91C8FC5A5B121FA25B123FA3485AA548 5AB3B3B0215A5A7E59>56 D<EAFFF0B3B3B06C7EA56C7EA3121F7FA2120F7F7E807E807E 807E6D7E80133F6D7E6D7E6D7E816D7F6D7F6D6C7E6E7E6E7E6EB4FC6E1380140180153F 150F215A5A8059>58 D<913807FF80B3B3B04A1300A55D141FA35D143F5DA2147F5D14FF 5DA2495B5D5B4990C7FC5C130F5C495A495A495AA2495A485B4890C8FCEA07FC485A485A EA7FE0EAFF8090C9FC12FCB4FC7FEA7FE0EA1FF06C7E6C7E6CB4FC6C7F6C7F6D7EA26D7E 6D7E6D7E801307806D7F7F816D7FA281147F81143FA281141F81A3140F81A56E1380B3B3 B021B56F8059>60 D<BD12FC88A3D87FF0CA0007806DEF000F6C6C1800001F081F13806C 6C19076D19016C9738007FC06C6D193F6E190F6C6DF107E06C1B036D6C19016E1AF0013F 1A006D6C1A706D6C1A786E1A387F6D6D191C6F19007F6D7F6E7E81143F6E7E816E7E806E 7F82806E7F826F7E153F6F7E82150F6F7E6F7F83816F7F83167F163F161F5F705A5F4CCC FC5E167E167C5E4B5A15034B5A4B5A5E4BCDFC153E157E5D5D4A5A4A5A14074A5A5D4ACD 121C023E1A3C4A1A3814FC49481A784A1AF0495A49481901010FF203E04948190791CD12 0F013EF21FC0491A7F01FC1AFF48480703138049190F4848197F48480607B51200484805 03B6FC48BDFC4863A25ABD5AA25E647B7F69>80 D<17FF040313C093380F81F093381E00 78043E137C93387C01FC9338F803FEA2150116F01503EF01FC9338E0007003071400A315 0FA45E151FA7153FA74B5AA715FFA85C93C8FCA95C5DA85DA74A5AA75DA75D140FA45DA3 001C5C007F131FEAFF8092C9FC5C143EA26C485A007C5B003C5B381F03E03807FF80D801 FECAFC376F7B7F2F>82 D<007C191E1A3E00FE197FA26C19FFA26C19FE6D1701A2003F19 FC6D1703A2001F19F86D1707A26C6CEF0FF0A2000719E06D171FA2000319C06D173FA200 0119806D177FA2000019006D5FA26D5F6E1501A2013F5F6E1503A26D6C4B5AA2010F5F6E 150FA201075F6E151FA201035F6E153FA201015F6E157FA2010094C7FC6E5DA26E5D6F13 01A26E6C495AA2021F5D6F1307A2020F5D6F130FA202075D6F131FA202035D6F133FA202 015D6F137FA2020092C8FC6F5BA292387F81FEA2033F5B16C3A2031F5B16E7A2030F5B16 FFA26F5BA36F5BA36F5BA36F90C9FCA282167E163C48647B7F53>87 D<C27E8DA38D6C01C0CC12036EDF0001816C6DF200076C6DE1007F7F6C1E0F6E1C016C6D 766C7E6C6D1D1F6CF707FE6F1C036C6EF400FF6D6D896D8B6FF51F806D6D1D0F6DF707C0 6F1D036D6DF501E06D6D1D007F701D706D806E6D1D386E1F00826E7F6E7F80826E7F8083 6E806F7F81836F7F6F7F81836F7F816F8084707F8284707F707F8284707F70808285717F 83717F85717F8385717F718083A27290CEFC725A725A61725A61181F4E5A614ECFFC18FE 4D5A4D5A17074D5A604D5A4D5A4DD0FC17FE16014C5A5F4C5A4C5A4C5A4C5A167F4CD1FC 5E4B5A4B5A4B5A150F4B5A4B5A4C1D384BD1127015FE4A481EF002031FE04A481D014B1D 034A481EC04A481D074A48F50F804AD1121F4A1E3F4948F6FF004A6549481D074948535A 49481D3F494852B45A013F1D0749481C3F91CF0003B55A01FE1C7F484850B7FC48C15A5A 48685AA248685AC2FC69858B7B7F90>I<1B3FF3FFC0973803E0F0973807C03897380F80 1C081F137E97383F01FEF303FF1A7E1AFE1AFC1901A2963903F801FEF300781C004F5AA2 190FA262191FA34F5AA44F5AA319FF97C8FCA360A261A21803A3611807A461180FA44E5A A4183FA261A2187FA361A218FFA44D5BA55F96C9FCA35FA360A2170FA460171FA460173F A54D5AA54D5AA45E60A55E60A44C90CAFCA54C5AA55F161FA45F163FA45FA2167FA35FA3 16FF5FA54B5BA494CBFCA25DA35EA21507A25EA44B5AA45E151FA45E153FA35EA2157FA2 5EA315FF93CCFCA34A5AA44A5AA35D14075DA2140F5D121E397F801FC0EAFFC05D143F92 CDFC5C147E6C485AEA7E00383801F86C485A380F07C03803FF80D800FCCEFC58DD7B7F37 >90 D<003EF407C0007FF40FE0481DF06D1B1FA26D1B3FA2007F1DE06D1B7F003F1DC0A2 6D1BFF001F1D80A26D62000F1D00A26D62000764A26D1A07000364A26D1A0F6C646E191F A26C646E193F017F63A26E197F013F63A26E19FF011F63A26E60010F98C7FCA26E600107 62A26E18070103626E180FA26D626F171F6D62A26F173F027F61A26F177F023F61A26F17 FF021F61A26F5E020F96C8FCA26F5E0207606F1607A20203606F160F6E60A270151F6E60 A270153F037F5FA270157F033F5FA27015FF031F5FA2705C030F94C9FC705CA203075E70 140703035EA270140F6F5EA271131F6F5EA271133F047F5DA271137F043F5DA27113FF04 1F5D715AA2040F92CAFC715A04075CA2EFFE0704035CA2EFFF0F705CA2189F705CA218FF 715BA3715BA3715BA27190CBFCA3715AA3715AA21701EF00F0648B7B7F6F>95 D<1DC0F401E01C03A2F407C0A2F40F80A2F41F00A21C3EA264A264A2641B01A2515AA251 5AA2515AA251C7FCA21B3EA263A263A2505AA2505AA2505AA2505AA250C8FCA21A3EA21A 3C1A7CA262A24F5AA24F5AA24F5AA24F5AA24FC9FCA20104173E130E011E5F137F495F5A 486D4B5A120F261C7FC04B5A123826F03FE04B5A124000004D5A6D7E96CAFC6D6C5DA26D 6C153EA2606D7E606D7E4D5A6D7F4D5AA26E6C495AA26E6C495AA26E6C49CBFCA26E6C13 3EA25F6E7E5F6E7E4C5AEC01FF4C5AA26EEB83C01687ED7FC7EECF80ED3FEF04FFCCFCA2 6F5AA26F5AA26F5AA25E15035E6F5A5B78758364>112 D<1DC0F401E0A21C03A21DC0A2 1C07A21D80A21C0FA21D00A364A21C1EA21C3EA21C3CA21C7CA21C78A21CF8A264A21B01 A264A31B03A264A21B07A264A21B0FA299C7FCA263A21B1EA21B3EA21B3CA31B7CA21B78 A21BF8A263A21A01A263A21A03A263A21A07A263A31A0FA298C8FCA262A21A1EA21A3EA2 1A3CA21A7CA21A78A21AF8A262A31901A262A21903A262A21907A262A2190FA297C9FCA2 61A2191EA21304193E130E011E173CA2013E177C133F4917785B19F85A486D5EA2000617 01120E000C60486C7E1803123000706038603FE012C0004017071200616D7E180FA296CA FC6D7E60A2181EA26D6C153EA2183CA2187C6D7E1878A36D6C15F8A260A217016D7F60A2 17036E7E60A21707A26E6C5CA2170FA295CBFC6E7EA25FA26E6C131EA2173EA2173C6E7E 177CA217786E7E17F8A25FA2913801FF01A25FA36E1383A25FA2ED7FC7A25FA216CFED3F EF94CCFCA216FF815EA46F5AA56F5AA46F5AA45E15015E5BEF758364>114 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj cmti12 12 50 /Fj 50 122 df<EF7FF80407B5FC93391FC00FC093393E0001E004FCEB00F04B4813014B 4813075E0307140FA24B5A19E0031FEC03804C90C7FCA3153F93C9FCA45D157EA415FE91 B8FCA260DA00FCC7127E020115FE4B5CA317016014035D170360A214074B130760A3020F 140F4B5CA3171F021F5D5DA2053F13E01801023F16C092C7FCA2EF7F03057E13805C027E 15071900173E180E02FEEC1E1E4AEC1F1CEF07F8EF01E094C8FC495AA35C1303A2001C5B 127FEAFF075CA2495A00FE90CBFCEAF81FEA701EEA783CEA1FF0EA07C03C5A83C537>12 D<DDFFC0903803FFE0040701F8011F13FE93261FC03E90397F001F8093283E000F01F8EB 03C004FC90261F03E0EB01E04B4890263F87C013034C90267F8F80130F0303ECFF9F4C02 BFC7121F0307153FF07E7E4B48013C16C00600ED07004F91C7FC151F5EA2180161153F93 C7FCA21803615D157EA291BB12FEA264DA00FCC7D807E0C7FC1B01060F5D6114014B1703 64181F61020318074B60A2183F96C7120F0207615DA21B1F4E5D187E140F4B173F99C7FC 18FE60021F95387F01C04BEF7E031D80170160023FF0FE0792C704FC1300A205035E4E15 0E4A187C027E61F33C3C4D48EC3E38F30FF04AF003C098C8FC4D5AA2495A60171F5CD81C 03013891CBFC007F02FE5B00FF01E1143E177ED907C1147C02815CD8FE0F49485A00F890 3901F003E03B701E00E007C0D8783CD9781FCCFCD81FF8EB3FFCD807E0EB07F05B5A83C5 56>14 D<13F0EA03F8EA07FC120FA6EA03CCEA001C1318A213381330A2137013E013C012 0113801203EA0700120E5A5A5A5A5A0E1D6BC41E>39 D<007FB5FCB6FCA214FEA2180578 9723>45 D<120FEA3FC0127FA212FFA31380EA7F00123C0A0A76891E>I<ED3F80913801 FFE0913807C0F891381F007C023C7F4A131E4A131F49487F01031580495A5C130F49C713 C0A25B137EA213FE5B161F12014915801203A249143F1207A2170048485CA4484814FEA4 4848495AA448C7485AA35E1507127E5E00FE140F5EA248141F5EA24BC7FC153E157E007C 147C15FC5D4A5A003C495A003E5C4A5A6C011FC8FC380F803E3807C0F83801FFE06C6CC9 FC2A4475C132>48 D<16C01501A215031507ED0F80151F153F157F913801FF005C140F14 7F903807FCFEEB0FF0EB0700EB00015DA314035DA314075DA3140F5DA3141F5DA3143F5D A3147F92C7FCA35C5CA313015CA313035CA313075CA2130FA2131F133FB612FCA25D2242 76C132>I<ED3FC0913801FFF0913807C07C4AC67E021CEB1F800278130F4AEB07C04948 14E04A1303494814F0130749C7FCEB0E06D91E0714F8EB1C03133C1338137813704A1307 D9F00614F013E0140E020C130F0001011C14E0EBC0180238131F4A14C06C6C48EB3F80D9 E1C0137FD97F801400013EC712FE90C7485A4B5A4B5A4B5AED1F804BC7FC15FC4A5AEC03 E0EC0FC0023FC8FC147CEB01F0495AEB0780011FC9FC133E49EC03805B49140748481500 485A48485C90C8121E5A001E5D001C157CD83FFC5C9038FFC0013A7C0FFC07F0D87803B5 5AEA700126F0007F5B486D90C7FCEC0FFEEC03F82D4478C132>I<ED1FE0EDFFFC913803 E03F91390F000F80023EEB07C00278EB03E05C4948EB01F0495A495A91C713F85BEB0E0C EB1E0EEB1C061603013C15F01338A2020E1307020C14E0141CD91C78EB0FC0D90FE0131F 6D48148090C8EA3F00167E5E4B5A4B5AED0FE091383FFF804A48C7FC15F8EC007E151F6F 7E6F7E82150382A482A34B5A121FEA7F80A2150F48C75BA2484A5A12F800E04A5AA24BC7 FC007014FE5D0078495A0038495A003CEB0FC06C495A260780FEC8FC3803FFF038007F80 2D4477C132>I<EE0380EE0FC0A2161F1780A3163F1700A3167EA35EA34B5AA34B5AA25E 1507A24B5AA24B5AA293C7FC5D153E157E157C15FC5D4A5AA24A5A14075D4A5A16E09138 1F01F0EC3E03143C147CECF807D901F05B14E01303903807C00FD90F805BEB1F00131E49 131F495C5B485A3903FFC03F000F01F890C7FC4813FF397E003FFF007801071480480101 EBFFC000606D7EC8EBFE0003FEC7FC5DA314015DA314035DA314075DA4EC03802A557DC1 32>I<026014300278EB01F091397F801FE091B612C01780170016FC4914F016C0DACFFE C7FC02C0C8FC13035CA3130791C9FCA35B130EA3131E90381C07F8EC3FFE9138F80F8090 393DC007C0D93F807F90383E0003013C80496D7E1370A290C7FC82A41503A415075E120E 123F486C130F00FF5DA390C7485A5A00F84A5A12E04B5A93C7FC15FE14016C5C0070495A 0078495A6CEB1FC0003E495A261F80FEC8FC6CB45A000313E0C66CC9FC2C4476C132>I< ED03FCED1FFF037F13C0913801FE07913903F001E091380FE00091381F800391383F000F 027E131F5C495A495A010715C04948EB07004A90C7FC131F495AA249C9FCA213FE1201A2 485AEC07F09038F83FFC0007EB781F9039F9E00F803A0FFB8007C0EBF70001FE80491303 001F815B5B82485AA3491307127F5BA2150F5E90C7FCA2151F485DA25A4B5AA2007E5D15 7F93C7FC5D5D4A5A003E495A003F5C4A5A6C6C485A000FEB3F80D9C0FEC8FC3803FFFC6C 13F038007F802B4475C132>I<9026380FC0131C9038787FE0902671FFF0133C01F31578 01EF15F090B5FC4801E0EB01E09139007003C04848EB380701F8EC1F804848EB1C3F4990 381FFF004848EB07DF49EB001E48C85A121E5E4815F800385D0078140100705D00F01403 485D1507C8485AA24BC7FCA25D153E157E157C15FC5D1401A24A5AA214075D140F5D141F A25D143FA24AC8FCA314FEA21301A25C1303A25C1307A35C130FA35C5C6D5A2E4472C132 >I<ED1FE0EDFFFC020313FF913907E03F8091391F800FC091393E0007E04A13034A14F0 49481301495AA2495AA2495AA21603011F15E0A216076E14C0EE0F806E131F6EEB3F006E 133E6D6C5B02FF13F0ED83E06DEBC7C06D01FFC7FC6D13FC6D5B6E7E6E7E91B57ED901EF 7FD907837FEB1F01D93E007F496D7E49133F4848131F4848130F48486D7E48481303001F 140190C7FC5A003E1400007E5D127CA2150100FC5D5A4B5AA24B5A127C4B5A4BC7FC6C14 3E003F5C6C495A390FC003F03907F01FC06CB5C8FCC613FCEB1FE02C4477C132>I<ED3F C0EDFFF0020313FC91380FE07E91383F803F4A487E02FC14800101140F494814C0495A49 5AA2495A133F4A14E0137FA249C7FC161FA24816C05BA2163F12035BA2167F17804914FF A34B130012015D5D00005D6D130F017C131D153B6DEBF3FC90381F03C3903907FF83F890 3801FC0790C7FC5E150F5E151F5E4B5AA24BC7FCA2001C14FE007F5C48495A4A5A14074A 5A485C00F8013FC8FC48137E5C387C07F0383FFFE06C1380D803FCC9FC2B4476C132>I< EF03801707A24D7EA2171FA2173F177FA217FFA25EA2EE03BF1607173F160F160E161C84 1638171F167016F016E0ED01C0A2ED0380A2ED0700A2150E151E151C5D845D170F5D1401 5D14035D4AC7FC92B6FC5CA2021CC7120F143C14385CA24A81A249481407A2495A130791 C8FC130E131EA25B137C13FC00014C7ED807FE151FB500E00107B512F8A219F03D477BC6 48>65 D<DC0FF8130393B513070307ECC00F923A1FF803E01F923A7FC000F81E4BC7EA7C 3EDA03FCEC3C7EDA0FF0EC1EFE4A48EC0FFC4A4814074AC8FC02FE1503494816F8130349 481501495A494816F0495A137F5C01FF17E04890C9FCA2485A19C0485AA2485A95C7FC12 1F5BA2123F5BA3127F5BA4485AA41838A218781870A218F0007F5F1701601703003F5F17 076D4BC7FC001F160E171E6C6C5D6D5D00075E6C6C4A5A6DEC07C06C6C4A5AD8007F023E C8FCD93FC013FC90391FF807F00107B512C0010191C9FC9038001FF0404872C546>67 D<91B712F818FF19C00201903980003FF06E90C7EA0FF84AED03FCF000FE4B157FA2F13F 800203EE1FC05DF10FE0A214074B16F01907A2140F5D1AF8A2141F5DA2190F143F5D1AF0 A2147F4B151FA302FF17E092C9123FA34918C04A167F1A80A2010317FF4A1700A24E5A13 074A4B5A611807010F5F4A4B5A181F61011F4C5A4A4BC7FC18FE4D5A013F4B5A4A4A5A4D 5A017FED3FC005FFC8FC4AEB03FE01FFEC1FF8B812E094C9FC16F845447AC34A>I<91B9 1280A30201902680000713006E90C8FC4A163FA24B81A30203160E5DA314074B151E191C A2140F5D17075F021F020E90C7FC5DA2171E023F141C4B133CA2177C027F5CED800392B5 FCA291B65AED00071601A2496E5A5CA2160101035D5CA2160301075D4A90CAFCA3130F5C A3131F5CA3133F5CA2137FA313FFB612E0A341447AC340>70 D<DC0FF81306DCFFFE130E 03079038FF801E923A1FF807E03E923A7F8001F03CDA01FEC7EA787CDA03F8EC3CFCDA0F F0141D4A48EC1FF8DA3F80140F4AC8FCD901FE1507494816F05C01071603495A494816E0 495A137F5C01FF17C04890C9FC5B12031980485AA2485A95C7FC121F5BA2123F5BA3127F 5BA4485A043FB512E0A39339001FF80060A360A2007F163F60A3177F003F5F7F121F17FF 6D93C7FC000F5D6C6C5C7F6C6C4A5A6C6CEC1F3E6C6C143ED93FC0EBF81E903A1FF007F0 1C0107B5EAC00C010149C9FC9038003FF03F4872C54B>I<91B66C90383FFFF8A3020101 80C7000F13006E90C8EA07FC4A17F01AC04B4B5A4FC7FC193C02035E4B5DF003E0F00780 02074BC8FC4B141E6018F8020F4A5A4BEB03C04D5A4DC9FC021F141E4B137C17F04C5A02 3F495A4B487E161F163F027F497EED80FFED81EF923883CFF89138FF8F8FED1E07033C7F 157849EBF00303E07F15C092380001FF495A5C707FA213074A6E7EA2173F010F825C171F 84131F4A140F84A2013F6F7E5CA2017F6F7EA24A4A7E496C4A7FB66C90B512FC5E614D44 7AC34B>75 D<91B612F0A25F020101C0C7FC6E5B4A90C8FCA25DA314035DA314075DA314 0F5DA3141F5DA3143F5DA3147F5DA314FF92C9FCA35B5CA3010316104A1538A218780107 16705C18F018E0010F15015C18C01703011F15074A1580170FA2013FED1F004A5C5F017F 15FE16034A130F01FFEC7FFCB8FCA25F35447AC33D>I<91B56C93387FFFC08298B5FC02 014DEBC0006E614A5FA203DF4C6CC7FC1A0E63912603CFE05D038F5F1A381A711407030F EEE1FCA2F101C3020FEE0383020E60F107036F6C1507021E160E021C60191CF1380F143C 023804705BA2F1E01F0278ED01C091267003F85EF003801A3F02F0ED070002E0030E5CA2 4E137F130102C04B91C8FC606201036D6C5B02805F4D5A943803800113070200DA07005B A2050E1303495D010E606F6C5A1907011E5D011C4B5CA27048130F133C01384B5C017892 C7FC191F01F85C486C027E5DD807FE027C4A7EB500F00178013FB512C0A216705A447AC3 57>I<91B712F018FEF0FF800201903980007FE06E90C7EA1FF04AED07F818034B15FCF0 01FE1403A24B15FFA21407A25DA2140FF003FE5DA2021F16FC18074B15F8180F023F16F0 F01FE04B15C0F03F80027FED7F0018FE4BEB03FCEF0FF002FFEC7FC092B6C7FC17F892CA FC5BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA25C497E B67EA340447AC342>80 D<91B77E18F818FE020190398001FF806E90C7EA3FC04AED1FE0 F00FF04BEC07F8180319FC14034B15FEA314075DA3020FED07FC5DA2F00FF8141F4B15F0 F01FE0F03FC0023F16804BEC7F0018FEEF03F8027F4A5A4BEB1FC04CB4C7FC92B512F891 B612E092380003F8EE00FE177F496F7E4A6E7EA28413034A140FA2171F13075CA2173F13 0F5CA24D5A131F5CA3013F170E5CA2017FEE801E191C4A163C496C1638B66C90383FC070 051F13F094380FE1E0CA3803FF80943800FE003F467AC347>82 D<48B912F85AA2913B00 07FC001FF0D807F84A130701E0010F140349160148485C90C71500A2001E021F15E05E12 1C123C0038143F4C1301007818C0127000F0147F485DA3C800FF91C7FC93C9FCA35C5DA3 14035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92CAFCA35B5CA21303A2 1307497E007FB612C0A25E3D446FC346>84 D<001FB500F090383FFFFCA326003FF0C700 0113806D48913800FE00013F167C18785C187018F0017F5E5CA2170101FF5E91C8FCA217 03485F5BA21707000394C7FC5BA25F0007160E5BA2171E120F49151CA2173C121F491538 A21778123F491570A217F0127F495DA2160100FF5E90C8FCA216035F16074893C8FC5E16 0E161E5E007E1538007F15785E6C4A5A6D495A001F4A5A6D49C9FC6C6C133E6C6C13F839 03FC07F0C6B512C0013F90CAFCEB07F83E466DC348>I<EC1F80EC7FE0903901F0707090 3907C039F890380F801D90381F001F013E6D5A137E5B484813075E485A120749130F000F 5DA2485A151F003F5D5BA2153F007F92C7FC90C7FCA25D157E12FEA29238FE0380EDFC07 1700A2007E13015E913803F80E1407003E010F131E161C6C131C02385B3A0F80F078783A 07C3E07C703A01FF801FE03A007E000780292D76AB32>97 D<EB0FE0EA07FFA338001FC0 130F131FA25CA3133F91C8FCA35B137EA313FE5BA312015BEC1F80EC7FE03903F9E0F890 38F3C07C9038F7003E13FE48487F5BA2491480485AA25BA2121F5BA2153F123F90C7FCA2 157F481500127EA25D5D5AA24A5AA24A5AA2007C5C4A5A140F5D4A5A003C49C7FC003E13 7E001E5B6C485A380783E03803FF80C648C8FC214676C42D>I<EC0FE0EC7FF8903801F8 1E903807E00F90390F80078090381F0003017E14C049131F0001143F5B4848EB7F801207 485AED3E00484890C7FCA2485AA2127F90C9FCA35A5AA45AA5ED0180ED03C0ED0780A200 7CEC0F00007E141E003E147C15F06CEB03E0390F800F802607C07EC7FC3801FFF838007F C0222D75AB2D>I<EE07F0ED03FFA39238000FE01607160FA217C0A2161FA21780A2163F A21700A25EA2167EA216FEA25EEC1F80EC7FE1903801F071903907C039F890380F801D90 381F001F013E130F017E5C5B48481307A248485C120749130F120F5E485A151F123F495C A2153F127F90C790C7FCA25DA200FE147EA29238FE0380160703FC1300A2007E13015E91 3803F80E1407003E010F131E161C6C131C02385B3A0F80F078783A07C3E07C703A01FF80 1FE03A007E0007802C4676C432>I<EC0FE0EC7FF8903801F83E903807C00F90391F8007 80EB3F00017E14C0491303485A48481307000715805B000F140F484814005D4848133E15 FCEC07F0007FEBFFC0D9FFFEC7FC14C090C9FC5A5AA55AA4ED0180ED03C0007CEC0780A2 007EEC0F00003E141E157C6C14F06CEB03E03907800F802603C07EC7FC3801FFF838003F C0222D75AB2D>I<EE0F80EE3FE0EEF870923801F038923803E0F8923807E1FC16C3ED0F C7A2EE87F892381F83F0EE81E0EE8000153F93C7FCA45D157EA415FE5DA349B512FEA390 260001F8C7FCA314035DA414075DA4140F5DA4141F5DA4143F92C8FCA55C147EA314FE5C A413015CA4495AA35C1307121C007F5B12FF495AA291C9FC485AEAF81E485AEA7878EA1F F0EA07C02E5A83C51E>I<15FCEC03FF91390F83838091393E01CFC091387C00EF4A13FF 4948137F010315804948133F495A131F4A1400133F91C75A5B167E13FE16FE1201495CA2 15011203495CA21503A2495CA21507A25EA2150F151F5E0001143F157F6C6C13FF913801 DF8090387C039F90383E0F3FEB0FFCD903F090C7FC90C7FC5DA2157EA215FEA25DA2001C 495A127F48495A14074A5A485C023FC8FC00F8137E387C01F8381FFFE0000390C9FC2A40 7BAB2D>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25CA213 1FA25C157F90393F83FFC091388F81F091381E00F802387F4948137C5C4A137EA2495A91 C7FCA25B484814FE5E5BA2000314015E5BA2000714035E5B1507000F5DA249130F5E001F 1678031F1370491480A2003F023F13F0EE00E090C7FC160148023E13C01603007E1680EE 070000FEEC1E0FED1F1E48EC0FF80038EC03E02D467AC432>I<143C147E14FE1301A3EB 00FC14701400AE137C48B4FC3803C780380703C0000F13E0120E121C13071238A21278EA 700F14C0131F00F0138012E0EA003F1400A25B137EA213FE5B12015BA212035B141E0007 131C13E0A2000F133CEBC038A21478EB807014F014E0EB81C0EA0783EBC7803803FE00EA 00F8174378C11E>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130F A25CA2131FA25C167E013F49B4FC92380783C09138000E07ED3C1F491370ED603F017E13 E0EC01C09026FE03801380913907000E00D9FC0E90C7FC5C00015B5C495AEBF9C03803FB 8001FFC9FCA214F03807F3FCEBF07F9038E01FC06E7E000F130781EBC003A2001F150FA2 0180140EA2003F151E161C010013E0A2485DA2007E1578167000FE01015B15F148903800 7F800038021FC7FC2A467AC42D>107 D<EB03F8EA01FFA3380007F013031307A214E0A2 130FA214C0A2131FA21480A2133FA21400A25BA2137EA213FEA25BA21201A25BA21203A2 5BA21207A25BA2120FA25BA2121FA25BA2123FA290C7FCA2387F01C01303007E1380A213 0700FE130012FCA25B130EEA7C1E131CEA3C3CEA3E786C5AEA07C0154678C419>I<D801 F0D90FE0EB07F0D803FCD97FF8EB3FFC28071E01F03EEBF81F3E0E1F03C01F01E00F8027 1E0F8700D983807F001C018E90390F870007003C019C148E003801B802DC8002F814FC26 781FF05C0070495CA24A5C00F0494948130FD8E03F6091C75B1200043F141F4960017E92 C7FCA24C143F01FE95C7FC49147E6104FE147E1201494A14FE610301EE07800003050114 00494A14F8A2030302035B0007F0F00E495C1A1E0307EDE01C000F193C494A153862030F 020113F0001FF0F1E0494A903800FF800007C7D80380023EC7FC492D78AB50>I<D801F0 EB0FE0D803FCEB7FF83A071E01F03E3A0E0F03C01F001ED987001380001C018E130F003C 139C003801B814C014F838781FF000705BA25C00F049131FD8E03F158091C7FC1200163F 491500137EA25E01FE147E5B16FE5E12014913015E170F00030203130E4914F0A2030713 1E0007EDE01C5B173CEEC038000F167849157017E0ED03C1001FEDE3C049903801FF0000 07C8127C302D78AB37>I<EC0FE0EC7FFC903801F83E903907E00F8090390F8007C0EB1F 00017EEB03E04914F0A248481301484814F81207485AA2485AA2485A1503127F90C7FCA2 15074815F05AA2150F16E05AED1FC0A21680153F16005D157E5D007C495A007E495A003E 5C4A5A6CEB1F80260F803EC7FC3807C0FC3801FFF038003F80252D75AB32>I<D903E013 7E903A07F801FF80903A0E3C0783E0903A1C1E0F01F0903A3C1F1C00F801385B01784913 7C01705BA24A48137E01E05BA292C7FC00015B13C0147EC7FC02FE14FEA25CA201011401 17FC5CA20103140317F85CA20107EC07F0A24AEB0FE0A2010F15C0EE1F80163F1700496C 137E5E4B5A9138B803F090393F9C07E091389E0F80DA07FEC7FCEC01F849C9FCA2137EA2 13FEA25BA21201A25BA21203A21207B512F0A25C2F3F7FAB32>I<91381F800C91387FE0 1C903901F0703C903907C0387890390F801CF890381F001D013E130F017E14F05B484813 07A2484814E012075B000F140F16C0485AA2003F141F491480A3007F143F90C71300A35D 00FE147EA315FE5DA2007E1301A24A5A1407003E130FA26C495A143B380F80F33807C3E7 3901FF87E038007E071300140F5DA3141F5DA3143F92C7FCA25CA25C017F13FEA25D263F 76AB2D>I<D801F0EB3F803A03FC01FFF03A071E03C0F83A0E0F0F007C001E90389E01FC 001C139CECB803003813F0A2D91FE013F80078EC00E00070491300A200F05BEAE03F91C8 FC1200A25B137EA313FE5BA312015BA312035BA312075BA3120F5BA3121F5B0007C9FC26 2D78AB29>I<EC0FE0EC7FF8903801F01E903803C00F90390780078090380F0003011E14 C0150749131FA2017CEB3F801378137CED0E0092C7FC137E137F14F014FF6D13C06D13F0 6D7F6D7F1300EC0FFE14011400157F81120E003F141E487EA2153E48C7123CA200FC5C12 705D0078495A6C495A6CEB0F80260F803EC7FC3803FFF838007FC0222D7AAB28>I<1470 EB01F8A313035CA313075CA3130F5CA3131F5CA2007FB512E0B6FC15C0D8003FC7FCA25B 137EA313FE5BA312015BA312035BA312075BA3120F5BA2EC0780001F140013805C140E00 3F131EEB001C143C14385C6C13F0495A6C485AEB8780D807FEC7FCEA01F81B3F78BD20> I<137C48B414072603C780EB1F80380703C0000F7F000E153F121C0107150012385E1278 D8700F147E5C011F14FE00F05B00E05DEA003FEC0001A2495C137E150313FE495CA21507 1201495CA2030F13380003167849ECC070A3031F13F0EE80E0153F00011581037F13C06D EBEF8300000101148090397C03C787903A3E0F07C70090391FFE01FE903903F000782D2D 78AB34>I<017C143848B414FC3A03C78001FE380703C0000F13E0120E001C1400010714 7E1238163E1278D8700F141E5C131F00F049131C12E0EA003F91C7123C16385B137E1678 01FE14705BA216F0000115E05B150116C0A24848EB0380A2ED0700A2150E12015D6D5B00 0014786D5B90387C01E090383F0780D90FFFC7FCEB03F8272D78AB2D>I<02F8133FD907 FEEBFFE0903A0F0F83C0F0903A1C07C780F890393803CF03017013EE01E0EBFC07120101 C013F8000316F00180EC01C000074AC7FC13001407485C120EC7FC140F5DA3141F5DA314 3F92C8FCA34AEB03C01780147EA202FEEB0700121E003F5D267F81FC130E6E5BD8FF8314 3CD903BE5B26FE079E5B3A7C0F1F01E03A3C1E0F83C0271FF803FFC7FC3907E000FC2D2D 7CAB2D>120 D<137C48B414072603C780EB1F80380703C0000F7F000E153F001C160013 0712385E0078157EEA700F5C011F14FE00F0495B12E0EA003FEC00015E5B137E150301FE 5C5BA2150700015D5BA2150F00035D5BA2151F5EA2153F12014BC7FC6D5B00005BEB7C03 90383E0F7EEB1FFEEB03F090C712FE5DA214015D121F397F8003F0A24A5A4848485A5D48 131F00F049C8FC0070137E007813F8383801F0381E07C06CB4C9FCEA01FC294078AB2F> I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmsl12 12 34 /Fk 34 90 df<EA03C0EA0FF0121F13F8A6EA0798EA001813381330A213701360A213E0 13C01201EA038013005A120E5A5A5A5A5A0D1D70C41B>39 D<007FB512E0A3B612C0A31B 067C9721>45 D<121EEA3F80EA7FC012FFA41380EA7F00123C0A0A77891B>I<151C153C 157CEC01FCEC07F8147FEB7FFF14F31483EB000715F0A5140F15E0A5141F15C0A5143F15 80A5147F1500A55C5CA513015CA513035CA513075CA3130FEB3FFCB612FEA31F4277C131 >49 D<EDFF80020713F0021F13FE91383E01FF9139F8007F80D901E0EB3FC0D90380EB1F E049C7EA0FF0010E15F8491407A24915FC01301403137EEB7F80497EA31607A25C17F801 3EC7120F90C8FC17F0161F17E0163F17C0EE7F8016FF17004B5A4B5A4B5A5E4B5A4B5A4B C7FC157E5D4A5A4A5AEC07C04A5A4AC8FC143E14785C4948EB01804948EB0300495A49C7 FC011C14065B49140E49140C4848141C485A000FB612F85A5A485DB7FCA25E2E427BC131 >I<EDFF80020713F0023F13FC91387F01FF903A01F0007F80D903C0EB3FC049C7121F01 0E15E05BD91FC0EB0FF0497EA2161FA317E05C010FC7123F90C813C0A2EE7F80A2EEFF00 4B5A5E4B5A4B5AED0FC0033FC7FCEC01FCECFFF015FE9138001F80ED0FE06F7E6F7E6F7E 82150082A21780A6120FEA3FC0127F5D00FF1600A349495A90C7FC00FC4A5A00605D0070 140F4B5A6C5D6C4A5A001F4A5A270F8001FEC7FC3903F807FCC6B512F0013F1380D907FC C8FC2C447AC131>I<EE0380A21607160FEE1F005E5EA25E5D4B5A15071506150C151815 30ED71FC15E115C1EC0181EC0301140791380E03F8140C14181430146014E04948485A14 80EB03001306130E5B0118495A5B5B5B1201485A90C7485A12065A121C5A1230484A5AB8 12C0A3C8383F8000157FA293C7FCA45DA25DA314014A7E0103B6FCA25E2A437AC231>I< 0103156002E0EB03E002FCEB3FC091B6128049150016FC5E16E016809026063FFCC7FC01 0EC9FC130CA5131C1318A513381330EC07F8EC3FFE9138F80F80903933C007C090397700 03E0017E8001786D7E137001606D7EA290C87EA482A65D000F5DEA3FC0127FA34B5A12FF 495C48C7120700605D150F5E00704A5AA26C4A5A4BC7FC6C14FE6C495A390F8007F03907 E01FE00001B512806C6C48C8FCEB1FE02B4479C131>I<ED0FF0ED7FFE0203B5FC913907 F00FC091381FC001027FC712E002FC14604948EB0FE04948131F4948133F495A131F495A 91C713C049EC1F8001FE91C7FC5B120112035B12075BA2120F9038E00FF0001FEB3FFCEC F01F9039E3C00FC04848C66C7E01CE6D7E01DC130101D88001F86D7E485A4980A25B825B 12FFA290C8FCA35D5EA25AA34B5AA2127E5E15075E007F4A5A7E4B5A6C4A5A6D91C7FC6C 6C137E5D3907E003F83903F80FE0C6B55AD93FFEC8FCEB0FF02B4478C131>I<487E1203 13F048B712F817F0A24816E0A217C0481680001CC8EA07000018150E00385D00305D1630 4815705E4B5A484A5A4BC7FCC8120E5DA25D5D5D4A5A4A5AA24AC8FC140E141E141C143C 5C14F85C1301A2495A1307A2495AA2131F5C133FA2137F91C9FC5BA3485AA21203A4485A A5120F5BA26C5AEA03C02D4573C231>I<170C171C173C173E177EA217FEA21601835EA2 1606A24C7FA2EE187FA21630A204607F173F16C0A2ED018084ED0300171F1506A25D844B 130FA25D157003608015E04B130714015D140392C77F02061403A2020FB6FCA24A810218 C712034A1401A25CA24A8183495AA249C9FC851306187F5B131CA2013C83137CEA01FE26 07FF80913801FFF0007F01E0027FEBFFC0B5FCA242477DC649>65 D<011FB712E018FCF0FF809026003FF8C76C7E6E48EC1FF0727E4B6E7E1803727E858414 3F5D1A80A4027F17005D606118036102FF150792C8485A614E5AF07FC04EC7FC49ED03FE 4AEC0FF8EFFFE091B7128018F04AC7EA03FC0103ED00FF4A6F7E727E727E727EA2010770 7E5C85A31803130F4A1507A461011F160F4A5E181F4E5AA24E5A013F4C5A4A4A90C7FC4D 5AEF0FFC017FED3FF001FF4AB45AB9128005FCC8FC17C041447CC345>I<DC1FF8EB01C0 4BB5FC030F9138C00380923A3FF003F007913B01FF8000780FDA03FCC7123CDA0FF0EC0E 1FDA1FC0EC073FDA7F80913803FF004AC8FC494881494881495A4948824948167E494816 3E495A13FF91CA121E485A0003181C5B12075B120FA248481718A2003F95C7FC5BA3485A A512FF5BA719C0A3007F170161A26D1603003F95C7FC6018066C6C160E180C000F171C6D 5E6C6C5E000317F06D4B5A6C6C4B5A6C6C4B5A6D6C4AC8FC6D6C143CD90FF05CD907FCEB 03F0903A01FF801FC06D6CB5C9FC021F13F8020113C0424876C546>I<011FB712E018FE 49707E9026003FF8C713E06E48EC1FF0F007FC4BEC01FE727EF17F80193FF11FC0023FEE 0FE05DF107F0A21AF81903147F4B16FCA219011AFEA214FF92C9FCA54917035CA5010318 FC4A1607A31AF8A20107170F4A17F0A2191F1AE0A2010FEF3FC05CF17F801A006161011F 4C5A4A4B5A4E5A180F4E5A4E5A013F4CC7FC4A15FEEF03FCEF0FF0017FED3FE0496C9038 03FF80B848C8FC17F094C9FC47447CC34B>I<011FB9FCA39026003FF8C7120F6E481400 197F4B151FA2190F1907A2143F5DA21903A3147F5D1706A3190002FF5C92C7FCA2171CA2 173C4915F84A130391B6FCA39138FE00070103EC01F04A13001770A4010715604A160CA3 191894C7FC130F4A1630A219701960A2011F17E04A16C01801180319801807013F160F4A ED1F006018FF017FED03FE01FF153FB9FC60A240447CC342>I<011FB812FEA39026003F F8C7121F6E481401F0007E4B153E191EA2190EA2143F5D1906A4147F5DA2170CA2190002 FF5C92C7FCA21738A217784915704AEB01F0160791B6FCA3903A03FE000FE04A13031601 1600A301075D5CA5010F92C8FC5CA5131F5CA5133F5CA3137FEBFFF0B612F8A33F447CC3 40>I<DC1FF8EB01C04BB5FC030F9138C00380923A3FF003F007913B01FF8000780FDA03 FCC7123CDA0FF0EC0E1FDA1FC0EC073FDA7F80913803FF004AC8FC494881494881495A49 48824948167E4948163E495A13FF91CA121E485A0003181C5B12075B120FA248481718A2 003F95C7FC5BA3485AA512FF5BA44CB612805EA293C7EBE000725A183F007F177FA2617F 123FA218FF6C7E96C7FC6C7EA26C6C5D12036D5D6C6C5E6C6C15076D6CEC0E7E6D6C141C D90FF0EC783ED907FC903801F01E903B01FF801FC01C6D6CB5EA000C021F01FC90C8FC02 0113C0424876C54D>I<011FB500FC017FB512F04C16E0A29026003FFCC8EBF000DA1FF0 ED7FC0A24B5EA419FF143F4B93C7FCA460147F4B5DA4180314FF92C85BA418075B4A5E91 B8FCA34AC8120F13034A5EA4181F13074A5EA4183F130F4A5EA4187F131F4A5EA418FF13 3F4A93C8FCA3017F5D496C4A7FB6D8E003B67EA203C093C7FC4C447CC349>I<011FB512 FEA39039001FFE00EC0FF8A25DA5141F5DA5143F5DA5147F5DA514FF92C7FCA55B5CA513 035CA513075CA5130F5CA5131F5CA3133F497E007FB512F0B6FCA227447DC323>I<011F B500FC91383FFFF8A2495C9026003FFCC8000F1300DA1FF0ED07F81AE04B5E4FC7FC191E 193861023F5E4B4A5A4E5A060EC8FC6060027F5D4B5CEF03804DC9FC170E5F02FF5C92C7 12E04C5A4C5A4C7E160F49EC3FE04A137F4C7EED01DF9238038FF8ED0E0F0103496C7EEC FC384B6C7EECFDE09139FF8001FF150049486D7F5C4A6E7EA2717EA2010F6F7E5C717EA2 717EA2011F6F7E5C717EA2717FA2013F707E5C8585137F496C913801FFFCB600E0010FEB FFE05FA24D447CC34C>75 D<011FB6FCA39026003FFCC8FCEC1FF0A25DA5143F5DA5147F 5DA514FF92C9FCA55B5CA513035CA513074A1503A31806A2130F4A150E180CA2181C1818 011F16385C1878187018F01701013FED03E04A1407170F173F017FEDFFC001FF140FB9FC 1880A238447CC33D>I<90261FFFF094B512C06F198062D9003F9439037FC000021F4EC7 FC1A06DA19FC5F1A0CA21A18DA18FE1619023817310230601A611AC1157FF10183147002 6093380303F8A26F6C1406A2F10C0714E002C004185B6F7E193019601A0F010117C04A6C 6C5EF00180A2F003006F6C151F0103160602006060606F7E4E133F5B01064C5CA26F6C5B A24D48137F130E010C4BC790C8FCED00FE17065F62011C5D0118027F5D5FA25FDC3FE013 0101385D6201785D94C7FCD801FC6E1403D807FF021E4A7EB500F80307B512FE161C4A01 0C5E5A447BC359>I<90261FFFF84AB512F01BE081D9001F9239001FFC006E6CED07F002 1F705ADA19FF6F5A6202187FA26F6C140314389126303FE092C7FCA26F7EA26F6C5C1470 91266007FC1406A26F7EA26F6C140E14E04A6C6D130CA2707EA2706C131C13014A6D6C13 18A2707EA2706C1338130391C76C6C1330A2707EA270EB80705B010692387FC060A2EF3F E0A294381FF0E0130E010C6F6C5AA2EF07FCA2EF03FF131C01186F5BA283A2187F133872 C8FC137884EA01FCD807FF82B512F818065C4C447CC349>I<EE3FF00303B5FC92391FC0 1FE092397E0003F0DA01F8EB00FCDA07E0147E4A486E7E023FC8EA0FC0027E824A6F7E49 481503D907F0824A6F7E495A011F707E495A49CA7E49835B00011980485AA24848EF3FC0 A2120F5B121FA25B123F197F5B127FA54848EFFF80A44E1300A3611803A24E5A127F6118 0F616D4C5A123F4E5A001F4D5A7F4EC7FC000F4C5A6C6C5E4D5A6C6C4B5A6C6C4B5A0000 4C5A017E4BC8FC6D15FE6D6CEB01F8D90FE0EB07F0D903F8EB1FC0D900FE01FEC9FC9138 3FFFF802031380424876C54C>I<011FB712C018F818FF9028003FF8000113806E489038 003FE0F00FF04BEC07F8F003FCA2F001FEA2023F16FF4B80A5027F5D5DA319FE180314FF 92C813FCF007F8A2F00FF0F01FE049EE3FC04AED7F00EF01FEEF07F8EF3FE091B7128049 03FCC7FC02FCCAFCA513075CA5130F5CA5131F5CA5133F5CA3137F497EB612E0A25D4044 7CC342>I<EE3FF00303B5FC92391FE01FE092397E0003F0DA01F8EB00FCDA07E0147E4A 486E7EDA3F806E7E027EC86C7E4A6F7E49481503D907F082727E495A4948824948150001 7F8349CAFC498300011980485AA2000719C05B120F5B121FA25B123FA3485AA54848EFFF 80A41A0060A2611803A261007F170761180F614E5A6C7E4E5A001FDA1F805CDB7FE0137F 6DD9E07049C7FC000F49486C5B3C07F003801801FC4B6C485A6C6C484A5A000101069038 0E0FE0D800FC9138061FC0017E4BC8FC013F15FED91F86EB07F8D90FE75CD903FBEB1FC0 902700FF80FFC71218023FB5FC0203D98780133891C71207193019707113F061EFE003EF F0079438F81FC094B5FC618296C7FC60705B705BEF7FE0EF1F80425976C54C>I<011FB6 12FEEFFFE018F8903B003FF80007FE6E48903800FF80F03FC04B6E7E727E727E727EA202 3F824B1401A5027F15035DA34E5AA202FF5E92C8485A614E5A4E5A4EC7FC49ED01FE4AEC 03F8EF1FE0EFFF8091B600FCC8FC17F0903A03FE0001FC4AEB007F717E717E717E840107 6F7E5CA21703A21707130F5CA5011F150F5CA41A38013F18305CA21A70017F0307146049 6C17E0B600E0903903FC01C00501EB03804B903900FE0F00CBEA3FFEF007F045467CC348 >I<DB3FE01370913801FFFC020701FF13E091391FC01FC191397F0003E102FCEB00F349 48147F4948143F4948EC1FC0495A4A140F131F91C812075B013E1680137E1703A313FE18 00A27FA26E91C7FC137F8014F014FC6DB47E15F86DEBFF806D14F06D14FC6D14FF010081 023F80020780DA007F7F150F03007F161F707E16071603A21601A2120C001C15001218A4 160100385EA2003C5E1603A2003E4B5A007E5E007F150F6D4A5A6D4AC7FCD87DE0147ED8 78F05CD8F87EEB03F83AF01FC00FE0486CB51280010149C8FC39C0003FF034487BC536> I<0007BAFCA3270FFE0003EB000301E04AEB007F49173F90C749141F001E180FA2001C18 0712180038020715065E1230A25AA2150F5E5AA3C81600151F5EA5153F5EA5157F5EA515 FF93C9FCA55C5DA514035DA514075DA3140FEC3FFE48B712C05FA2404475C346>I<B600 E0010FB512804B1600A2000101E0C813E06C0180ED3F8072C7FC91C9120E180CA3181C5A 491618A418381203491630A418701207491660A418E0120F495EA41701121F495EA41703 123F4993C8FCA45F007F16065BA2170E003F160C171C171817386D1530001F16705F4C5A 6C7E4C5A6C6C4AC9FC6C6C141E00015DD800FE14F8017FEB03E090393FE01FC0010FB5CA FC010313FC9038003FE0414671C349>I<B66C91383FFFF092C8FCA2000301E003071300 6C0180ED03FC6CEF01F06161017F5FA24EC7FCA26E1506013F160E180C608060131F60A2 6E5D130F4D5A170395C8FC6E140613075FA26E5CA201035DA25F6E14E05F01014A5AA24C C9FC806D1406A25EA26F5A027F133816305E15C05E143FEDC180A203E3CAFC141F15E615 EE15EC15F8140F5DA25DA26E5AA25DA26ECBFC444673C349>I<B60107B500F80107B5FC 5113FEA2000701C09026003FFEC813E06C90C8D80FF8ED3F806C1C00491A1E6D1A1C6C04 071618A264A2050F5EA26E4A6C5D017F151B05334B5AA20563150399C7FC05E35D6EDAC3 FE1406013FDA01C1150E0581150C160305015DA204066D5C6E80011F4A5EA24C5EA24C4B 5A6E1680010F4A017F49C8FCA24C1506A24B485DA26E48C76D5A0107163F03065EA24B16 701A60031C16E0DAFC186F5A01030138EC1FE103305E1570036003E3C9FCA24B15F614FE 6D6C48EC0FFCA292C85BA24A5EA24A6F5A13004A5EA24A5EA24A93CAFC026081604673C3 64>I<0107B500FC0103B512E0A2495ED9001F01C00100EBFC00020790C8EA7FC06E70C7 FC4B153E6E6C153C19386E6D5C616F6C495A616F6C49C8FC18066F6C5B181C6F6C5B1830 6F6C5B606F6C485A17036F6C48C9FC170E6F138C1798EE7FF05F163FA2707EA2707EA24C 7E163FEE73FE1663EEC1FFED0181DB03807F4B5A030E6D7E150C4B804B133F4B8003E013 1F4A5A4B6D7E4AC7FC02066E7E5C021C6E7E5C4A6E7E14604A6E7F130149486F7E010F83 131FD97FC04B7E2603FFE0020313FC007F01FC021FEBFFF0B5FCA24B447EC349>I<B66C 91380FFFFCA260000301F0C8000313C0C649923801FE00017FEE00F861013F4C5A616D6C 4B5A96C7FC6D6C1506606D6C151C606E153001035E606D6C1401606D6D49C8FC17066E6C 130E5F17186E6C5B5F6E6C13E05F6E6C485A4CC9FC6F5A0207130E160C6E6C5A5E913801 FF7016606E5B5EA293CAFCA55D1401A55D1403A55D1407A4140F4A7E011FB512FC5EA246 4474C349>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl cmsy8 8 13 /Fl 13 113 df<B812C0A32A037A9137>0 D<123C127E12FFA4127E123C08087A9414>I< 006015C000E014016C14030078EC07806CEC0F006C141E6C5C6C6C5B6C6C5B6C6C485A6C 6C485A90387807806D48C7FCEB1E1E6D5AEB07F86D5A6D5A497E497EEB0F3CEB1E1E497E 496C7E496C7E48486C7E48486C7E4848137848C77E001E80488048EC078048EC03C04814 0100601400222376A137>I<130C131EA50060EB01800078130739FC0C0FC0007FEB3F80 393F8C7F003807CCF83801FFE038007F80011EC7FCEB7F803801FFE03807CCF8383F8C7F 397F0C3F8000FCEB0FC039781E078000601301000090C7FCA5130C1A1D7C9E23>I<EB7F 803801FFE0000713F8380FC0FC381F003E003C130F00387F007814800070130300F014C0 481301A66C1303007014800078130700381400003C5B001F133E380FC0FC6CB45A000113 E038007F801A1A7C9D23>14 D<170EA3170F8384170384170184717E1878187C84180FF0 07C0BA12F819FC19F8CBEA07C0F00F00183E601878604D5A60170360170795C7FC5F170E A33E237CA147>33 D<137813FE1201A3120313FCA3EA07F8A313F0A2EA0FE0A313C0121F 1380A3EA3F00A3123E127E127CA35AA35A0F227EA413>48 D<D93F80EC07F0D9FFF0EC3F FC000301FC91B5FC4801FF903901F80780D80F80903A8007C001C03D1E003FC00F8000E0 486D6C48C71270003890260FF03E143048902607F83C14386E6C48141800606D6C5A00E0 6D6C48141C48027F150C5E153F6F7E6F7E82151F6C6F141C0060DA3DFE1418DB78FF1438 00704A6C7E003001016D6C1370003849486C6C13F06C903B07C00FF001E06C903B0F8007 FC07C02807807E0003B512806CB44801001400C601F0EC3FFCD93F80EC07F03E1F7C9D47 >I<91B512C01307131FD97F80C7FC01FCC8FCEA01F0EA03C0485A48C9FC120E121E5A12 3812781270A212F05AA3B712C0A300E0C9FCA37E1270A212781238123C7E120E120F6C7E 6C7EEA01F0EA00FCEB7F80011FB512C013071300222B7AA52F>I<0060150C00E0151CB3 AA6C153C00701538A2007815786C15F06CEC01E06C6CEB07C0D807E0EB1F803A03FE01FF 00C6B512FC013F13F0010390C7FC26297CA72F>91 D<EB03FF013F13F090B512FC3903FE 01FF3A07E0001F80D80F80EB07C0001EC7EA01E048EC00F048157800701538A200F0153C 48151CB3AA0060150C26297CA72F>I<12E0B3B3B3AD034378B114>106 D<18031807180F180E181E181C183C18381878187018F018E01701EF03C0188017071800 5F170E171E171C173C17381778177017F05F16015F16035F160701C092C7FC486C5C0007 151E486C141C003F153CD873F8143800E31578D801FC147016F06C6C5C1501017F5C1503 D93F805B1507D91FC090C8FC5D90380FE00E151E903807F01C153C903803F83815786D6C 5A5DEB00FF5D147F5D143F92C9FC80141E140E38427C823B>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmbx12 12 65 /Fm 65 122 df<DB0FFFEB03FF4AB5D8C03F13C0020F02F1B512E0027F91B612F0902701 FFF8039038FE1FF849018002F813FC010F4948EBF03F49484913E0495A4A15C0495AF11F F801FF16804A6DEC07E070EC018096C7FCABBA12F0A5C69026E000030180C7FCB3B0007F D9FFC1B67EA546467EC541>11 D<EA07C0EA1FF0487E487E487E7FA31480A37E7EEA1FF7 EA07C7EA0007130FA21400A25B131E133EA25B13FC5B485A485A1207485A485A90C7FC12 0C112278C41F>39 D<EC01E01403EC0FC0EC1F80EC3F00147E5C1301495A495A5C130F49 5A133F5C137F49C7FCA2485AA2485AA212075BA2120F5BA2121FA25B123FA4485AA612FF A25BAE7FA2127FA66C7EA4121F7FA2120FA27F1207A27F1203A26C7EA26C7EA26D7E133F 80131F6D7E1307806D7E6D7E1300147E80EC1F80EC0FC0EC03E014011B6476CA2C>I<12 F07E127E7E6C7E6C7E6C7E7F6C7E6C7E12007F137F80133F806D7EA26D7EA26D7EA28013 03A2801301A280A27F1580A4EC7FC0A615E0A2143FAE147FA215C0A6ECFF80A415005BA2 5CA213035CA213075CA2495AA2495AA2495A5C137F91C7FC13FE5B1201485A485A5B485A 485A48C8FC127E12F85A1B647ACA2C>I<B612F8A91D097F9A25>45 D<EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA1FF0EA07C00F0F788E1F>I< EC3FF849B5FC010F14E0013F14F890397FF01FFC9039FFC007FE4890380001FF48486D13 80000716C049147F000F16E049143F001F16F0A2003F16F8A249141F007F16FCA600FF16 FEB3A3007F16FCA56C6CEC3FF8A3001F16F0A2000F16E06D147F000716C06D14FF6C6C49 13806C6D4813006C6D485A90397FF01FFC6DB55A010F14E0010314809026003FF8C7FC2F 427CC038>48 D<EC03C01407141F147FEB03FF133FB6FCA413C3EA0003B3B3ADB712FCA5 264177C038>I<ECFFE0010F13FE013F6D7E90B612E0000315F82607FC0313FE3A0FE000 7FFFD81F806D138048C7000F13C0488001C015E001F07F00FF6E13F07F17F881A46C5A6C 5A6C5AC9FC17F05DA217E05D17C04B13804B1300A2ED1FFC4B5A5E4B5A4B5A4A90C7FC4A 5A4A5AEC0FF04A5AEC3F804AC7127814FE495A494814F8D907E014F0495A495A49C8FC01 7C140149140348B7FC4816E05A5A5A5A5AB8FC17C0A42D417BC038>I<ECFFF0010713FF 011F14C0017F14F049C66C7ED803F8EB3FFED807E06D7E81D80FF86D138013FE001F16C0 7FA66C5A6C4815806C485BC814005D5E4B5A4B5A4B5A4A5B020F1380902607FFFEC7FC15 F815FF16C090C713F0ED3FFCED0FFEEEFF80816F13C017E0A26F13F0A217F8A3EA0FC0EA 3FF0487EA2487EA217F0A25D17E06C5A494913C05BD83F80491380D81FF0491300D80FFE EBFFFE6CB612F800015D6C6C14C0011F49C7FC010113E02D427BC038>I<163FA25E5E5D 5DA25D5D5D5DA25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8EB 01F0EB03E0130714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A12 FCB91280A5C8000F90C7FCAC027FB61280A531417DC038>I<0007150301E0143F01FFEB 07FF91B6FC5E5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001C1B5FC01C714 C001DF14F09039FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F6C4815E0C8FC 6F13F0A317F8A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007EC74813C0123E 003F4A1380D81FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F1480010F01FC C7FC010113C02D427BC038>I<4AB47E021F13F0027F13FC49B6FC01079038807F809039 0FFC001FD93FF014C04948137F4948EBFFE048495A5A1400485A120FA248486D13C0EE7F 80EE1E00003F92C7FCA25B127FA2EC07FC91381FFF8000FF017F13E091B512F89039F9F0 1FFC9039FBC007FE9039FF8003FF17804A6C13C05B6F13E0A24915F0A317F85BA4127FA5 123FA217F07F121FA2000F4A13E0A26C6C15C06D4913806C018014006C6D485A6C9038E0 1FFC6DB55A011F5C010714C0010191C7FC9038003FF02D427BC038>I<121E121F13FC90 B712FEA45A17FC17F817F017E017C0A2481680007EC8EA3F00007C157E5E00785D15014B 5A00F84A5A484A5A5E151FC848C7FC157E5DA24A5A14035D14074A5AA2141F5D143FA214 7F5D14FFA25BA35B92C8FCA35BA55BAA6D5A6D5A6D5A2F447AC238>I<EC7FF00103B5FC 010F14C0013F14F090397F801FFC3A01FC0003FE48486D7E497F4848EC7F80163F484815 C0A2001F151FA27FA27F7F01FE143F6D158002C0137F02F014006C01FC5B6E485A6C9038 FF83FCEDE7F86CECFFE06C5D6C92C7FC6D14C06D80010F14F882013F8090B7FC48013F14 802607FC0F14C0260FF80314E04848C6FC496D13F0003F141F48481307496D13F8150000 FF157F90C8123F161F160FA21607A36D15F0127F160F6D15E06C6C141F6DEC3FC06C6CEC 7F80D80FFE903801FF003A07FFC00FFE6C90B55AC615F0013F14C0010F91C7FC010013F0 2D427BC038>I<EC7FF0903807FFFE011F6D7E017F14E09039FFE03FF0489038800FF848 496C7E48488048486D7E001F80003F1680A2484815C08117E0A212FF17F0A617F8A45D12 7FA3003F5CA26C7E5D6C6C5B12076C6C133E6CEBC07C6CEBFFF8013F5B010F01C013F001 01130090C8FCA217E05DA2EA03C0D80FF015C0487E486C491380A217004B5A150F5E4949 5A6C48495A01C0EBFFE0260FF0035B6CB65A6C4AC7FC6C14F86C6C13E0D907FEC8FC2D42 7BC038>I<EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA1FF0EA07C0C7FCAE EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA1FF0EA07C00F2C78AB1F>I<EE 1F80A24C7EA24C7EA34C7EA24B7FA34B7FA24B7FA34B7F169F031F80161F82033F80ED3E 07037E80157C8203FC804B7E02018115F0820203814B137F0207815D173F020F814B7F02 1F8292C77EA24A82023E80027E82027FB7FCA291B87EA2498302F0C8FCA20103834A157F 0107834A153FA249488284011F8491C97E4984133E017E82B6020FB612F0A54C457CC455 >65 D<B9FC18F018FE727E19E026003FFCC700077F05017F716C7E727E727EA2721380A3 7213C0A74E1380A24E1300A24E5A4E5A4E5A4D5B05075B94B5128091B700FCC7FC18F018 FF19E002FCC7000113F8716C7EF01FFE727E7213801AC07213E0A27213F0A31AF8A71AF0 A2601AE0604E13C0604E138095B5120005075BBA12F86119C04EC7FC18E045447CC350> I<DCFFF01470031F01FF14F04AB6EAE0010207EDF803023FEDFE0791B539E001FF0F4949 C7EA3F9F010701F0EC0FFF4901C0804990C87E4948814948814948167F4849163F484916 1F5A4A160F485B19074890CAFC19035A5BA2007F1801A34994C7FC12FFAE127F7F1AF0A2 123FA27F6C18011AE06C7F19036C6D17C06E16077E6C6DEE0F806C6DEE1F006D6C5E6D6C 167E6D6C6C5D6D6D4A5A6D01F0EC07F0010101FEEC1FE06D903AFFF001FF80023F90B6C7 FC020715FC020115F0DA001F1480030001F8C8FC44467AC451>I<B9FC18F018FE727E19 E026003FFEC7001F13F805017F9438003FFF060F7F727F727F727F84737E737EA2737EA2 737EA21B80A2851BC0A51BE0AD1BC0A51B8061A21B006162193F624F5A19FF624E5B0607 5B4E5B063F90C7FC4DB45A050F13F8BA5A19C04EC8FC18F095C9FC4B447CC356>I<BA12 F8A485D8001F90C71201EF003F180F180318011800A2197E193EA3191EA21778A285A405 F890C7FCA316011603161F92B5FCA5ED001F160316011600A2F101E01778A2F103C0A494 C7FC1907A21A80A2190FA2191FA2193FF17F0061601807181F4DB5FCBBFC61A443447DC3 4A>I<BA1280A419C026003FFEC7121F1701EF007F183F181F180F180719E01803A31801 A3EE01E0F000F0A419001603A31607160F167F91B6FCA59138FE007F160F16071603A316 01A693C9FCAFB712F0A53C447CC346>I<DCFFF01470031F01FF14F04AB6EAE0010207ED F803023FEDFE0791B539E001FF0F4949C7EA3F9F010701F0EC0FFF4901C0804990C87E49 48814948814948167F4849163F4849161F5A4A160F485B19074890CAFC19035A5BA2007F 1801A34994C8FC12FFAD057FB612F0127F7FA3003FDC0001EBF000A27F7EA26C7FA26C7F 807E6C7F6C7F6D7E6D6C5D6D6C7E6D6D5C6D01F05C010101FE143F6D903AFFF001FF9F02 3F90B6120F0207EDFC030201EDF000DA001F02C01330030001FCC9FC4C467AC458>I<B7 D88003B612FEA526003FFEC9EBF800B3A791B9FCA54AC9FCB3AAB7D88003B612FEA54F44 7CC358>I<B712E0A5D8001F90C7FCB3B3B3A4B712E0A523447DC32A>I<B76C0103B512F8 A526003FFEC93807E0004F5A4F5A077EC7FC614E5A4E5A4E5AF01F804EC8FC187E604D5A EF07F0EF0FC04D5A4DC9FC177E4C5AEE03F04C5A4C5A4C7EEE7FF04C7E5D4B7F4B7F4B7F ED3F3FDB7E1F7F03FC806E486C7F4B7E4B6C7F0380804B6C7F4A7F717E84717F83717F85 717F83717F85717F187F727E86727F84727F86727F84B76C90B612FCA54E447CC358>75 D<B712F0A526003FFECAFCB3B1F00780A4180F1900A460A360A2187EA218FE1701170317 07171F177FEE03FFB95AA539447CC343>I<B500FE067FB512806E95B6FCA26F5EA2D800 3F50C7FC013D6DEE03DFA2013C6DEE079FA26E6CEE0F1FA26E6C161EA26E6C163CA36E6C 1678A26E6C16F0A26E6DEC01E0A26E6DEC03C0A36E6DEC0780A26F6CEC0F00A26F6C141E A26F6C5CA36F6C5CA26F6C5CA26F6D485AA26F6D485AA26F6D485AA3706C48C7FCA29338 3FF81EA2706C5AA2706C5AA3706C5AA2705BA2705BA2705BA2B6057FB6128071C7FCA217 3E171C61447CC36A>I<B64BB512FE8181A281D8003F6D91C7EA780081013D7F81133C6E 7E6E7F6E7F6E7F6E7F82806E7F6E7F6F7E6F7F83816F7F6F7F6F7F6F7F6F7F8382707F70 7F707F707F8482707F707F717E7113807113C019E0837113F07113F87113FC7113FE19FF 847213F884848484A28484197F193F191FA2190F1907B61603190119001A78A24F447CC3 58>I<923807FFC092B512FE0207ECFFC0021F15F091267FFE0013FC902601FFF0EB1FFF 01070180010313C04990C76C7FD91FFC6E6C7E49486F7E49486F7E01FF8348496F7E4849 6F1380A248496F13C0A24890C96C13E0A24819F04982003F19F8A3007F19FC49177FA400 FF19FEAD007F19FC6D17FFA3003F19F8A26D5E6C19F0A26E5D6C19E0A26C6D4B13C06C19 806E5D6C6D4B13006C6D4B5A6D6C4B5A6D6C4B5A6D6C4A5B6D01C001075B6D01F0011F5B 010101FE90B5C7FC6D90B65A023F15F8020715C002004AC8FC030713C047467AC454>I< B9FC18F018FE727E19E0D8001F90C7000F7F05017F716C7E727E727E721380A21AC084A2 1AE0A91AC0A24E1380A21A00604E5A4E5A4D485A050F5B92B712C096C7FC18FC18C092CB FCB3A7B712E0A543447DC34D>I<923807FFC092B512FE0207ECFFC0021F15F091267FFE 0013FC902601FFF0EB1FFF010701C0010713C04990C700017F49486E7F49486F7E49486F 7E49486F7E48496F7E48496F1380A248496F13C0A24819E091C97E4819F0A248487013F8 A3007F19FCA249177FA300FF19FEAD007F19FCA36D17FF003F19F8A3001F19F06D5EA26C 19E06E01FE5B6C912603FF8014C06C6D486D4813804B13E06C9028E01F83F00F13006C90 3BF01E00F81FFE90267FF83E90387C3FFC90263FFC3C6D485AD91FFE91381EFFF0D90FFF 021F5B6D01FE5D010194C7FC6D6D6CB45A023F90B512F8020703E0130202006F13070307 13C792C7EA07F8716C130F72131F9538FF80FF96B5FC7114FEA3831AFCA27213F81AF084 7213E07213C0721300F001FC48587AC454>I<B812F8EFFFC018F818FE727ED8001F90C7 003F13E005037F05007F727E727E727EA28684A286A762A24E90C7FCA24E5A61187F9438 01FFF005075B053F138092B7C8FC18F818E018F892C77FEF3FFF050F7F717F717FA2717F A2717FA785A61B0F85A2187F73131F72141EB700E06DEB803E72EBE0FC72EBFFF8060114 F0726C13E0CC0007138050457DC354>I<DAFFE0131C010701FE133C013F9038FF807C90 B6EAE0FC4815F9489038801FFF3907FC00014848EB007F4848143F4848140F491407007F 15035B1601160012FF177CA27FA26D153C7F7F6D92C7FC6C7EEBFFE014FE6CEBFFF015FF 6C15E016FC6C816C6F7E6C826C826C6C81011F810107811300020F80140003077FED007F 82040F1380828212F082A282A27EA218007EA26C5D6C5E6D14036D5D6D140701F84A5A01 FFEC3FF002F8EBFFE0486CB65AD8FC1F92C7FCD8F80714FC48C614F0480107138031467A C43E>I<003FBA12E0A59026FE000FEB8003D87FE09338003FF049171F90C71607A2007E 1803007C1801A300781800A400F819F8481978A5C81700B3B3A20107B8FCA545437CC24E >I<B76C010FB512F8A526003FFEC93803E000B3B3A9011F17076280190F6D606F151F6D 95C7FC6D6D5D197E6D6D5D6D6D1403DA7FFC4A5A6EB4EC3FF0020F9039F003FFE06E90B6 1280020193C8FC6E6C14FC030F14E09226007FFEC9FC4D457CC356>I<B792B6FCA52600 3FFECAEAFC00806D606F15016D608119036D606F15076D606F150F6D6081191F6D6D93C7 FC61027F163E6F157E023F167C8119FC6E6D5C18016E5E7013036E5E8218076E6D5C180F 6E5E70131F6E93C8FC705B037F143E82187E033F147C7013FC6F5C17816F5C17C117C36F 5C17E76F5C17FF6F5CA36F91C9FCA2705AA2705AA3705AA2705AA2705AA250457EC355> I<B600FE017FB691B512FEA526007FFCC8D83FFEC9EA7C006E82013F701778807415F86D 705F6F7014016D705FA26F7014036D64814E6D14076D646F70140F6D041E94C7FCA26F02 3E6D5C6DDC3C7F151E81027F037C6D5CF0783F6F70147C023F4B6C1578A26F01016F13F8 6E4B6C5D16806E02036F485A4E7E04C0EEE0036E4A486C5DA2DCE00FEDF0076E4B6C5D16 F06E4A6F48C8FC051E7F04F8705A6E4A027F131EA2DCFC7CEDFE3E037F0178023F133C04 FE16FF033F01F85E4D8004FF17F86F496E5BA36F496E5BA26F604D80A26F90C86C5BA36F 486F90C9FCA26F48167EA30478163C6F457EC374>I<007FB6D8C003B61280A5D8000F01 E0C7D801F8C7FC6D4C5A6F14076D6D5D6D6D4A5A4E5A6D6D143F6E6C92C8FC6E157E705B 6EEBC0016E01E05B4D5A6E6D485A6EEBF80F6E01FC5B4D5A6E6D48C9FC6F6C5A6F137E5F 6F5B815F816F7F81836F7F707E93B5FC844B805D4B8004E77FDB0FC37FED1F83DB3F817F 04007F037E137F4B8002016E7F4B6D7F4A5A4A486D7F020F6E7F4B7F4A48814AC76C7F71 7F147E4A6F7E0101707F4A8149488349486F7F010F707FB600E00103B612FCA54E447DC3 55>I<B76C027FB5FCA5D8003F0180C9EAFC006D6D4B5AA26D6D4B5A6D6D4B5A816D4D5A 6D6D4B5A816D4DC7FC6E6C157E826E5E6E6D495A826E4B5A6E6D495A6E7F4E5A6E6D495A 6E7F4EC8FC6F6C137E6F1380606FEBC1F86F13E1EFF3F06FEBF7E06F13FF606F5C8195C9 FC705A163FB3A592B77EA550447EC355>I<903801FFE0011F13FE017F6D7E48B612E03A 03FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7FCA40203 B5FC91B6FC1307013F13F19038FFFC01000313E0000F1380381FFE00485A5B127F5B12FF 5BA35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86CECE01FC6 6CEB8007D90FFCC9FC322F7DAD36>97 D<EB7FC0B5FCA512037EB1ED0FF892B57E02C314 E002CF14F89139DFC03FFC9139FF000FFE02FCEB03FF4A6D13804A15C04A6D13E05CEF7F F0A218F8173FA318FCAC18F8A2177F18F0A3EFFFE06E15C06E5B6E491380027C49130049 6C495A903AFC1FC07FFC496CB512F0D9F00314C049C691C7FCC8EA1FF036467DC43E>I< EC3FFC49B512C0010F14F0013F14FC90397FF003FE9039FFC001FF0003495A4849481380 5B120F485AA2485A6F1300007F6E5AED00784991C7FCA212FFAC6C7EA3123F6DEC03C0A2 6C6C1407000F16806D140F6C6DEB1F006C6D133E6C01F05B3A007FFC03F86DB55A010F14 C0010391C7FC9038003FF82A2F7CAD32>I<EE03FEED07FFA5ED001F160FB1EC3FE09038 03FFFC010FEBFF8F013F14CF9039FFF807FF48EBC00148903880007F4890C7123F484814 1F49140F121F485AA3127F5BA212FFAC127FA37F123FA26C6C141FA26C6C143F0007157F 6C6C91B5FC6CD9C00314FC6C9038F01FEF6DB5128F011FEBFE0F010713F89026007FC0EB F80036467CC43E>I<EC3FF80103B57E010F14E0013F8090397FF83FF89039FFC007FC48 496C7E48496C7E48486D1380485A001FED7FC05B003FED3FE0A2127F5B17F0161F12FFA2 90B7FCA401F0C9FCA5127FA27FA2123F17F06C7E16016C6C15E06C6C14036C6DEB07C06C 6DEB0F806C01F0EB3F0090397FFE01FE011FB55A010714F0010114C09026001FFEC7FC2C 2F7DAD33>I<EDFF80020F13E0027F13F049B512F849EB8FFC90390FFE0FFE90381FFC1F 14F8133FEB7FF0A2ED0FFCEBFFE0ED03F0ED00C01600ABB612F8A5C601E0C7FCB3B0007F EBFFE0A527467DC522>I<DAFFE0137E010F9039FE03FF80013FEBFF8F90B812C048D9C0 7F133F489038001FF84848EB0FFC4848903907FE1F80001F9238FF0F00496D90C7FCA200 3F82A8001F93C7FCA26D5B000F5D6C6C495A6C6C495A6C9038C07FF04890B55A1680D807 8F49C8FC018013E0000F90CAFCA47F7F7F90B612C016FC6CEDFF8017E06C826C16FC7E00 0382000F82D81FF0C77ED83FC014074848020113808248C9FC177FA46D15FF007F17006D 5C6C6C4A5A6C6C4A5AD80FFEEC3FF83B07FFC001FFF0000190B612C06C6C92C7FC010F14 F8D9007F90C8FC32427DAC38>I<EB7FC0B5FCA512037EB1ED07FE92383FFF8092B512E0 02C114F89139C7F03FFC9138CF801F9139DF000FFE14DE14FC4A6D7E5CA25CA35CB3A7B6 0083B512FEA537457CC43E>I<137C48B4FC4813804813C0A24813E0A56C13C0A26C1380 6C1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520>I<EB7FC0B5 FCA512037EB293387FFFE0A593380FE0004C5A4CC7FC167E5EED03F8ED07E04B5A4B5A03 7FC8FC15FEECC1FCECC3FE14C7ECDFFF91B57E82A202F97F02E17F02C07FEC807F6F7E82 6F7E816F7F836F7F816F7F83707E163FB60003B512F8A535457DC43B>107 D<EB7FC0B5FCA512037EB3B3B3A3B61280A519457CC420>I<90277F8007FEEC0FFCB590 263FFFC090387FFF8092B5D8F001B512E002816E4880913D87F01FFC0FE03FF8913D8FC0 0FFE1F801FFC0003D99F009026FF3E007F6C019E6D013C130F02BC5D02F86D496D7EA24A 5D4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E>I<90397F8007FEB590383FFF 8092B512E0028114F8913987F03FFC91388F801F000390399F000FFE6C139E14BC02F86D 7E5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>I<EC1FFC49B512C0010714F0011F14 FC90397FF80FFF9026FFC0017F48496C7F4848C7EA3FE000078248486E7E49140F001F82 A2003F82491407007F82A400FF1780AA007F1700A46C6C4A5AA2001F5E6D141F000F5E6C 6C4A5AA26C6C6CEBFFE06C6D485B27007FF80F90C7FC6DB55A010F14F8010114C0902600 1FFCC8FC312F7DAD38>I<90397FC00FF8B590B57E02C314E002CF14F89139DFC03FFC91 39FF001FFE000301FCEB07FF6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFC ACEF7FF8A318F017FFA24C13E06E15C06E5B6E4913806E4913006E495A9139DFC07FFC02 CFB512F002C314C002C091C7FCED1FF092C9FCADB67EA536407DAC3E>I<DA3FE0131E90 2603FFFC133E010F01FF137E013F1480903AFFF80FE0FE489038E003F148EBC001489038 8000FB4890C7127F49143F001F151F485A160F5B127FA3485AAC6C7EA46C7EA26C6C141F 163F6C6C147F6C15FF6C6D5A6C9038E003EF6C9038F01FCF6DB5128F011FEBFE0F010313 F89038007FC091C7FCAD0307B512FCA536407CAC3B>I<90387F807FB53881FFE0028313 F0028F13F8ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED01E0 92C7FCA35CB3A5B612E0A5272D7DAC2E>I<90391FFC038090B51287000314FF120F381F F003383FC00049133F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387FFFF0 14FF6C14C015F06C14FC6C800003806C15806C7E010F14C0EB003F020313E0140000F014 3FA26C141F150FA27EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A00FC 5CD8F03F13E026E007FEC7FC232F7CAD2C>I<EB01E0A51303A41307A2130FA2131FA213 3F137F13FF1203000F90B51280B7FCA4C601E0C7FCB3A3ED01E0A9150302F013C0137F15 0790393FF80F8090391FFC1F006DB5FC6D13FC01015B9038003FE023407EBE2C>I<D97F C049B4FCB50103B5FCA50003EC000F6C81B3A85EA25EA25E7E6E491380017FD901F713FE 9138F807E76DB512C7010F1407010313FE9026007FF0EBFC00372E7CAC3E>I<B6903803 FFFCA5000101E09038003E006C163C80017F5D8017F8013F5D6E1301011F5D6E1303010F 5D6E13076D5DED800F6D92C7FC15C05E6DEBE01E163E6D143CEDF07C027F1378EDF8F802 3F5B15FD021F5B15FF6E5BA36E5BA26E90C8FCA26E5AA26E5AA21578362C7EAB3B>I<B5 D8FE1FB539801FFFF0A500019027C0003FE0C7EA7C007114786E17F86C6F6C5C6E160101 7F6E6C5CA26E011F1403013F6F5C6E013F1407011F6F5CA26E0179140F010F048090C7FC 6E01F95C6D02F0EBC01E15806D902681E07F5B18E003C3157C6D9139C03FF07815E76DDA 801F5B18F803FF14F96E9039000FFDE018FF6E486D5BA36E486D5BA26E486D90C8FCA24B 7F02075DA26E48147C4B143C4C2C7EAB51>I<B500FE90383FFFF0A5C601F0903803E000 6D6C495A013F4A5A6D6C49C7FC6E5B6D6C137E6DEB807C6D6D5A6DEBC1F0EDE3E06DEBF7 C06EB45A806E90C8FC5D6E7E6E7F6E7FA24A7F4A7F8291381F3FFCEC3E1F027C7F4A6C7E 49486C7F01036D7F49487E02C08049486C7F49C76C7E013E6E7E017E141FB500E090B512 FCA5362C7EAB3B>I<B6903803FFFCA5000101E09038003E006C163C80017F5D8017F801 3F5D6E1301011F5D6E1303010F5D6E13076D5DED800F6D92C7FC15C05E6DEBE01E163E6D 143CEDF07C027F1378EDF8F8023F5B15FD021F5B15FF6E5BA36E5BA26E90C8FCA26E5AA2 6E5AA21578A215F85D14015D001F1303D83F805B387FC007D8FFE05B140F92C9FC5C143E 495A387FC1F8EB07F06CB45A6C5B000790CAFCEA01FC36407EAB3B>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmbx12 17.28 44 /Fn 44 121 df<EA01FCEA07FF4813804813C04813E04813F014F8B5FCA214FCA314FEA2 7EA27E7E6C13BE6C133EEA01FCC7FCA2147E147CA314FC14F8A2130114F01303A2EB07E0 A2EB0FC0A2EB1F80EB3F005B13FE485A485A485A485A5B6C5A6CC7FC173174E32D>39 D<B812C0AD2A0D7EA636>45 D<16F04B7E1507151F153FEC01FF1407147F010FB5FCB7FC A41487EBF007C7FCB3B3B3B3007FB91280A6395E74DD51>49 D<913801FFF8021FEBFFC0 91B612F8010315FF010F16C0013F8290267FFC0114F89027FFE0003F7F4890C7000F7F48 486E7FD807F86E148048486E14C048486E14E048486F13F001FC17F8486C816D17FC6E80 B56C16FE8380A219FFA283A36C5BA26C5B6C90C8FCD807FC5DEA01F0CA14FEA34D13FCA2 19F85F19F04D13E0A294B512C019804C14004C5B604C5B4C5B604C13804C90C7FC4C5A4C 5A4B13F05F4B13804B90C8FC4B5AED1FF84B5A4B5A4B48143F4A5B4A48C8FC4A5A4A4815 7E4A5A4A5AEC7F8092C9FC02FE16FE495A495A4948ED01FCD90FC0150749B8FC5B5B90B9 FC5A4818F85A5A5A5A5ABAFCA219F0A4405E78DD51>I<92B5FC020F14F8023F14FF49B7 12C04916F0010FD9C01F13FC90271FFC00077FD93FE001017F49486D8049C86C7F484883 486C6F7F14C0486D826E806E82487FA4805CA36C5E4A5E6C5B6C5B6C495E011FC85A90C9 5CA294B55A614C91C7FC604C5B4C5B4C5B4C5B047F138092260FFFFEC8FC020FB512F817 E094C9FC17F817FF91C7003F13E0040713F8040113FE707F717F7113E085717FA2717F85 A285831A80A31AC0EA03FCEA0FFF487F487F487FA2B57EA31A80A34D14005C7E4A5E5F6C 495E49C8485BD81FF85F000F5ED807FE92B55A6C6C6C4914806C01F0010791C7FC6C9026 FF803F5B6D90B65A011F16F0010716C001014BC8FCD9001F14F0020149C9FC426079DD51 >I<F01F804E7E187F18FFA25F5F5F5FA25F5F5FA294B5FC5E5E5EA25E5EEE3FBFEE7F3F A216FEED01FCED03F8ED07F0A2ED0FE0ED1FC0ED3F8016005D15FE4A5A4A5AA24A5A4A5A 4A5A4A5AA24AC7FC14FE495A5C1303495A495A495A5C133F49C8FC13FE485AA2485A485A 485A5B121F485A48C9FC12FEBCFCA6CA6CEBC000B1037FB8FCA6485E7CDD51>I<01C0EE 01C0D801F8160F01FF167F02F0EC07FFDAFF8090B5FC92B7128019006060606060606095 C7FC17FC5F17E0178004FCC8FC16E09026FC3FFCC9FC91CBFCADED3FFE0203B512F0020F 14FE023F6E7E91B712E001FDD9E00F7F9027FFFE00037F02F801007F02E06EB4FC02806E 138091C8FC496F13C04917E07113F0EA00F090C914F8A219FC83A219FEA419FFA3EA03F0 EA0FFC487E487E487FA2B57EA319FEA35C4D13FC6C90C8FC5B4917F8EA3FF001804B13F0 6D17E0001F5E6C6C17C06D4B1380D807FC92B512006C6C4A5B6C6C6C01075B6C01E0011F 5BD97FFE90B55A6DB712C0010F93C7FC6D15FC010115F0D9003F1480020301F0C8FC4060 78DD51>I<EE1FFF0303B512E0031F14F892B612FE0203814AD9FC037F021F9039C0007F C04A90C7EA1FE0DAFFFC6E7E494914074949EC7FF8494914FF49495B4949497F4990C7FC 495D5C13FF485BA25A4A6E5B5A715B48496E5B725A4894C8FCA35AA35C48913801FFE003 0F13FE033F6D7E4B14E092B612F89126E1FE037FB53AE3F0007FFEDAE7E06D7EDAEFC06D 7F4B6D7F02FFC76C7F4A82717F4A82A2854A8085A24A1780A54A17C0A37EA77EA47E6E17 80A27EA21A007E4D5B7E6E5E7E6E5E6C4C5B6D7E013F4B5B6D6C4A5B6D01C0495B6D6D90 B5C7FC6DD9FC0713FC6D90B65A6D5E023F15C0020F92C8FC020114F8DA001F1380426079 DD51>I<EA07E0120F7F13FCEBFFFC91B912F8A45AA21AF01AE01AC01A801A00A2486061 61616101E0C9123F01804C5A48CA485A4D90C7FC60007E4C5A17074D5A4D5A4D5A485F4D 5A17FF4C90C8FCC9485A5F4C5A160F4C5A5F163F4C5A16FF5F5D94C9FC5D5D5E150FA24B 5AA2153FA24B5AA215FFA34A5BA25CA35CA44A5BA45CA65CAD6E5BA26E5BDA03FECAFC6E 5A456377E051>I<92383FFF800203B512FC021FECFF80027F15E049B712F849D9F0077F 010F90C76C7ED91FFCEC1FFFD93FF06E7F494802037F494882717F484980854890C9127F A24884183FA25A80A380806E157F6E5E14FE6E7E6F4A5A6C14F003FC495B03FF495B6C15 80DCE0075B6CDBF80F90C7FC9338FE1FFE6C9238FF7FF84D5A6D16C06D5E6D4BC8FC6D6F 7E6D16E00101826D16FC023F814A8149B87E010783498390263FFE3F8190267FFC0F8190 26FFF003814849C6FC48496D804849131F4890C7000780160148486E1580003F163F4915 0F007F7014C0491501717E8400FF835B8484A384A21A80A27F007F1900607F003F606D16 0F001F606D4C5A6C6D153F6C6D4B5A6C01F04B5A6C01FC02035B6C01FF021F5B6D9027F0 01FFFEC7FC6D90B65A010F16F001035E010093C8FC020F14F8DA007F90C9FC426079DD51 >I<F00FE04E7EA24E7EA34E7EA24E7EA34D7FA24D80A24D80A34D80A24D80A34D80A2DD 7FBF7FA2181F05FF8017FE04016D7FA24D7E04038217F804076D80A24D7E040F8217E004 1F6D80A24D7F043F825F047F6E7FA294C77E4C825E03016F7FA24C800303845E03076F80 A24C80030F845E031F6F80A24C81033F845E037F707F93B9FCA292BA7EA24A85A203FCC9 12070203865D020771805D86020F864B82021F865D87023F864B83027F8692CBFC874A86 4A840101875C496C728090381FFFC0B700E092B812FEA66F647BE37A>65 D<BB12F0F2FF801BF81BFEF3FFC088D800010280C7000114F8DF003F7F080F13FF748074 80867480757FA2757FA28987A289A965A26365A2515BA298B55A505C505C5091C7FC505B 505B087F13F00703B512C096B6C8FC93B812F81BC01BF8F3FF801CE00480C8001F13F808 0713FE08016D7E7480757F757F757F89757F89871E80871EC0A41EE087A663A21EC0A363 1E80A2511400A2515B515B6398B55A505C08075C081F5C97B6C7FCBD5A1CF81CE099C8FC 1BF898C9FC63627AE173>I<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC013 1F4BB800F0133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113 C3020702C09138007FE74A91C9001FB5FC023F01FC16074A01F08291B548824902808249 91CB7E49498449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A 4A1A3F5AA348491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A 1F6C1D80A26C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D 4E5A6D6E171F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8 020102F8ED7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C 16E004071680DC007F02F8C9FC050191CAFC626677E375>I<BB12E0F2FF801BF01BFE75 7E1CF0D800010280C7000780DF007F13FE080F6D7E0801807480093F7F090F13FC757F75 7F877580767F8A88767F8A888AA2767FA28A881F80A37614C0A41FE0A5881FF0B05214E0 A51FC0A4521480A31F006466A2525BA2525BA2525B666499B55A515C5191C7FC515B515B 515B097F5B50B512C008075C083F91C8FC0707B512FCBD12F01CC051C9FC1BF81B8008E0 CAFC6C627AE17C>I<BD12FCA488A2D8000102C0C71201F1000F1A01F2007F1B3F1B0F1B 07757EA28787A288A3F43F80A31C1FA3197EA3F40FC0A499C7FC19FEA31801A218031807 181F18FF93B6FCA6EEC000181F180718031801A21800A21D7E197EA21DFCA696C812011D F8A31C03A3F407F0A31C0FA21C1F1C3F1DE01C7F1CFF63631B0F093F13C098B5FC1A0797 B6FCBEFCA31D80A35F617AE06A>I<BD12E0A41CF0A2D8000102C0C71207F1003F1A0F1A 031A001B7F1B3FF31FF81B0FA21B07A21B03A21B011CFCA31B00A419FCA21C7EA41C00A2 1801A31803A21807180F183FEF01FF93B6FCA6EEC001EF003F180F18071803A21801A318 00A896C9FCB3A5B912F8A657617AE065>I<4DB5ED03C0057F02F014070407B600FE140F 047FDBFFC0131F4BB800F0133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF81 4A02F0020113C3020702C09138007FE74A91C9001FB5FC023F01FC16074A01F08291B548 82490280824991CB7E49498449498449498449865D49498490B5FC484A84A2484A84A248 91CD127FA25A4A1A3F5AA348491A1FA44899C8FCA25CA3B5FCB07E071FB812F880A37EA2 96C70001ECC000A26C7FA37E807EA26C80A26C80A26C807F6D7F816D7F7F6D7F6D6D5F6D 14C06D6E5E6E7F6E01FC5E020F01FF5E6E02C0ED7FEF020102F8EDFFC76E02FF02071383 033F02FC013F1301030F91B638FC007F03014D131F6F6C04E01307040704801301DC007F 02F8CAFC050191CBFC6D6677E37F>I<B96C90B91280A6D8000102C0C9000102C0C7FCB3 B3A293BBFCA604C0C91201B3B3A6B96C90B91280A671627AE17E>I<B912E0A6C702E0C7 FCB3B3B3B3AEB912E0A633627CE13C>I<B96C020FB612FCA6D8000102C0CA003FEBF000 0A0390C7FC525A525AF41FF0525A525A525A090390C8FC515AF30FF8515A515A515A5048 5A5090C9FC505AF20FF8505A505A505A4F485A4F90CAFCF107FC4F5A4F5A4F5A4F5A4E48 5A4E90CBFCF007FC4E5A4E7E4E7E18FF4D7F4D805F4D804D804D8094B6FC04C181DCC3FE 809326C7FC7F7F9338CFF83F9326DFF01F7FDCFFE0814D6C804D7EDCFE00814C6D804C7F 4C6D804C824C6E7F85737F8873808588738085738088747F86747F897480868974808674 8089757F87757F8A7580878A7580090F14FCB96C010FB8FCA670627AE17E>75 D<B912F8A6D8000102C0CBFCB3B3B1F307E0A5F30FC0A61B1FA31B3F1C80A21B7FA21BFF A262A262625013006262624FB5FC1907191F4EB6FCBDFC63A553627AE161>I<B700C008 3FB612F070627097B7FCA37061D800010DF8C7FC70F103EFA202FD6DF107CFA202FC6DF1 0F8FA36F6DF01F0FA26F6D183EA26F6D187CA26F6D18F8A36F6DEF01F0A26F6DEF03E0A2 6F6DEF07C0A26F6DEF0F80A3706DEE1F00A2706D163EA2706D5EA2706D5EA3706D4B5AA2 706D4B5AA2706D4B5AA2706D4B5AA3716D4AC7FCA2716D143EA2716D5CA2716D5CA3716D 495AA2716D495AA2716D495AA2716D495AA3726D48C8FCA272EBC03EA2726D5AA2726D5A A372EBF9F0A272EBFFE0A2725CA2725CA37390C9FCA2735AA2735A90381FFFC0B700F86E 480207B812F0A3735AA2735A8C627AE199>I<B700E0040FB7128082828282A2D800016E DC000101FCC7FC719338001FC08383A28302FD808302FC80816F7F6F806F8084816F806F 806F8084707F8270807080857080827080708085717F8371807180718086837180718072 7F8672808472807280877280847280737F87731480857314C07314E01CF07314F8857314 FC7413FE7413FF1D9F867414DF7414FF86A286868787A287878787A28787888888A28888 8890261FFFC084B712F8881D7F1D3F1D1F775A71627AE17E>I<94381FFFE00407B67E04 3F15F04BB712FE030FEEFFC0033FD9FC0014F092B500C0010F13FC020349C7000113FF4A 01F86E6C7F021F496F13E04A01C0030F7F4A496F7F91B5C96C7F0103497013FF49497080 4B834949717F49874949717F49874B8390B586484A717FA24891CB6C7FA2481D804A8448 1DC0A348497214E0A3481DF0A34A85481DF8A5B51CFCB06C1DF8A36E96B5FCA36C1DF0A4 6C6D4E14E0A36C1DC06E606C1D80A26C6E4D1400A26C6E4D5BA26C6E4D5BA26D6D4D5B6D 636D6D4D5B6F94B5FC6D636D6D4C5C6D6D4C91C7FC6D6E4B5B6D02E0031F5B023F6D4B13 F06E01FC92B55A6E01FF02035C020302C0010F91C8FC020002FC90B512FC033F90B712F0 030F17C0030394C9FCDB007F15F804071580DC001F01E0CAFC666677E379>I<BB7E1AFC F2FFC01BF81BFE757ED800010280C7001F80070114F0736C7F081F7F747F747F74148074 14C0A27414E0A21DF0A27513F8A41DFCA91DF8A498B512F0A21DE0A25014C01D80625014 00505B505B087F5B4FB512E0071F5C93B9C7FC1BFC1BF01B8008F0C8FC04C0CCFCB3B3A2 B97EA65E627AE16E>I<94381FFFE00407B67E043F15F04BB712FE030FEEFFC0033FD9FC 0014F092B500C0010F13FC020349C7000113FF4A01F86E6C7F021F496F13E04A01C0030F 7F4A496F7F91B5C96C7F0103497013FF494970804B834949717F49874949717F4949717F A290B548717F488892CB7E48884A84481D80A2481DC04A84A2481DE0A24A85481DF0A448 1DF84A85A4B51CFCB06C1DF8A46E61A26C1DF0A46C1DE06E96B5FCA26C1DC0A26C6D4E14 80A26C1D006E606CDC01FE5E6F90260FFFC05B6C043F6D5D6F4901F85B6D92B56C5D6D6D 48D903FE495B6D912703F8007F5D03F0496D6C5A6D6D48486D6C485B6D01FC6F6CB55A6D 01FE4902E191C7FC6D01FFDB07F35B6D02876EB55A023F01C717F06ED9E7E05E6E01FF6E 5C02036E93C8FC02006E010F13FC033F01FF90B512F0030F91B612C003031A0CDB007F19 1E040782DC001F9038E07FF094C86D143E75147E746C14FE751301F4C01F99B5FC7415FC A4861EF8A2861EF0A27415E0A27415C07415801E00755B755B090F5B7513E00900138067 8077E379>I<BA12F8F1FFE01AFEF2FFC01BF01BFED800010280C76C7F070714C0070014 F0747F081F7F747F747F7480A2748089A37480A389A865A3505CA265A2505C9AC9FC505B 505B505B087F5B4FB55A0707148096B548CAFC93B812F81BC050CBFC621AFF9326800003 14C0DE007F7F071F13F8737F737F737F73808885888688A2747FA688A688A676140FF71F 80A374801F3F86771400745E746E5BB96E6E5B746E485A75EBFE07091F90B55A090715E0 09015DCF003F91C7FC0A0013FC71647AE178>I<DBFFFCEC01E0020FD9FFE01303027F02 FC130749B7130F0107EEC01F011F16F049D9C007EBF83F4948C7383FFE7FD9FFF8020FB5 FC4801E014014849804849153F91C97E484882001F834982003F83845B007F187FA2193F A200FF181FA27F190FA27FA26D17078080806C01F893C7FC80ECFF8015F86CECFFC016FC 6CEDFFE017FE6CEEFFE018F86C17FE6C717E6C846C846D17F86D836D836D8313036D1880 6D6C17C0020F17E01401DA000F16F01500040715F8EE007F1703050014FC183F84060713 FE84A2007C8300FC83A2197FA3193F7EA31AFC7EA27F1AF86D177F7F1AF06D17FF6D18E0 6D5E01FF18C06E4B138002E04B130002F84B5A02FFED3FFC01CF01E0ECFFF8018301FF01 0F5B010191B65A6D6C5E48011F93C7FC48010315FC48D9003F14E048020149C8FC476677 E35A>I<001FBEFCA64849C79126E0000F148002E0180091C8171F498601F81A03498649 86A2491B7FA2491B3F007F1DC090C9181FA4007E1C0FA600FE1DE0481C07A5CA95C7FCB3 B3B3A3021FBAFCA663617AE070>I<B96C023FB612FEA6D8000102C0CA0007EBF000E200 7FC7FCB3B3B3AA656D63A2821C01806570170380525A6E7F6E4F5A70171F6E626E6D4D5A 6E6D177F525A6E6E030390C8FC033F01E04B5A6F6DED1FFC6F01FCED7FF80303D9FF8090 3803FFE06F02F8017F5B6F6C90B7C9FC041F5E040716F8040016C0050F4ACAFCDD003F13 C06F647AE17C>I<B800FC047FB612E0A6D800070280CB6CEB80006D6EDE07FCC7FC666D 6E611D0F6D6E611D1FA26E6D611D3F6E6D611D7F6E6D96C8FC65A26E6D4D5AA26E6E5F1C 036E6E5F1C076E6E5F1C0FA26E6E5F1C1F6F6D5F1C3F6F6D5F1C7FA26F6D4CC9FCA26F6D 5E1B016F6E5D1B03A26F6E4A5AA26F6E5D1B0F6F6E5D1B1F706D5D1B3FA2706D5D1B7F70 6D92CAFC63706D5C1A01A2706E485AA27002C05B1A077002E05B1A0F7002F05B1A1FA271 01F85B1A3F7101FC5B1A7F7101FE90CBFC62A2716D5AA2715CA2715CA3715CA2715CA272 5BA2725BA37290CCFCA2725AA2725AA2725A73637DE17A>I<B800F8011FB80203B7FCA6 D8000F91C9000102E0CAEBFE006D72F20FF07072715A230F6D73627072171F6D6A708277 173F6D7397C7FC70846B6E72197E707217FE6E726170855118016E6870731503636E6870 4C6E15076E68718451180F6EDE7E7F607172151F6E06FE61714B7E08016F153F6E4E6C95 C8FC71840803616F4D6C177E7102076F15FE6F66714B7E080F7013016F4D6C5F7185081F 18036F4D6C5F71023F7013076F94C75F728450180F6F047E6E5E7272131F1AFE6F4C6E5E DEE00171133F6F4C6E93C9FC06F084070361704B6E157E06F87213FE1907704B6E5DDEFC 0F1881704B6E5D06FE19C1071F18C3704B6E5DDEFF3F18E7706407BFC9FC07FF18FF704A 705CA3704A705CA27099CAFC4F82A27149705BA37149705BA27149705BA37149705BA371 90CB5BA27148725AA37148725A714872CBFCA0637DE1A7>I<003FB86C011FB712C0A6C7 02FCC9003F01FCC8FC6E6D040113806E6D95C9FC6E4E5A715E6E6E15076E4E5A714B5A6E 6E5E6E6E153F6E4E5A714B5A6F6D93CAFC6F5E714A5A6F6E495A6F6E5C6F160F72495A6F 6E495A6F5F72137F6F6E495A706D4890CBFC705DF0FF0370EC87FC70EC8FF8F1CFF07014 FF705D705D62827191CCFC61717F7180838671808386718071805F4D804D80A24D814D81 DD3FE78018C3057F81DDFF81804C13004D8104036E7F4C486D7F4C487F4D82041F6E804C 487F4C48824D6D8004FF6E804B90C8FC4B48834C6F7F0307824B48834C6F804B486F8003 3F824B48844C6F8003FF824A90C9814A4870804B717F0207844A48854A4871804B83027F 870107B57180B8033FB81280A671627CE17A>I<B9041FB612F8A6D8000302F0CB003FEB C0006D6EDE07FEC7FC1EF86D6E180F6E6D61535A6E6D183F6E6E60535A6E6E17FF6E6E95 C8FC525A6E6E16036E6E5F525A6E6E160F6F6D5F525A6F6D163F6F6E5E525A6F6E15FF6F 6E4A90C9FC646F6E14036F6E4A5A646F6E140F706D4A5A64706D4A5A706E137F64706E49 CAFC706E5A63706E485A70ECF80763706E485A71EBFE1F07FF5B714A5A7114FF637192CB FC8362715C8362715C8462B3AF043FB812C0A675627EE17A>I<913803FFFE027FEBFFF0 0103B612FE010F6F7E4916E090273FFE001F7FD97FE001077FD9FFF801017F486D6D7F71 7E486D6E7F85717FA2717FA36C496E7FA26C5B6D5AEB1FC090C9FCA74BB6FC157F0207B7 FC147F49B61207010F14C0013FEBFE004913F048B512C04891C7FC485B4813F85A5C485B 5A5CA2B55AA45FA25F806C5E806C047D7F6EEB01F96C6DD903F1EBFF806C01FED90FE114 FF6C9027FFC07FC01580000191B5487E6C6C4B7E011F02FC130F010302F001011400D900 1F90CBFC49437CC14E>97 D<F17FF8050FB5FCA6EF000F8484B3A892380FFF804AB512F8 020F14FE023FECFF8391B712E301039138807FF3499039F8000FFB011F01E00103B5FC49 4913004990C87E49488148498148834A815A485BA2485BA25AA3485BA4B5FCAE7EA46C7F A37EA26C7FA26C5F806C5F6C6D5D6C6D5D017F93B5FC6D6C6C0103806D6D49806D01F0D9 1FF7EBFFFE6D9039FE01FFE7010190B612876D6CECFE07021F14F8020314E09127003FFE 00ECC0004F657BE35A>100 D<92380FFFC04AB512FC020FECFF80023F15E091B712F801 03D9FE037F499039F0007FFF011F01C0011F7F49496D7F4990C76C7F49486E7F48498048 844A804884485B727E5A5C48717EA35A5C721380A2B5FCA391B9FCA41A0002C0CBFCA67E A380A27EA27E6E160FF11F806C183F6C7FF17F006C7F6C6D16FE6C17016D6C4B5A6D6D4A 5A6D01E04A5A6D6DEC3FE0010301FC49B45A6D9026FFC01F90C7FC6D6C90B55A021F15F8 020715E0020092C8FC030713F041437CC14A>I<903807FF80B6FCA6C6FC7F7FB3A8EF1F FF94B512F0040714FC041F14FF4C8193267FE07F7F922781FE001F7FDB83F86D7FDB87F0 7FDB8FC0814C7F039FC78015BE03BC8003FC825DA25DA25DA45DB3B2B7D8F007B71280A6 51647BE35A>104 D<EB0FE0EB3FF8497E48B5FCA24880A24880A76C5CA26C91C7FCA238 007FFC6D5AEB0FE090C9FCAF903807FF80007FB5FCA6C6FC7F7FB3B3AEB712C0A622657B E42C>I<902607FF80EB1FFFB691B512F0040714FC041F14FF4C8193267FE07F7F922781 FE001F7FC6DA83F86D7F6DD987F07F6DD98FC0814C7F039FC78015BE03BC8003FC825DA2 5DA25DA45DB3B2B7D8F007B71280A651417BC05A>110 D<902607FF80EBFFF8B6010FEB FF80047F14F00381B612FC038715FF038F010114C09227BFF0003F7FC6DAFFC0010F7F6D 91C76C7F6D496E7F03F86E7F4B6E7F4B17804B6F13C0A27313E0A27313F0A21BF885A21B FCA3851BFEAE4F13FCA41BF861A21BF0611BE0611BC06F92B512801B006F5C6F4A5B6F4A 5B03FF4A5B70495B04E0017F13C09226CFFC03B55A03C7B648C7FC03C115F803C015E004 1F91C8FC040313E093CBFCB3A3B712F0A64F5D7BC05A>112 D<D90FFFEB0FFCB690383F FF8093B512E04B14F04B14F8923907FC7FFC92390FE0FFFEC6EC1F806DD93F0113FF6D13 3E157E157C15F8A215F07013FEA24BEB7FFCEF3FF8EF0FE04B90C7FCA55DB3B0B712F8A6 38417BC042>114 D<EC07E0A6140FA5141FA3143FA2147FA214FF5BA25B5B5B5B137F48 B5FC000F91B512FEB8FCA5D8001F01E0C8FCB3AFEF0FC0AC171F6D6D1480A2173F6D1600 6F5B6D6D137E6D6D5B6DEBFF836EEBFFF86E5C020F14C002035C9126003FFCC7FC325C7D DA3F>116 D<007FB600C0017FB512F8A6D8001F01F8C70007EBF0006D040190C7FC6D6D 5D6D6D4A5A6D6D4A5A70495A6D4C5A6E7F6E6D495A6E6D495A7049C8FC6E4A5A6E6D485A 6E6D485A6E13FFEF8FF06EEC9FE06FEBFFC06F5C6F91C9FC5F6F5B816F7F6F7F8481707F 8493B57E4B805D4B80DB0FF37FDB1FE17F04C080153F4B486C7F4B486C7F4A486D7F4A48 6D7F4A5A4B6D7F020F6E7F4A486D7F4A486D804A5A4AC86C7F49486F7F4A6F7F0107707F EB3FFFB600F049B7FCA650407EBF55>120 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo cmmi8 8 37 /Fo 37 122 df<131C013EEB0380ED07C0017E130F1680137CA201FC131F16005BA20001 5C153E5BA20003147E157C5BA20007ECFC08EDF8185BA2000F0101133816309038E003F0 02071370001F90380EF8609039F83C78E090397FF03FC090391FC00F0048C9FCA2123EA2 127EA2127CA212FCA25AA21270252C7E9D2A>22 D<90B6128012035A481500261E00E0C7 FC5A00705B130112E012C0EA0003A25CA21307A349C8FCA35BA2131E133EA45BA2133821 1E7E9C1F>28 D<123C127EB4FCA21380A2127F123D1201A312031300A25A1206120E5A5A 5A126009157A8714>59 D<15C0140114031580A214071500A25C140EA2141E141CA2143C 143814781470A214F05CA213015CA213035C130791C7FCA25B130EA2131E131CA2133C13 38A21378137013F05BA212015BA212035BA2120790C8FC5A120EA2121E121CA2123C1238 A212781270A212F05AA21A437CB123>61 D<1670A216F01501A24B7EA21507150DA21519 15391531ED61FC156015C0EC0180A2EC03005C14064A7F167E5C5CA25C14E05C4948137F 91B6FC5B0106C7123FA25B131C1318491580161F5B5B120112031207000FED3FC0D8FFF8 903807FFFEA22F2F7DAE35>65 D<013FB6FC17C0903A00FE0007F0EE01F84AEB00FC177E 1301177F5CA21303177E4A14FEA20107EC01FC17F84AEB03F0EE07E0010FEC1FC0EE7F00 9138C003FC91B55A4914FE9139C0003F804AEB0FC017E0013F140717F091C7FC16035BA2 017E1407A201FE15E0160F4915C0161F0001ED3F80EE7F004914FEED03F80003EC0FF0B7 12C003FCC7FC302D7CAC35>I<013FB71280A2D900FEC7127F170F4A1407A20101150318 005CA21303A25C16300107147094C7FC4A136016E0130F15019138C007C091B5FC5BECC0 074A6C5AA2133FA20200EB000CA249151C92C71218017E1538173001FE15705F5B4C5A00 0115034C5A49140F161F00034AB4C7FCB8FC5E312D7DAC34>69 D<90383FFFFCA2903800 FE00A25CA21301A25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C7FC A25BA2137EA213FEA25BA21201A25BA21203B512E0A21E2D7DAC1F>73 D<D93FFE91B5FCA2D900FFEC07E018C06FEB038002DF150001016D5B02CF1406EC8FE014 8701036D130E170C140381D90701141C6F1318EB060081010E017E1338037F1330010C7F A2011CEC8070031F1360011814C0150F0138ECE0E003075B013014F01503017014F1EEF9 800160130116FD01E0EB00FF94C7FC4980A2000181163E5B486C141EEA0FE0D8FFFE140C A2382D7CAC38>78 D<913807F00691383FFE0E9138F80F9E903903E001FE903807800049 C7127C131E49143CA2491438A313F81630A26D1400A27FEB7F8014F86DB47E15F06D13FC 01077F01007F141F02011380EC003F151F150FA215071218A3150F00381500A2151EA200 7C5C007E5C007F5C397B8003E039F1F00F8026E07FFEC7FC38C00FF0272F7CAD2B>83 D<000FB8FCA23B1FC003F8003F0100151F001C4A130E123C003801071406123000704A13 0EA20060010F140C12E0485CA2141FC715005DA2143FA292C8FCA25CA2147EA214FEA25C A21301A25CA21303A25CA21307A25C130F131F001FB512F0A2302D7FAC29>I<B500C090 380FFFC0A2D807F8C73801FC006C48EC00F05F4C5A5F6D4AC7FC120116065EA25E6D5C12 005E5EA24B5A6D49C8FCA2017E13065DA25D017F5BA26D5B5DA24A5A0283C9FCA2EB1F86 148CA2149814F0A26D5A5CA25C91CAFCA21306322E7CAC29>86 D<90260FFFFCEB7FFFA2 9026007FC0EB0FF06E48148018006E6C131E1718020F5C6F5B02075C6F485A020349C7FC EDF8065E6E6C5A5E6E6C5A5EED7F8093C8FC6F7EA26F7E153F156FEDCFE0EC0187913803 07F0EC0703020E7F141C4A6C7E14704A6C7E495A4948137F49C7FC010E6E7E5B496E7E5B D801F081D807F8143FD8FFFE0103B5FCA2382D7EAC3A>88 D<EB07E0EB1FF890387C1CE0 EBF80D3801F00F3803E007EA07C0120FD81F8013C0A2EA3F00140F481480127EA2141F00 FE14005AA2EC3F02EC3E06A25AEC7E0E007CEBFE0C14FC0101131C393E07BE18391F0E1E 38390FFC0FF03903F003C01F1F7D9D25>97 D<EB01F8EB0FFE90383E0780EB7C01D801F8 13C03803F0073807E00FEA0FC001801380121F48C8FCA25A127EA312FE5AA51560007C14 E0EC01C0EC03806CEB0F00001E131C380F81F83807FFE0C648C7FC1B1F7D9D1F>99 D<151FEC03FFA2EC003FA2153EA2157EA2157CA215FCA215F8A21401EB07E190381FF9F0 EB7C1DEBF80FEA01F03903E007E0EA07C0120FEA1F8015C0EA3F00140F5A007E1480A214 1F12FE481400A2EC3F021506143E5AEC7E0E007CEBFE0C14FC0101131C393E07BE18391F 0E1E38390FFC0FF03903F003C0202F7DAD24>I<EB03F8EB0FFE90383E0780EBF803D801 F013C03803E001EA07C0000F1303D81F8013801407393F000F00141E387F01FCEBFFF091 C7FC007EC8FC12FE5AA4127C156015E0EC01C06CEB0380EC0F006C131C380F81F83803FF E0C648C7FC1B1F7D9D21>I<157C4AB4FC913807C380EC0F87150FEC1F1FA391383E0E00 92C7FCA3147E147CA414FC90383FFFF8A2D900F8C7FCA313015CA413035CA413075CA513 0F5CA4131F91C8FCA4133EA3EA383C12FC5BA25B12F0EAE1E0EA7FC0001FC9FC213D7CAE 22>I<14FCEB03FF90380F839C90381F01BC013E13FCEB7C005B1201485A15F8485A1401 120F01C013F0A21403121F018013E0A21407A215C0A2000F130F141F0007EB3F80EBC07F 3803E1FF3800FF9F90383E1F0013005CA2143EA2147E0038137C00FC13FC5C495A38F807 E038F00F80D87FFEC7FCEA1FF81E2C7E9D22>I<131FEA03FFA2EA003FA2133EA2137EA2 137CA213FCA25BA21201143F9038F1FFC09038F3C1F03803FF0001FC7F5BA2485A5BA25B 000F13015D1380A2001F13035D1300140748ECC04016C0003E130F1580007E148191381F 0180007C1403ED070000FCEB0F06151E48EB07F80070EB01E0222F7DAD29>I<1307EB0F 80EB1FC0A2EB0F80EB070090C7FCA9EA01E0EA07F8EA0E3CEA1C3E123812301270EA607E EAE07C12C013FC485A120012015B12035BA21207EBC04014C0120F13801381381F018013 03EB0700EA0F06131EEA07F8EA01F0122E7EAC18>I<15E0EC01F01403A3EC01C091C7FC A9147CEB03FE9038078F80EB0E07131C013813C01330EB700F0160138013E013C0EB801F 13001500A25CA2143EA2147EA2147CA214FCA25CA21301A25CA21303A25CA2130700385B EAFC0F5C49C7FCEAF83EEAF0F8EA7FF0EA1F801C3B81AC1D>I<131FEA03FFA2EA003FA2 133EA2137EA2137CA213FCA25BA2120115F89038F003FCEC0F0E0003EB1C1EEC387EEBE0 7014E03807E1C09038E3803849C7FC13CEEA0FDC13F8A2EBFF80381F9FE0EB83F0EB01F8 1300481404150C123EA2007E141C1518007CEBF038ECF83000FC1470EC78E048EB3FC000 70EB0F801F2F7DAD25>I<137CEA0FFCA21200A213F8A21201A213F0A21203A213E0A212 07A213C0A2120FA21380A2121FA21300A25AA2123EA2127EA2127CA2EAFC08131812F8A2 1338133012F01370EAF860EA78E0EA3FC0EA0F000E2F7DAD15>I<27078007F0137E3C1F E01FFC03FF803C18F0781F0783E03B3878E00F1E01263079C001B87F26707F8013B00060 010013F001FE14E000E015C0485A4914800081021F130300015F491400A200034A130760 49133E170F0007027EEC8080188149017C131F1801000F02FCEB3F03053E130049495C18 0E001F0101EC1E0C183C010049EB0FF0000E6D48EB03E0391F7E9D3E>I<3907C007E039 1FE03FF83918F8783E393879E01E39307B801F38707F00126013FEEAE0FC12C05B00815C 0001143E5BA20003147E157C5B15FC0007ECF8081618EBC00115F0000F1538913803E030 0180147016E0001F010113C015E390C7EAFF00000E143E251F7E9D2B>I<EB01F8EB0FFF 90383F078090387C03C0D801F813E03903F001F0EA07E0D80FC013F8EB8000121F48C7FC 14015A127EA2140300FE14F05AA2EC07E0A2EC0FC0A2007CEB1F801500143E6C5B6C485A 380F83E03803FF80D800FCC7FC1D1F7D9D22>I<90387C01F89038FE07FE3901CF8E0F3A 03879C0780D907B813C0000713F000069038E003E0EB0FC0000E1380120CA2D8081F1307 12001400A249130F16C0133EA2017EEB1F80A2017C14005D01FC133E5D15FC6D485A3901 FF03E09038FB87C0D9F1FFC7FCEBF0FC000390C8FCA25BA21207A25BA2120FA2EAFFFCA2 232B829D24>I<903807E03090381FF87090387C1CF0EBF80D3801F00F3903E007E0EA07 C0000F1303381F800715C0EA3F00A248130F007E1480A300FE131F481400A35C143E5A14 7E007C13FE5C1301EA3E07EA1F0E380FFCF8EA03F0C7FC13015CA313035CA21307A2EBFF FEA21C2B7D9D20>I<3807C01F390FF07FC0391CF8E0E0383879C138307B8738707F07EA 607E13FC00E0EB03804848C7FCA2128112015BA21203A25BA21207A25BA2120FA25BA212 1FA290C8FC120E1B1F7E9D20>I<EB07E0EB3FF8EB781EEBF0063801E0073803C00F141F A20007131E140CEBE00013F8EBFF806C13E06C13F06C13F8EB3FFC13011300147C007813 3C12FCA2147C48137800E013F814F0386001E0387807C0381FFF00EA07F8181F7C9D21> I<130E131FA25BA2133EA2137EA2137CA213FCA2B512F8A23801F800A25BA21203A25BA2 1207A25BA2120FA25BA2001F1310143013001470146014E0381E01C0EB0380381F0700EA 0F0EEA07FCEA01F0152B7EA919>I<EA01E0D807F8130ED80E3C131FD81C3E5B0038143E 12301270D8607E137ED8E07C137C12C013FC484813FC00005C12015B140100035C13E0A2 020313200007ECE06013C0A216E0020713C00003EB0FC09038E01FC191383BE1803901F0 71E33A007FE0FF0090381F803C231F7E9D29>I<D801E01370D807F813F8380E3C01D81C 3E13FC1238003013000070147CEA607ED8E07C133812C013FC485A0000143012015B1570 000314605B15E015C01207EBC00115801403EC070000031306EBE00E00015BEBF0783800 7FE0EB1F801E1F7E9D22>I<D801E01570D807F890381C01F8D80E3C133ED81C3E017E13 FC0038147C003015000070167CD8607E01FC1378D8E07C49133812C013FC3880F8010000 163000015C13F0020314700003166001E05BA217E00007010714C001C0EBC00117801603 000316006D486C5A160E3A01F01DF01C3A00F838F83890397FF07FF090390FC00FC02E1F 7E9D33>I<013F137C9038FFC1FF3A01C1E383803A0380F703C0390700F60F000E13FE48 13FC12180038EC0700003049C7FCA2EA200100005BA313035CA301075B5D14C000385CD8 7C0F130600FC140E011F130C011B131C39F03BE038D8707113F0393FE0FFC0260F803FC7 FC221F7E9D28>I<EA01E0D807F8130ED80E3C131FD81C3E133F0038143E12301270D860 7E137ED8E07C137C12C013FC484813FC000014F812015B1401000314F013E0A214030007 14E013C0A2140715C00003130FEBE01F143F3901F07F8038007FEFEB1F8FEB001F1500A2 003E133EA2007E5B5C387C01F0387003E0383007C0383C0F80D80FFEC7FCEA03F0202C7E 9D23>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmr8 8 16 /Fp 16 111 df<EC7FE0903807FFFE90391FC03F8090397E0007E04848EB03F848486D7E 48486D7E4848147F4848EC3F80A24848EC1FC0A248C8EA0FE0A86C6CEC1FC0A3001F1680 6D143F000F1600A26C6C147EA20003157C6C6C5CA200005D0178495AA201385CD8C03C01 031330011C148000601660010C1400010E5B007016E0D87FFE14FF003F16C0A32C2E7DAD 33>10 D<13031307130E131C1338137013F0EA01E013C01203EA0780A2EA0F00A2121EA3 5AA45AA512F8A25AAB7EA21278A57EA47EA37EA2EA0780A2EA03C0120113E0EA00F01370 1338131C130E1307130310437AB11B>40 D<12C07E12707E7E7E120FEA0780120313C0EA 01E0A2EA00F0A21378A3133CA4131EA5131FA2130FAB131FA2131EA5133CA41378A313F0 A2EA01E0A2EA03C013801207EA0F00120E5A5A5A5A5A10437CB11B>I<EC0380B3A4B812 FCA3C7D80380C7FCB3A42E2F7CA737>43 D<EB3FC0EBFFF03803E07C48487E48487E497E 001EEB0780A2003E14C0A248EB03E0A500FC14F0B0007C14E0A3007E1307003E14C0A36C EB0F806C14006D5A3807C03E3803F0FC3800FFF0EB3FC01C2D7DAB23>48 D<130C133C137CEA03FC12FFEAFC7C1200B3B113FE387FFFFEA2172C7AAB23>I<EB7F80 3801FFF0380780FC380E003F48EB1F8048EB0FC05A0060EB07E012F000FC14F07E1403A3 007C1307C7FCA215E0140F15C0141F1580EC3F00147E147C5C495A495A495A495A011EC7 FC5B5B4913305B485A4848136048C7FC000E14E0001FB5FC5A4814C0B6FCA21C2C7DAB23 >I<EB3FC03801FFF03807C0FC380E007E487FEC1F80003F14C0A2EB800F1300A2000C13 1FC7FC1580A2EC3F00143E5C5CEB03F0EBFFC014F0EB00FC143FEC1F8015C0140F15E0A2 EC07F0A21238127C12FEA3EC0FE012F8006014C00070131F6C1480001EEB3F00380780FC 3801FFF038007FC01C2D7DAB23>I<EB03F8EB0FFE90383E0780EBF8013901F007C03803 E00FEA07C0EA0F80A2391F00078091C7FC123EA2127EA2127CEB0FC038FC3FF0EBF07C38 FDC01EB4487E01001380EC07C04814E0A214034814F0A4127CA3127EA2003E14E0140712 1E001F14C06CEB0F803907801F003803C03E6C6C5A38007FF0EB1FC01C2D7DAB23>54 D<EB1FC0EBFFF03803E07C3807801E48487E001EEB0780A248EB03C0A4123E1407003F14 80381FC00F01E01300EBF81E6C6C5A3807FFF86C13E0C6FCEB3FF8EBFFFC3803C7FFD807 831380D81F0013C0001E133F48EB1FE0007C13070078EB03F012F84813011400A46C14E0 00781301007C14C0003C13036CEB0780390F800F003807E03C3801FFF038003FC01C2D7D AB23>56 D<EB3F80EBFFF03803E0783807C03E48487E48487E003E14801407007E14C012 7C00FC14E01403A315F0A5007C1307127EA2003E130F7E6C131F3807803B3803E0F33800 FFC390383F03E013001407A215C0A2140F001E1480003F14005C143E143C003E5B001C5B 380E03E03807FF80D801FEC7FC1C2D7DAB23>I<B812FCA3CBFCADB812FCA32E137C9937> 61 D<EAFFE0A3EAE000B3B3B3A7EAFFE0A30B4379B114>91 D<EAFFE0A31200B3B3B3A7 12FFA30B437FB114>93 D<EA07C012FFA2120F1207B3B3A3EA0FE0EAFFFEA20F2E7EAD14 >108 D<3807C0FE39FFC3FF809038C703E0390FDE01F0EA07F8496C7EA25BA25BB2486C 487E3AFFFE1FFFC0A2221E7E9D27>110 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmsy10 12 24 /Fq 24 113 df<007FB912E0BA12F0A26C18E03C04789A4D>0 D<121FEA3F80EA7FC0EA FFE0A5EA7FC0EA3F80EA1F000B0B789E1C>I<0060160600F8160F6C161F007E163F6C16 7E6C6C15FC6C6CEC01F86C6CEC03F06C6CEC07E06C6CEC0FC06C6CEC1F80017EEC3F006D 147E6D6C5B6D6C485A6D6C485A6D6C485A6D6C485A6D6C485ADA7E3FC7FCEC3F7E6E5A6E 5A6E5AA24A7E4A7EEC3F7EEC7E3F4A6C7E49486C7E49486C7E49486C7E49486C7E49486C 7E49C7127E017E8049EC1F804848EC0FC04848EC07E04848EC03F04848EC01F84848EC00 FC48C9127E007E163F48161F48160F00601606303072B04D>I<49B4FC010F13E0013F13 F8497F3901FF01FF3A03F8003F80D807E0EB0FC04848EB07E04848EB03F090C71201003E EC00F8A248157CA20078153C00F8153EA248151EA56C153EA20078153C007C157CA26C15 F8A26CEC01F06D13036C6CEB07E06C6CEB0FC0D803F8EB3F803A01FF01FF0039007FFFFC 6D5B010F13E0010190C7FC27277BAB32>14 D<007FBA1280BB12C0A26C1980CEFCB0007F BA1280BB12C0A26C1980CEFCB0007FBA1280BB12C0A26C1980422C7BAE4D>17 D<19E0F003F0180FF03FE0F0FF80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8 EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CA FCEB07FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0EA07FC EA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC913801FF809138007F E0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF03FE94 3800FF80F03FE0F00FF01803F000E01900B0007FB912E0BA12F0A26C18E03C4E78BE4D> 20 D<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038 007FC0EC1FF0EC07FC913801FF809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8 EE03FE933800FF80EF3FE0EF0FF8EF03FE943800FF80F03FE0F00FF0A2F03FE0F0FF8094 3803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0EEFF80DB03FEC8FCED1FF8ED 7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CAFCEB07FCEB1FF0EB7FC04848CBFCEA 07FCEA1FF0EA7FC048CCFC12FC1270CDFCB0007FB912E0BA12F0A26C18E03C4E78BE4D> I<D907F01780D91FFEEE01C090387FFF8090B512E0488048803907F80FFC270FE001FE15 03271F80007F168090C7EA1FC0003E6E6C1407003C6E6C150000386E6C5C00786E6C5C00 706E6C143EDC3F80137E00F092391FE001FC4892390FFC07F870B55A705C705C706C5BDD 1FFEC7FC0040EE03F842187BA44D>24 D<D907F81780D93FFFEE01C090B512C04814F048 804814FE270FF807FF1503261FC00001C0158048C7D83FE01407003EDA0FF8140F486E6C EC1F000078DA01FF5C00706E01C013FE00F092393FF807FC486FB55A04075C705C04005C 053F90C7FC0040EE07F8CEFCA4D907F81780D93FFFEE01C090B512C04814F048804814FE 270FF807FF1503261FC00001C0158048C7D83FE01407003EDA0FF8140F486E6CEC1F0000 78DA01FF5C00706E01C013FE00F092393FF807FC486FB55A04075C705C04005C053F90C7 FC0040EE07F8422C7BAF4D>I<037FB612E00207B712F0143F91B812E0010301C0C9FCD9 07FCCAFCEB0FE0EB3F8049CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C127C A2127812F8A25AA87EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D 7EEB1FE0EB07FC6DB47E010090B712E0023F16F01407020016E03C3A78B54D>I<07C014 03DE03E0EC0F80060F153FDE3FC0ECFF00DEFF80EB03FEDD03FEC7EA0FF8DD07F8EC1FE0 DD1FE0EC7F80DD7F80D901FEC7FCDC01FEC7EA07F8DC07FCEC1FF0DC1FF0EC7FC0DC3FC0 4AC8FC04FFC7EA03FCDB03FCEC0FF0DB0FF0EC3FC0DB3FE0ECFF80DBFF80D903FEC9FC4A 48C7EA07F8DA07F8EC1FE0DA1FE0EC7F80DA7F80D901FECAFC4948C7EA07FCD907FCEC1F F0D90FF0EC3FC0D93FC002FFCBFC01FFC7EA03FCD803FCEC0FF0D80FF8EC3FE0D83FE0EC FF80D87F804948CCFC00FEC7EA03F8A2D87F80EB01FED83FE06D6C7ED80FF8EC3FE0D803 FCEC0FF0C6B4EC03FCD93FC0EB00FFD90FF0EC3FC0D907FCEC1FF0D901FFEC07FC6D6C6C EB01FEDA1FE09038007F80DA07F8EC1FE0DA01FEEC07F86E6C6CEB03FEDB3FE0903800FF 80DB0FF0EC3FC0DB03FCEC0FF0DB00FFEC03FCDC3FC0EB00FFDC1FF0EC7FC0DC07FCEC1F F0DC01FEEC07F89326007F80EB01FEDD1FE09038007F80DD07F8EC1FE0DD03FEEC0FF894 2600FF80EB03FEDE3FC0EB00FFDE0FE0EC3F800603150FDE00C0EC030059407BB864>28 D<1AF0A3861A78A21A7C1A3CA21A3E1A1E1A1F747EA2747E747E87747E747E1B7E87757E F30FE0F303F8007FBC12FEBE1280A26CF3FE00CEEA03F8F30FE0F31F8051C7FC1B7E6350 5A505A63505A505AA250C8FC1A1E1A3E1A3CA21A7C1A78A21AF862A359347BB264>33 D<49B4EF3FC0010F01E0923803FFF8013F01FC030F13FE4901FF92383FE01F48B66C9139 7E0007C02603F80301E0D901F8EB01E02807E0007FF049486D7E01806D6CD907C0147048 C76C6C494880001EDA07FE49C87E001C6E6C013E150C486E6D48150E71481506486E01E0 160793387FF1F0006092263FF3E08193381FFBC000E004FF1780486F4915017090C9FC82 707F8482717E844D7E6C4B6D1503006004EF1700933803E7FE0070922607C7FF5DDC0F83 7F003004816D140E00384BC6FC0018033E6D6C5C001C4B6D6C143C6C4BD91FFC5C6C4A48 6D6C5C6DD907E06D6C13036C6C49486D9038E00FE0D801F0013FC890B55A27007C03FE6F 91C7FC90263FFFF8031F5B010F01E0030313F8D901FECAEA7FC0592D7BAB64>49 D<92B6FC02071580143F91B7120001030180C8FCD907FCC9FCEB1FE0EB3F80017ECAFC5B 485A485A485A5B485A121F90CBFC123EA2123C127CA2127812F8A25AA2B9FC1880A21800 00F0CBFCA27EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1F E0EB07FC6DB47E010090B6FC023F1580140702001500313A78B542>I<1706170F171FA2 173EA2177CA217F8A2EE01F0A2EE03E0A2EE07C0A2EE0F80A2EE1F00A2163EA25EA25EA2 4B5AA24B5AA24B5AA24B5AA24BC7FCA2153EA25DA25DA24A5AA24A5AA24A5AA24A5AA24A C8FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C9FCA2133EA25BA25BA2485AA2 485AA2485AA2485AA248CAFCA2123EA25AA25AA25A1260305C72C600>54 D<0060171800F0173C6C177CA200781778007C17F8A2003C17F0003E1601A26CEE03E0A2 6C17C06D1507A2000717806D150FA26C6CED1F00A20001161E6D153EA20000163C90B712 FCA26D5DA2013CC85A013E1401A2011E5D011F1403A26D5D6E1307A26D6C495AA2010392 C7FC6E5BA20101141E6E133EA26D6C5BA202781378027C13F8A2023C5BEC3E01A26E485A A2020F5B1587A202075B15CFA26EB4C8FCA26E5AA36E5AA315781530364780C437>56 D<4B7E4B7EA21507A25EECFF8F010313EF90260F80FFC7FC90383E003F497F4980484880 4848497E5B0007EC3DF049133C000FEC7CF8A248C7EA787C15F848157E15F0A214014815 7F007E4A7E1403A215C0A200FE01071480A21580140FA21500A25CA2141E143EA2143CA2 147CA21478A214F8A25C1301A2007E491400A21303A2007F495B1307003F157E5CA2130F 001F157C018FC712FCD80F9F5CA201DE130100075DD803FE495AA26C48495A00004A5A01 7C49C7FC017E133E90387F80F89038FBFFE001F8138049C9FC1201A25BA26C5A29557CCC 32>59 D<0060170C00F0171EB3B3A66C173EA20078173C007C177C007E17FC003E17F86C EE01F06D15036C6CED07E06C6CED0FC0D803F8ED3F80D801FEEDFF0026007FC0EB07FCD9 3FFCEB7FF8010FB612E001031580D9007F01FCC7FC020713C0373D7BBA42>91 D<913807FFC0027F13FC0103B67E010F15E0903A3FFC007FF8D97FC0EB07FCD801FEC8B4 FCD803F8ED3F80D807E0ED0FC04848ED07E04848ED03F090C91201003EEE00F8007E17FC 007C177C0078173C00F8173EA248171EB3B3A60060170C373D7BBA42>I<ED0FE015FF91 3803FC00EC0FE0EC3FC04A5A4AC7FC5C495AA2495AB3AD495AA2495A131F495A495A01FE C8FCEA07F8EAFFE0A2EA07F8EA00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E 806E7E6E7EEC0FE0EC03FC913800FFE0150F236479CA32>102 D<12FEEAFFE0EA07F8EA 00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E806E7E6E7EEC0FE0EC03FC9138 00FFE0A2913803FC00EC0FE0EC3FC04A5A4AC7FC5C495AA2495AB3AD495AA2495A131F49 5A495A01FEC8FCEA07F8EAFFE048C9FC236479CA32>I<126012F0B3B3B3B3B3A8126004 6474CA1C>106 D<0070130700F01480B3B3B3B3B3A800701400196474CA32>I<1B0C1B1E 1B3EA21B7CA21BF8A2F201F0A2F203E0A2F207C0A2F20F80A2F21F00A21A3EA262A262A2 4F5AA2621903A24F5AA24F5AA24FC7FCA2193EA261A261A24E5AA24E5AA24E5AA24E5AA2 010C4CC8FC133C017C163EEA01FE00035F487E001E5F00387FD8707F4B5A00E07FD8003F 4B5A80011F4B5AA26E4A5A130F6E4AC9FC13076E143E13036E5C13016E5C7F6F5B027F13 01A26F485A143F6F485A141F6F485A140F6F48CAFC1407EDFC3E14035E15FE02015B15FF 6E5BA26F5AA26F5AA26F5AA26FCBFC150E4F647A8353>112 D E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr cmmi12 12 67 /Fr 67 123 df<EC03FCEC1FFF9138FE07C0903903F001F049486C7ED91FC06D130E4948 137C49C76C130C01FE143F4848161C48486E131800071680491638000F173048481670EF C060485A18E0040F13C0484815C1188017C300FFEEC70090C813C617CE17DCEE1FD84816 F85F5F5FA5007E153F167F6C03EF1338ED03CF6C6CD90F0713306C6C011C14706C6C9039 F803E0E03C01F00FE001E1C026007FFFC7EAFF80D91FF0EC3E00372D7CAB3E>11 D<EE1FE0EE7FFC923801E03F923907800F8092390E0007C04BEB03E04B13014B14F04B13 004A4814F85D14034AC8FC1406140E020C1401141C021815F002381403023015E0170702 7015C00260140F188002E0EC1F004A143E5F010190383FF1F84AB512E09238C01F8092B5 7E010390383FF1F091C87E1778177C49811306A283130E130CA3011C16801318A30138ED 3F001330A301705D177E136017FE01E05DA24C5AA200014B5A6D4A5A01B04A5A5FD803B8 4AC7FC0118147E011C5C6DEB01F0486CEB07C0270603C03FC8FC903800FFFCEC3FC0000E 90CAFC120CA3121C1218A312381230A312701260A312E0A235597DC537>I<1578913807 FFE0021F13FC91383C7FFEEC7007EC6003ECE0004A13381600A280A380A280147CA2147E 143E143F816E7EA26E7E81140781EC3FFC14FF903803E1FEEB07C190381F00FF133E49EB 7F805B0001143F485A484814C049131F120F485AA248C7FC150F5A127EA300FEEC1F805A A316005A5DA2153E157E157CA26C5C127C4A5A6C495AA26C495A6C6C485A6C6C48C7FC38 03E07C3800FFF0EB1FC027487CC62B>14 D<EC07FEEC7FFF903801FFFE903807F800EB1F E0EB3F8049C7FC13FE485A485A1207485A5B121F123F5BA248B512C015E0A20180C7FC12 FF90C8FCA65AA2127E127FA27EA27F121F6C7E0007140C6C6C133C6C6C13F03900FC07C0 90383FFF00EB07F8202C7CAA27>I<01F8EB03FCD803FEEB1FFFD8071F90387C0FC03B0E 0F80E007E0001C9038C3C003271807C70013F002CE1301003801DC14F8003013D8EB0FF8 00705B00605BA200E0491303D8C01F15F05C12001607133F91C713E0A2160F5B017E15C0 A2161F13FE491580A2163F1201491500A25E120349147EA216FE1207495CA21501120F49 5CEA0380C81203A25EA21507A25EA2150FA25EA2151FA25EA2153FA293C7FC150E2D417D AB30>17 D<EB07C014F8EB00FE147F6E7E6E7EA36E7EA36E7EA36E7EA36E7EA36E7EA315 7FA36F7EA36F7EA36F7EA36F7EA34B7E151F153BED71FC15F1EC01E1913803C0FEEC0780 EC0F00021E137F143E5C4AEB3F80495A495A4948EB1FC0130F495A49C7120F017E15E05B 48481407000316F0485A48481403484815F8485A48C8EA01FC5A4816FE4815000078167E 2F467BC439>21 D<147002F8140E0101153FA301035DA24A147EA2010715FEA24A5CA201 0F1401A24A5CA2011F1403A24A5CA2013F1407A291C75BA249140FA2017E5DA201FE021F 1318183849ED8030A20001033F13701860EE7F005E486C16E0DB01DF13C09238039F016D D9071F1380489039801E0F83903BF7C078078700903AE1FFE003FE903AE07F8000F8000F 90CAFCA25BA2121FA25BA2123FA290CBFCA25AA2127EA212FEA25A123835417DAB3B>I< D93F801470D81FFF15F848150191C7FCC67E160317F0137E160701FE15E0A249EC0FC0A2 0001151F178049143F17000003157EA2495C4B5A12074B5A49495A5E000F140F4B5A4949 C7FC157E001F5C4A5A49485AEC07C0003F495A4AC8FCEB003C14F8387F01E0EB07C0D87E 1FC9FC13FCEAFFE0138000F8CAFC2D2C7BAB30>I<010FB712E0013F16F05B48B812E048 17C02807E0060030C7FCEB800EEA0F00001E010C13705A0038011C13605A0060011813E0 00E013381240C7FC5C4B5AA214F014E01301150314C01303A3EB078082130FA2EB1F00A3 4980133E137EA24980A2000114015BA26C48EB00E0342C7EAA37>25 D<0203B612E0021F15F091B7FC4916E0010716C090270FF80FF8C7FC90381FC00349486C 7E017EC7FC49147E485A4848143E0007153F5B485AA2485AA2123F90C8FC5E48157E127E A216FE00FE5D5A15015EA24B5A007C5D15074B5A5E6C4AC8FC153E6C5C5D390F8003F039 07C007C02601F03FC9FC38007FFCEB1FE0342C7DAA37>27 D<010FB612FC013F15FE5B48 B712FC4816F82707E001C0C7FC01805B380F0003121E121C5A4849C8FC126012E000405B C7FC140E141EA45CA3147CA2147814F8A4495AA31303A25C1307A3130FA25C6D5A2F2C7E AA2A>I<161CA21618A21638A21630A21670A21660A216E0A25EA21501A25EA21503A293 C8FCA25DED7FE0913807FFFE91391FC63F809139FE0E07C0D901F8EB03F0903A07E00C00 F8D91FC08090263F001C137E017E814913184848ED1F8000031438485A4848013014C0A2 48481370A248481360A248C712E0A24B133F481780481301A24B137F180014034816FE92 C7FC4C5A6C49495AA2007E0106495A4C5A6C010E495A4C5A261F800C49C7FC000F15FC3A 07C01C01F8D803E0EB07E03A01F8181F80D8007E01FEC8FC90381FFFF801011380D90030 C9FCA21470A21460A214E0A25CA21301A25CA21303A291CAFCA332597BC43A>30 D<137E48B46C150626078FE0150E260607F0151C260E03F81538000C6D1570D81C0116E0 00006D15C0010015016EEC03806EEC0700170E6E6C5B5F5F6E6C136017E04C5A6E6C485A 4CC7FC0207130E6F5A5E1630913803F8705EEDF9C06EB45A93C8FC5D6E5A81A2157E15FF 5C5C9138073F80140E141C9138181FC014381470ECE00FD901C07FEB038049486C7E130E 130C011C6D7E5B5B496D7E485A48488048C8FC000681000E6F137048EE806048033F13E0 4892381FC0C048ED0FE348923803FF00CA12FC37407DAB3D>I<1730A317701760A317E0 5FA316015FA3160394C8FCA35E1606A3160E160C013E1607D9FF80ED1F802603C3C0011C EB3FC0260703E01318260601F0157F000E173F001C1538D818030230131F0038170F0030 170700701570D86007026013035CA2D8E00F02E0148000C049491301EA001F4A15030301 1500013F5C1400604901031406017E91C7FC180E180C01FE49141C490106141818386003 0E1460030C14E04D5A4D5A031C49C7FC0318130E017E5D5F6D01385B90261F80305BD90F C0EB03C0D907F0010FC8FC903901FE707C9039003FFFF002031380DA0060C9FC15E05DA3 14015DA3140392CAFCA35C1406A3140E140C3A597DC43F>I<121EEA7F80A2EAFFC0A4EA 7F80A2EA1E000A0A78891B>58 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413 E013C0A312011380120313005A1206120E5A5A5A12600B1D78891B>I<F001C0F007E018 1FF07FC0943801FF00EF07FCEF1FF0EF7FC04C48C7FCEE0FFCEE3FF0EEFFC0030390C8FC ED0FF8ED3FE0EDFF80DA03FEC9FCEC1FF8EC7FE0903801FF80D907FECAFCEB1FF0EB7FC0 4848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0 EB07FE903801FF809038007FE0EC1FF8EC03FE913800FF80ED3FE0ED0FF8ED03FF030013 C0EE3FF0EE0FFCEE01FF9338007FC0EF1FF0EF07FCEF01FF9438007FC0F01FE01807F001 C03B3878B44C>I<1618163C167CA2167816F8A216F01501A216E01503A216C01507A216 80150FA2ED1F00A2151E153EA2153C157CA2157815F8A25D1401A24A5AA25D1407A25D14 0FA292C7FC5CA2141E143EA2143C147CA25CA25C1301A25C1303A25C1307A25C130FA291 C8FC5BA2133EA2133C137CA2137813F8A25B1201A25B1203A2485AA25B120FA290C9FC5A A2121E123EA2123C127CA2127812F8A25A126026647BCA31>I<127012FCB4FCEA7FC0EA 1FF0EA07FCEA01FF38007FC0EB1FF0EB07FE903801FF809038007FE0EC1FF8EC03FE9138 00FF80ED3FE0ED0FF8ED03FF030013C0EE3FF0EE0FFCEE01FF9338007FC0EF1FF0EF07FC EF01FF9438007FC0F01FE0A2F07FC0943801FF00EF07FCEF1FF0EF7FC04C48C7FCEE0FFC EE3FF0EEFFC0030390C8FCED0FF8ED3FE0EDFF80DA03FEC9FCEC1FF8EC7FE0903801FF80 D907FECAFCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFC12FC12703B3878B44C >I<ED7FC0913803FFF8020F13FE91393F807F80913978000FC04A6D7ED901C06D7E4948 6D7E49C87E1306D90FC0147E8083131F1880171F5C0107C8FC90C913C0A84AB4FC020FEB C03F91387F00F0D901F813384948131CD90FC0130C4948EB0E7F49C700061380017E1407 491403000116FF48481600485A120F4980001F5E1603485A5F127F5B5F160712FF90C85B 160F5F161F485EA24C5AA24CC7FC167E16FE4B5A007E5D007F4A5A6C4A5A6D495A001F4A 5A6C6C017FC8FC6C6C13FC3903F807F8C6B512E06D1380D90FFCC9FC32497CC633>64 D<1830187018F0A217011703A24D7EA2170F171FA21737A2176717E717C793380187FCA2 EE0307EE07031606160CA216181638163004607FA216C0030113011680ED0300A2150615 0E150C5D845D03707F15605DA24A5A4AB7FCA25C0206C87F5C021C157F14185CA25C14E0 5C495A8549C9FC49163F1306130E5B133C137C01FE4C7ED807FFED01FF007F01F0027FEB FFC0B5FC5C42477DC649>I<91B87E19F019FC02009039C00003FF6F480100138003FFED 3FC01AE093C8121FF10FF0A24A17F84B1507A314035D190FA2020717F04B151F1AE0193F 020F17C04BED7F80F1FF004E5A021F4B5A4B4A5AF01FF0F03FC0023F4AB4C7FC4BEB1FFC 92B612F018FEDA7FC0C7EA7F804BEC1FC0F00FF0727E02FF6F7E92C8FC727EA249835CA3 13035CA301075F4A1503A24E5A130F4A4B5A4E5AA2011F4C5A4A4B5A4D485A013F4B48C7 FCEF0FFC4AEC3FF801FF913801FFE0B9128005FCC8FC17C045447CC34A>I<4CB46C1318 043F01F013384BB512FC0307D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA 01C34A48EC00E7DA0FF0ED7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F 4A178049481607495A137F4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA212 3F5BA3127F5BA4485AA419C0A2180161127F180396C7FC6018066C6C160E601818001F17 386D5E000F5F6D4B5A6C6C4B5A00034CC8FC6C6C150E6C6C153C017F5DD93FC0EB01E0D9 1FF0EB0FC0D907FE017FC9FC0101B512FCD9003F13E0020790CAFC45487CC546>I<91B8 7E19F019FC02009039C00007FF6F489038007FC003FFED1FE0737E93C86C7E737E19014A 707E5D1A7FA20203EF3F805DA21BC014075DA3140F4B17E0A3141F4B17C0A3143F4B167F A3027F18804B16FFA302FF180092C95A62A24917034A5F19076201034D5A5C4F5A620107 173F4A5F4FC7FC19FE010F4C5A4A15034E5AF00FE0011F4C5A4A4B5A06FFC8FC013FED01 FCEF0FF84AEC3FE001FF913803FF80B848C9FC17F094CAFC4B447CC351>I<91B912FCA3 020001C0C7123F6F48EC03F803FF1501190093C91278A21A385C5DA3020317305DA31407 4B1460A218E0020F4B13005DA21701021F5D4B13031707170F023F027FC8FC92B6FCA391 397FC0007E4B131EA2170E02FF140C92C7FCA2171C49031813035C611906010392C7FC4A 160E190C191C010717184A163819301970130F4A5E180161011F16034A15074E5A013F16 3F4EC7FC4AEC03FF01FFED3FFEB9FCA26046447CC348>I<4CB46C1318043F01F013384B B512FC0307D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA01C34A48EC00E7 DA0FF0ED7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F4A178049481607 495A137F4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA2123F5BA3127F5BA4 485A4CB612805EA293C7EBE000725AA3007F60A218FF96C7FCA26C7E5F606C7EA2000F16 036D5E6C6C15070003160F6C6C151F6C6CED3DF8D97F8014786D6CEB01E0D91FF0903807 C078D907FE90387F00700101B500FC1330D9003F01F090C8FC020790CAFC45487CC54D> 71 D<027FB512F8A217F09139007FF000ED3FC0157FA25EA315FF93C7FCA35C5DA31403 5DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C8FCA35B5CA313035CA313 075CA3130F5CA2131FA25CEB7FF0007FB512F0B6FCA22D447DC32B>73 D<91B600E049B512C0A3020001E0C8383FF800DB7F80ED1FE003FF94C7FC1A3E93C91278 62F101C04A4C5A4B4BC8FC191C6102035E4B5DF003804EC9FC0207150E4B14386060020F 4A5A4B0107CAFC170E5F021F14784B13F84C7E1603023F130F4B487E163BEEE1FF91387F C1C1DB83807FED8700159CDAFFB86D7E5D03C06D7E5D4990C7FC4A6E7EA2717E13034A81 1707A201076F7E5C717EA2130F4A6E7FA2727E131F5C727E133F854A82D9FFE04B7EB600 E0010FB512E05FA252447CC353>75 D<91B612F8A3020001E0C8FC6F5A4B5AA293C9FCA3 5C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92CAFCA35B4A16 C0A21801010317804A15031900A201075E4A1506180E181E010F161C4A153C1838187801 1F16F84A4A5A1703013F150F4D5A4A14FF01FF02075BB9FCA2603A447CC342>I<91B500 C0933803FFFE63630200F1FE00DB6FE0EE1BF803EF171F1B3703CFEF67F0A21BCF0201EF 018F038F60DB87F0ED030F1B1F020317060307040C5BA2F2183F020717300206616F6C15 601B7F020E17C0020CDC018090C7FCA24F485A021C16060218606F6C5C1A010238161802 3004305BA2F16003027016C00260606F6CEB01801A0702E0ED03004A03065CA24E130F01 015E4A60047F5B1A1F01035E91C74A5CA24D48133F494BC7FC010661EE3F861A7F010E15 8C010C039892C8FCA205B05C011C15E001186001386E5A190101785D01FC92C75BD803FF EF07FEB500F8011E0107B512FE161C160C5F447BC35E>I<91B500C0020FB5128082A2DA 007F9239007FE00070ED1F8074C7FCDBEFF8150E15CF03C7160C70151C1401DB83FE1518 A2DB81FF1538140303001630831A704A6D7E02061760163F7114E0140E020C6D6C5CA270 6C1301141C021801075D83190302386D7E023094C8FC1601715B147002606DEB8006A294 387FC00E14E04A023F130C18E0191C0101ED1FF04A1618170FF0F838130391C83807FC30 A2943803FE705B01060301136018FF19E0010E81010C5F187FA2131C0118705A1338181F 137801FC70C9FCEA03FFB512F884180651447CC34E>I<EE03FF047F13F0923901FC01FC 92390FE0007F033FC7EA1FC003FEEC07E0DA01F86E7EDA07F06E7EDA0FC06E7E4A488102 7FC9127E02FE167F49488249481780495A010FEF1FC05C495A494817E0137F91CAFC5B48 48170FF11FF0485AA2485AA2120F5B001F19E0A249173F123FA34848EF7FC0A3F1FF80A2 485A4E1300A34E5AA24E5A61180F007F60181F614E5A4E5A6C7E4EC7FC4D5A001F4C5A6D 4B5A000F5F6C6C4B5AEF3F806C6C4BC8FC6C6C15FE6C6CEC01F8017FEC07F06D6CEB1FC0 D90FE0017FC9FC903903F803FC0100B512E0DA0FFECAFC44487CC54B>I<91B712FEF0FF E019F802009039C0000FFE6F48EB01FF03FF9138007F80F13FC093C8EA1FE0A24AEE0FF0 A25D1AF81403A25DA21407F11FF05DA2020FEE3FE0A24B16C0197F021F1780F1FF004B4A 5A4E5A023F4B5A4E5A4BEC3FC006FFC7FC027FEC07FC92B612F018800380CAFC14FFA292 CBFCA25BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CEBFFE0B612 E0A345447CC33F>I<EE03FF047F13F0923901FC01FC92390FE0007FDB3F80EB1FC003FE C76C7EDA01F8EC03F0DA07F0814A486E7EDA1F806E7E027FC9FC02FE167F495A4948EE3F 801307494817C04A161F495A013F18E0495AA249CAFC485A1AF012035B12075B120F5B00 1F19E0193F5B123FA34848EF7FC0A31A8019FF485A1A0060A24E5AA2614E5AA2007F4D5A A24E5A4E5A61003F021F147F6DD9FFC049C7FC913A01E0E001FE001F90260380705B913A 07003003F8260FE00690383807F00007010E9038180FE0D9F00CEC1F80D803F84BC8FC00 01011CEB1CFE2600FC18EB1DF8017EEC1FF0D93F9C14C0D90FEC017FC9FC902703FE03FC 14600100B5FC91260FFE1C14E091C7001E5C1801A24E5A043F1307180FDD803FC7FC71B4 FCEFFFFE705BA26060705B60040390C8FCEE00FC44597CC54D>I<91B712F018FF19E002 009039C0003FF86F48EB07FC03FFEC01FEF0007F93C8EA3F801AC0F11FE05C5D1AF0A214 035DA30207EE3FE05DA2F17FC0020F17804B15FF1A004E5A021F4B5A4B4A5AF00FE04E5A 023F037FC7FC4BEB03FCEF1FF092B612804A4AC8FC923980007F80EF0FC0EF07F002FF6E 7E92C77F1701845B4A1400A2170113035CA2170313075CA24D5A130F5CA3011F18185CA2 013F4C13381A304A6F1370D9FFE0020314E0B600E0ED01C00501EB0380943900FE0F00CB EA3FFEF007F045467CC34A>I<9339FF8001800307EBF003033F13FC9239FF007E07DA01 F8EB0F0FDA07E09038079F004A486DB4FC4AC77E023E804A5D187E5C495A183C495AA213 074A1538A3130F183080A295C7FC806D7E8014FF6D13E015FC6DEBFFC06D14FC6E13FF6E 14C0020F80020314F8EC003F03077F9238007FFE160F1603707E8283A283A21206A4000E 163EA2120C177E001E167CA25F5F003F15014C5A6D4A5A4C5A486C4AC8FC6D143ED87CF8 5CD8787E495A3AF01FC00FE0D8E007B51280010149C9FC39C0003FF039487BC53C>I<48 BA12C05AA291C7D980001380D807F092C7121F4949150F0180170748C75B1903120E4802 0316005E12181238003014074C5C00701806126000E0140F485DA3C8001F92C7FC5EA315 3F5EA3157F5EA315FF93CAFCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA2 147FA214FF01037F001FB612FCA25E42447EC339>I<003FB500F80103B512E0A326003F F8C8381FF800D91FE0ED07E0013F705A615C96C7FC60017F16065CA2180E01FF160C91C9 FCA2181C4817185BA21838000317305BA21870000717605BA218E0120F495EA21701121F 495EA21703123F4993C8FCA25F127F491506A2170E00FF160C90C9FC171CA21718173817 304816705F6C5E6C15014C5A4CC9FC6C150E6D141E001F5D6D5C6C6CEB01E06C6C495A6C 6CEB1F80C6B401FECAFC90387FFFF8011F13E0010190CBFC43467AC342>I<007FB56C91 381FFFF8B65DA2000101E0C8000313006C0180ED01FCF000F0614E5AA2017F4C5A96C7FC 1806A2606E5DA2013F5E1870186060A24D5A6E4AC8FCA2011F1506170E170C5FA26E5C5F A2010F5D16015F4CC9FCA26E13065EA201075C5EA25E16E06E5B4B5A13034BCAFC1506A2 5D151CECFE185D13015D5DA26E5AA292CBFC5C13005C5CA25CA25C45467BC339>I<B6D8 8003B500FC0107B5FC5E03005D000301C09026001FFEC8EA7FE06C90C8D80FF8ED3F80F4 1F001C1E1C1C17076C1B1864050F16701C60051F5EA205374B5AA205674BC7FC17E705C7 1506DC0187150E72140C6ED903075DA2017FDA06035DA2040C5E041C16E004185E04304B 5AA204604BC8FCA204C01506150104805DDB03005D84DAC0065E1701013F495EA24B5E4B 1501624B4BC9FCA24B1506A2DAC1805D02C3161C92C7141802C66F5A14E602EC5E83D91F F85EA24A5E4A93CAFCA24A5DA24A5DA291C95AA2011E5E011C5E010C166060467BC35C> I<023FB500E0011FB5FCA39126007FFEC7000313E0DB3FF8913801FE006F486E5A1AF06F 6C4A5A626F6C4A5A0706C7FC190E6F6C5C616F6C5C6171485A6F5D4EC8FC93387FC00660 706C5A6060706C5A17F193380FFB8005FFC9FC5F705AA2707EA3707E5E04067F5E93381C 7FC0163816704C6C7EED01C04B486C7E160015064B6D7E5D4B6D7E5D5D4A486D7E14034A C76C7E140E5C4A6E7F143002E06F7E495A0103707E495A131F496C4B7E2603FFE04A487E 007F01FC021FEBFFF0B5FCA250447EC351>I<B66C91381FFFFCA21AF8000101E0C80003 13806C49923801FC004A16F06D6C5E4E5A616D6C4BC7FC180E606D6C1518606E5D010F5E 4D5A6D6C14034DC8FC17066D6C5C5F5F6D6C5C17E04C5A6D01805B4CC9FCEDC006027F5B 5EEDE038023F5B16606E6C5AEDF18003F3CAFCEC0FFEA25D6E5A5D140FA35D141FA35D14 3FA35D147FA392CBFC5CA3495AA3EB07FF0007B6FCA25D46447CC339>I<EC0FC0EC7FF0 903901F8381C903907E01C7E90380FC00E90393F0007FE496D5A13FE485A49130100035D 485A120F491303001F5DA2485A1507007F5D5BA2150F00FF5D90C7FCA2151F5E5AA2033F 1330EE00701760A24B13E017C015FE007E130102031301003ED9073E1380003F010E1303 6C011C14006C6C486C5A3A07C0F00F0E3A01FFC007FC3A007F0001F02C2D7CAB33>97 D<EB0FE0EA07FFA338001FC0130F131FA25CA3133F91C8FCA35B137EA313FE5BA312015B EC0FC0EC3FF00003EBF07C9038F3C03E9038F7001F01FE14804848130F4914C05B16E048 5A5BA3121F5BA2151F123F90C7FCA2153F4815C0127EA2157F16805A16005DA24A5A007C 5CA24A5A4A5A5D003C130F003E495A001E495A001F017EC7FC6C5B3807C1F03801FFC06C 6CC8FC23467CC429>I<EC07F8EC3FFF9138FC07C0903903F000E049481370D91F801330 49C71270017EEB03F801FE1307485A4848EB0FF012075B000FEC07C0484890C7FCA2485A A2127F5BA312FF90C9FCA45AA5161816381670007E15E0ED01C06CEC0380ED07006C6C13 1E000F14383907C001F03903F00FC02600FFFEC7FCEB1FF0252D7CAB2A>I<EE01FC16FF A3EE03F816011603A217F0A21607A217E0A2160FA217C0A2161FA21780A2163FA21700EC 0FC091387FF07F903801F838903907E01C7E90380FC00E90393F0007FE49130301FE5C48 5A491301120348485C120F491303121F5E485A1507127F495CA2150F12FF90C75BA2151F A2485DA2033F13301770EE0060A24B13E017C015FE007E130102031301003ED9073E1380 003F010E13036C011C14006C6C486C5A3A07C0F00F0E3A01FFC007FC3A007F0001F02E46 7CC433>I<EC07F8EC3FFE903901FC0780903903F003C090390FC001E090381F8000017F C7FC01FE1470485A484814F0000715E05B000F1401484814C015034848EB0780ED1F0015 FC007FEB1FF090B5128002F0C7FC0180C8FC12FF90C9FCA55AA41618007E15381670007F 15E06CEC01C0ED03806CEC07006C6C131E6D13383907E001F03901F00FC026007FFEC7FC EB1FF0252D7CAB2D>I<EE07E0EE1FF8EE7C1CEEF80E923801F03E923803E07F17FFED07 E116C117FE92380FC0FC177817004B5AA4153F93C7FCA45D157EA491B61280A3DA00FCC7 FCA314015DA414035DA414075DA4140F5DA5141F5DA4143F92C8FCA45C147EA45CA45C13 01A25CA2EA1C03007F5B12FF5C13075C4848C9FC12F8EA601EEA783CEA1FF0EA07C0305A 7BC530>I<157E913803FF8091390FC1E0E091391F0073F0027E13334A133F4948131F01 0315E04948130F495AA2494814C0133F4A131F137F91C713805B163F5A491500A25E1203 49147EA216FEA2495CA21501A25EA21503150700015D150F0000141F6D133F017CEB77E0 90383E01E790381F078F903807FE0FD901F85B90C7FC151FA25EA2153FA293C7FCA2001C 147E007F14FE485C4A5A140348495AEC0FC000F8495A007C01FEC8FC381FFFF8000313C0 2C407EAB2F>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25C A2131FA25CED3FC090393F81FFF0913887C0FC91380E007E023C133ED97F70133F4A7F4A 14805C13FF91C7FC5BA24848143F17005BA200035D167E5BA2000715FE5E5B1501000F5D A24913035E001F1607030713064914E0150F003FEDC00E170C90C7141CEE801848163817 30007E167017E000FE91380781C0EEC38048913801FF000038EC007C30467BC438>I<14 1E143F5C5CA3147E143891C7FCAE133EEBFF803801C3C0380781E0380601F0120E121CEA 180312381230A2EA700700605BA2EAE00F00C05BEA001F5CA2133F91C7FCA25B137E13FE 5BA212015BEC03800003140013F01207495A1406140E140CEBC01C141814385C00035BEB E1C0C6B45A013EC7FC19437DC121>I<163C16FEA21501A316FCED00701600AE15FCEC03 FF91380F0780021C13C091383803E0147014E014C01301EC8007130314005B0106130F13 0E010C14C090C7FC151FA21680A2153FA21600A25DA2157EA215FEA25DA21401A25DA214 03A25DA21407A25DA2140FA25DA2141F5DA2143F001C91C7FC127F48137E5CA248485AEB 03E038F807C038781F80D83FFEC8FCEA07F0275681C128>I<14FE137FA3EB01FC130013 01A25CA21303A25CA21307A25CA2130FA25CA2131FA25C163F013FECFFC0923803C0E091 38000703ED1E0F491338ED701F017E13E0EC01C001FE018013C00203EB07004948C8FC14 0E00015B5C495A5C3803FBC001FFC9FC8014F83807F1FE9038F03F809038E00FE06E7E00 0F130381EBC001A2001FED01C017801380A2003F15031700010013F05E481506160E007E 150C161C00FE01005BED787048EC3FE00038EC0F802B467BC433>I<EB03F8EA01FFA338 0007F013031307A214E0A2130FA214C0A2131FA21480A2133FA21400A25BA2137EA213FE A25BA21201A25BA21203A25BA21207A25BA2120FA25BA2121FA25BA2123FA290C7FCA248 136014E0007E13C0A2130100FE138012FCA21303007C13005B1306EA3E0EEA1E1CEA0FF8 EA03E015467CC41D>I<01F8D903FCEC7F80D803FED91FFF903803FFE0D8071F903B7C0F C00F81F83E0E0F80E007E01C00FC001C9026C3C0030178137C271807C700D9F0E0137E02 CE902601F1C0133E003801DCDAFB80133F003001D892C7FCD90FF814FF0070495C006049 5CA200E04949485CD8C01F187E4A5C1200040715FE013F6091C75BA2040F14014960017E 5D1903041F5D13FE494B130762043F160E0001060F130C4992C713C0191F4CED801C0003 1A1849027E1638F2003004FE167000071A60494A16E0F201C0030192380F0380000FF187 00494AEC03FED80380D90070EC00F84F2D7DAB55>I<01F8EB03FCD803FEEB1FFFD8071F 90387C0FC03B0E0F80E007E03A0C07C3C003001CD9C7007F001801CE1301003801DC8000 3013D8EB0FF800705B00605BA200E0491303D8C01F5D5C12001607013F5D91C7FCA2160F 495D137E161F5F13FE49143F94C7FC187000014B136049147E16FE4C13E0000317C04915 0104F81380170300071700495D170EEE781C000FED7C3849EC1FF0D80380EC07C0342D7D AB3A>I<EC03FCEC3FFF9138FE07C0903903F003F049486C7E90391FC000FC49C7127C49 147E01FE147F484880485A000716805B120F485AA2485A167F127F5BA216FF00FF160090 C8FCA25D5E5A4B5AA25E15075E4B5A151F007E5D4B5A6C4AC7FC15FE391F8001F86C6C48 5A3907E00FC03901F03F802600FFFCC8FCEB1FE0292D7CAB2F>I<D903E0EB3F80D90FF8 EBFFE0903A1C7C03C0F8903A383E07007C9026703F1E137E9026601F387F5D01E00160EB 1F8001C013E04A5A00014A14C0018090C7FCA200035B1300147EC7FC02FE143FA25CA201 01157F18805CA2010315FF18005C5F010714015F4A13035F010F14075F4C5A5F496C495A 4CC7FC02B8137E02985B90393F9C01F891388F07E0913803FF80DA00FCC8FC4990C9FCA2 137EA213FEA25BA21201A25BA21203A21207B512F0A25C323F83AB31>I<91380FC00391 383FF0079138F83C0F903903E00E1E90390FC0063E90381F800790393F00037E4914FC01 FE1301485AA2484814F812075B000F140316F0485AA2003F14074914E0A3007F140F4914 C0A3151F90C713805AA2153F6C1500A2127E5D007F14FE6C1301A214036C6C485A000F13 1E3807C0383803E0F13901FFC1F838003F01130014035DA314075DA3140F5DA2141FA214 3F011FB51280A21600283F7DAB2B>I<01F8EB0FC0D803FEEB7FF0D8070FEBF038000E90 3883C07C3A0C07C701FC001C13CE0018EBDC03003813D8003013F8D90FF013F800709038 E000E0006015005C12E0EAC01F5C1200A2133F91C8FCA35B137EA313FE5BA312015BA312 035BA312075BA3120F5BEA0380262D7DAB2C>I<EC0FF0EC7FFE903901F00F8090390780 01C049C712E0011E14605BED01F0491307A201F8EB0FE05B7FED03806D90C7FC7F7F14F8 6DB47E15E06D13F86D7F01077F1300EC07FF140081ED3F80151F120E003FEC0F00487EA2 5D48C7121EA200FC5C12605D00705C6C495A6CEB07C0260F803FC7FC3803FFFC38007FE0 242D7BAB2E>I<141C147EA314FE5CA313015CA313035CA313075CA2007FB512FCB6FC15 F839000FC000A2131F5CA3133F91C7FCA35B137EA313FE5BA312015BA312035BA2157000 0714605B15E015C0000F130101C013801403EC070000071306140E5C6C6C5A000113F038 00FFC0013FC7FC1E3F7EBD23>I<013E140ED9FF80EB3F802603C3C0137F380703E03806 01F0120E121CD81803143F0038151F0030150FA2D87007140700605BA2D8E00F150000C0 497FEA001F4A5B1606133F91C7FC160E49140C137EA2161C01FE14185B16381630167048 48146016E05E150100005D15036D49C7FC1506017C130E017E5B6D137890380F81E06DB4 5AD900FEC8FC292D7DAB2F>118 D<013E1738D9FF80D901C013FC2603C3C0903907E001 FE380703E0380601F0000E150F001C16C0D8180316000038187E0030031F143E00705ED8 6007171E5C163FD8E00F92C7121C00C049160CEA001F4A49141C047E1418133F91C7FC04 FE1438491730017E5CA20301157001FE1760495C19E019C0A24949481301198018031900 606D0107140670130E017C010F5C017E010C1418013ED91CFC13386DD9387E13F0903B0F C0F01F01C0903B03FFC00FFF809028007F0001FEC7FC3F2D7DAB46>I<02FCEB07E0903A 03FF801FFC903A0F07C0781E903A1C03E0E01F903A3801F1C07FD9700013804901FB13FF 4848EBFF00495B000316FE90C71438484A130012061401000E5C120CC7FC14035DA31407 5DA3140F5DA3021F143817305D1770023F1460121E003F16E0267F807FEB01C0026F1480 00FF01EF1303D901CFEB070000FE903887C00E267C03835B3A3C0F01E0783A1FFC00FFE0 D803F0EB3F80302D7EAB37>I<133ED9FF8014E02603C3C0EB03F0380703E0380601F000 0E1507001C16E0EA180312380030150F007016C0EA60075C161FD8E00F158000C05BEA00 1F4A133F1700133F91C7FC5E49147E137EA216FE01FE5C5BA215015E485AA215035EA200 001407150F6D5C017C131F153F6D13FF90391F03CFC0903807FF8F903801FC0F90C7121F 5EA2153F93C7FCD807C05BD81FE0137E5DA24848485A4A5A01805B39380007C00018495A 001C49C8FC6C137C380781F83803FFE0C66CC9FC2C407DAB30>I<027CEB018049B41303 4901801300010F6D5A49EBE00E6F5A90393F03F838903978007EF80170EB1FF00160EB01 E001E05C49495A90C748C7FC150E5D5D5D5D4A5A4A5A4AC8FC140E5C5C5C5CEB03C049C9 FC130E49141C4914185B49143848481430491470D8039014F048B4495A3A0FEFC007C039 1E03F01FD81C01B55A486C91C7FC485C00606D5A00E0EB3FF048EB0FC0292D7CAB2D>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs cmr12 14.4 6 /Fs 6 85 df<EE03804C7EA34C7EA34C7EA34C7EA34C7EA24C7E16E7A203017F16C3A203 03801681A2DB07017F82A2030E80177FA24B80173FA24B6D7EA20378800370130FA203F0 804B1307A20201814B7FA24A488183A24AC78083A2020E82187FA24A6F7E021FB7FC4A82 A30278C8EA1FFC0270150FA202F0824A1507A249488284A249488384A249CA7FA2498401 0E177FA2011E84193F133E017F8448486C4C7E000F01E04B487EB500FE037FEBFFFEA44F 557CD458>65 D<B812FEEFFFC018F818FE26007FF8C73807FF806D4802017F011F6F6C7E 727E727E727E727EA2727EA2721380A21AC0A384A360A21A80A2601A00A24E5A180F614E 5A4E5AF0FFE04D1380050790C7FCEF7FFC91B712E08418FE02F0C73801FF809438007FE0 F01FF8727EF003FE857213807213C0F17FE0A2F13FF0A21AF8191FA21AFCA81AF8193FA2 1AF0197FF1FFE0A24E13C04E1380604E1300F03FFC013FEEFFF8496C02075BBA12C096C7 FC18FC18C046527AD153>I<DC1FFC14034BB500C01307030F02F0130F037F14FC912801 FFF800FF131F02070180EB1FC04A48C73807E03FDA3FF8913801F07FDA7FE0EC00F89026 01FF80ED3CFF4990C97E494882494882495A4948824948825C01FF834849177F91CBFC48 193F485AA24848181FA2121F49180FA2123FA2491807127FA31A005B12FFAE127F7FA31A 07123F7FA2121FA26D180F000F190EA26C7E1A1E6C6C181C6C193C806C6D1778137F6E17 F06D6CEE01E06D7E6D6CEE03C06D6CEE07806D6CEE0F006D6D151E9026007FE0157CDA3F F85DDA0FFEEC03F06E6C6CEB0FE0020101F8EBFF806E6CB548C7FC030F14F8030114E092 26001FFEC8FC48567AD355>I<B812C017FEEFFFC018F026007FFCC713FC6D48EC0FFF01 1F03017F9438007FE0727E727E727E180785727EA28684A286A762A26097C7FCA24E5A61 4E5A4E5A4E5AF0FFC04D90C8FCEF0FFEEFFFF891B712C04DC9FC839126F8000113C09338 003FF0EF0FFC717EEF01FF85717F727EA2727EA2727EA985A81B0785180FA21B0F060714 0E496C82496C6F141EB76EEB801C72EBC03C96387FE0F896381FFFF0CC000713E0963800 7F8050547BD156>82 D<DA3FF0130349B55B010714C0011FECF00F903A7FE00FF81F49C7 12FED801FCEC3F3F4848EC1FBF48486EB4FC48481403485A4980003F8190C97E5A83127E 8312FEA283A37E837FA27F007F93C7FC7F7FEA3FFC7F6C6C7E14F86CEBFF806C14F8EDFF 806C15F06C15FE6C6C806D15C0010F81010315F8D9007F80140F020080030F7F03001480 161F040713C0160182EF7FE0A2173FEF1FF0A200E0160FA31707A37EA318E07E170F7E18 C06C161F6C17806D153F6D16006D157E6D15FED8FCFC4A5A017F4A5A26F83FC0EB0FF0D9 0FFEEB7FC0D8F003B65A48C64AC7FC023F13F848010113C034567AD341>I<003FBB12C0 A449C79038F0000701F06E48130001C0183F48C8EE0FE0007E1907007C1903A200781901 A400701900A500F01AF0481A70A6C91700B3B3AC4C7E030313FC027FB712E0A44C517CD0 55>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft cmbx12 14.4 15 /Ft 15 87 df<171F4D7E4D7EA24D7EA34C7FA24C7FA34C7FA34C7FA24C7FA34C808304 7F80167E8304FE804C7E03018116F8830303814C7E03078116E083030F814C7E031F8116 8083033F8293C77E4B82157E8403FE824B800201835D840203834B800207835D844AB87E A24A83A3DA3F80C88092C97E4A84A2027E8202FE844A82010185A24A820103854A820107 85A24A82010F855C011F717FEBFFFCB600F8020FB712E0A55B547BD366>65 D<932601FFFCEC01C0047FD9FFC013030307B600F81307033F03FE131F92B8EA803F0203 DAE003EBC07F020F01FCC7383FF0FF023F01E0EC0FF94A01800203B5FC494848C9FC4901 F8824949824949824949824949824990CA7E494883A2484983485B1B7F485B481A3FA248 49181FA3485B1B0FA25AA298C7FC5CA2B5FCAE7EA280A2F307C07EA36C7FA21B0F6C6D19 80A26C1A1F6C7F1C006C6D606C6D187EA26D6C606D6D4C5A6D6D16036D6D4C5A6D6D4C5A 6D01FC4C5A6D6DEE7F806D6C6C6C4BC7FC6E01E0EC07FE020F01FEEC1FF80203903AFFE0 01FFF0020091B612C0033F93C8FC030715FCDB007F14E0040101FCC9FC525479D261>67 D<BC1280A5D8000701F8C7000114C0F0001F19071901851A7F1A3F1A1FA2F20FE0A21A07 A31A03A318F81BF01A01A497C7FC1701A317031707170F177F92B6FCA59238F8007F170F 170717031701A317001B3EA31B7CA395C8FCA21BFCA21BF8A21A01A31A031BF01A071A0F A21A1F1A3FF27FE0F101FF1907191F0603B5FCBCFCA21BC0A34F517CD058>69 D<BB12FEA5D8000701F8C700077FF0007F191F190785858586861B80A21A1FA31A0FA41B C006F81307A497C7FCA31701A317031707170F177F92B6FCA59238F8007F170F17071703 1701A31700A795C9FCB3B812F8A54A517CD055>I<B812C0A5D8000701F8C7FCB3B3B3B2 B812C0A52A527CD132>73 D<B812F8A5D8000701F8CAFCB3B3A91A7CA41AFC1AF8A51901 A31903A219071AF0190FA2191F193F197F19FF180360183F4DB5FCBB12E0A546527CD151 >76 D<B600FC073FB512FE6F61A26F96B6FCA2D80007F5C00070EF01EFA202EF6DEF03CF A202E76DEF078FA202E36DEF0F0FA202E16D171EA302E06D173CA26F6C1778A26F6C17F0 A26F6DED01E0A26F6DED03C0A36F6DED0780A26F6DED0F00A26F6D151EA26F6D5DA3706C 5DA2706C5DA2706D495AA2706D495AA2706D495AA3706D49C7FCA2706D131EA2706D5BA2 716C5BA3716C5BA271EB81E0A271EBC3C0A271EBE780A27101FFC8FCA3715BA2715BA272 5AA2725AA2D93FFC6F5AB74DB712FEA2725AA2725A77527CD180>I<B600FC93B7FC8181 A282D800076E9239003FFC0070EE07E08282A28202EF7F02E77F02E380A202E18002E080 6F7F6F7F6F7FA26F7F6F7F6F806F80A26F80707F707F707F707FA2707F70807080708085 83717F717F717F717FA27114807114C07114E07213F07213F8A27213FC7213FE7213FF72 1487A27214C77214E77313F77313FF85A285858585A28586868686A286868686A2D93FFC 187FB7173F1B1F1B0F1B07755A60527CD169>I<93380FFFC00303B6FC031F15E092B712 FC0203D9FC0013FF020F01C0010F13C0023F90C7000313F0DA7FFC02007F494848ED7FFE 4901E0ED1FFF49496F7F49496F7F4990C96C7F49854948707F4948707FA24849717E4886 4A83481B804A83481BC0A2481BE04A83A2481BF0A348497113F8A5B51AFCAF6C1BF86E5F A46C1BF0A26E5F6C1BE0A36C6D4D13C0A26C6D4D1380A26C1B006C6D4D5A6E5E6C626D6C 4C5B6D6D4B5B6D6D4B5B6D6D4B5B6D6D4B5B6D6D4B90C7FC6D6D4B5A6D01FF02035B023F 01E0011F13F0020F01FC90B512C0020390B7C8FC020016FC031F15E0030392C9FCDB001F 13E0565479D265>I<BAFC19F819FF1AE086D8000701F0C7001F13FC060113FF726C1380 7313C0070F13E01BF0857313F81BFCA27313FEA41BFFA81BFEA31BFC61A21BF84F13F04F 13E0614F13C04F13004E485A061F5B92B812F01AC04FC7FC19E003F8CBFCB3AEB812C0A5 50527CD15C>I<B912F0F0FF8019F819FF1AC0D8000701F0C714F0060F7F060113FE727F 737F737F85737F87A2737FA387A863A2616363A24F5B4F5B4F90C8FC4F5A06035B060F13 F095B512C092B8C9FC19F819E019F89226F0000313FE9439007FFF80727F727F727F727F 727F8684A28684A787A71D1C75133EA38575137E73157C7513FC731401B86C6D9038F803 F807039038FE07F07390B512E0736C14C0080F1400CEEA7FFC5F537CD164>82 D<91260FFF80130791B500F85B010702FF5B011FEDC03F49EDF07F9026FFFC006D5A4801 E0EB0FFD4801800101B5FC4848C87E48488149150F001F824981123F4981007F82A28412 FF84A27FA26D82A27F7F6D93C7FC14C06C13F014FF15F86CECFF8016FC6CEDFFC017F06C 16FC6C16FF6C17C06C836C836D826D82010F821303010082021F16801400030F15C0ED00 7F040714E01600173F050F13F08383A200788200F882A3187FA27EA219E07EA26CEFFFC0 A27F6D4B13806D17006D5D01FC4B5A01FF4B5A02C04A5A02F8EC7FF0903B1FFFC003FFE0 486C90B65AD8FC0393C7FC48C66C14FC48010F14F048D9007F90C8FC3C5479D24B>I<00 3FBC1280A59126C0003F9038C0007F49C71607D87FF8060113C001E08449197F49193F90 C8171FA2007E1A0FA3007C1A07A500FC1BE0481A03A6C994C7FCB3B3AC91B912F0A55351 7BD05E>I<B800C00103B612FCA5D8000701F8CAEBF000F31F80B3B3B11B3FA26D97C7FC 81637F1B7E6D6D17FE505A6E7E505A6E6D15076E4D5A6E6D4B5A6E6D4B5A6E01F84B5A6E 6DDA03FFC8FC6E6CB46CEB0FFE6F9039F001FFF8030F90B65A030316C0DB007F92C9FC04 0F14F8DC007F13805E537CD167>I<B700FE031FB512FEA5D8001F01F0CA383FFE00F307 F06D626F170F6D62811B1F6D6D601B3F6D97C7FC6F5F6D197E821BFE6E6D5E1A016E6D5E 1A036E60701507A26E6D5E1A0F6E6D5E1A1F6E6070153FA26E6D93C8FC626E6E147E1AFE 6F5E711301A26F6D5C19036F6D5C19076F5E71130FA26F6D5C191F6F6D5C193F6F93C9FC 715BA26FEC807E19FE706D5A18C1705C18E3705C18F318F770EBFFE0A2705CA2705CA370 91CAFCA2705BA2715AA3715AA2715AA2715A715A5F537DD166>I E %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu cmr12 12 91 /Fu 91 128 df<1618163CA2167EA216FFA24B7FA24B6C7EA29238063FE0A24B6C7EA24B 6C7EA292383807FC153092387003FE15609238E001FF15C002016D7F5D02036E7E92C7FC 4A6E7E1406020E6E7E140C021C6E7E141802386E7E143002706E7E146002E06E7E5C0101 6F7F5C0103707E91C9FC183F010683181F4983180F49831807498318034983A249707EA2 4848701380A248CBEA7FC0A20006F03FE0A248F01FF0A2001FBA12F8A24819FCA24819FE A2BCFC48477CC651>1 D<BAFCA3D87FE0C8123F050313806C6CED007F6C6C163F181F6C 6C160F6C6C160718036C6C17C06C1701806C7F017F1600806D7E011F17E06E16606D7E13 076E16006D7E7F816D7F147F816E7E141F816E7E1407A214036E5A5D6E5A4A5A4A5A92CA FC5C140E5C4A16605C5C4A16E0010117C0495A49CAFC010E16015B5B4916030160178001 E016074848160F4848161F48CA123F000E177F48EE03FF0018167F003FB912005ABAFCA2 3B447BC346>6 D<ED7FF0020FB57E91393FC01FE09139FE0003F8D903F8EB00FED90FE0 EC3F8049486E7ED97F80EC0FF049C86C7E48486F7E48486F7E00078349814848EE7F80A2 001F18C049163F003F18E0A34848EE1FF0AA6C6CEE3FE0A4001F18C06D167F000F1880A2 6C6CEEFF00A200035F6D150100015F00005F6D1503017E5E017F15076D5E6D5E6E140F01 0F5E010793C7FC6E5C0103151E00C018186D6C5CA2D86000033813306E147802701470A2 0070013002601370003018600038013802E013E0263FFFF891B5FCA36C18C0A33D467CC5 46>10 D<9239FFC001FC020F9038F80FFF913B3F803E3F03C0913BFC00077E07E0D903F8 90390FFC0FF0494890383FF81F4948EB7FF0495A494814E049C7FCF00FE04991393FC003 8049021F90C7FCAFB912F0A3C648C7D81FC0C7FCB3B2486CEC3FF0007FD9FC0FB512E0A3 3C467EC539>I<4AB4FC020F13E091387F80F8903901FC001C49487FD907E0130F494813 7F011FECFF80495A49C7FCA25B49EC7F00163E93C7FCACEE3F80B8FCA3C648C7FC167F16 3FB3B0486CEC7FC0007FD9FC1FB5FCA330467EC536>I<913801FFC0020FEBFB8091387F 803F903801FC00494813FFEB07E0EB1FC0A2495A49C7FC167F49143F5BAFB8FCA3C648C7 123FB3B2486CEC7FC0007FD9FC1FB5FCA330467EC536>I<DBFF80EB3FE0020F9039F001 FFFC913B3F807C0FF01F913CFC000E3F800380D903F86D48486C7E4948D90FFC804948D9 3FF8130F4948017F4A7E49485C49C75BA25B494B6D5A041F6E5A96C8FCACF107F0BBFCA3 C648C7391FC0001F190F1907B3B0486C4A6C497E007FD9FC0FB50083B512E0A34B467EC5 51>I<131F1480133F137FA2EBFF00485A485A5B485A485A138048C7FC123E123C5A12E0 124011126CC431>19 D<B712C0A3220379B931>22 D<001EEB03C0397F800FF000FF131F 01C013F8A201E013FCA3007F130F391E6003CC0000EB000CA401E0131C491318A3000114 384913300003147090C712604814E0000614C0000E130148EB038048EB070048130E0060 130C1E1D7DC431>34 D<D91F801618D97FE0163CD9F078167C2603E01C16FC48486C4B5A 260F800F4B5A6E6C1407271F0003E04A5A6FEC3FC0003ED901BE14FF923ACFC00FCF8000 7ED900C1B5001FC7FC9238C03FF0007C92C7123E6F147E00FC0260147C601701604D5A17 07604D5A171F95C8FC173E007C02E0137E4B137C007E5E1601003E01015C4B485A6C1303 4B485A6C6C48130F020E5C2607C00C49C9FC2603E01C5B2600F078133ED97FE05BD91F80 01FCEB03F090C848EB0FFC4B48EB1E0F030391387C03804CEBF801922707C001F013C003 0FED00E04C48481360DB1F0015704D481330033E1638037E010F1418157C4B5C0201171C 4B011F140C4A5A14075D4A5A141F92C7FC143E147E147C5C0101030F141C4A1718494881 A2494802071438010F18304A6E6C137049C81560496F6C13E0013EEF01C049DB00F81380 01FCEE7C034993381E0F0049EE0FFC0160EE03F046517BCA51>37 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A 1206120E5A5A5A12600B1D78C41B>39 D<140C141C1438147014E0EB01C01303EB0780EB 0F00A2131E5BA25B13F85B12015B1203A2485AA3485AA348C7FCA35AA2123EA2127EA412 7CA312FCB3A2127CA3127EA4123EA2123FA27EA36C7EA36C7EA36C7EA212017F12007F13 787FA27F7FA2EB0780EB03C01301EB00E014701438141C140C166476CA26>I<12C07E12 707E7E7E120F6C7E6C7EA26C7E6C7EA21378137C133C133E131E131FA2EB0F80A3EB07C0 A3EB03E0A314F0A21301A214F8A41300A314FCB3A214F8A31301A414F0A21303A214E0A3 EB07C0A3EB0F80A3EB1F00A2131E133E133C137C13785BA2485A485AA2485A48C7FC120E 5A5A5A5A5A16647BCA26>I<16C04B7EB3AB007FBAFCBB1280A26C1900C8D801E0C9FCB3 AB6F5A41407BB84C>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0 A312011380120313005A1206120E5A5A5A12600B1D78891B>I<B612C0A61A067F9721>I< 121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B>I<1618163C167CA2167816F8A2 16F01501A216E01503A216C01507A21680150FA2ED1F00A2151E153EA2153C157CA21578 15F8A25D1401A24A5AA25D1407A25D140FA292C7FC5CA2141E143EA2143C147CA25CA25C 1301A25C1303A25C1307A25C130FA291C8FC5BA2133EA2133C137CA2137813F8A25B1201 A25B1203A2485AA25B120FA290C9FC5AA2121E123EA2123C127CA2127812F8A25A126026 647BCA31>I<14FF010713E090381F81F890383E007C01FC133F4848EB1F8049130F4848 EB07C04848EB03E0A2000F15F0491301001F15F8A2003F15FCA390C8FC4815FEA54815FF B3A46C15FEA56D1301003F15FCA3001F15F8A26C6CEB03F0A36C6CEB07E0000315C06D13 0F6C6CEB1F806C6CEB3F00013E137C90381F81F8903807FFE0010090C7FC28447CC131> I<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6FCA3204278 C131>I<EB03FE90381FFFC0017F13F03901F80FFC3903C001FE48486C7E000EC7EA7F80 48EC3FC0ED1FE04815F00030140F007015F800601407126CB415FC7F7F1503A46C481307 6CC7FCC8FC16F8A2150F16F0151F16E0A2ED3FC0ED7F8016005D5D4A5A4A5A4A5A5D4A5A 4A5A4AC7FC147C5C5C495A495A495A49C7120C131E5B013814185B5B485A4848143848C8 1230000E1570001FB612F0A25A5AB712E0A326427BC131>I<49B4FC010F13E0013F13FC 9038FE01FE3A01F0007F80D803C0EB3FC048C7EA1FE0120EED0FF0EA0FE0486C14F8A215 077F5BA26C48130FEA03C0C813F0A3ED1FE0A2ED3FC01680ED7F0015FE4A5AEC03F0EC1F C0D90FFFC7FC15F090380001FCEC007FED3F80ED1FC0ED0FE016F0ED07F816FC150316FE A2150116FFA3121EEA7F80487EA416FE491303A2007EC713FC00701407003015F8003814 0F6C15F06CEC1FE06C6CEB3FC0D803E0EB7F803A01FE01FE0039007FFFF8010F13E00101 90C7FC28447CC131>I<ED0380A21507150FA2151F153FA2157F15FFA25CEC03BF153F14 071406140C141C141814301470146014C013011480EB03005B13065B131C13185B137013 6013E0485A5B120390C7FC1206120E120C5A123812305A12E0B812C0A3C8383F8000ADED FFE0027FEBFFC0A32A437DC231>I<000615C0D807C0130701FCEB7F8090B612005D5D5D 15E0158026063FFCC7FC90C9FCAE14FF010713C090381F01F090383800FC01F0137ED807 C07F49EB1F8016C090C7120F000615E0C8EA07F0A316F81503A216FCA5123E127F487EA4 16F890C712075A006015F0A20070140F003015E00038EC1FC07E001EEC3F806CEC7F006C 6C13FE6C6C485A3901F807F039007FFFE0011F90C7FCEB07F826447BC131>I<EC07FCEC 3FFF91B512C0903903FC03E0903907E000F0D91FC0133849C71258017EEB01FC01FE1303 491307485A485AA24848EB03F8000FEC01F092C7FC485AA3485AA3127FA29038007F8090 3801FFF090380780FC39FF0E003E49EB1F8049EB0FC049EB07E0136001E0EB03F04914F8 150116FC5BED00FEA390C812FFA47EA57F123FA216FE121F15016D14FC120FED03F86C7E ED07F06C6C14E06C6CEB0FC06C6CEB1F80017EEB3F0090383F80FE90380FFFF8010313E0 0100138028447CC131>I<121CA2EA1F8090B712C0A3481680A217005E0038C8120C0030 151C00705D0060153016705E5E4814014B5A4BC7FCC81206150E5D151815385D156015E0 4A5AA24A5A140792C8FC5CA25C141E143EA2147E147CA214FCA21301A3495AA41307A613 0FAA6D5AEB01C02A457BC231>I<14FF010713E0011F13F890387F00FE01FC133FD801F0 EB1F804848EB0FC049EB07E00007EC03F048481301A290C713F8481400A47FA26D130116 F07F6C6CEB03E013FC6C6CEB07C09039FF800F806C9038C01F006CEBF03EECF87839007F FEF090383FFFC07F01077F6D13F8497F90381E7FFFD97C1F1380496C13C02601E00313E0 48486C13F000079038007FF84848EB3FFC48C7120F003EEC07FE150148140016FF167F48 153FA2161FA56C151E007C153EA2007E153C003E157C6C15F86DEB01F06C6CEB03E06C6C EB07C0D803F8EB1F80C6B4EBFF0090383FFFFC010F13F00101138028447CC131>I<14FF 010713E0011F13F890387F80FC9038FC007E48487F4848EB1F804848EB0FC0000FEC07E0 485AED03F0485A16F8007F140190C713FCA25AA216FE1500A516FFA46C5CA36C7E5D121F 7F000F5C6C6C1306150E6C6C5B6C6C5BD8007C5B90383F01E090390FFF80FE903801FE00 90C8FC150116FCA4ED03F8A216F0D80F801307486C14E0486C130F16C0ED1F80A249EB3F 0049137E001EC75A001C495A000F495A3907E01FE06CB51280C649C7FCEB1FF028447CC1 31>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121EEA7F80A2EAFFC0A4EA7F 80A2EA1E000A2B78AA1B>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121E12 7FEAFF80A213C0A4127F121E1200A512011380A3120313005A1206120E120C121C5A5A12 600A3E78AA1B>I<007FBAFCBB1280A26C1900CEFCB0007FBAFCBB1280A26C190041187B A44C>61 D<EB0FFC90387FFFC03901F007F039078001FC000EC77E48147F48EC3F804815 C00060141F00FE15E07E7FA56CC7FC001CEC3FC0C8FCED7F80A2EDFF004A5AEC03F84A5A 5D4A5A4A5A92C7FC143E143C5CA2147014F05CA25C1301A35CA990C9FCAAEB03C0EB0FF0 A2497EA46D5AA2EB03C023467BC52E>63 D<16C04B7EA34B7EA34B7EA34B7EA3ED19FEA3 ED30FFA203707FED607FA203E07FEDC03FA2020180ED801FA2DA03007F160FA202068016 07A24A6D7EA34A6D7EA34A6D7EA20270810260147FA202E08191B7FCA249820280C7121F A249C87F170FA20106821707A2496F7EA3496F7EA3496F7EA201788313F8486C83D80FFF 03037FB500E0027FEBFFC0A342477DC649>65 D<B8FC17E017FC00019039C00003FF6C6C 4801007FEF3FC0717E717E717E84170384170184A760A21703601707604D5A4D5AEF7FC0 4DC7FCEE03FEEE3FF091B65A17FC0280C7B47EEF1FC0EF0FF0717E717E717E717E198018 7F19C0A2183F19E0A8F07FC0A2198018FF4D1300A24D5AEF0FFC4D5AEF7FE048486C9038 03FFC0B9C7FC17FC17C03B447CC345>I<DB0FFE146092B500C013E0020314F0913A0FFC 01FC0191393FC0003E02FFC7EA0F83D903FCEC03C74948EC01E74948EC00FF4948157F49 48153F4948151F49C9120F485A491607120348481603A248481601A248481600A2123FA2 491760127FA31900485AAE6C7EA21960A2123F7FA2001F18E07F000F18C0A26C6C160119 806C6C160312016DEE07006C6C16066D6C150E6D6C5D6D6C5D6D6C15786D6C5D6D6C4A5A D900FFEC0780DA3FC0011FC7FCDA0FFC13FC0203B512F0020014C0DB0FFEC8FC3B487BC5 46>I<B8FC17F017FC00019039C00007FF6C499038007FC0017FED1FE0EF07F0EF03FC71 7E717E84727E727E727EA2727E85180385A2180185A38584A31A80AD1A00A36061A36118 0361180761180F614E5A183F614EC7FC18FEEF03FC4D5AEF1FE001FFED7FC0486DD907FF C8FCB812FC17F094C9FC41447CC34B>I<B912F8A3000101C0C7127F6C6C48EC07FC1701 1700187C183C181CA284A31806A4180704067FA395C7FCA4160EA2161E163E16FE91B5FC A3EC8000163E161E160EA21606A319C0A3F0018093C7FCA41803A21900A260A260A2181E A2183E187EEF01FE170748486C147FB95AA33A447CC342>I<B912F0A3000101C0C7127F 6C6C48EC0FF817031701170018781838A2181CA3180CA4180E1806160CA21800A5161CA2 163C167CED01FC91B5FCA3EC8001ED007C163C161CA2160CA793C8FCB08048487EB612F8 A337447CC340>I<DB0FFE146092B500C013E0020314F0913A0FFC01FC0191393FC0003E 02FFC7EA0F83D903FCEC03C74948EC01E74948EC00FF4948157F4948153F4948151F49C9 120F485A491607120348481603A248481601A248481600A2123FA2491760127FA396C7FC 485AAD4CB612C06C7EA293C7387FF000725A003F171F7FA2121F7F120FA26C7EA26C7E6C 7EA26C7E6D7E6D6C153F6D7E6D6C157F6D6C15E7D903FEEC01C7D900FFEC0383DA3FE0EB 0F01DA0FFCEBFE000203B500F81360020002E090C7FCDB0FFEC9FC42487BC54D>I<B6D8 C003B6FCA3000101E0C70007138026007F80913801FE00B3A991B7FCA30280C71201B3AC 2601FFE0913807FF80B6D8C003B6FCA340447CC349>I<B612F0A3C6EBF0006D5A6D5AB3 B3B3A4497E497EB612F0A31C447DC323>I<010FB512FEA3D9000313806E130080B3B3AB 123F487E487EA44A5A13801300006C495A00705C6C13076C5C6C495A6CEB1F802603E07F C7FC3800FFFCEB1FE027467BC332>I<B600C049B512C0A3000101E0C8387FFC006C49ED 3FE06D481680063EC7FC183C183860604D5A4D5A4DC8FC171E17385F5F4C5A4C5A4CC9FC 160E5E5E5E5E4B5A4B7E4B7E150F4B7E4B7E1577EDE3FE913881C1FFEC8381DA87007F02 8E6D7E149C02B86D7E02F06D7E14C04A6D7E707EA2707E707EA2707F717EA2717E717EA2 717E717EA2717E717EA2717F8585496C82486D4A13FCB600C0011FEBFFE0A343447CC34C >I<B612F8A3000101E0C9FC6C6C5A5CB3B31830A418701860A518E0A3EF01C0A2170317 07A2170F173F177FEE01FF48486C011F1380B9FCA334447CC33D>I<B56C933807FFFC6E 5EA20001F1FE0026006FE0EE1BF8A3D967F01633A2D963F81663A3D961FC16C3A3D960FE ED0183A2027FED0303A36E6C1406A36E6C140CA26E6C1418A36E6C1430A36E6C1460A26E 6C14C0A36E6CEB0180A3037FEB0300A292383F8006A36F6C5AA36F6C5AA26F6C5AA36F6C 5AA36F6C5AA26FB45AA370C7FC13F0A2486C143ED80FFFEF0FFEB500F0011C0107B512FC A34E447BC359>I<B56C020FB5FC8080C6040013F06D6CED1F80D96FF8ED0F00A2D967FC 1506EB63FEA2EB61FF01607FA26E7E6E7EA26E7E6E7EA26E7E6E7EA26E7E6E7FA26F7E6F 7EA26F7E6F7EA26F7E6F7EA26F7E6F1380A2EE7FC0EE3FE0A2EE1FF0EE0FF8A2EE07FCEE 03FEA2EE01FF701386A2EF7FC6EF3FE6A2EF1FF6EF0FFEA217071703A217011700A201F0 167E183E487ED80FFF161EB500F0150EA2180640447CC349>I<ED1FFC4AB512C0913907 F007F091391F8000FC027EC7123FD901F8EC0FC049486E7E49486E7E49486E7E49486E7E 49C9127E017E8201FE834848707E4848707EA24848707EA2000F84491603001F84A24848 707EA3007F84A24982A300FF1980AD6C6C4C1300A4003F606D1603A2001F60A26C6C4C5A A26C6C4C5AA20003606D161F6C6C4C5A000060017F4CC7FC6E5D013F5E6D6C4A5AD907E0 EC03F06D6C4A5AD901FCEC1FC0D9007E4AC8FCDA1F8013FC913907F007F00201B512C091 26001FFCC9FC41487BC54C>I<B712FCEEFFC017F800019039C0000FFC6C6C48EB01FF93 38007F80EF1FE0170FEF07F018F8EF03FCA218FE1701A218FFA718FEA2170318FCA2EF07 F818F0EF0FE0EF1FC0EF7F80933801FE00EE0FFC91B612F017800280C9FCB3AA3801FFE0 B612C0A338447CC342>I<ED1FFC4AB512C0913907F007F091391F8000FC027EC7123F49 48EC1FC0D903F0EC07E049486E7E49486E7E49486E7E49C9127E49167F01FE707E484870 7E00038449160F000784491607000F84A24848707EA2003F84491601A2007F84A34982A2 00FF1980AD007F19006D5EA3003F60A26D1603001F60A2000F606D16070007606DD903F0 130F0003DA0FFC5C6DD91C0E131F00014A6C5C6C6C903A3003803F80017FD9700149C7FC 92386000C0D93F8015FED91FC0ECE1FCD907E0EC63F0D903F0EC77E0902601FC70EB7FC0 9026007E3091C8FCDA1FB813FC912707FC07F814C00201B57E9139001FFC3C92C7FC053E 1301171E051F13031A80F08007F0C00F94380FF03F95B51200A28361715BA2715B943800 7FE0F01F8042597BC54C>I<B712E016FF17C000019039C0003FF86C6C48EB03FCEE00FF 717E717E717E717E717EA284170384A760A21707604D5AA24D5A4D5A4DC8FCEE01FEEE07 F8EE3FE091B6C9FC16FC913980007F80EE0FE0707EEE03FC707E160083717EA2717EA784 A71A6084171FA21AE0716C13C02601FFE002071301B600C01680943801FC03943900FE07 00CBEA3FFEF007F843467CC348>I<49B41303010FEBE007013F13F89039FE00FE0FD801 F8131FD807E0EB079F49EB03DF48486DB4FC48C8FC4881003E81127E82127C00FC81A282 A37E82A27EA26C6C91C7FC7F7FEA3FF813FE381FFFE06C13FE6CEBFFE06C14FC6C14FF6C 15C0013F14F0010F80010180D9001F7F14019138001FFF03031380816F13C0167F163F16 1F17E000C0150FA31607A37EA36C16C0160F7E17806C151F6C16006C5D6D147ED8FBC05C D8F9F0495AD8F07C495A90393FC00FE0D8E00FB51280010149C7FC39C0003FF02B487BC5 36>I<003FB912F8A3903BF0001FF8001F01806D481303003EC7150048187C0078183CA2 0070181CA30060180CA5481806A5C81600B3B3A54B7EED7FFE49B77EA33F447DC346>I< B600C0010FB5FCA3000101E0C813F026007F80ED1F80F00F00A21806B3B3A7180E6D6C15 0CA2181C131F6E1518010F163818306D6C1570606D6C14016D6C5D6D6CEC0780027F4AC7 FC6E6C131EDA1FE0137C913907FC03F00201B55A6E6C1380DB07FCC8FC40467CC349>I< B692383FFFF0A3000301E003071300C649ED01FC4A5E017F705A6E5E133F616E1501011F 5FA26D6C4BC7FCA28001071606A26E150E0103160CA26D6C5DA2806D5EA26F1470027F15 6081023F5DA281021F4A5AA26F1303020F92C8FC8102071406A26F130E0203140CA26E6C 5BA2816E5CA2EE8070037F1360A26F6C5AA216E092381FE180A216F3030F90C9FC16FBED 07FEA36F5AA36F5AA26F5AA3166044467EC349>I<B60107B500F890380FFFFEA3000301 E0D9001F90C813F06C0180DA0FFCED3FC091C86C48ED1F006C871C0E6D6C6E7E1C0CA26D 6C6F5DA36EDA06FF1538011F1A30A26E020E6D1470010FDB0C7F1560A26E021C7F0107DB 183F5DA2856D6CDA301F4A5AA36D6C4A6C6C49C7FCA36D6C4A6C6C1306A3DB80016E130E 027FDA8003140CA2DBC00380023FDA00015CA203E081021F01066D5CA36E6C486E6C5AA3 6E6C486E6C5AA36F48EC1FE1020360A2DBFE7015F302010160020F90C8FCA2DBFFE015FB 6E49EC07FEA36F486E5AA36FC86C5AA3031E6F5AA4030C16605F467EC364>I<003FB500 E0011FB5FCA3C691C7000713E0D93FFC020190C7FC6D4815FC010F6F5A6D6C15E0A26D6C 4A5A6D6C5D4DC8FC6D6D5B6E6C13065F6E6C131C6E6C13185F6E6C13706E6C13605F9138 03FE01DA01FF5B4CC9FC6E1387ED7FC616CCED3FFC6F5A5E6F7E6F7EA26F7E82A203067F 150E92380C7FC04B6C7E15389238301FF04B6C7E15E04B6C7E4A486C7E14034B6C7E0206 6D7F140E020C6E7E4A6E7E143802306E7E4A6E7E14E04A6E7E49486E7E130349C86C7E49 6F7F5B496C8201FF83000701E0020313F8B500F8021FEBFFF0A344447EC349>I<B66C91 380FFFFCA3000101F8C8000313C026007FE0923800FE0061013F17F06D6C5E80010F5F6D 6C4B5A18036D6C93C7FC6E15066D160E6D6D140C181C6E6C14186E6C5C18706E6C146018 E06E6C5C6E6C495A17036E6C91C8FC5F6E6C13066E6D5A171C92387FC0185FED3FE06F6C 5A17E06F6C5AEEF980ED07FF6F90C9FCA26F5AB3A6923807FF800203B6FCA346447FC349 >I<001FB81280A39126800001130001FCC7FC01F04A5A01C04A5A5B90C8485A121E4C5A 484B5AA200384B5A4C5AA24B90C7FC00304A5AA24B5AA24B5AC8485AA24B5A4B5AA24B5A 5C93C8FC4A5AA24A5A4A5AA24A5A4A5AA24A5A14FF5D4990C9FCEF0180495A495AA2495A 494814031800495AA2495A495A5F4890C8FC485A5F485A48485D5F48485D17FE48481403 4848140F16FFB8FCA331447BC33C>I<EAFFFCA4EAF000B3B3B3B3B3A2EAFFFCA40E6476 CA1B>I<01C01318000114384848137048C712E0000EEB01C0000C1480001C1303001814 0000385B003013060070130E0060130CA300E0131C481318A400CFEB19E039FFC01FF801 E013FCA3007F130FA2003F130701C013F8390F0001E01E1D71C431>I<EAFFFCA4EA003C B3B3B3B3B3A2EAFFFCA40E647ECA1B>I<130C131E133F497EEBF3C03801E1E03803C0F0 3807807848487E001E7F487F0070EB038048EB01C00040EB00801A0E75C331>I<EB07FC 90383FFF809038F80FE03903C003F048C66C7E000E6D7ED80FC0137E486C137F6D6D7EA3 6F7EA26C5AEA0380C8FCA4EC0FFF49B5FC90380FFE1FEB3FC0EBFF00EA03FC485A485A48 5A485A127F5B176048C7FCA3153FA36D137F007F14EF6D9038C7E0C0003F13013A1FE007 83F13B07F81E03FF802701FFFC0113003A001FE0007C2B2E7CAC31>97 D<EA01FC12FFA3120712031201B3EC03FC91380FFF8091383C07E091387001F89039FDE0 007E02807F01FFEC1F8091C713C049EC0FE049140717F0A2EE03F8A217FCA2160117FEAB 17FC1603A217F8A2EE07F0A26DEC0FE017C06D141F01FBEC3F80D9F380EB7E00D9E1C05B 9039E0F001F89039C03C07E09039801FFF80C7D803FCC7FC2F467DC436>I<EC7F809038 03FFF090380FC07C90383F000F01FCEB03804848EB01C00003140F4848EB1FE049133F12 0F485AA2485AED1FC0007FEC070092C7FCA290C9FC5AAB7E7FA2123F16307F001F15706C 6C146016E06C6C14C06C6C13010001EC03806C6CEB0700013F131E90381FC078903807FF F001001380242E7DAC2B>I<167FED3FFFA315018182B3EC7F80903803FFF090380FC07C 90383F000E017E1307496D5AD803F87F48487F5B000F81485AA2485AA2127FA290C8FC5A AB7E7FA2123FA26C7EA2000F5D7F6C6C5B00035C6C6C9038077F806C6C010E13C0013F01 1C13FE90380FC0F8903803FFE09026007F0013002F467DC436>I<EB01FE903807FFC090 381F03F090387E00FC49137E48487F485A4848EB1F80000F15C049130F121F484814E015 07A2007F15F090C7FCA25AA390B6FCA290C9FCA67EA27FA2123F16306C7E1670000F1560 6D14E06C6C14C0000314016C6CEB03806C6CEB0700013E131E90381F80F8903803FFE001 0090C7FC242E7DAC2B>I<EC0FE0EC7FF8903801F81E903803F03F90390FE07F8090381F C0FF5C133F495AA2ED7F0001FE131C92C7FCAFB67EA3C648C8FCB3B2486C7E007F13FFA3 21467EC51E>I<EE0F80D901FCEB7FE0903A0FFF81F0F090393F07E3819039FC01FF033A 01F800FE014848017E13E00007027FC7FC497F000F8149131F001F81A9000F5D6D133F00 0792C7FC6D5B0003147E6C6C5B6D485A3903BF07E090380FFF80260701FCC8FC90CAFCA2 5AA37F6C7E7F90B512F86C14FF16E06C15F86C6C8048B67E3A07C0000FFF48481300003F C8EA3F80003E151F48ED0FC0A2481507A56C150F007C1680007E151F003E16006C153E6C 6C5CD807E0495AD801F8EB07E0D8007FEB3F8090261FFFFEC7FC010113E02C427DAC31> I<EA01FC12FFA3120712031201B3EC01FE913807FFC091381E07F091383801F802707FEC E000D9FDC07F5C01FF147F91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FEA32F457DC4 36>I<EA01E0EA07F8A2487EA46C5AA2EA01E0C8FCADEA01FC12FFA3120712031201B3B0 487EB512F8A315437DC21C>I<143C14FFA2491380A46D1300A2143C91C7FCADEC7F80EB 3FFFA31300147F143FB3B3AA123E127F39FF807F00A2147EA25C6C485A383C01F06C485A 3807FF80D801FEC7FC195785C21E>I<EA01FC12FFA3120712031201B3A292381FFFE0A3 6F1300ED07F816E05E5E030EC7FC5D5D5D5D4A5A4A5A4AC8FC5CEC3F804A7E14FF9038FD CFE09038FF8FF01407496C7E01FC7F14016E7E81816F7E82151F6F7E821507826F7E8282 486C491380B5D8F81F13F8A32D457DC433>I<EA01FC12FFA3120712031201B3B3B3A548 7EB512F8A315457DC41C>I<D801FC01FFEC1FE000FF010701E0EBFFFC913B0F03F801E0 7F913C3C01FC07803F800007903C7000FE0E001FC0000349D97E1C130F2601FDC0D97F38 804A143001FFDA3FF06D7E91C75BA2495DA3495DB3A8486C4A6C497EB5D8F81FB50003B5 12E0A34B2C7DAB52>I<3901FC01FE00FF903807FFC091381E07F091383801F800070170 7F0003EBE0002601FDC07F5C01FF147F91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FE A32F2C7DAB36>I<EC7F80903803FFF090380FC0FC90383E001F496D7E496D7E48486D7E 48486D7E48486D7E000F81A24848147E003F157FA290C87E481680A44816C0AA6C1680A2 6D147F003F1600A2001F157E6D14FE000F5D6D130100075D6C6C495A6C6C495A6C6C495A 013E49C7FC90381FC0FE903807FFF89038007F802A2E7DAC31>I<3901FC03FC00FF9038 0FFF8091383C07E091387001F83A07FDE000FE00010180137F01FFEC3F8091C7EA1FC049 15E049140F17F0160717F8160317FCA3EE01FEABEE03FCA3EE07F8A217F0160F6D15E0EE 1FC06D143F17806EEB7E00D9FDC05B9039FCF003F891383C0FE091381FFF80DA03FCC7FC 91C9FCAE487EB512F8A32F3F7DAB36>I<91387F8003903903FFE00790380FE07890393F 801C0F90387E000E496D5AD803F8EB039F0007EC01BF4914FF48487F121F5B003F81A248 5AA348C8FCAB6C7EA3123F7F121F6D5C120F6D5B12076C6C5B6C6C497E6C6C130E013F13 1C90380FC0F8903803FFE09038007F0091C7FCAEEEFF80033F13FEA32F3F7DAB33>I<39 03F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF3803F9C000015B13FBEC007E153C01FF 13005BA45BB3A748B4FCB512FEA3202C7DAB26>I<90383FE0183901FFFC383907E01F78 390F0003F8001E1301481300007C1478127800F81438A21518A27EA27E6C6C13006C7E13 FC383FFFE06C13FC6C13FF6C14C06C14E0C614F0011F13F81300EC0FFC140300C0EB01FE 1400157E7E153EA27EA36C143C6C147C15786C14F86CEB01F039F38003E039F1F00F8039 E07FFE0038C00FF01F2E7DAC26>I<1306A5130EA4131EA3133E137EA213FE1201120700 1FB512F0B6FCA2C648C7FCB3A4150CAA017E131C017F1318A26D133890381F8030ECC070 903807E0E0903801FFC09038007F001E3E7EBC26>I<D801FC147F00FFEC3FFFA3000714 01000380000181B3A85EA35DA212006D5B017E9038077F80017F010E13C06D011C13FE90 380FC078903803FFF09026007F8013002F2D7DAB36>I<B539F001FFFCA3000790C7EA7F E06C48EC1F8000011600160E1200160C017F5CA280013F5CA26E1370011F146080010F5C A2ECF00101075CA26D6C48C7FCA26E5A01011306A26D6C5AA214FF6E5AA215B8EC3FB015 F06E5AA36E5AA26E5AA36EC8FC2E2C7EAA33>I<B500E0B539E03FFF80A30007903C000F FE000FFC00D803FCD903F8EB03F8F001E0120103015D6D80000060A26D6E13036DD9037E 91C7FCA20280017F5B013FD9063F1306A2D91FC06E5AED0C1FA2D90FE06E5AED180FA2D9 07F06E5AED3007A2D903F86E5AED6003A2902601FCE06D5AEDC00117FCD900FFECFD80ED 800017FF027F92C8FC92C77EA26E147E023E143EA2021E143C021C141CA2412C7EAA46> I<B539F007FFFCA30003D9C00113C0C6496C1300017F14FC013F5C6E13E06D7E010F495A 6D6C485A02F890C7FC903803FC060101130E6E5A903800FF186E5AEC3FF05D141F140F6E 7E81140FEC0DFCEC19FEEC38FF4A7E9138603F8002C07F0101131F49486C7E02007F0106 6D7E010E1303496D7E013C80017C80D801FC1580D80FFE4913C0B5D8800F13FFA3302B7F AA33>I<B539F001FFFCA3000790C7EA7FE06C48EC1F8000011600160E0000150C6D141C 6D1418A26E1338013F1430A26D6C5BA26E13E0010F5CA26D6C485AA2ECF803010391C7FC A2903801FC06A2ECFE0E0100130CA2EC7F18A215B8EC3FB0A2EC1FE0A36E5AA26E5AA36E C8FCA21406A35CA25CA2123C007E5BB4FC5CA25CEAFE01387C0380D87007C9FCEA3C1EEA 0FFCEA03F02E3F7EAA33>I<003FB612E0A29038C0003F90C713C0003CEC7F800038ECFF 00A20030495A0070495AA24A5A0060495AA24A5A4A5AA2C7485A4AC7FC5B5C495A13075C 495A131F4A1360495A495AA249C712C0485AA2485A485A1501485A48481303A24848EB07 804848131F00FF14FF90B6FCA2232B7DAA2B>I<01F81302D803FE13073907FF800E48EB E01C391F1FF8F8393807FFF0D8700113E039E0007FC00040EB1F00200978C131>126 D<001EEB0780007FEB0FE039FF801FF0EBC03FA4EB801F397F000FE0001EEB07801C0A76 C231>I E %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop Black Black Black Black 1241 274 a Fu(The)33 b(Univ)m(ersit)m(y)h(of)e(Southern)h(Mississippi)p Black Black 625 781 a Ft(P)-11 b(ARALLEL)44 b(MONTE)g(CARLO)h(COMPUT)-11 b(A)g(TION)1134 1051 y(OF)44 b(INV)-15 b(ARIANT)44 b(MEASURES)p Black Black 2019 1279 a Fu(b)m(y)p Black Black 1644 1508 a(Zizhong)31 b(John)i(W)-8 b(ang)p Black Black 1514 2084 a(Abstract)34 b(of)e(a)g(Dissertation)1333 2209 y(Submitted)g(to)g(the) h(Graduate)f(Sc)m(ho)s(ol)1185 2333 y(of)g(The)i(Univ)m(ersit)m(y)f(of) f(Southern)i(Mississippi)1175 2458 y(in)e(P)m(artial)e(F)-8 b(ul\014llmen)m(t)30 b(of)i(the)h(Requiremen)m(ts)1241 2582 y(for)f(the)h(Degree)g(of)f(Do)s(ctor)g(of)g(Philosoph)m(y)p Black Black 1803 5387 a(August)h(2000)p Black Black eop %%Page: 1 2 1 1 bop Black Black Black Black 1740 847 a Fs(ABSTRA)m(CT)p Black Black 625 1354 a Ft(P)-11 b(ARALLEL)44 b(MONTE)g(CARLO)h(COMPUT) -11 b(A)g(TION)1134 1624 y(OF)44 b(INV)-15 b(ARIANT)44 b(MEASURES)p Black Black 2002 1852 a Fu(b)m(y)1611 2039 y(Zizhong)32 b(John)h(W)-8 b(ang)1803 2300 y(August)33 b(2000)446 2694 y(In)f(recen)m(t)g(y)m(ears,)h(the)e(statistical)e (study)j(of)f(c)m(haotic)g(dynamical)e(systems)j(has)g(attracted)300 2814 y(tremendous)23 b(atten)m(tion)e(in)g(science)i(and)f (engineering.)40 b(In)22 b(doing)f(so)h(the)g(theory)h(and)f(metho)s (ds)300 2935 y(for)28 b(the)g(existence)i(and)f(computation)d(of)i (absolutely)g(con)m(tin)m(uous)h(in)m(v)-5 b(arian)m(t)27 b(measures)i(\(also)300 3055 y(called)44 b(ph)m(ysical)h(measures)h(in) e(ph)m(ysical)h(sciences\))i(ha)m(v)m(e)g(pla)m(y)m(ed)e(a)g(ma)5 b(jor)44 b(role.)81 b(In)45 b(this)300 3176 y(dissertation,)23 b(the)g(computational)c(problem)i(of)h(in)m(v)-5 b(arian)m(t)20 b(measures)j(is)f(studied)g(with)g(Ulam's)300 3296 y(metho)s(d,)38 b(com)m(bined)f(with)g(parallel)e(computing)h(tec)m(hniques)k(and)d(a)g (kind)h(of)f(Mon)m(te)h(Carlo)300 3416 y(approac)m(h.)446 3537 y(Let)j Fr(S)46 b Fu(:)40 b([0)p Fr(;)17 b Fu(1])40 b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])39 b(b)s(e)h(a)g(nonsingular)f (transformation)f(and)i(let)f Fr(P)54 b Fu(:)40 b Fr(L)3443 3501 y Fp(1)3483 3537 y Fu(\(0)p Fr(;)17 b Fu(1\))39 b Fq(!)300 3657 y Fr(L)366 3621 y Fp(1)406 3657 y Fu(\(0)p Fr(;)17 b Fu(1\))44 b(b)s(e)i(the)g(corresp)s(onding)g(F)-8 b(rob)s(enius-P)m(erron)45 b(op)s(erator.)82 b(In)46 b(Ulam's)e(metho)s(d)h(w)m(e)300 3778 y(appro)m(ximate)37 b(the)i(in\014nite)e(dimensional)e(op)s(erator)j Fr(P)51 b Fu(with)38 b(a)f(\014nite)h(dimensional)e(one)i Fr(P)3793 3793 y Fo(n)300 3898 y Fu(obtained)j(via)g(a)g(Galerkin)f(pro)5 b(jection)41 b(on)m(to)h(the)g(subspace)h(of)e(piecewise)i(constan)m(t) f(func-)300 4018 y(tions)g(with)h(resp)s(ect)h(to)f(the)g(giv)m(en)g (partition)e(of)i(the)g(in)m(terv)-5 b(al)42 b([0)p Fr(;)17 b Fu(1],)45 b(and)e(then)h(w)m(e)g(solv)m(e)300 4139 y(the)39 b(\014xed)h(p)s(oin)m(t)d(problem)g(of)h(the)h(\014nite)f (dimensional)e(appro)m(ximation.)59 b(Since)39 b(in)f(general)300 4259 y(the)43 b(analytic)e(ev)-5 b(aluation)41 b(of)h(the)i(resulting)d (matrix)g(is)i(di\016cult)e(or)i(ev)m(en)h(imp)s(ossible,)f(w)m(e)300 4379 y(emplo)m(y)g(a)h(\\uniform)d(sampling")h(idea,)k(whic)m(h)e(is)f (a)h(deterministic)e(v)-5 b(arian)m(t)43 b(of)g(the)h(usual)300 4500 y(Mon)m(te)35 b(Carlo)e(metho)s(d)g(for)g(a)h(b)s(etter)g(p)s (erformance)g(and)g(is)f(called)g(the)i(quasi-Mon)m(te)f(Carlo)300 4620 y(metho)s(d)42 b(in)f(this)h(dissertation,)i(for)e(the)h(implemen) m(tation)c(of)j(Ulam's)f(metho)s(d.)72 b(T)-8 b(o)42 b(o)m(v)m(er-)300 4741 y(come)f(the)i(disadv)-5 b(an)m(tage)41 b(of)h(time-consuming)d(for)i(the)h(quasi-Mon)m(te)h(Carlo)d(metho)s (d,)k(w)m(e)300 4861 y(tak)m(e)30 b(adv)-5 b(an)m(tage)30 b(of)e(the)i(fact)f(that)g(the)h(ev)-5 b(aluation)28 b(of)h(the)g(en)m(tries)h(of)f(the)h(matrix)e(in)g(Ulam's)300 4981 y(metho)s(d)42 b(is)f(indep)s(enden)m(t)i(of)f(eac)m(h)h(other.)72 b(Th)m(us)44 b(a)e(natural)f(parallel)e(ev)-5 b(aluation)41 b(sc)m(heme)300 5102 y(is)34 b(prop)s(osed)h(in)f(this)g(w)m(ork.)51 b(Moreo)m(v)m(er,)37 b(w)m(e)e(presen)m(t)h(a)f(completely)e(parallel)f (algorithm)f(for)300 5222 y(the)e(computation)e(of)h(the)h(\014xed)g (densit)m(y)h(of)e(the)h(F)-8 b(rob)s(enius-P)m(erron)28 b(op)s(erator,)g(in)g(whic)m(h)h(not)300 5343 y(only)37 b(the)i(ev)-5 b(aluation)36 b(of)i(the)g(matrix)f(is)g(parallelized,)g (but)h(also)f(the)h(computation,)g(whic)m(h)300 5463 y(uses)f(the)g(iteration)d(algorithm)f(\(IA\))j(as)g(compared)g(with)g (the)g(Gaussian)g(algorithm)c(\(GA\),)p Black 2046 5764 a(1)p Black eop %%Page: 2 3 2 2 bop Black 3791 10 a Fu(2)p Black 300 274 a(of)35 b(the)h(\014xed)g(densit)m(y)h(of)e(the)g(matrix)f(is)h(parallelized.) 50 b(The)36 b(n)m(umerical)e(exp)s(erimen)m(ts)i(sho)m(w)300 395 y(that)31 b(the)h(new)g(algorithm)c(is)j(a)g(fast)g(and)h(reliable) d(n)m(umerical)g(sc)m(heme)k(for)e(the)g(computation)300 515 y(of)f(in)m(v)-5 b(arian)m(t)30 b(measures,)i(and)e(the)i(new)f (quasi-Mon)m(te)g(Carlo)f(approac)m(h)h(w)m(orks)h(m)m(uc)m(h)g(b)s (etter)300 635 y(than)d(the)g(Mon)m(te)g(Carlo)e(approac)m(h)i (initially)c(prop)s(osed)k(b)m(y)g(Hun)m(t)g(of)f(the)h(National)e (Institute)300 756 y(of)32 b(Standards)h(and)g(T)-8 b(ec)m(hnology)33 b(in)f(1994.)446 876 y(Besides)38 b(the)f(n)m(umerical)f(w)m(ork)h(men) m(tioned)g(ab)s(o)m(v)m(e,)h(w)m(e)g(also)e(presen)m(t)j(some)d (theoretical)300 997 y(w)m(ork)44 b(b)m(y)f(giving)e(a)i(rigorous)e (appro)m(ximation)g(order)i(analysis)f(for)g(the)h(metho)s(d)f(of)g (piece-)300 1117 y(wise)33 b(linear)f(Mark)m(o)m(v)i(\014nite)e(appro)m (ximations.)43 b(The)34 b(construction)f(of)f(this)h(piecewise)h (linear)300 1237 y(metho)s(d)40 b(is)g(for)g(the)g(purp)s(ose)i(of)d (impro)m(ving)g(the)i(con)m(v)m(ergence)i(rate)d(of)g(Ulam's)f (piecewise)300 1358 y(constan)m(t)e(metho)s(d.)52 b(In)36 b(the)g(dissertation)f(w)m(e)i(use)g(the)f(idea)f(of)g(appro)m (ximations)f(of)i(con)m(tin-)300 1478 y(uous)43 b(functions)f(b)m(y)i (a)e(sequence)j(of)d(p)s(ositiv)m(e)g(linear)f(op)s(erators)h(to)g(pro) m(v)m(e)i(that)e(the)h(error)300 1598 y(b)s(ound)29 b(for)g(the)h (piecewise)f(linear)f(Mark)m(o)m(v)i(metho)s(d)f(is)g(indeed)g Fr(O)s Fu(\()p Fr(h)2870 1562 y Fp(2)2909 1598 y Fu(\),)h(whic)m(h)f (is)g(compatible)300 1719 y(with)j(past)h(n)m(umerical)e(results.)446 1839 y(Lastly)-8 b(,)43 b(as)f(an)f(application)d(example,)43 b(the)f(computation)d(of)i(the)h(probabilit)m(y)d(densit)m(y)300 1960 y(function)i(\(PDF\))f(of)g(the)i(\014rst-order)f(digital)d(phase) k(lo)s(c)m(k)m(ed)g(lo)s(op)d(\(DPLL\))i(in)f(electronics)300 2080 y(is)c(discussed)i(with)e(our)g(parallel)e(quasi-Mon)m(te)j(Carlo) e(algorithm.)52 b(The)38 b(n)m(umerical)d(results)300 2200 y(sho)m(w)f(that)g(the)f(completely)g(parallel)d(quasi-Mon)m(te)k (Carlo)e(algorithm)e(computes)k(the)g(com-)300 2321 y(plicated)26 b(in)m(v)-5 b(arian)m(t)25 b(densit)m(y)j(m)m(uc)m(h)g(more)e (e\016cien)m(tly)h(than)g(the)h(original)23 b(\\op)s(erator)j(function) 300 2441 y(ev)-5 b(aluation)31 b(metho)s(d")h(used)h(b)m(y)h(some)e (researc)m(hers)j(in)d(this)g(\014eld.)p Black Black eop %%Page: 3 4 3 3 bop Black Black Black Black 1241 274 a Fu(The)33 b(Univ)m(ersit)m(y)h(of)e(Southern)h(Mississippi)p Black Black 625 781 a Ft(P)-11 b(ARALLEL)44 b(MONTE)g(CARLO)h(COMPUT)-11 b(A)g(TION)1111 1051 y(OF)44 b(INV)-15 b(ARIANT)44 b(MEASURES)p Black Black 2019 1505 a Fu(b)m(y)p Black Black 1644 1734 a(Zizhong)31 b(John)i(W)-8 b(ang)p Black Black 1760 2310 a(A)33 b(Dissertation)1333 2435 y(Submitted)f(to)g(the)h(Graduate)f(Sc) m(ho)s(ol)1185 2559 y(of)g(The)i(Univ)m(ersit)m(y)f(of)f(Southern)i (Mississippi)1175 2684 y(in)e(P)m(artial)e(F)-8 b(ul\014llmen)m(t)30 b(of)i(the)h(Requiremen)m(ts)1241 2809 y(for)f(the)h(Degree)g(of)f(Do)s (ctor)g(of)g(Philosoph)m(y)1986 3273 y(Appro)m(v)m(ed:)p 1986 3441 1854 4 v 1986 3568 a(Director)p 1986 3736 V 1986 3974 V 1986 4213 V 1986 4451 V 1986 4690 V 1986 4817 a(Dean)g(of)g(the)i(Graduate)e(Sc)m(ho)s(ol)p Black Black 1803 5387 a(August)h(2000)p Black Black eop %%Page: 2 5 2 4 bop Black Black Black Black 1112 150 a Fn(A)l(CKNO)l(WLEDGEMENTS) 479 851 y Fu(F)-8 b(or)40 b(their)g(assistance)h(in)f(the)h(course)g (of)f(m)m(y)g(do)s(ctoral)f(study)-8 b(,)44 b(man)m(y)c(p)s(eople)h (deserv)m(e)300 972 y(thanks.)65 b(Sp)s(ecial)38 b(thank)h(m)m(ust)h (go)e(to)h(m)m(y)h(advisor)f(Jiu)f(Ding)g(for)h(his)g(ongoing)e(helps)j (and)300 1092 y(supp)s(orts)32 b(in)e(m)m(y)h(progress)h(of)e(course)j (study)-8 b(,)32 b(researc)m(h,)h(m)m(y)e(job)g(h)m(un)m(ting,)g(and)g (other)h(\014elds.)300 1212 y(His)26 b(con)m(tin)m(ual)g(encouragemen)m (t,)j(advise,)g(and)e(understanding)g(are)g(all)e(greatly)h (appreciated.)446 1333 y(I)36 b(will)c(b)s(e)k(alw)m(a)m(ys)f(grateful) f(to)h(James)g(Ca)m(v)m(en)m(y)-8 b(,)38 b(Ras)d(P)m(andey)-8 b(,)38 b(Marcin)c(P)m(aprzyc)m(ki,)k(and)300 1453 y(Ra)m(y)43 b(Seyfarth.)75 b(They)45 b(are)e(all)d(m)m(y)j(PhD)g(committee)e(mem)m (b)s(ers)i(and)g(m)m(y)g(course)h(profes-)300 1574 y(sors,)31 b(and)f(they)i(ga)m(v)m(e)f(me)e(v)m(ery)j(helpful)d(directions)g(and)h (commen)m(ts)g(during)g(the)g(prosp)s(ectus)300 1694 y(preparation)42 b(and)h(the)h(writing)d(of)i(m)m(y)g(dissertation.)74 b(In)43 b(particular)e(I)i(really)f(appreciate)300 1814 y(that)35 b(Marcin)g(P)m(aprzyc)m(ki)i(ga)m(v)m(e)f(me)e(abundan)m(t)i (ideas)f(in)g(m)m(y)g(n)m(umerical)f(exp)s(erimen)m(ts)h(with)300 1935 y(parallel)c(computers.)47 b(Besides,)35 b(he)f(help)s(ed)g(me)f (a)g(lot)g(for)g(job)g(h)m(un)m(ting.)47 b(Ra)m(y)34 b(Seyfarth)g(also)300 2055 y(merits)c(particular)g(thanks)i(for)f(his)g (v)-5 b(alued)31 b(advise)h(in)f(m)m(y)g(parallel)e(computing)h(w)m (ork.)44 b(I)32 b(ad-)300 2175 y(mire)g(James)h(Ca)m(v)m(en)m(y)j(for)d (his)g(graceful)f(teac)m(hing)h(st)m(yle)h(and)f(resp)s(ectable)h(p)s (ersonalit)m(y)-8 b(.)45 b(Ras)300 2296 y(P)m(andey's)35 b(profound)d(kno)m(wledge)i(and)f(sc)m(holarly)f(c)m(haracter)h (impress)f(me)g(greatly)-8 b(.)446 2416 y(I)29 b(m)m(ust)g(thank)h (Joseph)g(Kolibal)25 b(for)k(his)f(time-consuming)f(w)m(ork)j(on)e(the) i(uniform)d(disser-)300 2537 y(tation)33 b(\(Latex\))i(pac)m(k)-5 b(age.)50 b(Indeed)36 b(it)d(sa)m(v)m(ed)j(me)f(a)f(lot)f(of)h(time)f (in)h(t)m(yping)g(m)m(y)h(dissertation)300 2657 y(with)d(this)g(pac)m (k)-5 b(age.)446 2777 y(I)23 b(thank)h(Charles)f(W)-8 b(righ)m(t)22 b(for)h(his)f(e\016cien)m(t)i(managemen)m(t)e(of)h (Wiglaf)d(parallel)g(computers.)300 2898 y(He)30 b(is)f(a)g(w)m (arm-hearted,)h(helpful,)f(and)g(friendly)g(p)s(erson)h(and)f(he)h(ga)m (v)m(e)g(me)f(a)g(lot)f(of)h(supp)s(orts)300 3018 y(in)j(m)m(y)g (parallel)e(computing)i(exp)s(erimen)m(ts.)446 3139 y(I)41 b(am)e(also)h(grateful)f(to)h(W)-8 b(allace)39 b(Py)m(e,)44 b(Je\013)d(Stuart)g(and)f(man)m(y)h(other)f(professors)i(and)300 3259 y(friends)k(whose)h(en)m(th)m(usiastic)f(helps)g(to)f(me)g(during) g(m)m(y)h(do)s(ctoral)e(study)j(will)c(alw)m(a)m(ys)k(b)s(e)300 3379 y(memorized.)446 3500 y(Finally)-8 b(,)22 b(I)h(w)m(ould)f(lik)m (e)g(to)g(dedicate)h(this)f(dissertation)g(to)g(m)m(y)g(grandparen)m (ts)i(who)f(brough)m(t)300 3620 y(me)46 b(up,)j(to)d(m)m(y)g(wife)g (Huiqing)f(Y)-8 b(ang)45 b(who)i(is)e(also)g(m)m(y)h(fello)m(w)f (classmate)h(of)f(the)i(Ph.D.)300 3740 y(program)37 b(in)h(scien)m (ti\014c)h(computing,)g(and)g(to)f(our)h(lo)m(v)m(ely)g(daugh)m(ter)g (Angela)f(W)-8 b(ang,)40 b(for)e(all)300 3861 y(the)24 b(happiness)h(of)e(our)h(family)d(life)h(here)j(at)f(The)g(Univ)m (ersit)m(y)h(of)e(Southern)i(Mississippi)e(during)300 3981 y(the)33 b(past)g(y)m(ears.)p Black 2043 5764 a(ii)p Black eop %%Page: 3 6 3 5 bop Black Black Black Black 1181 150 a Fn(T)-13 b(ABLE)53 b(OF)h(CONTENTS)300 851 y Fm(A)m(CKNO)m(WLEDGEMENTS)72 b Fr(:)56 b(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f (:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)158 b Fu(ii)304 1096 y Fm(LIST)38 b(OF)g(ILLUSTRA)-9 b(TIONS)69 b Fr(:)55 b(:)h(:)f(:)h(:)f(:) h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)152 b Fu(iv)305 1341 y Fm(LIST)38 b(OF)g(T)-9 b(ABLES)74 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f (:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)159 b Fu(v)305 1586 y Fm(LIST)38 b(OF)g(ABBREVIA)-9 b(TIONS)86 b Fr(:)56 b(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f (:)h(:)f(:)h(:)f(:)h(:)172 b Fu(vi)300 1887 y Fm(1)90 b(INTR)m(ODUCTION)84 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:) h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)166 b Fm(1)300 2105 y(2)90 b(FR)m(OBENIUS-PERR)m(ON)35 b(OPERA)-9 b(TORS)72 b Fr(:)56 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f (:)h(:)154 b Fm(8)300 2323 y(3)90 b(ULAM'S)39 b(METHOD)88 b Fr(:)56 b(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f (:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)114 b Fm(12)300 2541 y(4)90 b(PIECEWISE)35 b(LINEAR)h(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-9 b(TION)90 b Fr(:)55 b(:)g(:)h(:)f(:)118 b Fm(20)300 2759 y(5)90 b(QUASI-MONTE)38 b(CARLO)f(ALGORITHM)67 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)92 b Fm(25)300 2977 y(6)e(P)-9 b(ARALLEL)36 b(ALGORITHMS)82 b Fr(:)56 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g (:)h(:)f(:)h(:)f(:)107 b Fm(29)300 3195 y(7)90 b(NUMERICAL)37 b(RESUL)-9 b(TS)81 b Fr(:)56 b(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f (:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)106 b Fm(36)300 3315 y Fu(7.1)168 b(Numerical)30 b(Results)j(from)f(the)h (Quasi-Mon)m(te)f(Carlo)g(Approac)m(h)681 b(36)300 3435 y(7.2)168 b(Numerical)30 b(Results)j(from)f(the)h(P)m(arallel)d (Computation)1017 b(39)300 3556 y(7.3)168 b(An)32 b(Applied)g (Computational)e(Problem)1592 b(45)300 3774 y Fm(8)90 b(CONCLUDING)37 b(REMARKS)85 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:) h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)110 b Fm(53)305 4060 y(APPENDIX)300 4278 y(A)61 b(BRIEF)37 b(MA)-9 b(TH)36 b(REVIEW)84 b Fr(:)56 b(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g (:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)111 b Fm(54)300 4496 y(B)66 b(A)37 b(SOUR)m(CE)g(CODE)g(IN)g(C)90 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h (:)f(:)h(:)f(:)h(:)f(:)h(:)114 b Fm(61)305 4741 y(BIBLIOGRAPHY)99 b Fr(:)55 b(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h (:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)183 b Fu(89)p Black 2029 5764 a(iii)p Black eop %%Page: 4 7 4 6 bop Black Black Black Black 1066 150 a Fn(LIST)54 b(OF)h(ILLUSTRA)-13 b(TIONS)446 851 y Fu(1.1)100 b(The)33 b(orbits)f(of)g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)g(4)p Fr(x)p Fu(\(1)22 b Fq(\000)g Fr(x)p Fu(\))33 b(with)g(\(ab)s(o)m(v)m (e\))g Fr(x)2656 866 y Fp(0)2723 851 y Fu(=)28 b(0)p Fr(:)p Fu(037)k(and)g(\(b)s(elo)m(w\))671 972 y Fr(x)726 987 y Fp(0)793 972 y Fu(=)c(0)p Fr(:)p Fu(038)51 b(.)f(.)g(.)g(.)g(.)f (.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.) g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 132 w(1)p Black 446 1092 a(1.2)100 b(The)37 b(frequency)i(of)d(the)h(orbits)f(of) g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))35 b(=)f(4)p Fr(x)p Fu(\(1)25 b Fq(\000)g Fr(x)p Fu(\))37 b(of)f(10000)g(iterations)671 1212 y(and)c(100)g(partitions)f(in)h([0)p Fr(;)17 b Fu(1])32 b(with)g(di\013eren)m(t)h(initial)c(states)135 b(.)50 b(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 132 w(3)p Black 446 1416 a(2.1)100 b(The)30 b(\014xed)h(densit)m(y)f Fr(f)1493 1380 y Fl(\003)1562 1416 y Fu(of)f Fr(P)43 b Fu(for)29 b Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p Fu(\(1)16 b Fq(\000)g Fr(x)p Fu(\))30 b(with)f(100)g(partitions)f(in)671 1536 y([0,1])90 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.) g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f (.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(10)p Black 446 1740 a(7.1)100 b Fr(L)737 1703 y Fp(1)809 1740 y Fu(error)32 b(with)h(c)m(hange)g(of)f Fr(n)h Fu(for)f Fr(S)2003 1755 y Fp(1)2094 1740 y Fu(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.) g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(39)p Black 446 1860 a(7.2)100 b(E\016ciency)34 b(of)e(UMP)-8 b(A)33 b(for)f Fr(S)1760 1875 y Fp(3)1832 1860 y Fu(on)h(Wiglaf)73 b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.) g(.)p Black 83 w(42)p Black 446 1980 a(7.3)100 b(E\016ciency)34 b(of)e(CP)-8 b(A)33 b(for)f Fr(S)1668 1995 y Fp(3)1740 1980 y Fu(on)h(Wiglaf)88 b(.)50 b(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(42)p Black 446 2101 a(7.4)100 b(E\016ciency)34 b(of)e(UMP)-8 b(A)33 b(for)f Fr(S)1760 2116 y Fp(3)1832 2101 y Fu(on)h(Sw)m(eetgum)80 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(44)p Black 446 2221 a(7.5)100 b(E\016ciency)34 b(of)e(CP)-8 b(A)33 b(for)f Fr(S)1668 2236 y Fp(3)1740 2221 y Fu(on)h(Sw)m(eetgum)95 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(44)p Black 446 2342 a(7.6)100 b(E\016ciency)34 b(comparison)d(of)h(UMP)-8 b(A)34 b(for)e Fr(S)2276 2357 y Fp(3)2348 2342 y Fu(on)g(Sw)m(eetgum)h (and)g(Wiglaf)58 b(.)50 b(.)g(.)p Black 83 w(45)p Black 446 2462 a(7.7)100 b(The)33 b(graph)g(of)f(DPLL)110 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(47)p Black 446 2582 a(7.8)100 b(E\016ciency)34 b(of)e(UMP)-8 b(A)33 b(for)f(DPLL)h(on)f(Wiglaf)63 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(49)p Black 446 2703 a(7.9)100 b(E\016ciency)34 b(of)e(the)h(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Wiglaf)64 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g (.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(49)p Black 446 2823 a(7.10)h(E\016ciency)34 b(of)e(UMP)-8 b(A)33 b(for)f(DPLL)h(on)f(Sw)m(eetgum)71 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f (.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(51)p Black 446 2943 a(7.11)h(E\016ciency)34 b(of)e(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Sw)m (eetgum)86 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g (.)p Black 83 w(51)p Black 446 3064 a(7.12)h(E\016ciency)34 b(Comparison)d(of)h(UMP)-8 b(A)34 b(for)e(DPLL)g(on)h(Sw)m(eetgum)g (and)g(Wiglaf)p Black 131 w(52)p Black 446 3184 a(7.13)51 b(The)33 b(stationary)f(PDF)g(graph)h(of)f(DPLL)g(with)g Fr(n)c Fu(=)g(4096)77 b(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(52)p Black Black 2031 5764 a(iv)p Black eop %%Page: 5 8 5 7 bop Black Black Black Black 1411 150 a Fn(LIST)54 b(OF)h(T)-13 b(ABLES)446 851 y Fu(3.1)100 b(P)m(erformance)33 b(comparison)e(b)s(et)m(w)m(een)k(IA)e(and)f(GA)101 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(19)p Black 446 1055 a(7.1)100 b Fr(L)737 1019 y Fp(1)809 1055 y Fu(error/time)31 b(comparison)g(for)h(the)h(logistic)d (mo)s(del)78 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(37)p Black 446 1175 a(7.2)100 b Fr(L)737 1139 y Fp(1)809 1175 y Fu(error/time)31 b(comparison)g(for)h Fr(S)2010 1190 y Fp(2)2094 1175 y Fu(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(37)p Black 446 1295 a(7.3)100 b Fr(L)737 1259 y Fp(1)809 1295 y Fu(error)32 b(comparisons)g(of)g(the)h(QMC)h(to)e (the)h(MC)k(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(38)p Black 446 1416 a(7.4)100 b Fr(L)737 1380 y Fp(1)809 1416 y Fu(error/time)31 b(comparison)g(of)h(QMC,)i(MC,)f (and)g(Exact)g(for)f(logistic)e(mo)s(del)p Black 106 w(40)p Black 446 1536 a(7.5)100 b Fr(L)737 1500 y Fp(1)809 1536 y Fu(error)32 b(comparison)g(of)g(QMC,)h(MC,)h(and)e(Exact)i(for)e Fr(S)2868 1551 y Fp(2)2940 1536 y Fu(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g (.)g(.)p Black 83 w(40)p Black 446 1657 a(7.6)100 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f Fr(S)2306 1672 y Fp(3)2378 1657 y Fu(on)h(Wiglaf)65 b(.)50 b(.)g(.)g(.)g(.)f(.)h (.)g(.)g(.)g(.)g(.)p Black 83 w(41)p Black 446 1777 a(7.7)100 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f Fr(S)2306 1792 y Fp(3)2378 1777 y Fu(on)h(Sw)m(eetgum)73 b(.)50 b(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(43)p Black 446 1897 a(7.8)100 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Wiglaf)56 b(.)50 b(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(48)p Black 446 2018 a(7.9)100 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Sw)m(eetgum)64 b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(50)p Black Black 2044 5764 a(v)p Black eop %%Page: 6 9 6 8 bop Black Black Black Black 1037 150 a Fn(LIST)53 b(OF)i(ABBREVIA)-13 b(TIONS)509 823 y Fq(k)22 b(\001)g(k)99 b Fu(-)h Fr(L)979 787 y Fp(1)1018 823 y Fu(-)32 b(norm)630 944 y Fr(d)99 b Fu(-)h(dimension)31 b(of)h(the)h(system)583 1064 y Fr(f)642 1028 y Fl(\003)780 1064 y Fu(-)100 b(\014xed)33 b(densit)m(y)h(of)e Fr(P)623 1185 y(n)99 b Fu(-)h(n)m(um)m(b)s(er)33 b(of)f(subin)m(terv)-5 b(als)32 b(from)g(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1])32 b(in)m(terv)-5 b(al)454 1305 y Fr(C)7 b(P)14 b(A)99 b Fu(-)h(completely)31 b(parallel)f(algorithm)499 1425 y Fr(M)10 b(C)107 b Fu(-)100 b(Mon)m(te)33 b(Carlo)f(approac)m(h) 592 1546 y Fr(N)110 b Fu(-)100 b(n)m(um)m(b)s(er)33 b(of)f(random)f(n)m (um)m(b)s(ers)j(generated)f(in)f(Mon)m(te)h(Carlo)f(metho)s(d)604 1666 y Fr(P)113 b Fu(-)100 b(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erator)573 1786 y Fr(P)636 1801 y Fo(h)780 1786 y Fu(-)100 b(Ulam's)31 b(matrix)g(or)h(companion)f(matrix)571 1907 y Fr(P)634 1922 y Fo(n)780 1907 y Fu(-)100 b(Ulam's)31 b(matrix)g(or)h(companion)f(matrix)g(\()p Fr(d)d Fu(=)f(1\))422 2027 y Fr(QM)10 b(C)107 b Fu(-)100 b(quasi-Mon)m(te)33 b(Carlo)e(approac)m(h)350 2148 y Fr(U)10 b(M)g(P)k(A)100 b Fu(-)g(Ulam's)31 b(matrix)g(parallel)f(algorithm)p Black 2031 5764 a(vi)p Black eop %%Page: 1 10 1 9 bop Black Black Black Black 1714 150 a Fn(Chapter)53 b(1)p Black Black 1410 581 a(INTR)l(ODUCTION)300 1283 y Fu(In)43 b(the)g(past)g(t)m(w)m(en)m(t)m(y)i(\014v)m(e)f(y)m(ears,)i (since)d(the)h(term)e(\\Li-Y)-8 b(ork)m(e)41 b(c)m(haos")j(app)s(eared) f(in)e(their)300 1403 y(seminal)32 b(pap)s(er)h(\\P)m(erio)s(d)g(three) i(implies)c(c)m(haos")j(published)f(in)g(1975)g([40)o(],)h(c)m(haotic)f (discrete)300 1524 y(and)47 b(con)m(tin)m(uous)h(dynamical)d(systems,) 52 b(suc)m(h)d(as)e(p)s(opulation)e(dynamics)i(mo)s(dels)f([43])h(in) 300 1644 y(ecology)22 b(and)g(Lorenz)h(equations)g([42])f(in)g (meteorology)-8 b(,)23 b(ha)m(v)m(e)g(b)s(een)h(widely)e(in)m(v)m (estigated)g(with)300 1764 y(new)35 b(ideas)e(and)h(metho)s(ds.)47 b(No)m(w)34 b(it)f(is)g(w)m(ell)g(kno)m(wn)i(that,)f(in)f(v)-5 b(arious)33 b(\014elds)h(of)f(science)i(and)300 1885 y(engineering,)c(man)m(y)g(discrete)g(deterministic)f(dynamical)f (systems,)k(ev)m(en)f(though)f(as)g(simple)300 2005 y(as)40 b(a)f(quadratic)g(p)s(olynomial,)f(giv)m(e)i(rise)f(to)g(c)m(haotic)g (phenomena.)65 b(A)40 b(famous)e(example)h(is)300 2126 y(the)34 b(one)f(dimensional)e(mapping)h Fr(S)j Fu(:)29 b([0)p Fr(;)17 b Fu(1])29 b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])32 b(de\014ned)j(b)m(y)f Fr(S)6 b Fu(\()p Fr(x)p Fu(\))30 b(=)f(4)p Fr(x)p Fu(\(1)22 b Fq(\000)h Fr(x)p Fu(\),)34 b(whic)m(h)300 2246 y(is)h(the)h(so-called)e(\\logistic)e(mo) s(del")i(whose)i(orbits)f(corresp)s(onding)g(to)g(t)m(w)m(o)h (di\013eren)m(t)g(initial)300 2366 y(p)s(oin)m(ts)c(are)h(sho)m(wn)h (in)d(Figure)h(1.1.)p Black Black Black 570 3335 a @beginspecial 50 @llx 50 @lly 410 @urx 150 @ury 3600 @rwi @setspecial %%BeginDocument: pic/f37.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: 37.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu May 11 18:37:19 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 150 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 420 240 M 63 0 V 6513 0 R -63 0 V 348 240 M (0) Rshow 420 566 M 63 0 V 6513 0 R -63 0 V 348 566 M (0.2) Rshow 420 893 M 63 0 V 6513 0 R -63 0 V 348 893 M (0.4) Rshow 420 1219 M 63 0 V 6513 0 R -63 0 V -6585 0 R (0.6) Rshow 420 1546 M 63 0 V 6513 0 R -63 0 V -6585 0 R (0.8) Rshow 420 1872 M 63 0 V 6513 0 R -63 0 V -6585 0 R (1) Rshow 420 240 M 0 63 V 0 1569 R 0 -63 V 420 120 M (0) Cshow 1078 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (50) Cshow 1735 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (100) Cshow 2393 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (150) Cshow 3050 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (200) Cshow 3708 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (250) Cshow 4366 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (300) Cshow 5023 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (350) Cshow 5681 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (400) Cshow 6338 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (450) Cshow 6996 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (500) Cshow 1.000 UL LTb 420 240 M 6576 0 V 0 1632 V -6576 0 V 420 240 L 1.000 UL LT0 6429 1749 M (x0=0.037) Rshow 6501 1749 M 351 0 V 420 473 M 13 565 V 13 833 V 459 243 L 14 10 V 13 38 V 13 148 V 13 501 V 13 899 V 538 369 L 14 347 V 13 873 V 13 -413 V 13 661 V 604 377 L 13 366 V 13 889 V 14 -573 V 13 813 V 670 240 L 13 0 V 13 1 V 13 4 V 13 13 V 14 54 V 13 202 V 13 638 V 13 697 V 788 329 L 13 247 V 14 732 V 13 408 V 841 803 L 13 912 V 867 807 L 13 912 V 893 793 L 14 910 V 920 847 L 13 918 V 946 641 L 13 808 V 13 44 V 14 -88 V 13 169 V 13 -359 V 13 595 V 1038 478 L 13 576 V 13 818 V 1078 240 L 13 0 V 13 0 V 13 1 V 13 5 V 13 17 V 14 67 V 13 251 V 13 737 V 13 385 V 13 -858 V 13 918 V 1235 646 L 14 813 V 13 15 V 13 -30 V 13 58 V 13 -118 V 13 225 V 13 -486 V 14 738 V 1354 284 L 13 126 V 13 440 V 13 918 V 1406 631 L 14 798 V 13 101 V 13 -209 V 13 379 V 13 -846 V 13 918 V 1498 615 L 14 781 V 13 193 V 13 -414 V 13 662 V 1564 375 L 13 361 V 14 885 V 13 -532 V 13 780 V 1630 250 L 13 31 V 13 120 V 13 420 V 14 915 V 13 -999 V 13 886 V 13 -540 V 13 787 V 1748 247 L 14 22 V 13 85 V 13 309 V 13 831 V 13 -92 V 13 176 V 13 -374 V 14 614 V 1867 448 L 13 519 V 13 885 V 1906 317 L 13 218 V 13 671 V 14 611 V 1959 453 L 13 529 V 13 876 V 1998 294 L 13 153 V 14 517 V 13 887 V 2051 322 L 13 229 V 13 695 V 13 537 V 2103 575 L 14 730 V 13 415 V 13 -929 V 13 909 V 13 -843 V 13 918 V 2196 606 L 13 769 V 13 248 V 13 -539 V 13 786 V 2261 248 L 13 22 V 14 88 V 13 320 V 13 843 V 13 -179 V 13 329 V 13 -727 V 13 897 V 2380 360 L 13 324 V 13 849 V 13 -218 V 13 392 V 13 -875 V 14 917 V 2472 696 L 13 858 V 13 -289 V 13 500 V 2524 641 L 13 809 V 14 41 V 13 -83 V 13 161 V 13 -342 V 13 573 V 2616 514 L 14 638 V 13 697 V 2656 330 L 13 249 V 13 735 V 13 395 V 13 -882 V 14 916 V 2735 715 L 13 872 V 13 -406 V 13 653 V 2787 389 L 14 393 V 13 907 V 13 -798 V 13 915 V 2853 495 L 13 606 V 13 766 V 2893 260 L 13 57 V 13 217 V 13 671 V 13 613 V 2958 449 L 13 521 V 14 884 V 2998 312 L 13 204 V 13 641 V 13 690 V 3050 339 L 14 273 V 13 777 V 13 211 V 13 -454 V 13 706 V 3129 319 L 13 220 V 14 678 V 13 591 V 3182 485 L 13 588 V 13 798 V 3221 243 L 14 8 V 13 32 V 13 123 V 13 431 V 13 917 V 3300 677 L 13 843 V 14 -176 V 13 325 V 13 -719 V 13 894 V 3379 348 L 13 296 V 14 813 V 13 21 V 13 -43 V 13 85 V 13 -177 V 13 326 V 13 -719 V 14 894 V 3511 349 L 13 299 V 13 816 V 13 0 V 13 -1 V 13 2 V 14 -3 V 13 7 V 13 -15 V 13 30 V 13 -60 V 13 117 V 14 -245 V 13 435 V 13 -976 V 13 895 V 13 -643 V 13 859 V 3747 264 L 14 69 V 13 258 V 13 752 V 13 327 V 13 -723 V 13 896 V 3840 355 L 13 311 V 13 834 V 13 -110 V 13 209 V 13 -450 V 13 702 V 3932 323 L 13 234 V 13 704 V 13 508 V 3984 625 L 13 791 V 13 139 V 14 -292 V 13 504 V 4050 632 L 13 800 V 13 94 V 13 -196 V 14 357 V 13 -792 V 13 914 V 4142 484 L 13 586 V 13 802 V 4181 242 L 14 5 V 13 22 V 13 87 V 13 315 V 13 837 V 13 -136 V 14 256 V 13 -557 V 13 800 V 4313 242 L 13 7 V 13 27 V 13 106 V 14 376 V 13 896 V 13 -657 V 13 866 V 4418 274 L 13 100 V 14 360 V 13 883 V 13 -517 V 13 767 V 4497 259 L 13 55 V 13 209 V 14 652 V 13 663 V 4563 375 L 13 360 V 13 884 V 13 -524 V 13 773 V 4629 255 L 13 45 V 13 170 V 13 561 V 13 839 V 4694 246 L 14 18 V 13 71 V 13 261 V 13 758 V 13 300 V 13 -659 V 13 868 V 4800 277 L 13 107 V 13 381 V 13 899 V 13 -699 V 13 887 V 4879 321 L 13 226 V 13 691 V 13 553 V 4931 547 L 13 690 V 13 554 V 4971 546 L 13 690 V 13 557 V 5010 541 L 13 681 V 13 583 V 5050 498 L 13 610 V 13 757 V 5089 266 L 13 78 V 13 285 V 13 797 V 14 111 V 13 -233 V 13 417 V 13 -932 V 13 908 V 13 -833 V 13 918 V 5234 580 L 13 737 V 13 388 V 13 -866 V 13 917 V 5299 670 L 14 838 V 13 -136 V 13 255 V 13 -553 V 13 797 V 5378 243 L 13 9 V 14 36 V 13 140 V 13 476 V 13 912 V 5457 458 L 13 538 V 14 867 V 5497 276 L 13 103 V 13 371 V 13 892 V 13 -611 V 13 839 V 5576 246 L 13 19 V 13 73 V 13 271 V 13 773 V 13 230 V currentpoint stroke M 13 -497 V 14 748 V 5681 274 L 13 101 V 13 360 V 13 884 V 13 -525 V 14 774 V 5760 254 L 13 41 V 13 159 V 13 530 V 13 875 V 5825 290 L 14 144 V 13 489 V 13 906 V 5878 408 L 13 434 V 13 917 V 5918 659 L 13 827 V 13 -68 V 13 133 V 13 -279 V 13 486 V 5996 664 L 14 831 V 13 -95 V 13 182 V 13 -387 V 13 630 V 6075 424 L 14 468 V 13 914 V 6115 494 L 13 603 V 13 771 V 6154 256 L 13 49 V 14 183 V 13 594 V 13 788 V 6220 247 L 13 19 V 13 76 V 13 281 V 14 789 V 13 149 V 13 -315 V 13 537 V 6325 576 L 13 732 V 14 408 V 13 -913 V 13 913 V 13 -910 V 13 912 V 13 -922 V 13 911 V 14 -873 V 13 917 V 6470 688 L 13 853 V 13 -245 V 13 435 V 14 -976 V 13 895 V 13 -642 V 13 858 V 6575 262 L 13 66 V 13 244 V 14 726 V 13 430 V 13 -963 V 13 900 V 13 -702 V 13 888 V 6694 324 L 13 236 V 13 709 V 13 492 V 6746 653 L 13 821 V 13 -30 V 14 59 V 13 -120 V 13 227 V 13 -489 V 13 741 V 6851 281 L 13 118 V 14 416 V 13 914 V 13 -968 V 13 898 V 13 -678 V 13 877 V 6957 295 L 13 156 V 13 524 V 13 881 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial 842 x @beginspecial 50 @llx 50 @lly 410 @urx 150 @ury 3600 @rwi @setspecial %%BeginDocument: pic/f38.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: 38.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu May 11 18:37:58 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 150 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 420 240 M 63 0 V 6513 0 R -63 0 V 348 240 M (0) Rshow 420 566 M 63 0 V 6513 0 R -63 0 V 348 566 M (0.2) Rshow 420 893 M 63 0 V 6513 0 R -63 0 V 348 893 M (0.4) Rshow 420 1219 M 63 0 V 6513 0 R -63 0 V -6585 0 R (0.6) Rshow 420 1546 M 63 0 V 6513 0 R -63 0 V -6585 0 R (0.8) Rshow 420 1872 M 63 0 V 6513 0 R -63 0 V -6585 0 R (1) Rshow 420 240 M 0 63 V 0 1569 R 0 -63 V 420 120 M (0) Cshow 1078 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (50) Cshow 1735 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (100) Cshow 2393 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (150) Cshow 3050 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (200) Cshow 3708 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (250) Cshow 4366 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (300) Cshow 5023 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (350) Cshow 5681 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (400) Cshow 6338 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (450) Cshow 6996 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (500) Cshow 1.000 UL LTb 420 240 M 6576 0 V 0 1632 V -6576 0 V 420 240 L 1.000 UL LT0 6429 1749 M (x0=0.038) Rshow 6501 1749 M 351 0 V 420 479 M 13 576 V 13 817 V 459 240 L 14 0 V 13 0 V 13 1 V 13 2 V 13 8 V 13 31 V 14 122 V 13 426 V 13 917 V 591 703 L 13 864 V 13 -335 V 13 564 V 644 531 L 13 666 V 13 626 V 683 428 L 13 478 V 13 911 V 722 452 L 14 526 V 13 879 V 762 298 L 13 168 V 13 551 V 13 851 V 815 255 L 13 43 V 13 164 V 13 546 V 13 858 V 880 263 L 13 67 V 14 252 V 13 739 V 13 379 V 946 856 L 13 918 V 972 610 L 14 774 V 13 225 V 13 -486 V 13 738 V 1038 284 L 13 127 V 13 442 V 14 918 V 1091 619 L 13 785 V 13 170 V 13 -361 V 13 598 V 1157 474 L 13 568 V 13 830 V 1196 242 L 13 6 V 13 23 V 13 89 V 14 324 V 13 850 V 13 -221 V 13 397 V 13 -888 V 13 916 V 1327 731 L 14 882 V 13 -502 V 13 754 V 1380 269 L 13 86 V 13 314 V 14 836 V 13 -126 V 13 238 V 13 -515 V 13 765 V 1485 260 L 13 61 V 14 226 V 13 691 V 13 553 V 1551 548 L 13 692 V 13 549 V 1591 554 L 13 701 V 13 520 V 1630 604 L 13 768 V 13 255 V 13 -555 V 14 799 V 1696 243 L 13 7 V 13 30 V 13 116 V 13 410 V 14 912 V 13 -922 V 13 911 V 13 -873 V 13 917 V 1827 689 L 13 853 V 14 -249 V 13 441 V 13 -989 V 13 890 V 13 -586 V 13 823 V 1932 240 L 14 2 V 13 5 V 13 20 V 13 80 V 13 294 V 13 808 V 14 44 V 13 -89 V 13 172 V 13 -366 V 13 604 V 2090 463 L 13 547 V 14 857 V 2130 260 L 13 61 V 13 225 V 13 689 V 13 558 V 2196 539 L 13 678 V 13 592 V 2235 484 L 13 586 V 13 802 V 2274 242 L 14 5 V 13 21 V 13 84 V 13 304 V 13 825 V 13 -51 V 13 100 V 14 -208 V 13 376 V 13 -837 V 13 918 V 2432 590 L 13 750 V 14 335 V 13 -741 V 13 902 V 2498 382 L 13 378 V 13 897 V 13 -670 V 14 873 V 2564 286 L 13 132 V 13 457 V 13 917 V 2616 544 L 14 686 V 13 568 V 2656 523 L 13 654 V 13 659 V 2695 379 L 13 371 V 14 893 V 13 -614 V 13 841 V 2761 247 L 13 22 V 13 85 V 14 309 V 13 830 V 13 -89 V 13 172 V 13 -366 V 13 604 V 2879 463 L 14 547 V 13 857 V 2919 261 L 13 60 V 13 228 V 13 694 V 13 543 V 2985 565 L 13 716 V 13 467 V 3024 697 L 13 859 V 13 -297 V 14 512 V 3077 621 L 13 786 V 13 162 V 13 -342 V 13 574 V 3142 513 L 14 635 V 13 703 V 3182 322 L 13 230 V 13 698 V 13 529 V 3235 590 L 13 749 V 13 337 V 13 -745 V 13 903 V 3300 390 L 13 396 V 14 907 V 13 -816 V 13 917 V 3366 539 L 13 677 V 13 593 V 3406 483 L 13 583 V 13 806 V 3445 241 L 13 3 V 13 12 V 13 49 V 14 183 V 13 593 V 13 790 V 3537 246 L 13 18 V 13 70 V 13 260 V 14 756 V 13 310 V 13 -683 V 13 880 V 3642 301 L 13 172 V 14 567 V 13 831 V 3695 243 L 13 7 V 13 30 V 13 118 V 13 412 V 14 914 V 13 -946 V 13 905 V 13 -773 V 13 910 V 3826 443 L 14 508 V 13 894 V 3866 346 L 13 292 V 13 806 V 13 60 V 13 -123 V 14 232 V 13 -502 V 13 754 V 3971 270 L 13 86 V 13 316 V 13 839 V 14 -146 V 13 274 V 13 -599 V 13 831 V 4076 242 L 13 8 V 14 28 V 13 111 V 13 393 V 13 906 V 13 -796 V 13 914 V 4181 494 L 14 605 V 13 769 V 4221 258 L 13 53 V 13 200 V 13 633 V 14 709 V 4287 315 L 13 210 V 13 657 V 13 651 V 4339 392 L 13 400 V 14 910 V 13 -852 V 13 918 V 4405 629 L 13 796 V 13 114 V 14 -239 V 13 426 V 13 -955 V 13 902 V 13 -735 V 13 900 V 4523 373 L 14 357 V 13 881 V 13 -495 V 13 747 V 4589 275 L 13 102 V 13 366 V 14 889 V 13 -573 V 13 813 V 4668 240 L 13 0 V 13 1 V 14 3 V 13 12 V 13 48 V 13 181 V 13 588 V 13 798 V 4786 243 L 14 9 V 13 34 V 13 134 V 13 461 V 13 916 V 4865 527 L 14 660 V 13 643 V 4905 403 L 13 424 V 13 917 V 4944 713 L 13 870 V 14 -393 V 13 638 V 4997 412 L 13 445 V 13 918 V 5036 607 L 14 770 V 13 243 V 13 -527 V 13 776 V 5102 254 L 13 40 V 13 155 V 14 521 V 13 884 V 5168 312 L 13 203 V 13 639 V 13 695 V 5220 332 L 14 257 V 13 748 V 13 341 V 13 -754 V 13 905 V 5299 407 L 14 433 V 13 917 V 5339 667 L 13 834 V 13 -113 V 13 214 V 13 -461 V 14 713 V 5418 309 L 13 196 V 13 624 V 13 730 V 5470 292 L 14 149 V 13 505 V 13 896 V 5523 356 L 13 316 V 13 839 V 13 -145 V 14 271 V 13 -592 V 13 827 V 5615 241 L 13 4 V 13 15 V currentpoint stroke M 13 58 V 14 218 V 13 673 V 13 605 V 5707 463 L 13 546 V 13 858 V 5747 262 L 13 64 V 13 241 V 13 718 V 13 458 V 5812 715 L 13 872 V 14 -405 V 13 651 V 5865 391 L 13 397 V 13 908 V 13 -829 V 14 917 V 5931 572 L 13 725 V 13 433 V 13 -970 V 13 897 V 13 -669 V 14 873 V 6023 285 L 13 131 V 13 452 V 13 918 V 6075 567 L 14 719 V 13 457 V 6115 717 L 13 873 V 13 -417 V 13 665 V 6167 371 L 14 352 V 13 877 V 13 -453 V 13 705 V 6233 320 L 13 224 V 13 685 V 14 569 V 6286 521 L 13 650 V 13 669 V 6325 367 L 13 341 V 14 867 V 13 -363 V 13 600 V 6391 471 L 13 561 V 13 839 V 6430 245 L 14 17 V 13 64 V 13 240 V 13 717 V 13 463 V 6509 706 L 14 865 V 13 -349 V 13 583 V 6562 498 L 13 611 V 13 756 V 6601 268 L 14 80 V 13 296 V 13 812 V 13 24 V 13 -48 V 13 94 V 14 -195 V 13 356 V 13 -789 V 13 913 V 6746 477 L 13 572 V 13 823 V 6786 240 L 13 2 V 13 5 V 13 20 V 13 78 V 13 287 V 13 800 V 14 94 V 13 -194 V 13 354 V 13 -786 V 13 912 V 6943 471 L 14 562 V 13 838 V 6983 245 L 13 15 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial 300 4380 a(Figure)38 b(1.1:)55 b(The)40 b(orbits)e(of)g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))38 b(=)g(4)p Fr(x)p Fu(\(1)26 b Fq(\000)h Fr(x)p Fu(\))39 b(with)f(\(ab)s(o)m(v)m (e\))i Fr(x)2872 4395 y Fp(0)2950 4380 y Fu(=)e(0)p Fr(:)p Fu(037)f(and)i(\(b)s(elo)m(w\))300 4501 y Fr(x)355 4516 y Fp(0)423 4501 y Fu(=)27 b(0)p Fr(:)p Fu(038)p Black 446 4841 a(Figure)34 b(1.1)g(sho)m(ws)i(the)e(\014rst)h(500)f (iterations)f(of)h(the)h(system)g(with)f(t)m(w)m(o)h(di\013eren)m(t)g (initial)300 4961 y(p)s(oin)m(ts.)40 b(W)-8 b(e)25 b(can)f(see)h(that)f (when)h(the)g(initial)20 b(state)25 b(is)e(c)m(hanged)j(b)m(y)f(only)e (0.001,)i(the)g(c)m(hange)g(in)300 5082 y(the)g(orbit)e(will)g(b)s(e)i (large.)39 b(F)-8 b(urthermore,)26 b(the)f(outputs)g(of)f(the)h(system) h(can)f(not)f(approac)m(h)h(an)m(y)300 5202 y(stable)31 b(state)g(for)g(almost)e(all)g(initial)e(p)s(oin)m(ts,)k(but)h(are)f (lik)m(e)f(\\random)g(n)m(um)m(b)s(ers")h(distributed)300 5322 y(nearly)26 b(\\ev)m(erywhere")j(in)c([0,)j(1].)41 b(This)26 b(is)g(a)g(t)m(ypical)f(c)m(haotic)h(phenomenon,)i(and)e(the) h(densely)300 5443 y(distributed)32 b(orbit)g(is)g(referred)h(to)f(as)h (a)f(c)m(haotic)h(orbit.)p Black 2046 5764 a(1)p Black eop %%Page: 2 11 2 10 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020 b Fu(2)p Black 446 274 a(The)32 b(study)h(of)d(these)j(systems)f(has)g (fundamen)m(tal)e(imp)s(ortance)g(not)h(only)g(in)f(mathemat-)300 395 y(ical)e(sciences,)33 b(but)d(also)g(in)f(ph)m(ysical,)i (biological,)c(and)j(ev)m(en)i(economic)d(sciences)j([1])e([3])g([36].) 300 515 y(There)37 b(are)e(v)-5 b(arious)35 b(de\014nitions)g(for)g (\\c)m(haos",)i(but)f(a)f(basic)g(feature)h(of)f Fj(chaos)g Fu(is)g(the)h(sensi-)300 635 y(tiv)m(e)29 b(dep)s(endence)i(on)e (initial)c(conditions,)k(and)g(so)g(w)m(e)h(are)e(not)h(able)f(to)h (predict)g(the)g(ev)m(en)m(tual)300 756 y(b)s(eha)m(vior)j(of)g(the)h (iterates)g(of)f(the)h(dynamical)e(system.)446 876 y(No)m(w)38 b(w)m(e)f(lo)s(ok)f(at)g(c)m(haos)h(from)f(the)h(statistical)d(p)s(oin) m(t)i(of)g(view.)56 b(Let)37 b Fr(S)j Fu(:)35 b Fr(X)42 b Fq(!)34 b Fr(X)44 b Fu(b)s(e)37 b(a)300 997 y(c)m(haotic)30 b(dynamical)f(system)i(and)g(let)e Fr(A)i Fu(b)s(e)g(a)f(subset)i(of)e (the)g(phase)i(space)f Fr(X)8 b Fu(,)31 b(and)g(w)m(e)g(w)m(an)m(t)300 1117 y(to)26 b(see)i(ho)m(w)f(often)f(the)h(c)m(haotic)f(orbit)g (starting)f(from)g Fr(x)2360 1132 y Fp(0)2400 1117 y Fu(,)j Fq(f)p Fr(x)2560 1132 y Fo(n)2635 1117 y Fu(=)f Fr(S)2804 1081 y Fo(n)2851 1117 y Fu(\()p Fr(x)2944 1132 y Fp(0)2984 1117 y Fu(\))g Fq(j)h Fr(n)g Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)d(g)26 b Fu(will)300 1237 y(en)m(ter)k Fr(A)p Fu(.)42 b(That)29 b(is,)h(w)m(e)g(w)m(an)m(t)f (to)g(observ)m(e)i(the)e(frequency)i(that)e(the)g(p)s(oin)m(ts)g(of)f (the)h(tra)5 b(jectory)300 1358 y(of)24 b(an)h(initial)c(p)s(oin)m(t)j (will)f(b)s(e)i(in)f Fr(A)p Fu(.)41 b(F)-8 b(or)24 b(this)g(purp)s (ose,)j(let)e Fr(\037)2532 1373 y Fo(A)2614 1358 y Fu(b)s(e)g(the)g(c)m (haracteristic)f(function)300 1478 y(of)32 b Fr(A)p Fu(,)h(that)f(is,) 1444 1741 y Fr(\037)1505 1756 y Fo(A)1562 1741 y Fu(\()p Fr(x)p Fu(\))c(=)1824 1601 y Fi(\032)1941 1680 y Fu(1)82 b(if)55 b Fr(x)28 b Fq(2)g Fr(A)1941 1800 y Fu(0)82 b(if)55 b Fr(x)39 b(=)-60 b Fq(2)28 b Fr(A)2503 1741 y(:)p Black 1109 w Fu(\(1.1\))p Black 300 2004 a(Then)34 b(the)f Fj(time)h(me)-5 b(an)32 b Fu(of)g(the)h(orbit)f(starting)f(at)h Fr(x)d Fq(2)f Fr(X)40 b Fu(in)32 b Fr(A)g Fu(is)h(giv)m(en)f(b)m(y)i (the)f(frequency)1553 2299 y(lim)1529 2359 y Fo(n)p Fl(!1)1744 2232 y Fu(1)p 1739 2276 59 4 v 1739 2368 a Fr(n)1829 2175 y Fo(n)p Fl(\000)p Fp(1)1824 2205 y Fi(X)1832 2417 y Fo(k)r Fp(=0)1984 2299 y Fr(\037)2045 2314 y Fo(A)2103 2299 y Fu(\()p Fr(S)2207 2258 y Fo(k)2249 2299 y Fu(\()p Fr(x)p Fu(\)\))p Fr(;)p Black 1194 w Fu(\(1.2\))p Black 300 2594 a(whic)m(h)g(represen)m(ts)i(ho)m(w)e(often)g(the)g(orbit)e (sta)m(ys)j(in)e Fr(A)p Fu(.)446 2715 y(The)g(Birkho\013)f(individual)e (ergo)s(dic)h(theorem)h(\(quoted)h(as)f(follo)m(ws,)f(see)j(App)s (endix)e(A)g(for)300 2835 y(notation\))36 b(sa)m(ys)i(that)f(for)f Fr(\026)p Fu(-a.e.)57 b Fr(x)35 b Fq(2)h Fr(X)8 b Fu(,)38 b(this)f(time)f(mean)g(equals)i(the)f Fj(sp)-5 b(ac)g(e)38 b(me)-5 b(an)36 b Fr(\026)p Fu(\()p Fr(A)p Fu(\))300 2955 y(if)f Fr(\026)h Fu(is)g(an)g(ergo)s(dic)f(in)m(v)-5 b(arian)m(t)35 b(probabilit)m(y)f(measure)j(under)g Fr(S)6 b Fu(.)54 b(Here)37 b(the)f(in)m(v)-5 b(ariance)36 b(of)f Fr(\026)300 3076 y Fu(with)30 b(resp)s(ect)i(to)f Fr(S)36 b Fu(means)31 b(that)g Fr(\026)p Fu(\()p Fr(S)1736 3040 y Fl(\000)p Fp(1)1829 3076 y Fu(\()p Fr(B)5 b Fu(\)\))28 b(=)g Fr(\026)p Fu(\()p Fr(B)5 b Fu(\))30 b(for)g(all)f(measurable)h (subsets)j Fr(B)5 b Fu(.)43 b(The)300 3196 y(ergo)s(dicit)m(y)31 b(means)h(that)g Fr(S)1327 3160 y Fl(\000)p Fp(1)1421 3196 y Fu(\()p Fr(B)5 b Fu(\))28 b(=)f Fr(B)37 b Fu(implies)30 b(that)h Fr(\026)p Fu(\()p Fr(B)5 b Fu(\))28 b(=)f(0)32 b(or)g(1.)43 b(In)32 b(other)g(w)m(ords,)i(the)300 3317 y(time)26 b(mean)h(of)g(the)g(c)m(haotic)g(orbit)g(is)g(indep)s(enden)m (t)h(of)f(the)h(c)m(hoice)f(of)g(the)h(initial)c(p)s(oin)m(t)i(and)h (is)300 3437 y(equal)i(to)g(the)h(same)f(constan)m(t)h Fr(\026)p Fu(\()p Fr(A)p Fu(\),)g(the)f(probabilit)m(y)f(measure)h(of)g Fr(A)p Fu(.)43 b(Th)m(us)30 b(it)f(can)g(b)s(e)h(seen)300 3557 y(that)i(in)f(man)m(y)h(cases)i Fj(chaotic)g(orbits)g(in)g(the)h (deterministic)f(sense)f(ar)-5 b(e)34 b(no)h(mor)-5 b(e)33 b(chaotic)h(in)300 3678 y(the)h(statistic)-5 b(al)35 b(sense)p Fu(.)p Black 300 3836 a Fj(The)-5 b(or)g(em)34 b(1.1.)p Black 48 w Fm(Birkho\013)10 b('s)33 b(individual)f(ergo)s(dic) g(theorem)d Fu([50)o(])g(Let)h(\()p Fr(X)r(;)17 b Fu(\006\))29 b(b)s(e)g(a)g(mea-)300 3956 y(sure)24 b(space)h(and)e Fr(\026)g Fu(b)s(e)h(a)f(probabilit)m(y)f(measure)h(on)h Fr(X)31 b Fu(whic)m(h)24 b(is)f(in)m(v)-5 b(arian)m(t)22 b(under)i Fr(S)34 b Fu(:)27 b Fr(X)36 b Fq(!)27 b Fr(X)8 b Fu(.)300 4076 y(Then)34 b(for)e(an)m(y)h Fr(f)38 b Fq(2)28 b Fr(L)1134 4040 y Fp(1)1174 4076 y Fu(\()p Fr(X)8 b Fu(\))32 b(and)h(almost)e(ev)m(ery)j Fr(x)29 b Fq(2)f Fr(X)8 b Fu(,)32 b(the)h(time)e(mean)1596 4377 y(lim)1572 4437 y Fo(n)p Fl(!1)1787 4309 y Fu(1)p 1782 4354 V 1782 4445 a Fr(n)1873 4252 y Fo(n)p Fl(\000)p Fp(1)1867 4282 y Fi(X)1875 4494 y Fo(k)r Fp(=0)2028 4377 y Fr(f)11 b Fu(\()p Fr(S)2191 4336 y Fo(k)2233 4377 y Fu(\()p Fr(x)p Fu(\)\))p Black 1237 w(\(1.3\))p Black 300 4695 a(exists)33 b(to)g(b)s(e)843 4669 y(~)821 4695 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))33 b(and)1431 4879 y(~)1410 4906 y Fr(f)11 b Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\))27 b(=)1894 4879 y(~)1873 4906 y Fr(f)10 b Fu(\()p Fr(x)p Fu(\))56 b(\()p Fr(\026)22 b Fq(\000)h Fu(a.)43 b(e.\))p Black 1075 w(\(1.4\))p Black 300 5116 a(holds.)52 b(Moreo)m(v)m(er,)38 b(if)c Fr(S)41 b Fu(is)35 b(ergo)s(dic)g(with)g(resp)s(ect)i(to)e Fr(\026)p Fu(,)h(then)2749 5090 y(~)2728 5116 y Fr(f)46 b Fu(is)35 b(the)h(constan)m(t)g(function)300 5156 y Fi(R)347 5271 y Fo(X)431 5236 y Fr(f)11 b(d\026)p Fu(.)446 5394 y(The)38 b(existence)g(of)e(an)h(in)m(v)-5 b(arian)m(t)35 b(measure)i(for)f(a)g(con)m(tin)m(uous)h(mapping)e(on)i(a)f(compact)300 5515 y(space)e(has)f(b)s(een)g(established)g(b)m(y)g(the)g(follo)m (wing)d(theorem)i([50].)p Black Black eop %%Page: 3 12 3 11 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020 b Fu(3)p Black Black 300 274 a Fj(The)-5 b(or)g(em)34 b(1.2.)p Black 48 w Fu(Let)28 b Fr(X)36 b Fu(b)s(e)29 b(a)f(compact)g(metric)f(space)j(and)e(let)g Fr(S)33 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fr(X)36 b Fu(b)s(e)28 b(a)g(con)m(tin)m(uous)300 395 y(mapping.)42 b(Then)34 b(there)f(is)f(an)h(in)m(v)-5 b(arian)m(t)31 b(probabilit)m(y)f (measure)j Fr(\026)f Fu(under)i Fr(S)6 b Fu(.)446 544 y(F)-8 b(or)28 b(the)g(ab)s(o)m(v)m(e)h(logistic)d(mo)s(del)h Fr(S)6 b Fu(\()p Fr(x)p Fu(\))27 b(=)h(4)p Fr(x)p Fu(\(1)13 b Fq(\000)g Fr(x)p Fu(\))29 b(and)g(when)g(the)g(partition)d(n)m(um)m (b)s(er)i(of)300 665 y([0)p Fr(;)17 b Fu(1])31 b(in)m(to)h(subin)m (terv)-5 b(als)32 b(is)f(100,)h(Figure)e(1.2)i(sho)m(ws)i(the)e (frequencies)i(of)d(its)h(orbits)f(en)m(tering)300 785 y(eac)m(h)i(subin)m(terv)-5 b(al)32 b(with)f(di\013eren)m(t)i(initial) 28 b(states)33 b(and)f(10000)f(iterations.)42 b(F)-8 b(rom)30 b(the)j(picture)300 905 y(w)m(e)38 b(can)f(see)h(that)e(the)h (frequencies)i(are)e(\\nearly")f(the)h(same)f(for)h(a)f(\014xed)i (subin)m(terv)-5 b(al)36 b(with)300 1026 y(resp)s(ect)i(to)f (di\013eren)m(t)g(initial)c(p)s(oin)m(ts.)56 b(When)38 b(the)f(iteration)e(n)m(um)m(b)s(er)j(go)s(es)f(to)f(in\014nit)m(y)-8 b(,)38 b(the)300 1146 y(frequency)j(will)36 b(b)s(e)j(the)g(\\time)e (mean")h(whic)m(h)h(is)f(equal)g(to)g(some)h(probabilit)m(y)e(measure)h (of)300 1266 y(eac)m(h)33 b(in)m(terv)-5 b(al.)p Black Black Black 570 2200 a @beginspecial 50 @llx 50 @lly 410 @urx 150 @ury 3600 @rwi @setspecial %%BeginDocument: pic/fr37.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: fr37.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu May 11 23:22:14 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 150 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 276 240 M 63 0 V 6657 0 R -63 0 V 204 240 M (0) Rshow 276 473 M 63 0 V 6657 0 R -63 0 V 204 473 M (1) Rshow 276 706 M 63 0 V 6657 0 R -63 0 V 204 706 M (2) Rshow 276 939 M 63 0 V 6657 0 R -63 0 V 204 939 M (3) Rshow 276 1173 M 63 0 V 6657 0 R -63 0 V -6729 0 R (4) Rshow 276 1406 M 63 0 V 6657 0 R -63 0 V -6729 0 R (5) Rshow 276 1639 M 63 0 V 6657 0 R -63 0 V -6729 0 R (6) Rshow 276 1872 M 63 0 V 6657 0 R -63 0 V -6729 0 R (7) Rshow 276 240 M 0 63 V 0 1569 R 0 -63 V 276 120 M (0) Cshow 1620 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.2) Cshow 2964 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.4) Cshow 4308 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.6) Cshow 5652 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.8) Cshow 6996 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (1) Cshow 1.000 UL LTb 276 240 M 6720 0 V 0 1632 V -6720 0 V 276 240 L 1.000 UL LT0 6429 1749 M (x0=0.037) Rshow 6501 1749 M 351 0 V 242 240 M 34 1483 R 34 0 V 0 -842 V 67 0 V 0 -130 V 67 0 V 0 -89 V 67 0 V 0 -68 V 67 0 V 0 -18 V 68 0 V 0 -77 V 67 0 V 0 18 V 67 0 V 0 5 V 67 0 V 0 -26 V 67 0 V 0 -21 V 68 0 V 0 -11 V 67 0 V 0 16 V 67 0 V 0 -7 V 67 0 V 0 -23 V 67 0 V 0 21 V 68 0 V 0 -58 V 67 0 V 0 11 V 67 0 V 0 12 V 67 0 V 0 23 V 67 0 V 0 -51 V 68 0 V 0 26 V 67 0 V 0 -31 V 67 0 V 0 7 V 67 0 V 0 -2 V 67 0 V 0 -2 V 68 0 V 0 37 V 67 0 V 0 -33 V 67 0 V 0 -30 V 67 0 V 0 5 V 67 0 V 0 28 V 68 0 V 0 -14 V 67 0 V 0 -7 V 67 0 V 0 -3 V 67 0 V 0 35 V 67 0 V 0 -23 V 68 0 V 0 -28 V 67 0 V 0 12 V 67 0 V 0 16 V 67 0 V 0 7 V 67 0 V 0 -51 V 68 0 V 0 49 V 67 0 V 0 -40 V 67 0 V 0 5 V 67 0 V 0 28 V 67 0 V 0 11 V 68 0 V 0 -16 V 67 0 V 0 14 V 67 0 V 0 -28 V 67 0 V 0 12 V 67 0 V 0 -26 V 68 0 V 0 58 V 67 0 V 0 -35 V 67 0 V 0 47 V 67 0 V 0 -79 V 67 0 V 0 30 V 68 0 V 0 -19 V 67 0 V 0 26 V 67 0 V 0 -30 V 67 0 V 0 79 V 67 0 V 0 -93 V 68 0 V 0 35 V 67 0 V 0 39 V 67 0 V 0 -7 V 67 0 V 0 -39 V 67 0 V 0 2 V 68 0 V 0 9 V 67 0 V 0 3 V 67 0 V 0 4 V 67 0 V 0 14 V 67 0 V 0 12 V 68 0 V 0 -19 V 67 0 V 0 5 V 67 0 V 0 -23 V 67 0 V 0 7 V 67 0 V 0 -17 V 68 0 V 0 56 V 67 0 V 0 14 V 67 0 V 0 -46 V 67 0 V 0 2 V 67 0 V 0 49 V 68 0 V 0 -26 V 67 0 V 0 17 V 67 0 V 0 -14 V 67 0 V 0 48 V 67 0 V 0 -46 V 68 0 V 0 37 V 67 0 V 0 -32 V 67 0 V 0 30 V 67 0 V 0 14 V 67 0 V 0 39 V 68 0 V 0 -32 V 67 0 V 0 44 V 67 0 V 0 33 V 67 0 V 0 16 V 67 0 V 0 -12 V 68 0 V 0 103 V 67 0 V 0 12 V 67 0 V 0 142 V 67 0 V 0 972 V 67 0 V 0 -1555 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial 841 x @beginspecial 50 @llx 50 @lly 410 @urx 150 @ury 3600 @rwi @setspecial %%BeginDocument: pic/fr38.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: fr38.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu May 11 23:24:08 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 150 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 276 240 M 63 0 V 6657 0 R -63 0 V 204 240 M (0) Rshow 276 473 M 63 0 V 6657 0 R -63 0 V 204 473 M (1) Rshow 276 706 M 63 0 V 6657 0 R -63 0 V 204 706 M (2) Rshow 276 939 M 63 0 V 6657 0 R -63 0 V 204 939 M (3) Rshow 276 1173 M 63 0 V 6657 0 R -63 0 V -6729 0 R (4) Rshow 276 1406 M 63 0 V 6657 0 R -63 0 V -6729 0 R (5) Rshow 276 1639 M 63 0 V 6657 0 R -63 0 V -6729 0 R (6) Rshow 276 1872 M 63 0 V 6657 0 R -63 0 V -6729 0 R (7) Rshow 276 240 M 0 63 V 0 1569 R 0 -63 V 276 120 M (0) Cshow 1620 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.2) Cshow 2964 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.4) Cshow 4308 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.6) Cshow 5652 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.8) Cshow 6996 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (1) Cshow 1.000 UL LTb 276 240 M 6720 0 V 0 1632 V -6720 0 V 276 240 L 1.000 UL LT0 6429 1749 M (x0=0.038) Rshow 6501 1749 M 351 0 V 242 240 M 34 1464 R 34 0 V 0 -862 V 67 0 V 0 -73 V 67 0 V 0 -119 V 67 0 V 0 -65 V 67 0 V 0 -19 V 68 0 V 0 -70 V 67 0 V 0 54 V 67 0 V 0 -70 V 67 0 V 0 54 V 67 0 V 0 -33 V 68 0 V 0 -28 V 67 0 V 0 7 V 67 0 V 0 -7 V 67 0 V 0 -42 V 67 0 V 0 14 V 68 0 V 0 16 V 67 0 V 0 -23 V 67 0 V 0 7 V 67 0 V 0 -25 V 67 0 V 0 14 V 68 0 V 0 -40 V 67 0 V 0 -5 V 67 0 V 0 26 V 67 0 V 67 0 V 0 -35 V 68 0 V 0 54 V 67 0 V 0 -17 V 67 0 V 0 -30 V 67 0 V 0 19 V 67 0 V 0 4 V 68 0 V 0 -7 V 67 0 V 0 3 V 67 0 V 0 2 V 67 0 V 0 19 V 67 0 V 0 -17 V 68 0 V 0 -18 V 67 0 V 0 9 V 67 0 V 0 -21 V 67 0 V 0 44 V 67 0 V 0 -49 V 68 0 V 0 10 V 67 0 V 0 18 V 67 0 V 0 21 V 67 0 V 0 -49 V 67 0 V 0 17 V 68 0 V 0 14 V 67 0 V 0 11 V 67 0 V 0 -46 V 67 0 V 0 11 V 67 0 V 0 5 V 68 0 V 0 7 V 67 0 V 0 -5 V 67 0 V 0 -4 V 67 0 V 0 18 V 67 0 V 0 -23 V 68 0 V 0 -30 V 67 0 V 0 39 V 67 0 V 0 10 V 67 0 V 67 0 V 0 -3 V 68 0 V 0 -2 V 67 0 V 0 -26 V 67 0 V 0 42 V 67 0 V 0 3 V 67 0 V 0 -31 V 68 0 V 0 -21 V 67 0 V 0 47 V 67 0 V 0 7 V 67 0 V 0 -9 V 67 0 V 0 -47 V 68 0 V 0 47 V 67 0 V 0 -19 V 67 0 V 0 9 V 67 0 V 0 -21 V 67 0 V 0 -4 V 68 0 V 0 21 V 67 0 V 0 2 V 67 0 V 0 63 V 67 0 V 0 -49 V 67 0 V 0 12 V 68 0 V 0 14 V 67 0 V 0 -12 V 67 0 V 0 -12 V 67 0 V 0 33 V 67 0 V 0 4 V 68 0 V 0 45 V 67 0 V 0 -5 V 67 0 V 0 -16 V 67 0 V 0 -14 V 67 0 V 0 51 V 68 0 V 0 40 V 67 0 V 0 -26 V 67 0 V 0 5 V 67 0 V 0 14 V 67 0 V 0 109 V 68 0 V 0 -4 V 67 0 V 0 74 V 67 0 V 0 112 V 67 0 V 0 933 V 67 0 V 0 -1525 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial 300 3245 a(Figure)30 b(1.2:)43 b(The)32 b(frequency)i(of)d(the)h(orbits)f(of)f Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)g(4)p Fr(x)p Fu(\(1)20 b Fq(\000)g Fr(x)p Fu(\))32 b(of)f(10000)f(iterations)g(and)300 3365 y(100)i(partitions)f(in)h([0)p Fr(;)17 b Fu(1])32 b(with)g(di\013eren)m (t)h(initial)28 b(states)p Black 446 3718 a(In)33 b(ph)m(ysical)e (sciences)j(suc)m(h)f(as)f(statistical)e(ph)m(ysics)k(and)e(neural)f (net)m(w)m(orks,)j(man)m(y)e(prob-)300 3838 y(lems)d(are)g(also)f (closely)h(related)g(to)g(the)h(problem)e(of)h(the)h(existence)h(of)e (an)g(absolutely)g(con)m(tin-)300 3959 y(uous)39 b(in)m(v)-5 b(arian)m(t)36 b(probabilit)m(y)h(measure)h Fr(\026)g Fu(of)g(a)f(nonsingular)g(transformation)f(of)i Fr(X)45 b Fq(\032)37 b Fr(R)3772 3923 y Fo(d)3813 3959 y Fu(.)300 4079 y(That)c(is,)f Fr(\026)g Fu(can)h(b)s(e)g(view)m(ed)h(as)e(a)h Fj(physic)-5 b(al)34 b(me)-5 b(asur)g(e)32 b Fu(in)g(the)h(sense)h (that)1432 4313 y Fr(\026)p Fu(\()p Fr(A)p Fu(\))28 b(=)1771 4178 y Fi(Z)1827 4403 y Fo(A)1900 4313 y Fr(f)11 b(dm;)44 b Fq(8)28 b Fr(A)g Fq(2)g Fu(\006)p Fr(:)p Black 1098 w Fu(\(1.5\))p Black 300 4552 a(The)46 b(nonnegativ)m(e)g(function)e Fr(f)56 b Fu(is)45 b(called)f(the)h(densit)m(y)h(of)f Fr(\026)p Fu(.)81 b(Here)46 b Fr(m)f Fu(is)g(the)h(Leb)s(esgue)300 4672 y(measure)32 b(on)g Fr(X)r(;)45 b Fu(\006)32 b(is)g(the)g(Borel)f Fr(\033)t Fu(-algebra)g(of)g(subsets)j(of)e Fr(X)8 b Fu(,)32 b(and)g(the)g(non-singularit)m(y)e(of)300 4792 y Fr(S)38 b Fu(means)33 b(that)f Fr(m)p Fu(\()p Fr(A)p Fu(\))c(=)g(0)k(implies)e Fr(m)p Fu(\()p Fr(S)1875 4756 y Fl(\000)p Fp(1)1970 4792 y Fu(\()p Fr(A)p Fu(\)\))d(=)h(0.)446 4913 y(As)34 b(men)m(tioned)f(ab)s(o)m(v)m(e,)i(the)f(concept)g(of)f (absolutely)g(con)m(tin)m(uous)h(in)m(v)-5 b(arian)m(t)32 b(probabilit)m(y)300 5033 y(measures)27 b(is)g(related)f(to)g(the)h (problem)e(of)i(studying)g(v)-5 b(arious)25 b(statistical)g(prop)s (erties)h(of)h(orbits)300 5153 y(of)33 b(the)g(c)m(haotic)g(dynamics.) 44 b(No)m(w)34 b(our)f(question)g(is,)g(giv)m(en)g(a)g(c)m(haotic)f (mapping)g Fr(S)i Fu(:)29 b([0)p Fr(;)17 b Fu(1])27 b Fq(!)300 5274 y Fu([0)p Fr(;)17 b Fu(1],)32 b(ho)m(w)h(can)g(w)m(e)h (calculate)d(the)i(in)m(v)-5 b(arian)m(t)31 b(probabilit)m(y)g(measure) i Fr(\026)p Fu(?)446 5394 y(It)23 b(is)g(w)m(ell-kno)m(wn)g(that)f(the) i(densit)m(y)f Fr(f)34 b Fu(of)22 b(an)h(absolutely)f(con)m(tin)m(uous) i(in)m(v)-5 b(arian)m(t)21 b(probabil-)300 5515 y(it)m(y)h(measure)h (is)f(a)g(\014xed)i(densit)m(y)g(of)e(the)h(so-called)e Fj(F)-7 b(r)i(ob)g(enius-Perr)g(on)24 b(op)-5 b(er)g(ator)p Fu(.)39 b(Considering)p Black Black eop %%Page: 4 13 4 12 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020 b Fu(4)p Black 300 274 a(the)36 b(iteration)d(of)h(the)i(F)-8 b(rob)s(enius-P)m(erron)35 b(op)s(erator)f(leads)h(us)h(to)f(the)g (same)g(observ)-5 b(ation)35 b(as)300 395 y(ab)s(o)m(v)m(e:)44 b(c)m(haos)34 b(in)e(the)h(deterministic)d(sense)35 b(ma)m(y)d(not)h(b) s(e)f(so)h(in)f(the)h(probabilistic)d(sense.)446 515 y(Let)46 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))44 b(b)s(e)i(a)f Fr(\033)t Fu(-\014nite)f(measure)h(space,)50 b(let)44 b Fr(S)55 b Fu(:)49 b Fr(X)57 b Fq(!)48 b Fr(X)53 b Fu(b)s(e)45 b(a)g(nonsingular)300 635 y(transformation,)33 b(i.e.,)i Fr(\026)p Fu(\()p Fr(A)p Fu(\))c(=)g(0)j(implies)e Fr(\026)p Fu(\()p Fr(S)2106 599 y Fl(\000)p Fp(1)2200 635 y Fu(\()p Fr(A)p Fu(\)\))f(=)g(0,)k(and)g(let)f Fr(P)45 b Fu(:)31 b Fr(L)3203 599 y Fp(1)3243 635 y Fu(\()p Fr(X)8 b Fu(\))31 b Fq(!)g Fr(L)3636 599 y Fp(1)3675 635 y Fu(\()p Fr(X)8 b Fu(\))300 756 y(b)s(e)33 b(the)g(F)-8 b(rob)s(enius-P)m(erron) 32 b(op)s(erator)g(asso)s(ciated)g(with)h Fr(S)38 b Fu(de\014ned)c(b)m (y)1284 880 y Fi(Z)1340 1105 y Fo(A)1413 1015 y Fr(P)14 b(f)d(d\026)27 b Fu(=)1789 880 y Fi(Z)1845 1105 y Fo(S)1892 1086 y Fh(\000)p Fg(1)1974 1105 y Fp(\()p Fo(A)p Fp(\))2102 1015 y Fr(f)11 b(d\026;)44 b Fq(8)p Fr(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 950 w Fu(\(1.6\))p Black 300 1301 a(It)g(is)g(not)g(di\016cult)f(to)h(sho)m(w)h(that)f([36])g(an)m(y)g (\014xed)i(densit)m(y)f Fr(f)2558 1265 y Fl(\003)2625 1301 y Fu(of)f Fr(P)41 b Fu(giv)m(es)29 b(an)f(absolutely)f(con-)300 1422 y(tin)m(uous)d Fr(S)6 b Fu(-in)m(v)-5 b(arian)m(t)22 b(probabilit)m(y)g(measure)i Fr(\026)2055 1437 y Fo(f)2096 1418 y Fh(\003)2160 1422 y Fu(on)f Fr(X)32 b Fu(de\014ned)25 b(b)m(y)g Fr(\026)2912 1437 y Fo(f)2953 1418 y Fh(\003)2993 1422 y Fu(\()p Fr(A)p Fu(\))j(=)3273 1341 y Fi(R)3320 1456 y Fo(A)3394 1422 y Fr(f)3453 1385 y Fl(\003)3492 1422 y Fr(d\026;)44 b(A)28 b Fq(2)300 1542 y Fu(\006.)446 1662 y(The)44 b(existence)g(problem)e(of)g(\014xed)i(densities)e(of)h (F)-8 b(rob)s(enius-P)m(erron)42 b(op)s(erators)g(is)h(one)300 1783 y(of)37 b(the)i(main)d(topics)i(in)f(mo)s(dern)g(ergo)s(dic)g (theory)i([36)o(].)60 b(On)38 b(the)g(other)g(hand,)i(in)d(ph)m(ysical) 300 1903 y(sciences,)j(one)d(often)h(need)g(compute)f(one)h(or)e (higher)h(dimensional)e(absolutely)h(con)m(tin)m(uous)300 2024 y(in)m(v)-5 b(arian)m(t)23 b(measures.)42 b(F)-8 b(or)23 b(example,)j(in)e(neural)f(net)m(w)m(orks,)29 b(condensed)d(matter)e(ph)m(ysics,)j(tur-)300 2144 y(bulence)h(in)f (\015uid)h(\015o)m(w,)h(arra)m(ys)f(of)g(Josephson)h(junctions,)g (large)d(scale)i(laser)f(arra)m(ys,)j(reaction)300 2264 y(di\013usion)37 b(systems,)42 b(etc.,)f(\\coupled)e(map)e(lattices")h (app)s(ear)g(as)h(mo)s(dels)e(for)i(phase)g(transi-)300 2385 y(tion,)j(in)e(whic)m(h)h(the)g(ev)m(olution)f(and)h(con)m(v)m (ergence)i(of)e(densities)g(under)g(the)g(action)f(of)h(the)300 2505 y(F)-8 b(rob)s(enius-P)m(erron)40 b(op)s(erator)f(are)h(examined.) 65 b(In)40 b(order)g(to)f(understand)i(some)f(statistical)300 2625 y(prop)s(erties)e(of)f(these)i(systems,)i(it)36 b(is)i(essen)m(tial)g(to)f(b)s(e)h(able)f(to)h(calculate)e(some)i (global)d(sta-)300 2746 y(tistical)c(quan)m(tities)i(suc)m(h)h(as)f(in) m(v)-5 b(arian)m(t)32 b(measures,)i(en)m(trop)m(y)-8 b(,)35 b(and)e(top)s(ological)c(pressure)35 b([1].)300 2866 y(Th)m(us,)k(from)c(the)h(ph)m(ysical)h(p)s(oin)m(t)e(of)h(view,)h (the)g(existence)h(and)e(computation)f(of)g(in)m(v)-5 b(arian)m(t)300 2987 y(densities)33 b(of)f(F)-8 b(rob)s(enius-P)m (erron)32 b(op)s(erators)h(are)f(v)m(ery)i(imp)s(ortan)m(t.)446 3107 y(Ho)m(w)m(ev)m(er,)51 b(the)45 b(follo)m(wing)d(t)m(w)m(o)j(main) e(di\016culties)h(mak)m(e)h(solving)e(the)j(ab)s(o)m(v)m(e)f(problem) 300 3227 y(a)40 b(c)m(hallenging)f(one.)68 b(First)39 b(the)j(basic)e(space)i Fr(L)2154 3191 y Fp(1)2193 3227 y Fu(\()p Fr(X)8 b Fu(\))41 b(is)f(not)g(re\015exiv)m(e,)k(and)d (secondly)h(the)300 3348 y(F)-8 b(rob)s(enius-P)m(erron)28 b(op)s(erator)f Fr(P)41 b Fu(is)27 b(not)h(compact)f(on)h Fr(L)2399 3312 y Fp(1)2438 3348 y Fu(\()p Fr(X)8 b Fu(\).)42 b(Th)m(us,)30 b(w)m(e)f(can)f(only)f(use)i(some)300 3468 y(sp)s(ecial)j(tec)m(hniques)j(and)f(the)g(structure)g(analysis)f(to)g (pro)m(v)m(e)h(the)g(existence)h(and)e(to)g(dev)m(elop)300 3589 y(con)m(v)m(ergen)m(t)i(algorithms.)446 3709 y(F)-8 b(or)31 b(the)g(one)g(dimensional)e(case,)j Fr(S)i Fu(:)27 b([0)p Fr(;)17 b Fu(1])27 b Fq(!)h Fu([0)p Fr(;)17 b Fu(1],)30 b(in)h(his)f(b)s(o)s(ok)h([47],)g(Ulam)e(prop)s(osed)300 3829 y(a)36 b(piecewise)h(constan)m(t)h(appro)m(ximation)c(metho)s(d)i (to)g(calculate)g(the)g(\014xed)i(p)s(oin)m(t)e(of)g Fr(P)14 b Fu(,)37 b(and)300 3950 y(he)28 b(conjectured)h(that)e (piecewise)h(constan)m(t)g(appro)m(ximations)e Fr(f)2687 3965 y Fo(n)2761 3950 y Fu(from)g(the)i(algorithm)c(w)m(ould)300 4070 y(con)m(v)m(erge)40 b(in)d Fr(L)889 4034 y Fp(1)929 4070 y Fu(\(0)p Fr(;)17 b Fu(1\))37 b(to)g(a)h(\014xed)h(p)s(oin)m(t)e Fr(f)49 b Fu(of)38 b Fr(P)51 b Fu(if)37 b Fr(P)51 b Fu(has)39 b(a)e(non)m(trivial)f(\014xed)j(p)s(oin)m(t)e(\(i.e.,)300 4190 y(if)32 b Fr(S)39 b Fu(preserv)m(es)d(some)d(absolutely)g(con)m (tin)m(uous)h(measure)f(under)h(some)f(condition)f(on)h Fr(S)6 b Fu(\).)46 b(In)300 4311 y(1976,)26 b(Li)e([38)o(])i([39)o(])f (\014rst)h(pro)m(v)m(ed)g(the)g(conjecture)g(for)f(a)f(class)i(of)e (piecewise)i Fr(C)3173 4275 y Fp(2)3237 4311 y Fu(and)f(stretc)m(hing) 300 4431 y(mappings)34 b Fr(S)j Fu(:)32 b([0)p Fr(;)17 b Fu(1])31 b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])34 b(under)i(whic)m(h)g (the)f(existence)h(of)f(the)g(absolutely)f(con)m(tin)m(uous)300 4552 y(in)m(v)-5 b(arian)m(t)30 b(measure)h(w)m(as)h(established)g(b)m (y)g(Lasota)f(and)g(Y)-8 b(ork)m(e)32 b(in)e(an)i(imp)s(ortan)m(t)d (pap)s(er)i([37].)446 4672 y(F)-8 b(or)33 b(the)h(existence)g(of)f(m)m (ulti-dimensional)c(in)m(v)-5 b(arian)m(t)31 b(measures,)k(the)f (\014rst)f(correct,)i(but)300 4792 y(partial)21 b(result)j(app)s(eared) g(in)f([34)o(].)41 b(There,)26 b(expanding,)g(piecewise)e(analytic)f (transformations)300 4913 y(on)39 b(the)g(unit)g(square)h(partitioned)d (b)m(y)j(smo)s(oth)e(b)s(oundaries)h(w)m(ere)h(considered.)64 b(A)39 b(compli-)300 5033 y(cated)f(de\014nition)f(of)g(b)s(ounded)h(v) -5 b(ariation)35 b(is)i(used)i(and)f(the)g(metho)s(d)e(cannot)i(b)s(e)g (extended)300 5153 y(b)s(ey)m(ond)32 b(dimension)d(2.)42 b(Tw)m(o)31 b(generalizations)e(w)m(ere)j(obtained)d(later)h(on.)42 b(In)31 b([33],)g(Jablonski)300 5274 y(pro)m(v)m(ed)45 b(the)f(existence)h(of)e(the)h(in)m(v)-5 b(arian)m(t)42 b(measure)i(for)e(a)i(sp)s(ecial)e(class)i(of)f(mappings)f(on)300 5394 y Fr(I)351 5358 y Fo(d)431 5394 y Fu(\()p Fr(I)520 5358 y Fo(d)600 5394 y Fu(=)e([0)p Fr(;)17 b Fu(1])912 5358 y Fo(d)992 5394 y Fu(is)40 b(the)g(unit)f Fr(N)10 b Fu(-cub)s(e)41 b(in)e Fr(R)2041 5358 y Fo(d)2081 5394 y Fu(\))h(with)g(a)f(rectangular)g(partition,)h(using)g(the)300 5515 y(T)-8 b(onnelli)39 b(de\014nition)h(of)h(b)s(ounded)h(v)-5 b(ariation.)67 b(In)42 b([27)o(],)i(G\023)-49 b(ora)40 b(and)h(Bo)m(y)m(arsky)i(seem)f(to)f(b)s(e)p Black Black eop %%Page: 5 14 5 13 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020 b Fu(5)p Black 300 274 a(the)36 b(\014rst)h(to)f(use)h(the)f(mo)s(dern) f(de\014nition)g(of)h(b)s(ounded)h(v)-5 b(ariation)33 b(based)k(on)f(the)h(theory)f(of)300 395 y(distribution)28 b(to)h(pro)m(v)m(e)h(a)g(general)f(existence)i(result)e(for)g (piecewise)h(expanding)g Fr(C)3405 358 y Fp(2)3474 395 y Fu(transfor-)300 515 y(mations.)42 b(Since)31 b(G\023)-49 b(ora-Bo)m(y)m(arsky)32 b(transformations)e(are)h(more)g(general)f ([27])h(and)h(Jablonski)300 635 y(transformations)26 b(are)i Fr(L)1222 599 y Fp(1)1290 635 y Fu(dense)i(in)d(the)i(class)f (of)g(all)e(piecewise)i(expanding)h(transformations)300 756 y(on)j Fr(I)486 720 y Fo(d)559 756 y Fu([4],)h(their)f(n)m (umerical)f(analysis)h(is)g(imp)s(ortan)m(t.)446 876 y(Ho)m(w)m(ev)m(er,)40 b(when)e Fr(d)c(>)g Fu(1,)j(the)g(tec)m(hnique)h (of)e(v)-5 b(ariation)34 b(of)i(one)h(dimension)e(used)j(in)d([38])300 997 y(is)47 b(not)g(easily)f(extended,)53 b(th)m(us)48 b(no)f(pro)s(of)g(to)g(Ulam's)f(conjecture)i(has)f(app)s(eared)h(in)f (the)300 1117 y(literature)23 b(for)h(general)g(higher)g(dimensional)d (mappings.)40 b(Bo)m(y)m(arsky)27 b(and)d(Lou)g([4])h(pro)m(v)m(ed)h (the)300 1237 y(con)m(v)m(ergence)f(of)e(Ulam's)e(metho)s(d)h(for)g (the)h(class)g(of)f(Jablonski)g(transformations)f Fr(S)34 b Fu(:)27 b Fr(I)3526 1201 y Fo(d)3594 1237 y Fq(!)h Fr(I)3773 1201 y Fo(d)3813 1237 y Fu(,)300 1358 y(using)39 b(the)i(classic)e(T)-8 b(onelli)38 b(de\014nition)h([33)o(])h(of)f(v)-5 b(ariation)38 b(in)h(high)g(dimensions.)64 b(With)40 b(the)300 1478 y(help)27 b(of)f(the)h(mo)s(dern)f(notion)g(of)g(v)-5 b(ariation,)26 b(Ding)f(and)i(Zhou)f([24])h(solv)m(ed)g(Ulam's)f (conjecture)300 1598 y(for)40 b(the)g(G\023)-49 b(ora-Bo)m(y)m(arsky)41 b(class)g(of)e(mappings.)66 b(Some)39 b(high)h(order)g(metho)s(ds,)i (suc)m(h)g(as)f(the)300 1719 y(Mark)m(o)m(v)26 b(\014nite)e(appro)m (ximation)e(metho)s(d)h(and)i(the)f(pro)5 b(jection)24 b(metho)s(d)g(ha)m(v)m(e)h(b)s(een)g(prop)s(osed)300 1839 y(for)38 b(computing)f(the)i(m)m(ulti-dimensional)34 b(in)m(v)-5 b(arian)m(t)37 b(measure)i(and)f(their)g(con)m(v)m(ergence) k(has)300 1960 y(b)s(een)36 b(pro)m(v)m(ed)h(for)e(a)g(class)g(of)g (mappings)g([24)o(])h([23)o(].)52 b(Although)35 b(suc)m(h)i(metho)s(ds) e(ha)m(v)m(e)h(higher)300 2080 y(con)m(v)m(ergence)d(rates)d(if)f(the)h (in)m(v)-5 b(arian)m(t)29 b(densit)m(y)i(satis\014es)g(the)f(regularit) m(y)f(condition,)g(for)g Fr(d)h Fu(big)300 2200 y(enough,)j(probably)e (Ulam's)g(original)e(metho)s(d)i(is)h(the)h(only)e(practical)g(one)h (whic)m(h)h(is)e(easy)i(to)300 2321 y(p)s(erform)f(and)g(natural)g(to)g (emplo)m(y)g(the)h(Mon)m(te)g(Carlo)f(sc)m(heme)i([30)o(].)446 2441 y(The)40 b(con)m(v)m(ergence)h(rate)d(analysis)g(of)f(the)i(Mark)m (o)m(v)h(metho)s(d)e(w)m(as)h(\014rst)g(giv)m(en)f(in)g([29)o(])h(in) 300 2562 y(whic)m(h)i(the)h(idea)e(of)g(sp)s(ectral)h(appro)m (ximations)e(of)h(op)s(erators)h(and)g(the)g(concept)h(of)e(quasi-)300 2682 y(compactness)h(are)g(emplo)m(y)m(ed.)67 b(Then)41 b(in)f([7])g(the)h(authors)g(used)g(the)g(Dunford)f(in)m(tegral)e(of) 300 2802 y(op)s(erators)31 b(to)f(estimate)g(the)h(con)m(v)m(ergence)i (rate.)43 b(Since)31 b(some)g(\015a)m(w)g(of)f(the)h(w)m(ork)h(w)m(as)g (found,)300 2923 y(a)38 b(rather)g(complete)f(con)m(v)m(ergence)k(rate) c(analysis)h(for)f(the)i(Mark)m(o)m(v)g(metho)s(d)e(has)i(app)s(eared) 300 3043 y(in)30 b([18)o(])h(follo)m(wing)d(the)i(initial)d(approac)m (h)k(of)f([7].)43 b(The)31 b(main)e(result)h(and)h(the)g(analysis)f(in) f([18])300 3163 y(indicate)38 b(that)h(the)g(error)g(of)g(the)h(appro)m (ximate)e(solution)f Fr(f)2598 3178 y Fo(n)2684 3163 y Fu(to)i(the)h(exact)g(solution)d Fr(f)3683 3127 y Fl(\003)3761 3163 y Fu(of)300 3284 y(the)d(\014xed)g(densit)m(y)h(equation)e Fr(P)14 b(f)1578 3248 y Fl(\003)1646 3284 y Fu(=)29 b Fr(f)1810 3248 y Fl(\003)1882 3284 y Fu(is)k(con)m(trolled)f(b)m(y)j (the)e(appro)m(ximation)f(error)h(of)g Fr(f)3801 3248 y Fl(\003)300 3404 y Fu(b)m(y)g Fr(P)498 3419 y Fo(n)545 3404 y Fr(f)593 3419 y Fo(n)672 3404 y Fu(in)e(man)m(y)h(cases,)h (where)g Fr(f)1650 3419 y Fo(n)1729 3404 y Fu(is)e(a)h(\014xed)h (densit)m(y)g(of)e Fr(P)2651 3419 y Fo(n)2730 3404 y Fu(in)g(some)h(\014nite)f(dimensional)300 3525 y(subspace)41 b(of)d(the)h Fr(L)1071 3488 y Fp(1)1149 3525 y Fu(space.)63 b(Since)38 b Fr(P)1789 3540 y Fo(n)1874 3525 y Fu(=)g Fr(Q)2065 3540 y Fo(n)2112 3525 y Fr(P)52 b Fu(where)40 b Fr(Q)2592 3540 y Fo(n)2677 3525 y Fu(is)e(an)h(appro)m(ximation)d(to) j(the)300 3645 y(iden)m(tit)m(y)i(op)s(erator)g Fr(I)8 b Fu(,)44 b(so)e(the)g(problem)e(of)h(con)m(v)m(ergence)j(rate)d(of)h (the)f(n)m(umerical)g(metho)s(d)300 3765 y(is)k(reduced)h(to)f(that)g (of)g(the)h(appro)m(ximation)d(order)i(of)g(the)g(sequence)j(of)d (appro)m(ximating)300 3886 y(op)s(erators)i Fr(Q)823 3901 y Fo(n)917 3886 y Fu(to)g(the)g(iden)m(tit)m(y)g(op)s(erator)f Fr(I)8 b Fu(.)87 b(Indeed,)52 b(using)46 b(this)h(idea)f(Hun)m(t)i ([30])f(has)300 4006 y(in)m(v)m(estigated)c(the)g(appro)m(ximation)e (problem)h(b)m(y)i(using)e(the)i(Bohman-Koro)m(vkin)d(theorem)300 4126 y([10].)46 b(But)33 b(since)h(the)g(pap)s(er)g([30)o(])g(is)f (based)h(on)f([7])h(whic)m(h)g(main)d(result)j(is)f(\015a)m(w)m(ed)i (\(see)f([31]\),)300 4247 y(and)i(since)g(some)f(analysis)g(in)g([30)o (])h(is)f(not)g(v)m(ery)i(strict)e(\(for)g(example,)h(it)f(assumes)h (that)g(the)300 4367 y(sc)m(heme)i(of)e(piecewise)i(linear)d(Mark)m(o)m (v)j(\014nite)f(appro)m(ximations)e(k)m(eeps)k(an)m(y)e(linear)e (function)300 4488 y(\014xed,)g(whic)m(h)f(is)f(not)h(so\),)g(a)f (rigorous)g(appro)m(ximation)e(analysis)i(of)g(the)h(Mark)m(o)m(v)h (metho)s(d)e(is)300 4608 y(presen)m(ted)i(here.)446 4728 y(Numerical)e(exp)s(erimen)m(ts)j(ha)m(v)m(e)g(sho)m(wn)g(that)f (Ulam's)f(metho)s(d)g(con)m(v)m(erges)j(not)e(only)f(for)300 4849 y(the)g(class)f(of)f(piecewise)i(stretc)m(hing)g(mappings,)e(but)h (also)g(for)f(man)m(y)h(other)h(classes)g(of)e(map-)300 4969 y(pings.)79 b(But)44 b(this)g(metho)s(d)g(has)h(one)g(shortage.)79 b(That)44 b(is,)j(the)e(n)m(umerical)e(ev)-5 b(aluation)43 b(in)300 5090 y(implemen)m(ting)36 b(Ulam's)h(metho)s(d)h(b)s(ecomes)h (di\016cult)e(or)h(ev)m(en)i(imp)s(ossible)c(if)i(the)g(mapping)300 5210 y Fr(S)44 b Fu(has)39 b(a)f(complicated)f(expression)i(or)f(the)h (expression)h(of)d Fr(S)45 b Fu(is)37 b(hard)i(to)f(obtain,)h(whic)m(h) f(is)300 5330 y(often)25 b(the)h(case)g(when)h Fr(S)k Fu(results)26 b(from)e(some)h(ph)m(ysical)g(exp)s(erimen)m(t.)41 b(F)-8 b(or)25 b(m)m(ulti-dimensional)300 5451 y(systems,)33 b(\014nding)f(in)m(v)m(erse)h(images)d(in)h(Ulam's)g(metho)s(d)g(will)f (b)s(e)i(v)m(ery)h(hard.)43 b(In)32 b(this)g(w)m(ork)g(a)p Black Black eop %%Page: 6 15 6 14 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020 b Fu(6)p Black 300 274 a(new)34 b(algorithm)c(is)j(prop)s(osed)h(to)f (o)m(v)m(ercome)h(this)f(di\016cult)m(y)-8 b(.)45 b(The)34 b(basic)f(idea)g(of)f(the)i(Mon)m(te)300 395 y(Carlo)f(approac)m(h)h (whic)m(h)h(w)m(as)f(\014rst)h(prop)s(osed)f(b)m(y)h(Hun)m(t)f([30])g (is)f(emplo)m(y)m(ed.)48 b(But)34 b(unlik)m(e)g(the)300 515 y(random)c(c)m(hoice)h(of)g(p)s(oin)m(ts)f(in)h([30)o(],)h(a)e (uniform)f(distribution)g(of)i(p)s(oin)m(ts)f(is)h(used,)h(so)g(the)f (new)300 635 y(metho)s(d)i(can)h(b)s(e)f(classi\014ed)h(as)f(a)g (quasi-Mon)m(te)h(Carlo)f(metho)s(d.)45 b(Generally)32 b(sp)s(eaking,)i(The)300 756 y(con)m(v)m(ergence)39 b(rate)e(of)g(the)g (standard)g(Mon)m(te)h(Carlo)e(metho)s(d)g(for)g(in)m(tegration)f(is)i (v)m(ery)h(slo)m(w)300 876 y(and)i(its)f(error)h(is)g(ab)s(out)f Fr(O)s Fu(\()p Fr(N)1482 840 y Fl(\000)p Fp(1)p Fo(=)p Fp(2)1647 876 y Fu(\),)i(where)h Fr(N)50 b Fu(is)39 b(the)i(n)m(um)m(b) s(er)f(of)f(the)i(no)s(des)f(used.)67 b(The)300 997 y(quasi-Mon)m(te)39 b(Carlo)f(metho)s(d,)j(whic)m(h)e(uses)i(the)e(quasi-random)f(n)m(um)m (b)s(er)h(generation,)h(will)300 1117 y(b)s(e)f(m)m(uc)m(h)g(b)s (etter,)i(and)e(its)g(error)f(can)h(ac)m(hiev)m(e)h Fr(O)s Fu(\()p Fr(N)2347 1081 y Fl(\000)p Fp(1)2442 1117 y Fu(\))e(\(see)i ([44])f(for)f(more)g(detail)f(ab)s(out)300 1237 y(the)42 b(comparison)f(of)g(the)h(standard)g(Mon)m(te)g(Carlo)f(metho)s(d)g (and)h(the)g(quasi-Mon)m(te)g(Carlo)300 1358 y(metho)s(d\).)446 1478 y(The)34 b(Mon)m(te)g(Carlo)e(approac)m(h)h(has)h(the)f(shortage)g (of)g Fj(time-c)-5 b(onsuming)p Fu(,)32 b(for)g(it)g(generally)300 1598 y(uses)27 b(lots)d(of)h(testing)g(p)s(oin)m(ts)g(to)f(sim)m(ulate) g(the)i(mo)s(del)d(of)i(the)h(ob)5 b(ject.)42 b(F)-8 b(or)24 b(m)m(ulti-dimensional)300 1719 y(transformations,)i(the)i (load)d(of)i(computation)e(is)i(rather)g(high.)41 b(Therefore)28 b(the)f(parallel)d(com-)300 1839 y(putation)36 b(of)g(the)h(m)m (ulti-dimensional)31 b(system)38 b(will)c(b)s(e)j(the)g(only)f (practical)f(c)m(hoice.)56 b(F)-8 b(ortu-)300 1960 y(nately)g(,)46 b(the)e(main)e(frame)h(of)h(the)g(Ulam)e(metho)s(d,)k(the)e (computation)e(of)h(the)h(companion)300 2080 y(matrix,)32 b(is)h(easy)h(to)f(parallelize.)43 b(So)34 b(in)e(this)h(dissertation)g (w)m(e)h(dev)m(elop)g(a)f(parallel)e(algorith-)300 2200 y(m)42 b(that)h(com)m(bines)g(Ulam's)f(metho)s(d)g(with)h(the)g (quasi-Mon)m(te)h(Carlo)e(approac)m(h)h(and)g(uses)300 2321 y(parallel)31 b(computers)j(to)g(ev)-5 b(aluate)33 b(en)m(tries)h(of)g(the)g(resulting)f(matrix.)45 b(Besides,)35 b(the)g(parallel)300 2441 y(computation)g(of)h(the)g(\014xed)i(v)m (ector)f(of)f(the)h(companion)d(matrix)h(with)h(the)h(direct)f (iteration)300 2562 y(of)i(the)h(matrix)e(is)h(also)g(prop)s(osed)h(in) f(our)g(w)m(ork)h(to)g(ha)m(v)m(e)g(a)g(completely)e(parallel)f (algorith-)300 2682 y(m)i(of)h(general)g(use,)i(with)e(whic)m(h)h(the)f (n)m(umerical)f(appro)m(ximation)f(of)h(the)i(\014xed)g(densit)m(y)g (of)300 2802 y(F)-8 b(rob)s(enius-P)m(erron)42 b(op)s(erators)f(can)h (b)s(e)g(constructed)h(rather)f(easily)-8 b(.)70 b(One)43 b(c)m(hapter)f(of)g(the)300 2923 y(dissertation)29 b(sho)m(ws)i(all)c (details)h(of)h(parallel)e(tec)m(hniques)k(using)e(the)h(MPI)h (\(Message)g(P)m(assing)300 3043 y(In)m(terface\))j(pac)m(k)-5 b(age)33 b(and)f(the)h(parallel)d(algorithms.)446 3163 y(In)35 b(the)g(n)m(umerical)f(exp)s(erimen)m(ts,)h(in)f(order)h(to)f (test)i(the)f(e\013ectiv)m(eness)i(of)d(the)h(prop)s(osed)300 3284 y(new)26 b(algorithms,)f(w)m(e)h(compare)f(the)h Fr(L)1744 3248 y Fp(1)1784 3284 y Fu(-norm)e(errors)i(with)f(three)h (di\013eren)m(t)f(approac)m(hes:)42 b(the)300 3404 y(exact)29 b(ev)-5 b(aluation)26 b(of)h(the)i(matrix)d(in)i(Ulam's)e(metho)s(d,)j (the)f(Mon)m(te)h(Carlo)e(ev)-5 b(aluation)26 b(of)i(the)300 3525 y(matrix)h(in)i(Ulam's)f(metho)s(d)g(prop)s(osed)i(b)m(y)g(Hun)m (t,)g(and)f(the)g(quasi-Mon)m(te)h(Carlo)e(ev)-5 b(aluation)300 3645 y(of)41 b(the)g(matrix)f(in)h(Ulam's)f(metho)s(d)g(prop)s(osed)i (in)f(this)g(dissertation.)68 b(W)-8 b(e)42 b(shall)e(see)i(that)300 3765 y(the)47 b(quasi-Mon)m(te)f(Carlo)f(approac)m(h,)51 b(whic)m(h)46 b(is)g(based)h(on)f(the)h(idea)f(of)f(using)h(uniformly) 300 3886 y(distributed)36 b(test)h(p)s(oin)m(ts,)g(can)f(ac)m(hiev)m(e) i(the)f(error)f(from)f(the)i(exact)g(Ulam)d(metho)s(d,)j(and)f(is)300 4006 y(m)m(uc)m(h)e(b)s(etter)f(than)g(the)h(original)29 b(Mon)m(te)34 b(Carlo)e(approac)m(h.)46 b(Therefore,)34 b(in)f(the)g(completely)300 4126 y(parallel)k(quasi-Mon)m(te)j(Carlo)e (algorithm)f(that)i(w)m(e)h(ha)m(v)m(e)h(dev)m(elop)s(ed)g(in)d(this)i (dissertation,)300 4247 y(the)f(parallel)d(tec)m(hnique)k(for)f(the)g (matrix)e(ev)-5 b(aluation)37 b(and)i(the)g(computation)e(of)i(the)g (\014xed)300 4367 y(densit)m(y)27 b(are)f(com)m(bined)g(with)f(the)i (idea)e(of)h(the)g(quasi-Mon)m(te)h(Carlo)e(approac)m(h)h(to)g (implemen)m(t)300 4488 y(the)42 b(famous)g(Ulam)e(metho)s(d)h(for)h (the)g(computation)f(of)g(absolutely)h(con)m(tin)m(uous)g(in)m(v)-5 b(arian)m(t)300 4608 y(measures)33 b(of)f(c)m(haotic)h(dynamical)e (systems.)446 4728 y(Besides)43 b(the)g(n)m(umerical)d(exp)s(erimen)m (ts)i(for)g(some)g(test)g(problems,)i(w)m(e)f(apply)e(our)h(new)300 4849 y(algorithms)34 b(to)j(an)f(imp)s(ortan)m(t)f(application)f (problem)i(in)g(the)h(study)h(of)f(c)m(haos)g(in)f(electron-)300 4969 y(ics)g([49])g(that)g(is)f(used)j(to)d(study)j(the)e(b)s(eha)m (vior)g(the)h(\014rst-order)f(digital)d(phase)k(lo)s(c)m(k)m(ed)f(lo)s (op)300 5090 y(\(DPLL\))27 b(mo)s(del)f(in)h(electronics.)42 b(T)-8 b(o)27 b(study)i(the)f(statistical)e(prop)s(erties)h(of)g(some)h (c)m(haotic)f(b)s(e-)300 5210 y(ha)m(vior)e(in)g(electronics,)i(the)f (F)-8 b(rob)s(enius-P)m(erron)25 b(op)s(erator)g(is)g(used)i(to)e (study)i(the)f(ev)m(olution)e(of)300 5330 y(probabilit)m(y)29 b(distributions)h(of)h(underlying)f(ph)m(ysical)h(quan)m(tities.)43 b(And)32 b(a)f(limiting)26 b(b)s(eha)m(vior)300 5451 y(of)36 b(suc)m(h)h(a)f(densit)m(y)h(ev)m(olution)e(is)g(often)h (examined,)h(and)f(so)h(w)m(e)g(need)g(to)e(\014nd)i(a)f(stationary)p Black Black eop %%Page: 7 16 7 15 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020 b Fu(7)p Black 300 274 a(distribution,)31 b(whic)m(h)i(is)f(giv)m(en)h (b)m(y)g(a)f(\014xed)i(p)s(oin)m(t)e(of)g(the)h(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erator.)446 395 y(In)45 b(the)f(pap)s(er)g([48],)j(a)d(probabilit)m(y)e(densit)m(y)j(function)f (\(PDF\))f(estimation)f(algorithm)300 515 y(based)37 b(on)f(the)h(statistical)d(study)j(of)e(the)i(systems)g(is)f(prop)s (osed.)55 b(Its)36 b(basic)g(idea)g(is)f(the)i(n)m(u-)300 635 y(merical)g(iteration)h(of)h(the)g(F)-8 b(rob)s(enius-P)m(erron)40 b(op)s(erator)e([49].)64 b(Because)41 b(this)e(metho)s(d)g(has)300 756 y(sev)m(eral)27 b(ob)m(vious)g(limitations,)d(for)i(example,)h(the) g(ev)-5 b(aluation)25 b(of)h(the)h(in)m(v)m(erse)h(mappings)d(ma)m(y) 300 876 y(b)s(e)i(di\016cult)g(or)g(imp)s(ossible)e(for)i(some)g(cases) h(and)g(the)g(initial)23 b(PDF)k(ma)m(y)g(b)s(e)g(c)m(hosen)i(inappro-) 300 997 y(priately)g(so)g(the)i(calculation)c(pro)s(cess)k(can)f(b)s(e) g(time-consuming)d(or)j(div)m(erge,)g(it)f(will)f(b)s(e)h(v)m(ery)300 1117 y(di\016cult)36 b(to)g(use)i(this)e(metho)s(d)g(in)g(most)g (cases,)k(and)d(its)f(con)m(v)m(ergence)j(can)e(not)g(b)s(e)g(assured) 300 1237 y(in)f(general.)57 b(Since)37 b(the)g(PDF)g(computation)f(of)g (the)i(DPLL)e(is)h(just)g(to)g(compute)g(the)h(\014xed)300 1358 y(densit)m(y)44 b(of)f(the)g(F)-8 b(rob)s(enius-P)m(erron)43 b(op)s(erator)f(asso)s(ciated)h(with)g(the)g(DPLL,)g(the)h(parallel)300 1478 y(quasi-Mon)m(te)31 b(Carlo)f(metho)s(d)g(that)h(w)m(e)h(ha)m(v)m (e)g(dev)m(elop)s(ed)g(will)c(b)s(e)j(an)g(ideal)e(to)s(ol)g(for)i(the) g(fast)300 1598 y(and)39 b(e\016cien)m(t)h(computation)e(of)g(a)h(PDF)g (for)f(the)i(DPLL.)e(The)i(n)m(umerical)e(exp)s(erimen)m(ts)i(in)300 1719 y(the)33 b(last)f(c)m(hapter)h(will)e(illustrate)f(this)i (conclusion.)446 1839 y(In)j(the)f(next)h(c)m(hapter,)h(the)e (de\014nition)g(of)f(F)-8 b(rob)s(enius-P)m(erron)34 b(op)s(erators)g(is)g(in)m(tro)s(duced.)300 1960 y(Then)26 b(in)e(Chapter)i(3,)g(Ulam's)d(metho)s(d)i(for)f(computing)f(the)j (\014xed)g(densit)m(y)f(of)g(the)g(F)-8 b(rob)s(enius-)300 2080 y(P)m(erron)38 b(op)s(erator)f(is)f(studied.)58 b(The)38 b(order)g(analysis)e(of)h(the)g(piecewise)h(linear)e(Mark)m(o) m(v)j(ap-)300 2200 y(pro)m(ximation)23 b(is)h(presen)m(ted)j(in)e (Chapter)g(4,)i(based)f(on)e(the)i(general)e(theory)i(of)e(appro)m (ximation)300 2321 y(of)30 b(con)m(tin)m(uous)h(functions)g(b)m(y)g(a)f (sequence)j(of)d(p)s(ositiv)m(e)g(op)s(erators)h(as)f(dev)m(elop)s(ed)i (b)m(y)f(DeV)-8 b(ore)300 2441 y(in)47 b([10)o(].)89 b(Then)48 b(the)g(quasi-Mon)m(te)g(Carlo)e(approac)m(h)i(is)f(studied)h (in)f(Chapter)h(5,)j(and)d(in)300 2562 y(the)38 b(next)h(t)m(w)m(o)f(c) m(hapters)h(the)f(t)m(w)m(o)h(parallel)c(algorithms,)h(n)m(umerical)g (exp)s(erimen)m(ts,)k(and)e(an)300 2682 y(application)k(example)i (\(DPLL\))g(are)g(discussed.)81 b(W)-8 b(e)45 b(conclude)g(in)f (Chapter)h(8.)79 b(A)45 b(brief)300 2802 y(mathematics)35 b(review)j(is)e(presen)m(ted)j(in)d(App)s(endix)h(A)g(for)f(a)h(b)s (etter)g(understanding)g(of)g(the)300 2923 y(w)m(ork.)44 b(A)33 b(complete)f(source)i(co)s(de)e(is)h(included)f(in)g(App)s (endix)h(B.)p Black Black eop %%Page: 8 17 8 16 bop Black Black Black Black 1714 107 a Fn(Chapter)53 b(2)p Black Black 682 539 a(FR)l(OBENIUS-PERR)l(ON)h(OPERA)-13 b(TORS)470 1241 y Fu(Let)38 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))37 b(b)s(e)g(a)g Fr(\033)t Fu(-\014nite)g(measure)g (space)i(\(see)f(App)s(endix)g(A\).)f(F)-8 b(or)37 b(a)g(giv)m(en)g (mea-)300 1361 y(surable)h(transformation)f Fr(S)43 b Fu(:)38 b Fr(X)45 b Fq(!)37 b Fr(X)8 b Fu(,)40 b(the)f(corresp)s (onding)f(F)-8 b(rob)s(enius-P)m(erron)39 b(op)s(erator)300 1481 y(giv)m(es)30 b(the)g(ev)m(olution)e(of)h(probabilit)m(y)f (densities)i(go)m(v)m(erned)h(b)m(y)f(the)g(deterministic)e(dynamical) 300 1602 y(system.)p Black 300 1748 a Fj(De\014nition)34 b(2.1.)p Black 48 w Fu(A)51 b(measurable)f(transformation)f Fr(S)65 b Fu(:)59 b Fr(X)67 b Fq(!)58 b Fr(X)h Fu(on)51 b(a)g(measure)g(space)300 1868 y(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(is)g(nonsingular)g(if)f Fr(\026)p Fu(\()p Fr(S)1585 1832 y Fl(\000)p Fp(1)1679 1868 y Fu(\()p Fr(A)p Fu(\)\))c(=)h(0)k(for)g(all)f Fr(A)d Fq(2)g Fu(\006)33 b(suc)m(h)h(that)e Fr(\026)p Fu(\()p Fr(A)p Fu(\))27 b(=)h(0.)p Black 300 2014 a Fj(De\014nition)34 b(2.2.)p Black 48 w Fu(Let)23 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))24 b(b)s(e)f(a)g(measure)h(space)g(and)g(let)f Fr(S)33 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fr(X)j Fu(b)s(e)23 b(a)h(measurable)300 2135 y(transformation.)41 b(W)-8 b(e)33 b(sa)m(y)h(that)e Fr(\026)g Fu(is)h(in)m(v)-5 b(arian)m(t)31 b(under)i Fr(S)38 b Fu(or)33 b Fr(S)38 b Fu(is)32 b(measure)h(preserving)g(if)1268 2317 y Fr(\026)p Fu(\()p Fr(S)1431 2276 y Fl(\000)p Fp(1)1525 2317 y Fu(\()p Fr(A)p Fu(\)\))27 b(=)h Fr(\026)p Fu(\()p Fr(A)p Fu(\))55 b(for)32 b(all)53 b Fr(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 934 w Fu(\(2.1\))p Black 446 2500 a(F)-8 b(or)32 b(a)g(giv)m(en)h Fr(f)38 b Fq(2)29 b Fr(L)1204 2464 y Fp(1)1243 2500 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))33 b(de\014ne)1359 2732 y Fr(\026)1418 2747 y Fo(f)1463 2732 y Fu(\()p Fr(A)p Fu(\))27 b(=)1743 2596 y Fi(Z)1798 2822 y Fo(S)1845 2803 y Fh(\000)p Fg(1)1927 2822 y Fp(\()p Fo(A)p Fp(\))2056 2732 y Fr(f)11 b(d\026;)71 b(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 1024 w Fu(\(2.2\))p Black 300 2984 a(Since)42 b Fr(S)48 b Fu(is)41 b(nonsingular,)i Fr(\026)p Fu(\()p Fr(A)p Fu(\))g(=)h(0)d(implies)f Fr(\026)2205 2999 y Fo(f)2250 2984 y Fu(\()p Fr(A)p Fu(\))j(=)g(0.)72 b(Th)m(us)43 b(the)f(Radon-Nik)m(o)s(dym)300 3116 y(Theorem)31 b(\(A-14\))g(implies)d(that)j(there)h(exists)g(a)f(unique)2493 3089 y(^)2472 3116 y Fr(f)38 b Fq(2)28 b Fr(L)2718 3079 y Fp(1)2758 3116 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\),)31 b(denoted)h(as)g Fr(P)14 b(f)d Fu(,)300 3236 y(suc)m(h)34 b(that)1451 3442 y Fr(\026)1510 3457 y Fo(f)1555 3442 y Fu(\()p Fr(A)p Fu(\))27 b(=)1835 3307 y Fi(Z)1890 3532 y Fo(A)1985 3416 y Fu(^)1964 3442 y Fr(f)11 b(d\026;)71 b(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 1116 w Fu(\(2.3\))p Black Black 300 3682 a Fj(De\014nition)34 b(2.3.)p Black 48 w Fu(The)f(op)s(erator)f Fr(P)41 b Fq(\021)28 b Fr(P)1833 3697 y Fo(S)1912 3682 y Fu(:)g Fr(L)2033 3646 y Fp(1)2072 3682 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28 b Fq(!)f Fr(L)2669 3646 y Fp(1)2709 3682 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(de\014ned)i(b)m(y)1180 3778 y Fi(Z)1235 4003 y Fo(A)1309 3913 y Fr(P)14 b(f)d(d\026)26 b Fu(=)1685 3778 y Fi(Z)1740 4003 y Fo(S)1787 3985 y Fh(\000)p Fg(1)1869 4003 y Fp(\()p Fo(A)p Fp(\))1998 3913 y Fr(f)11 b(d\026)54 b Fu(for)32 b(all)54 b Fr(A)27 b Fq(2)h Fu(\006)p Black 846 w(\(2.4\))p Black 300 4160 a(is)k(called)f(the)i(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erator)f(corresp)s(onding)g(to)g Fr(S)6 b Fu(.)446 4306 y(It)33 b(is)f(straigh)m(tforw)m(ard)g(to)g(sho)m(w)i(that)e Fr(P)46 b Fu(has)33 b(the)g(follo)m(wing)d(prop)s(erties:)446 4426 y(\(i\))i Fr(P)46 b Fu(is)32 b(linear,)f(that)h(is,)g(for)g(all)f Fr(\013)q(;)17 b(\014)33 b Fq(2)28 b Fr(R)q(;)44 b(f)2191 4441 y Fp(1)2231 4426 y Fr(;)17 b(f)2323 4441 y Fp(2)2390 4426 y Fq(2)28 b Fr(L)2550 4390 y Fp(1)2589 4426 y Fu(,)1337 4609 y Fr(P)14 b Fu(\()p Fr(\013)q(f)1563 4624 y Fp(1)1623 4609 y Fu(+)22 b Fr(\014)6 b(f)1830 4624 y Fp(2)1870 4609 y Fu(\))27 b(=)h Fr(\013)q(P)14 b(f)2227 4624 y Fp(1)2288 4609 y Fu(+)22 b Fr(\014)6 b(P)14 b(f)2572 4624 y Fp(2)2610 4609 y Fu(;)p Black 1002 w(\(2.5\))p Black 446 4792 a(\(ii\))31 b Fr(P)46 b Fu(is)32 b(a)g(p)s(ositiv)m(e)g (op)s(erator,)g(that)h(is,)f Fr(P)14 b(f)38 b Fq(\025)28 b Fu(0)k(if)f Fr(f)39 b Fq(\025)28 b Fu(0;)446 4913 y(\(iii\))i Fr(<)e(P)14 b(f)5 b(;)17 b Fu(1)26 b Fr(>)p Fu(=)p Fr(<)i(f)5 b(;)17 b Fu(1)27 b Fr(>)p Fu(,)33 b(that)f(is)1863 4832 y Fi(R)1910 4947 y Fo(X)1994 4913 y Fr(P)14 b(f)d(d\026)26 b Fu(=)2370 4832 y Fi(R)2417 4947 y Fo(X)2501 4913 y Fr(f)11 b(d\026)p Fu(;)446 5033 y(\(iv\))26 b Fr(P)690 5048 y Fo(T)10 b Fl(\016)p Fo(S)855 5033 y Fu(=)27 b Fr(P)1021 5048 y Fo(T)1076 5033 y Fr(P)1139 5048 y Fo(S)1217 5033 y Fu(for)f(nonsingular)f(transformations)g Fr(T)40 b Fu(and)27 b Fr(S)6 b Fu(.)41 b(In)27 b(particular,)f Fr(P)3643 5048 y Fo(S)3690 5029 y Ff(n)3764 5033 y Fu(=)300 5153 y(\()p Fr(P)401 5168 y Fo(S)452 5153 y Fu(\))490 5117 y Fo(n)537 5153 y Fu(,)32 b(where)i Fr(S)944 5117 y Fo(n)1018 5153 y Fu(=)28 b Fr(S)g Fq(\016)22 b(\001)17 b(\001)g(\001)j(\016)i Fr(S)6 b Fu(.)446 5274 y(Prop)s(erties)41 b(\(ii\))d(and)i(\(iii\))e(mean)h(that)h(the)h(F)-8 b(rob)s(enius-P)m (erron)40 b(op)s(erator)g(is)f(a)h Fj(Markov)300 5394 y(op)-5 b(er)g(ator)p Fu(.)59 b(A)38 b(systematic)g(study)i(of)d(Mark)m (o)m(v)i(op)s(erators)f(is)f(con)m(tained)i(in)e(the)h(monograph)300 5515 y([36].)p Black 2046 5764 a(8)p Black eop %%Page: 9 18 9 17 bop Black 300 10 a Fk(CHAPTER)34 b(2.)76 b(FR)m(OBENIUS-PERR)m(ON) 33 b(OPERA)-8 b(TORS)1131 b Fu(9)p Black Black 300 274 a Fj(The)-5 b(or)g(em)34 b(2.1.)p Black 48 w Fu([36])41 b(Let)h(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))41 b(b)s(e)h(a)f Fr(\033)t Fu(-\014nite)g(measure)h(space,)j Fr(S)j Fu(:)c Fr(X)50 b Fq(!)43 b Fr(X)49 b Fu(a)41 b(non-)300 395 y(singular)e(transformation,)h(and)h Fr(P)54 b Fu(the)41 b(F)-8 b(rob)s(enius-P)m(erron)40 b(op)s(erator)g(asso)s(ciated)g(with) g Fr(S)6 b Fu(.)300 515 y(Then)34 b(for)e(a)g(giv)m(en)h Fr(f)1099 479 y Fl(\003)1166 515 y Fq(2)28 b Fr(L)1326 479 y Fp(1)1365 515 y Fu(,)33 b(the)g(measure)g Fr(\026)2032 530 y Fo(f)2073 511 y Fh(\003)2146 515 y Fu(giv)m(en)f(b)m(y)1426 780 y Fr(\026)1485 795 y Fo(f)1526 776 y Fh(\003)1566 780 y Fu(\()p Fr(A)p Fu(\))c(=)1847 644 y Fi(Z)1902 870 y Fo(A)1976 780 y Fr(f)2035 739 y Fl(\003)2074 780 y Fr(d\026;)71 b(A)28 b Fq(2)g Fu(\006)p Black 1092 w(\(2.6\))p Black 300 1040 a(is)k(in)m(v)-5 b(arian)m(t)31 b(under)j Fr(S)k Fu(if)31 b(and)i(only)f(if)g Fr(f)1824 1004 y Fl(\003)1895 1040 y Fu(is)g(a)h(\014xed)g(p)s(oin)m(t)f(of)g Fr(P)14 b Fu(.)p Black 300 1200 a Fj(R)-5 b(emark)34 b(2.1.)p Black 48 w Fu(Note)f(that)g(from)e(the)i(theorem)f(the)h (original)d(measure)j Fr(\026)f Fu(is)g(in)m(v)-5 b(arian)m(t)31 b(if)h(and)300 1320 y(only)g(if)f Fr(P)14 b Fu(1)27 b(=)h(1.)446 1479 y(Some)k(more)g(prop)s(erties)h(of)f Fr(P)46 b Fu(are)32 b(con)m(tained)h(in)f(the)h(follo)m(wing)d(prop)s(osition.)p Black 300 1638 a Fj(Pr)-5 b(op)g(osition)34 b(2.1.)p Black 48 w Fu(If)28 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28 b(is)f(a)h Fr(\033)t Fu(-\014nite)f(measure)h(space,)i Fr(S)k Fu(is)27 b(a)h(nonsingular)f(transfor-)300 1758 y(mation)f(on)j Fr(X)8 b Fu(,)29 b(and)f Fr(P)42 b Fu(is)28 b(the)g(corresp)s(onding)h(F)-8 b(rob)s(enius-P)m(erron)28 b(op)s(erator,)g(then)h(for)f(ev)m(ery)300 1879 y Fr(f)38 b Fq(2)28 b Fr(L)546 1843 y Fp(1)586 1879 y Fu(,)446 1999 y(\(i\))k(\()p Fr(P)14 b(f)d Fu(\))794 1963 y Fp(+)880 1999 y Fq(\024)28 b Fr(P)14 b(f)1121 1963 y Fp(+)1179 1999 y Fu(;)446 2120 y(\(ii\))31 b(\()p Fr(P)14 b(f)d Fu(\))821 2083 y Fl(\000)907 2120 y Fq(\024)28 b Fr(P)14 b(f)1148 2083 y Fl(\000)1206 2120 y Fu(;)446 2240 y(\(iii\))30 b Fq(j)p Fr(P)14 b(f)d Fq(j)26 b(\024)i Fr(P)14 b Fq(j)p Fr(f)d Fq(j)p Fu(;)31 b(and)446 2360 y(\(iv\))h Fq(k)p Fr(P)14 b(f)d Fq(k)27 b(\024)h(k)p Fr(f)11 b Fq(k)p Fu(,)32 b(where)i Fq(k)p Fr(f)11 b Fq(k)27 b Fu(=)1790 2280 y Fi(R)1837 2395 y Fo(X)1921 2360 y Fq(j)p Fr(f)11 b Fq(j)p Fr(d\026)p Fu(.)p Black 300 2520 a Fj(De\014nition)34 b(2.4.)p Black 48 w Fu(Let)f(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(b)s(e)h(a)f(measure)h(space.)44 b(Denote)809 2733 y Fr(D)30 b Fq(\021)e Fr(D)s Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28 b(=)f Fq(f)p Fr(f)38 b Fq(2)28 b Fr(L)1912 2692 y Fp(1)1952 2733 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28 b(:)55 b Fr(f)39 b Fq(\025)28 b Fu(0)p Fr(;)44 b Fq(k)p Fr(f)11 b Fq(k)27 b Fu(=)g(1)p Fq(g)p Fr(:)p Black 474 w Fu(\(2.7\))p Black 300 2946 a(An)m(y)34 b(function)f Fr(f)39 b Fq(2)29 b Fr(D)35 b Fu(is)e(called)f(a)h(densit)m(y)-8 b(.)45 b(If)33 b Fr(\026)2172 2961 y Fo(f)2217 2946 y Fu(\()p Fr(A)p Fu(\))c(=)2499 2866 y Fi(R)2546 2981 y Fo(A)2620 2946 y Fr(f)11 b(d\026)32 b Fu(and)h Fr(f)39 b Fq(2)29 b Fr(D)s Fu(,)k(then)h(w)m(e)g(sa)m(y)300 3067 y(that)g Fr(f)45 b Fu(is)34 b(the)h(densit)m(y)h(of)e Fr(\026)1387 3082 y Fo(f)1432 3067 y Fu(.)49 b(An)m(y)36 b(\014xed)f(densit)m(y)h Fr(f)2354 3031 y Fl(\003)2427 3067 y Fu(of)e(the)h(F)-8 b(rob)s(enius-P)m(erron)35 b(op)s(erator)300 3187 y Fr(P)46 b Fu(is)32 b(also)g(called)f(an)i Fj(invariant)h(density)e Fu(or)g(a)h(stationary)f(densit)m(y)h(of)f Fr(P)14 b Fu(.)446 3346 y(F)-8 b(or)30 b(the)h(one)g(dimensional)d (case,)j(supp)s(ose)h Fr(X)k Fu(=)27 b([)p Fr(a;)17 b(b)p Fu(])31 b(and)g Fr(\026)f Fu(is)g(the)h(Leb)s(esgue)h(measure)300 3467 y Fr(m)p Fu(.)44 b(Then,)34 b(from)d(the)i(de\014nition)e(of)i (the)g(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erator)g(\(2.4\),)1397 3595 y Fi(Z)1496 3622 y Fo(x)1452 3821 y(a)1557 3731 y Fr(P)14 b(f)d(dm)27 b Fu(=)1959 3595 y Fi(Z)2015 3821 y Fo(S)2062 3802 y Fh(\000)p Fg(1)2144 3821 y Fp(\([)p Fo(a;x)p Fp(]\))2355 3731 y Fr(f)11 b(dm:)p Black 1062 w Fu(\(2.8\))p Black 300 4008 a(The)34 b(fundamen)m(tal)d(theorem)i(of) f(calculus)g(giv)m(es)h(the)g(explicit)e(expression)j(of)e Fr(P)1307 4265 y(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))27 b(=)1742 4198 y Fr(d)p 1715 4243 107 4 v 1715 4334 a(dx)1847 4130 y Fi(Z)1903 4355 y Fo(S)1950 4336 y Fh(\000)p Fg(1)2032 4355 y Fp(\([)p Fo(a;x)p Fp(]\))2243 4265 y Fr(f)11 b(dm)56 b Fu(a.e.)p Fr(:)p Black 972 w Fu(\(2.9\))p Black 300 4548 a Fm(Example)30 b(1)c Fu(Consider)i(\([0)p Fr(;)17 b Fu(1])p Fr(;)g Fe(B)p Fr(;)g(m)p Fu(\).)40 b(Let)27 b Fr(S)33 b Fu(:)28 b([0)p Fr(;)17 b Fu(1])27 b Fq(!)h Fu([0)p Fr(;)17 b Fu(1])26 b(b)s(e)h(the)g(w)m(ell-kno)m(wn)g(Logistic) 300 4669 y(Mo)s(del,)32 b Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p Fu(\(1)c Fq(\000)f Fr(x)p Fu(\).)44 b(Then)860 4939 y Fr(S)926 4898 y Fl(\000)p Fp(1)1020 4939 y Fu(\([0)p Fr(;)17 b(x)p Fu(]\))28 b(=)1429 4799 y Fi(\024)1482 4939 y Fu(0)p Fr(;)1584 4872 y Fu(1)p 1584 4916 49 4 v 1584 5008 a(2)1665 4939 y Fq(\000)1775 4872 y Fu(1)p 1775 4916 V 1775 5008 a(2)1834 4856 y Fq(p)p 1917 4856 226 4 v 83 x Fu(1)22 b Fq(\000)g Fr(x)2143 4799 y Fi(\025)2217 4939 y Fq([)2306 4799 y Fi(\024)2368 4872 y Fu(1)p 2368 4916 49 4 v 2368 5008 a(2)2449 4939 y(+)2557 4872 y(1)p 2557 4916 V 2557 5008 a(2)2616 4856 y Fq(p)p 2699 4856 226 4 v 83 x Fu(1)g Fq(\000)h Fr(x;)17 b Fu(1)3018 4799 y Fi(\025)3087 4939 y Fr(;)p Black 477 w Fu(\(2.10\))p Black 300 5205 a(th)m(us)34 b(the)f(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erator)g(is)g(giv)m(en)h(b)m(y)732 5470 y Fr(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))28 b(=)1295 5402 y(1)p 1140 5447 358 4 v 1140 5545 a(4)1189 5467 y Fq(p)p 1272 5467 226 4 v 78 x Fu(1)22 b Fq(\000)g Fr(x)1524 5329 y Fi(\032)1599 5470 y Fr(f)11 b Fu(\()1706 5402 y(1)p 1706 5447 49 4 v 1706 5538 a(2)1787 5470 y Fq(\000)1896 5402 y Fu(1)p 1896 5447 V 1896 5538 a(2)1955 5387 y Fq(p)p 2038 5387 226 4 v 83 x Fu(1)22 b Fq(\000)g Fr(x)q Fu(\))g(+)g Fr(f)11 b Fu(\()2529 5402 y(1)p 2529 5447 49 4 v 2529 5538 a(2)2609 5470 y(+)2717 5402 y(1)p 2717 5447 V 2717 5538 a(2)2776 5387 y Fq(p)p 2859 5387 226 4 v 83 x Fu(1)22 b Fq(\000)h Fr(x)p Fu(\))3123 5329 y Fi(\033)3214 5470 y Fr(:)p Black 350 w Fu(\(2.11\))p Black Black Black eop %%Page: 10 19 10 18 bop Black 300 10 a Fk(CHAPTER)34 b(2.)76 b(FR)m(OBENIUS-PERR)m (ON)33 b(OPERA)-8 b(TORS)1082 b Fu(10)p Black 300 274 a(In)33 b(1947,)f(Ulam)e(and)j(v)m(on)g(Neumann)g(sho)m(w)m(ed)i(that)d (the)h(\014xed)h(densit)m(y)f(of)f Fr(P)46 b Fu(is)32 b(giv)m(en)h(b)m(y)1525 533 y Fr(f)1584 492 y Fl(\003)1623 533 y Fu(\()p Fr(x)p Fu(\))28 b(=)2129 466 y(1)p 1896 510 516 4 v 1896 615 a Fr(\031)1955 530 y Fi(p)p 2054 530 358 4 v 2054 615 a Fr(x)p Fu(\(1)23 b Fq(\000)f Fr(x)p Fu(\))2422 533 y Fr(:)p Black 1142 w Fu(\(2.12\))p Black 300 823 a(Hence)34 b(the)f(measure)1444 1067 y Fr(\026)1503 1082 y Fo(f)1544 1063 y Fh(\003)1585 1067 y Fu(\()p Fr(A)p Fu(\))27 b(=)1865 932 y Fi(Z)1920 1157 y Fo(A)2209 1000 y Fr(dx)p 2004 1044 516 4 v 2004 1150 a(\031)2063 1064 y Fi(p)p 2162 1064 358 4 v 2162 1150 a Fr(x)p Fu(\(1)22 b Fq(\000)h Fr(x)p Fu(\))p Black 3591 1067 a(\(2.13\))p Black 300 1363 a(is)42 b(in)m(v)-5 b(arian)m(t)41 b(under)j(the)f (quadratic)f(mapping)f Fr(S)6 b Fu(\()p Fr(x)p Fu(\))45 b(=)g(4)p Fr(x)p Fu(\(1)29 b Fq(\000)g Fr(x)p Fu(\).)74 b(The)44 b(picture)e(of)h(the)300 1483 y(in)m(v)-5 b(arian)m(t)31 b(densit)m(y)j(is)e(sho)m(w)m(ed)i(in)e(Figure)g(2.1.)p Black Black Black 570 2452 a @beginspecial 50 @llx 50 @lly 410 @urx 150 @ury 3600 @rwi @setspecial %%BeginDocument: pic/sys.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: den.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu May 11 23:56:33 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 410 150 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 276 240 M 63 0 V 6657 0 R -63 0 V 204 240 M (0) Rshow 276 473 M 63 0 V 6657 0 R -63 0 V 204 473 M (1) Rshow 276 706 M 63 0 V 6657 0 R -63 0 V 204 706 M (2) Rshow 276 939 M 63 0 V 6657 0 R -63 0 V 204 939 M (3) Rshow 276 1173 M 63 0 V 6657 0 R -63 0 V -6729 0 R (4) Rshow 276 1406 M 63 0 V 6657 0 R -63 0 V -6729 0 R (5) Rshow 276 1639 M 63 0 V 6657 0 R -63 0 V -6729 0 R (6) Rshow 276 1872 M 63 0 V 6657 0 R -63 0 V -6729 0 R (7) Rshow 276 240 M 0 63 V 0 1569 R 0 -63 V 276 120 M (0) Cshow 1620 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.2) Cshow 2964 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.4) Cshow 4308 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.6) Cshow 5652 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (0.8) Cshow 6996 240 M 0 63 V 0 1569 R 0 -63 V 0 -1689 R (1) Cshow 1.000 UL LTb 276 240 M 6720 0 V 0 1632 V -6720 0 V 276 240 L 1.000 UL LT0 6429 1749 M (Fixed density of S\(x\)=4x\(1-x\)) Rshow 6501 1749 M 351 0 V 242 240 M 34 1632 R 34 0 V 0 -886 V 67 0 V 0 -216 V 67 0 V 0 -95 V 67 0 V 0 -56 V 67 0 V 0 -38 V 68 0 V 0 -29 V 67 0 V 0 -21 V 67 0 V 0 -17 V 67 0 V 0 -15 V 67 0 V 0 -12 V 68 0 V 0 -10 V 67 0 V 0 -9 V 67 0 V 0 -7 V 67 0 V 0 -7 V 67 0 V 0 -6 V 68 0 V 0 -6 V 67 0 V 0 -4 V 67 0 V 0 -5 V 67 0 V 0 -4 V 67 0 V 0 -3 V 68 0 V 0 -4 V 67 0 V 0 -3 V 67 0 V 0 -3 V 67 0 V 0 -2 V 67 0 V 0 -3 V 68 0 V 0 -2 V 67 0 V 0 -2 V 67 0 V 0 -2 V 67 0 V 0 -1 V 67 0 V 0 -2 V 68 0 V 0 -2 V 67 0 V 0 -1 V 67 0 V 0 -1 V 67 0 V 0 -1 V 67 0 V 0 -1 V 68 0 V 0 -1 V 67 0 V 0 -1 V 67 0 V 0 -1 V 67 0 V 0 -1 V 67 0 V 0 -1 V 68 0 V 67 0 V 0 -1 V 67 0 V 67 0 V 67 0 V 0 -1 V 68 0 V 67 0 V 67 0 V 67 0 V 0 -1 V 67 0 V 68 0 V 67 0 V 0 1 V 67 0 V 67 0 V 67 0 V 68 0 V 0 1 V 67 0 V 67 0 V 67 0 V 0 1 V 67 0 V 68 0 V 0 1 V 67 0 V 0 1 V 67 0 V 0 1 V 67 0 V 0 1 V 67 0 V 0 1 V 68 0 V 0 1 V 67 0 V 0 1 V 67 0 V 0 1 V 67 0 V 0 1 V 67 0 V 0 2 V 68 0 V 0 2 V 67 0 V 0 1 V 67 0 V 0 2 V 67 0 V 0 2 V 67 0 V 0 2 V 68 0 V 0 3 V 67 0 V 0 2 V 67 0 V 0 3 V 67 0 V 0 3 V 67 0 V 0 4 V 68 0 V 0 3 V 67 0 V 0 4 V 67 0 V 0 5 V 67 0 V 0 4 V 67 0 V 0 6 V 68 0 V 0 6 V 67 0 V 0 7 V 67 0 V 0 7 V 67 0 V 0 9 V 67 0 V 0 10 V 68 0 V 0 12 V 67 0 V 0 15 V 67 0 V 0 17 V 67 0 V 0 21 V 67 0 V 0 29 V 68 0 V 0 38 V 67 0 V 0 56 V 67 0 V 0 95 V 67 0 V 0 216 V 67 0 V 0 -746 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial 300 2655 a(Figure)j(2.1:)51 b(The)37 b(\014xed)h(densit)m (y)f Fr(f)1657 2619 y Fl(\003)1732 2655 y Fu(of)f Fr(P)50 b Fu(for)36 b Fr(S)6 b Fu(\()p Fr(x)p Fu(\))34 b(=)g(4)p Fr(x)p Fu(\(1)25 b Fq(\000)g Fr(x)p Fu(\))36 b(with)g(100)g(partitions) f(in)300 2776 y([0,1])p Black 446 3126 a(Comparing)30 b(Figure)h(1.2)g(with)g(Figure)g(2.1,)g(w)m(e)h(could)g(imagine)d(that) i(when)i(the)f(n)m(um)m(b)s(er)300 3246 y(of)g(iterations)f(go)s(es)i (to)f(in\014nit)m(y)-8 b(,)32 b(the)h(three)g(pictures)g(will)e(b)s(e)h (exactly)h(the)g(same.)446 3408 y(F)-8 b(or)31 b(m)m(ulti-dimensional) 26 b(cases,)32 b(let)f Fr(X)39 b Fu(b)s(e)31 b(an)g Fr(d)p Fu(-dimensional)c(rectangle)k([)p Fr(a)3320 3423 y Fp(1)3360 3408 y Fr(;)17 b(b)3445 3423 y Fp(1)3485 3408 y Fu(])i Fq(\002)g(\001)e(\001)g(\001)h(\002)300 3528 y Fu([)p Fr(a)378 3543 y Fo(d)419 3528 y Fr(;)f(b)504 3543 y Fo(d)544 3528 y Fu(].)44 b(Then)34 b(di\013eren)m(tiating)c(the)j(equalit)m(y) 1173 3664 y Fi(Z)1273 3690 y Fo(x)1313 3699 y Fg(1)1228 3889 y Fo(a)1265 3898 y Fg(1)1368 3799 y Fq(\001)17 b(\001)g(\001)1501 3664 y Fi(Z)1600 3690 y Fo(x)1640 3702 y Ff(d)1556 3889 y Fo(a)1593 3901 y Ff(d)1697 3799 y Fr(P)d(f)d Fu(\()p Fr(s)1917 3814 y Fp(1)1955 3799 y Fr(;)17 b Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(s)2238 3814 y Fo(d)2279 3799 y Fu(\))p Fr(dt)2403 3814 y Fp(1)2458 3799 y Fq(\001)g(\001)g(\001)e Fr(dt)2677 3814 y Fo(d)1014 4070 y Fu(=)1173 3934 y Fi(Z)1289 4070 y Fq(\001)i(\001)g(\001)1422 3934 y Fi(Z)1477 4160 y Fo(S)1524 4141 y Fh(\000)p Fg(1)1607 4160 y Fp(\([)p Fo(a)1691 4169 y Fg(1)1726 4160 y Fo(;x)1786 4169 y Fg(1)1820 4160 y Fp(])p Fl(\002\001\001\001)n(\002)p Fp([)p Fo(a)2065 4172 y Ff(d)2101 4160 y Fo(;x)2161 4172 y Ff(d)2197 4160 y Fp(]\))2264 4070 y Fr(f)11 b Fu(\()p Fr(s)2407 4085 y Fp(1)2446 4070 y Fr(;)17 b Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(s)2730 4085 y Fo(d)2770 4070 y Fu(\))p Fr(dt)2894 4085 y Fp(1)2950 4070 y Fq(\001)g(\001)g(\001)d Fr(dt)3168 4085 y Fo(d)300 4353 y Fu(with)32 b(resp)s(ect)i(to)e Fr(x)1030 4368 y Fp(1)1070 4353 y Fr(;)17 b Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(x)1362 4368 y Fo(d)1435 4353 y Fu(successiv)m(ely)-8 b(,)35 b(w)m(e)f(ha)m(v)m(e)408 4630 y Fr(P)14 b(f)d Fu(\()p Fr(x)637 4645 y Fp(1)676 4630 y Fr(;)17 b Fq(\001)g(\001)g (\001)31 b Fr(;)17 b(x)968 4645 y Fo(d)1009 4630 y Fu(\))28 b(=)1367 4563 y Fr(@)1423 4527 y Fo(d)p 1188 4607 455 4 v 1188 4699 a Fr(@)5 b(x)1299 4714 y Fp(1)1357 4699 y Fq(\001)17 b(\001)g(\001)d Fr(@)5 b(x)1600 4714 y Fo(d)1669 4495 y Fi(Z)1785 4630 y Fq(\001)17 b(\001)g(\001)1918 4495 y Fi(Z)1973 4720 y Fo(S)2020 4701 y Fh(\000)p Fg(1)2102 4720 y Fp(\([)p Fo(a)2186 4729 y Fg(1)2222 4720 y Fo(;x)2282 4729 y Fg(1)2315 4720 y Fp(])p Fl(\002\001\001\001)o(\002)p Fp([)p Fo(a)2561 4732 y Ff(d)2597 4720 y Fo(;x)2657 4732 y Ff(d)2692 4720 y Fp(]\))2760 4630 y Fr(f)11 b Fu(\()p Fr(s)2903 4645 y Fp(1)2942 4630 y Fr(;)17 b Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(s)3225 4645 y Fo(d)3265 4630 y Fu(\))p Fr(dt)3389 4645 y Fp(1)3445 4630 y Fq(\001)g(\001)g(\001)e Fr(dt)3664 4645 y Fo(d)3705 4630 y Fr(:)3591 4829 y Fu(\(2.14\))300 5048 y Fm(Example)26 b(2)d(The)k(bak)m(er)g(transformation)p Fu(.)40 b(Let)23 b Fr(X)35 b Fu(=)28 b([0)p Fr(;)17 b Fu(1])s Fq(\002)s Fu([0)p Fr(;)g Fu(1].)39 b(De\014ne)24 b Fr(S)34 b Fu(:)27 b Fr(X)36 b Fq(!)27 b Fr(X)300 5169 y Fu(b)m(y)843 5441 y Fr(S)6 b Fu(\()p Fr(x;)17 b(y)t Fu(\))27 b(=)1266 5301 y Fi(\032)1382 5380 y Fu(\(2)p Fr(x;)1578 5341 y Fp(1)p 1578 5357 36 4 v 1578 5414 a(2)1624 5380 y Fr(y)t Fu(\))428 b(0)27 b Fq(\024)h Fr(x)g(<)2520 5341 y Fp(1)p 2520 5357 V 2520 5414 a(2)2565 5380 y Fr(;)44 b Fu(0)28 b Fq(\024)g Fr(y)j Fq(\024)d Fu(1)1382 5500 y(\(2)p Fr(x)23 b Fq(\000)f Fu(1)p Fr(;)1749 5461 y Fp(1)p 1749 5478 V 1749 5535 a(2)1794 5500 y Fr(y)j Fu(+)1975 5461 y Fp(1)p 1975 5478 V 1975 5535 a(2)2021 5500 y Fu(\))2151 5461 y Fp(1)p 2151 5478 V 2151 5535 a(2)2224 5500 y Fq(\024)k Fr(x)f Fq(\024)g Fu(1)p Fr(;)44 b Fu(0)27 b Fq(\024)i Fr(y)h Fq(\024)f Fu(1)p Fr(:)p Black 3591 5441 a Fu(\(2.15\))p Black Black Black eop %%Page: 11 20 11 19 bop Black 300 10 a Fk(CHAPTER)34 b(2.)76 b(FR)m(OBENIUS-PERR)m (ON)33 b(OPERA)-8 b(TORS)1082 b Fu(11)p Black 300 274 a(Since)33 b Fr(S)621 238 y Fl(\000)p Fp(1)715 274 y Fu(\([0)p Fr(;)17 b(x)p Fu(])22 b Fq(\002)h Fu([0)p Fr(;)17 b(y)t Fu(]\))26 b(=)i([0)p Fr(;)1573 235 y Fp(1)p 1573 251 36 4 v 1573 309 a(2)1618 274 y Fr(x)p Fu(])23 b Fq(\002)g Fu([0)p Fr(;)17 b Fu(2)p Fr(y)t Fu(])31 b(for)h(0)27 b Fq(\024)h Fr(y)j(<)2625 235 y Fp(1)p 2625 251 V 2625 309 a(2)2670 274 y Fu(,)i(w)m(e)g(ha)m(v)m(e)667 574 y Fr(P)14 b(f)d Fu(\()p Fr(x;)17 b(y)t Fu(\))26 b(=)1231 507 y Fr(@)1287 471 y Fp(2)p 1169 552 221 4 v 1169 643 a Fr(@)5 b(x@)g(y)1416 439 y Fi(Z)1526 438 y Ff(x)p 1526 450 35 3 v 1528 491 a Fg(2)1471 664 y Fp(0)1591 574 y Fr(ds)1705 439 y Fi(Z)1804 465 y Fp(2)p Fo(y)1760 664 y Fp(0)1897 574 y Fr(f)11 b Fu(\()p Fr(s;)17 b(t)p Fu(\))p Fr(dt)27 b Fu(=)h Fr(f)11 b Fu(\()2481 507 y(1)p 2481 552 49 4 v 2481 643 a(2)2539 574 y Fr(x;)17 b Fu(2)p Fr(y)t Fu(\))p Fr(;)44 b Fu(0)27 b Fq(\024)h Fr(y)j(<)3222 507 y Fu(1)p 3222 552 V 3222 643 a(2)3280 574 y Fr(:)p Black 284 w Fu(\(2.16\))p Black 300 854 a(F)-8 b(or)485 815 y Fp(1)p 485 831 36 4 v 485 889 a(2)558 854 y Fq(\024)28 b Fr(y)j Fq(\024)d Fu(1,)595 1128 y Fr(S)661 1087 y Fl(\000)p Fp(1)755 1128 y Fu(\([0)p Fr(;)17 b(x)p Fu(])22 b Fq(\002)g Fu([0)p Fr(;)17 b(y)t Fu(]\))27 b(=)g(\([0)p Fr(;)1651 1061 y Fu(1)p 1651 1105 49 4 v 1651 1197 a(2)1710 1128 y Fr(x)p Fu(])22 b Fq(\002)h Fu([0)p Fr(;)17 b Fu(1]\))k Fq([)i Fu(\([)2333 1061 y(1)p 2333 1105 V 2333 1197 a(2)2392 1128 y Fr(;)2445 1061 y Fu(1)p 2445 1105 V 2445 1197 a(2)2526 1128 y(+)2634 1061 y(1)p 2634 1105 V 2634 1197 a(2)2693 1128 y Fr(x)p Fu(])g Fq(\002)f Fu([0)p Fr(;)17 b Fu(2)p Fr(y)25 b Fq(\000)e Fu(1]\))p Fr(;)p Black 211 w Fu(\(2.17\))p Black 300 1374 a(hence,)633 1670 y Fr(P)14 b(f)d Fu(\()p Fr(x;)17 b(y)t Fu(\))81 b(=)1308 1602 y Fr(@)1364 1566 y Fp(2)p 1246 1647 221 4 v 1246 1738 a Fr(@)5 b(x@)g(y)1476 1670 y Fq(f)1526 1534 y Fi(Z)1636 1533 y Ff(x)p 1636 1545 35 3 v 1638 1586 a Fg(2)1581 1759 y Fp(0)1701 1670 y Fr(ds)1815 1534 y Fi(Z)1914 1560 y Fp(1)1870 1759 y(0)1970 1670 y Fr(f)11 b Fu(\()p Fr(s;)17 b(t)p Fu(\))p Fr(dt)k Fu(+)2435 1534 y Fi(Z)2545 1533 y Fg(1)p 2545 1545 31 3 v 2545 1586 a(2)2585 1560 y Fp(+)2650 1533 y Ff(x)p 2650 1545 35 3 v 2652 1586 a Fg(2)2491 1759 y Fp(0)2716 1670 y Fr(ds)2830 1534 y Fi(Z)2929 1560 y Fp(2)p Fo(y)r Fl(\000)p Fp(1)2884 1759 y(0)3112 1670 y Fr(f)11 b Fu(\()p Fr(s;)17 b(t)p Fu(\))p Fr(dt)p Fq(g)1077 1924 y Fu(=)83 b Fr(f)11 b Fu(\()1343 1857 y(1)p 1343 1901 49 4 v 1343 1993 a(2)1423 1924 y(+)1531 1857 y(1)p 1531 1901 V 1531 1993 a(2)1590 1924 y Fr(x;)17 b Fu(2)p Fr(y)25 b Fq(\000)e Fu(1\))p Fr(;)2107 1857 y Fu(1)p 2107 1901 V 2107 1993 a(2)2193 1924 y Fq(\024)28 b Fr(y)j Fq(\024)d Fu(1)p Fr(:)300 2170 y Fu(In)33 b(summary)-8 b(,)32 b(w)m(e)h(ha)m(v)m(e)1010 2442 y Fr(P)14 b(f)d Fu(\()p Fr(x;)17 b(y)t Fu(\))26 b(=)1503 2302 y Fi(\032)1619 2381 y Fr(f)11 b Fu(\()1726 2342 y Fp(1)p 1726 2358 36 4 v 1726 2416 a(2)1771 2381 y Fr(x;)17 b Fu(2)p Fr(y)t Fu(\))p Fr(;)428 b Fu(0)28 b Fq(\024)g Fr(y)j(<)2838 2342 y Fp(1)p 2838 2358 V 2838 2416 a(2)1619 2502 y Fr(f)11 b Fu(\()1726 2462 y Fp(1)p 1726 2479 V 1726 2536 a(2)1793 2502 y Fu(+)1901 2462 y Fp(1)p 1901 2479 V 1901 2536 a(2)1946 2502 y Fr(x;)17 b Fu(2)p Fr(y)26 b Fq(\000)c Fu(1\))p Fr(;)2474 2462 y Fp(1)p 2474 2479 V 2474 2536 a(2)2547 2502 y Fq(\024)28 b Fr(y)j Fq(\024)d Fu(1)p Fr(:)p Black 3591 2442 a Fu(\(2.18\))p Black 300 2715 a(Since)33 b Fr(P)14 b Fu(1)27 b(=)g(1,)33 b(the)g(Leb)s(esgue)g (measure)g Fr(m)g Fu(is)f(in)m(v)-5 b(arian)m(t)31 b(under)j Fr(S)6 b Fu(.)446 2835 y(The)24 b(existence)g(of)f(an)g(absolutely)f (con)m(tin)m(uous)h(\014nite)g(in)m(v)-5 b(arian)m(t)21 b(measure)i(is)g(equiv)-5 b(alen)m(t)22 b(to)300 2956 y(that)28 b(of)g(a)g(non)m(trivial)e(solution)h(to)h(the)g(\014xed)i(p) s(oin)m(t)d(equation)h Fr(P)14 b(f)2786 2920 y Fl(\003)2853 2956 y Fu(=)27 b Fr(f)3015 2920 y Fl(\003)3083 2956 y Fu(for)g(the)i(F)-8 b(rob)s(enius-)300 3076 y(P)m(erron)33 b(op)s(erator)f Fr(P)46 b Fu(asso)s(ciated)33 b(with)f Fr(S)6 b Fu(.)p Black 300 3238 a Fj(The)-5 b(or)g(em)34 b(2.2.)p Black 48 w Fu([36])26 b(Let)g Fr(f)38 b Fq(2)28 b Fr(L)1505 3202 y Fp(1)1571 3238 y Fu(b)s(e)f(a)e(densit)m(y)i (function.)41 b(If)26 b(the)h(Ces\023)-49 b(aro)27 b(a)m(v)m(erages)g (sequence)1622 3548 y Fr(A)1695 3563 y Fo(n)1742 3548 y Fr(f)38 b Fq(\021)1948 3481 y Fu(1)p 1943 3525 59 4 v 1943 3616 a Fr(n)2034 3424 y Fo(n)p Fl(\000)p Fp(1)2028 3453 y Fi(X)2043 3663 y Fo(i)p Fp(=0)2189 3548 y Fr(P)2266 3507 y Fo(i)2293 3548 y Fr(f)p Black 1250 w Fu(\(2.19\))p Black 300 3860 a(is)29 b(w)m(eakly)h(pre-compact,)g(then)g(it)e(con)m (v)m(erges)k(strongly)d(to)g(some)g(in)m(v)-5 b(arian)m(t)28 b(densit)m(y)i Fr(f)3573 3824 y Fl(\003)3640 3860 y Fq(2)e Fr(L)3800 3824 y Fp(1)300 3981 y Fu(of)k Fr(P)14 b Fu(,)32 b(i.e.,)g Fr(P)14 b(f)867 3944 y Fl(\003)934 3981 y Fu(=)27 b Fr(f)1096 3944 y Fl(\003)1168 3981 y Fu(and)1558 4201 y(lim)1534 4260 y Fo(n)p Fl(!1)1735 4201 y Fq(k)p Fr(A)1858 4216 y Fo(n)1904 4201 y Fr(f)33 b Fq(\000)23 b Fr(f)2144 4160 y Fl(\003)2183 4201 y Fq(k)28 b Fu(=)f(0)p Fr(:)p Black 1151 w Fu(\(2.20\))p Black Black Black eop %%Page: 12 21 12 20 bop Black Black Black Black 1714 122 a Fn(Chapter)53 b(3)p Black Black 1357 554 a(ULAM'S)g(METHOD)477 1255 y Fu(No)m(w)41 b(w)m(e)g(in)m(tro)s(duce)f(the)g(idea)f(b)s(ehind)h (Ulam's)e(piecewise)j(constan)m(t)g(appro)m(ximations)300 1376 y(for)30 b(computing)e(the)j(\014xed)g(densit)m(y)g(of)f(the)h(F) -8 b(rob)s(enius-P)m(erron)29 b(op)s(erator.)42 b(W)-8 b(e)31 b(\014rst)g(consider)300 1496 y(the)g(one)g(dimensional)d(case,) k(whic)m(h)f(w)m(as)g(initially)26 b(prop)s(osed)31 b(b)m(y)h(Ulam)d (in)g(his)i(famous)e(b)s(o)s(ok)300 1616 y([47])j(on)h(mathematical)c (problems.)446 1737 y(Assume)44 b(that)e Fr(S)50 b Fu(:)45 b([0)p Fr(;)17 b Fu(1])44 b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])42 b(is)g(a)h(nonsingular)e(transformation)f(suc)m(h)k(that)f (the)300 1857 y(corresp)s(onding)28 b(F)-8 b(rob)s(enius-P)m(erron)27 b(op)s(erator)g Fr(P)41 b Fu(:)28 b Fr(L)2297 1821 y Fp(1)2337 1857 y Fu(\(0)p Fr(;)17 b Fu(1\))27 b Fq(!)g Fr(L)2775 1821 y Fp(1)2815 1857 y Fu(\(0)p Fr(;)17 b Fu(1\))27 b(has)h(a)f(\014xed)i(densit)m(y)300 1978 y Fr(f)359 1941 y Fl(\003)398 1978 y Fu(.)53 b(T)-8 b(o)36 b(illustrate)e(the)i(basic)f(idea)g(b)s(ehind)h(the)g(probabilit)m(y)e (argumen)m(t)h(of)h(Ulam's)e(for)i(the)300 2098 y(motiv)-5 b(ation)35 b(of)i(his)h(metho)s(d,)g(w)m(e)h(\014rst)f(use)h(a)f (simple)e(partition)f(of)j(the)g(in)m(terv)-5 b(al)37 b([0)p Fr(;)17 b Fu(1])37 b(in)m(to)300 2218 y(three)c(subin)m(terv)-5 b(als,)33 b(and)g(then)g(generalize)f(it)f(to)h(a)h(partition)d(of)i Fr(n)h Fu(subin)m(terv)-5 b(als.)446 2339 y(Supp)s(ose)40 b([0)p Fr(;)17 b Fu(1])37 b(is)h(divided)g(in)m(to)g(three)h(subin)m (terv)-5 b(als)38 b Fr(I)2567 2354 y Fp(1)2606 2339 y Fr(;)17 b(I)2693 2354 y Fp(2)2733 2339 y Fr(;)g(I)2820 2354 y Fp(3)2859 2339 y Fu(.)60 b(Let)39 b Fr(f)49 b Fu(b)s(e)38 b(a)g(piecewise)300 2459 y(constan)m(t)44 b(densit)m(y)g(suc)m(h)h(that)e(the)h(p)s(ossibilit)m(y)d(of)i Fr(I)2323 2474 y Fp(1)2406 2459 y Fu(is)f Fr(a)2565 2474 y Fp(1)2605 2459 y Fu(,)k(the)e(probabilit)m(y)d(of)i Fr(I)3531 2474 y Fp(2)3613 2459 y Fu(is)g Fr(a)3773 2474 y Fp(2)3813 2459 y Fu(,)300 2580 y(and)37 b(the)g(probabilit)m(y)d(of)j Fr(I)1327 2595 y Fp(3)1403 2580 y Fu(is)f Fr(a)1556 2595 y Fp(3)1596 2580 y Fu(.)55 b(Ulam's)36 b(idea)g(is)g(that)g Fr(P)14 b(f)47 b Fu(can)37 b(b)s(e)g(appro)m(ximated)f(b)m(y)h(a)300 2700 y(piecewise)i(constan)m(t)h(densit)m(y)f(with)f(the)h (probabilities)d(of)i Fr(I)2598 2715 y Fp(1)2638 2700 y Fr(;)17 b(I)2725 2715 y Fp(2)2764 2700 y Fr(;)39 b Fu(and)f Fr(I)3068 2715 y Fp(3)3146 2700 y Fu(to)g(b)s(e)h Fr(b)3451 2715 y Fp(1)3491 2700 y Fr(;)17 b(b)3576 2715 y Fp(2)3616 2700 y Fu(,)40 b(and)300 2820 y Fr(b)341 2835 y Fp(3)381 2820 y Fu(.)j(W)-8 b(e)33 b(w)m(an)m(t)h(to)e(\014nd)h (ho)m(w)g Fr(b)1416 2835 y Fp(1)1456 2820 y Fr(;)17 b(b)1541 2835 y Fp(2)1581 2820 y Fu(,)32 b(and)h Fr(b)1871 2835 y Fp(3)1944 2820 y Fu(dep)s(end)g(on)g Fr(a)2469 2835 y Fp(1)2508 2820 y Fr(;)17 b(a)2603 2835 y Fp(2)2643 2820 y Fu(,)32 b(and)h Fr(a)2943 2835 y Fp(3)2983 2820 y Fu(.)446 2941 y(F)-8 b(rom)32 b(the)j(de\014nition)d(of)i(the)g(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erator)g Fr(P)14 b Fu(,)34 b(the)g(new)g(probabilit)m(y)e Fr(b)3800 2956 y Fp(1)300 3061 y Fu(of)k Fr(I)458 3076 y Fp(1)533 3061 y Fu(should)g(carry)g(the)h(old)e(probabilit)m(y)f(of)h Fr(S)2121 3025 y Fl(\000)p Fp(1)2215 3061 y Fu(\()p Fr(I)2296 3076 y Fp(1)2336 3061 y Fu(\))g(whic)m(h)i(is)e(the)i(disjoin)m(t)e (union)g(of)h(the)300 3181 y(three)d(parts)g(of)f Fr(S)976 3145 y Fl(\000)p Fp(1)1070 3181 y Fu(\()p Fr(I)1151 3196 y Fp(1)1191 3181 y Fu(\))g(in)g Fr(I)1418 3196 y Fp(1)1457 3181 y Fr(;)17 b(I)1544 3196 y Fp(2)1584 3181 y Fu(,)32 b(and)h Fr(I)1876 3196 y Fp(3)1915 3181 y Fu(:)1229 3377 y Fr(I)1272 3392 y Fp(1)1334 3377 y Fq(\\)22 b Fr(S)1488 3336 y Fl(\000)p Fp(1)1582 3377 y Fu(\()p Fr(I)1663 3392 y Fp(1)1703 3377 y Fu(\))p Fr(;)17 b(I)1828 3392 y Fp(2)1889 3377 y Fq(\\)23 b Fr(S)2044 3336 y Fl(\000)p Fp(1)2138 3377 y Fu(\()p Fr(I)2219 3392 y Fp(1)2258 3377 y Fu(\))p Fr(;)17 b(I)2383 3392 y Fp(3)2444 3377 y Fq(\\)23 b Fr(S)2599 3336 y Fl(\000)p Fp(1)2693 3377 y Fu(\()p Fr(I)2774 3392 y Fp(1)2813 3377 y Fu(\))p Fr(:)300 3573 y Fu(So)32 b(w)m(e)i(can)f (obtain)492 3792 y Fr(b)533 3807 y Fp(1)656 3792 y Fu(=)815 3657 y Fi(Z)870 3882 y Fo(I)901 3891 y Fg(1)956 3792 y Fr(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))p Fr(dx)27 b Fu(=)1460 3657 y Fi(Z)1515 3882 y Fo(S)1562 3863 y Fh(\000)p Fg(1)1644 3882 y Fp(\()p Fo(I)1702 3891 y Fg(1)1737 3882 y Fp(\))1785 3792 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(dx)656 4068 y Fu(=)815 3932 y Fi(Z)870 4158 y Fo(S)917 4139 y Fh(\000)p Fg(1)999 4158 y Fp(\()p Fo(I)1057 4167 y Fg(1)1092 4158 y Fp(\))p Fl(\\)p Fo(I)1197 4167 y Fg(1)1252 4068 y Fr(f)g Fu(\()p Fr(x)p Fu(\))p Fr(dx)23 b Fu(+)1669 3932 y Fi(Z)1724 4158 y Fo(S)1771 4139 y Fh(\000)p Fg(1)1853 4158 y Fp(\()p Fo(I)1911 4167 y Fg(1)1946 4158 y Fp(\))p Fl(\\)p Fo(I)2051 4167 y Fg(2)2106 4068 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(dx)23 b Fu(+)2523 3932 y Fi(Z)2578 4158 y Fo(S)2625 4139 y Fh(\000)p Fg(1)2707 4158 y Fp(\()p Fo(I)2765 4167 y Fg(1)2800 4158 y Fp(\))p Fl(\\)p Fo(I)2905 4167 y Fg(3)2960 4068 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(dx)656 4354 y Fu(=)825 4287 y Fr(m)p Fu(\()p Fr(I)991 4302 y Fp(1)1053 4287 y Fq(\\)22 b Fr(S)1207 4250 y Fl(\000)p Fp(1)1301 4287 y Fu(\()p Fr(I)1382 4302 y Fp(1)1422 4287 y Fu(\)\))p 825 4331 673 4 v 1039 4422 a Fr(m)p Fu(\()p Fr(I)1205 4437 y Fp(1)1245 4422 y Fu(\))1530 4354 y Fq(\001)f Fr(a)1630 4369 y Fp(1)1692 4354 y Fu(+)1800 4287 y Fr(m)p Fu(\()p Fr(I)1966 4302 y Fp(2)2028 4287 y Fq(\\)i Fr(S)2183 4250 y Fl(\000)p Fp(1)2277 4287 y Fu(\()p Fr(I)2358 4302 y Fp(1)2397 4287 y Fu(\)\))p 1800 4331 V 2015 4422 a Fr(m)p Fu(\()p Fr(I)2181 4437 y Fp(2)2220 4422 y Fu(\))2505 4354 y Fq(\001)f Fr(a)2606 4369 y Fp(2)2668 4354 y Fu(+)2776 4287 y Fr(m)p Fu(\()p Fr(I)2942 4302 y Fp(3)3004 4287 y Fq(\\)g Fr(S)3158 4250 y Fl(\000)p Fp(1)3252 4287 y Fu(\()p Fr(I)3333 4302 y Fp(1)3373 4287 y Fu(\)\))p 2776 4331 V 2990 4422 a Fr(m)p Fu(\()p Fr(I)3156 4437 y Fp(3)3196 4422 y Fu(\))3481 4354 y Fq(\001)f Fr(a)3581 4369 y Fp(3)3621 4354 y Fr(;)300 4600 y Fu(or)32 b(in)g(this)g(w)m(a)m(y)-8 b(,)1390 4881 y Fr(b)1431 4896 y Fp(1)1498 4881 y Fu(=)1656 4756 y Fp(3)1602 4786 y Fi(X)1617 4996 y Fo(i)p Fp(=1)1772 4813 y Fr(m)p Fu(\()p Fr(I)1938 4828 y Fo(i)1989 4813 y Fq(\\)22 b Fr(S)2143 4777 y Fl(\000)p Fp(1)2238 4813 y Fu(\()p Fr(I)2319 4828 y Fp(1)2358 4813 y Fu(\))p 1772 4858 624 4 v 1968 4949 a Fr(m)p Fu(\()p Fr(I)2134 4964 y Fo(i)2162 4949 y Fu(\))2428 4881 y Fq(\001)g Fr(a)2529 4896 y Fo(i)2557 4881 y Fr(:)p Black 1055 w Fu(\(3.1\))p Black 300 5159 a(By)33 b(the)g(same)g(tok)m(en,)1390 5439 y Fr(b)1431 5454 y Fp(2)1498 5439 y Fu(=)1656 5315 y Fp(3)1602 5345 y Fi(X)1617 5554 y Fo(i)p Fp(=1)1772 5372 y Fr(m)p Fu(\()p Fr(I)1938 5387 y Fo(i)1989 5372 y Fq(\\)22 b Fr(S)2143 5336 y Fl(\000)p Fp(1)2238 5372 y Fu(\()p Fr(I)2319 5387 y Fp(2)2358 5372 y Fu(\))p 1772 5416 V 1968 5508 a Fr(m)p Fu(\()p Fr(I)2134 5523 y Fo(i)2162 5508 y Fu(\))2428 5439 y Fq(\001)g Fr(a)2529 5454 y Fo(i)2557 5439 y Fr(;)p Black 1055 w Fu(\(3.2\))p Black Black 2021 5764 a(12)p Black eop %%Page: 13 22 13 21 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(13)p Black 1390 352 a Fr(b)1431 367 y Fp(3)1498 352 y Fu(=)1656 227 y Fp(3)1602 257 y Fi(X)1617 467 y Fo(i)p Fp(=1)1772 285 y Fr(m)p Fu(\()p Fr(I)1938 300 y Fo(i)1989 285 y Fq(\\)22 b Fr(S)2143 248 y Fl(\000)p Fp(1)2238 285 y Fu(\()p Fr(I)2319 300 y Fp(3)2358 285 y Fu(\))p 1772 329 624 4 v 1968 420 a Fr(m)p Fu(\()p Fr(I)2134 435 y Fo(i)2162 420 y Fu(\))2428 352 y Fq(\001)g Fr(a)2529 367 y Fo(i)2557 352 y Fr(:)p Black 1055 w Fu(\(3.3\))p Black 446 653 a(In)31 b(general,)f(if)e([0)p Fr(;)17 b Fu(1])30 b(is)f(divided)h(in)m(to)f Fr(n)h Fu(subin)m(terv)-5 b(als)30 b Fr(I)2537 668 y Fp(1)2577 653 y Fr(;)17 b(I)2664 668 y Fp(2)2703 653 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(I)2983 668 y Fo(n)3059 653 y Fu(and)31 b(if)d Fr(f)41 b Fu(is)29 b(a)h(piece-)300 774 y(wise)i(constan)m(t)h(densit)m (y)g(suc)m(h)g(that)f(the)h(probabilit)m(y)d(of)h Fr(I)2489 789 y Fo(i)2549 774 y Fu(is)h Fr(a)2698 789 y Fo(i)2726 774 y Fu(,)g(then)h(the)f(new)h(probabilit)m(y)300 894 y(of)f Fr(I)454 909 y Fo(j)523 894 y Fu(is)g Fr(b)662 909 y Fo(j)732 894 y Fu(with)1374 1186 y Fr(b)1415 1201 y Fo(j)1479 1186 y Fu(=)1633 1062 y Fo(n)1583 1091 y Fi(X)1598 1301 y Fo(i)p Fp(=1)1753 1119 y Fr(m)p Fu(\()p Fr(I)1919 1134 y Fo(i)1970 1119 y Fq(\\)22 b Fr(S)2124 1082 y Fl(\000)p Fp(1)2219 1119 y Fu(\()p Fr(I)2300 1134 y Fo(j)2336 1119 y Fu(\)\))p 1753 1163 659 4 v 1966 1254 a Fr(m)p Fu(\()p Fr(I)2132 1269 y Fo(i)2161 1254 y Fu(\))2444 1186 y Fq(\001)g Fr(a)2545 1201 y Fo(i)2573 1186 y Fr(:)p Black 1039 w Fu(\(3.4\))p Black 300 1487 a(Let)35 b Fr(a)c Fu(=)f([)p Fr(a)743 1502 y Fp(1)783 1487 y Fr(;)17 b(a)878 1502 y Fp(2)917 1487 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(a)1205 1502 y Fo(n)1252 1487 y Fu(])35 b(and)f Fr(b)e Fu(=)e([)p Fr(b)1752 1502 y Fp(1)1792 1487 y Fr(;)17 b(b)1877 1502 y Fp(2)1917 1487 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(b)2195 1502 y Fo(n)2242 1487 y Fu(],)35 b(and)g(let)e(the)i Fr(n)24 b Fq(\002)g Fr(n)34 b Fu(matrix)f Fr(P)3492 1502 y Fo(n)3570 1487 y Fu(=)d([)p Fr(p)3752 1502 y Fo(ij)3813 1487 y Fu(])300 1608 y(b)s(e)j(de\014ned)h(b)m(y)1514 1875 y Fr(p)1563 1890 y Fo(ij)1651 1875 y Fu(=)1764 1807 y Fr(m)p Fu(\()p Fr(I)1930 1822 y Fo(i)1981 1807 y Fq(\\)23 b Fr(S)2136 1771 y Fl(\000)p Fp(1)2230 1807 y Fu(\()p Fr(I)2311 1822 y Fo(j)2347 1807 y Fu(\)\))p 1764 1852 V 1978 1943 a Fr(m)p Fu(\()p Fr(I)2144 1958 y Fo(i)2172 1943 y Fu(\))2433 1875 y Fr(:)p Black 1179 w Fu(\(3.5\))p Black 300 2138 a(Then)34 b(w)m(e)f(ha)m(v)m(e)h Fr(b)28 b Fu(=)g Fr(aP)1210 2153 y Fo(n)1257 2138 y Fu(.)43 b(Since)33 b Fr(P)1645 2153 y Fo(n)1725 2138 y Fu(is)f(a)g(nonnegativ)m(e)h (matrix)e(and)1205 2297 y Fo(n)1155 2327 y Fi(X)1165 2537 y Fo(j)t Fp(=1)1315 2422 y Fr(p)1364 2437 y Fo(ij)1452 2422 y Fu(=)1606 2297 y Fo(n)1556 2327 y Fi(X)1566 2537 y Fo(j)t Fp(=1)1726 2354 y Fr(m)p Fu(\()p Fr(I)1892 2369 y Fo(i)1943 2354 y Fq(\\)22 b Fr(S)2097 2318 y Fl(\000)p Fp(1)2192 2354 y Fu(\()p Fr(I)2273 2369 y Fo(j)2309 2354 y Fu(\)\))p 1726 2399 V 1939 2490 a Fr(m)p Fu(\()p Fr(I)2105 2505 y Fo(i)2134 2490 y Fu(\))2423 2422 y(=)2536 2354 y Fr(m)p Fu(\()p Fr(I)2702 2369 y Fo(i)2730 2354 y Fu(\))p 2536 2399 233 4 v 2536 2490 a Fr(m)p Fu(\()p Fr(I)2702 2505 y Fo(i)2730 2490 y Fu(\))2806 2422 y(=)28 b(1)p Fr(;)300 2730 y Fu(so)46 b Fr(P)496 2745 y Fo(n)588 2730 y Fu(is)f(a)g(sto)s(c)m(hastic)g(matrix.)81 b(By)46 b(the)f(F)-8 b(rob)s(enius-P)m(erron)46 b(theorem)f(for)g(nonnegativ)m(e)300 2851 y(matrices,)52 b(there)d(is)f(a)g(nonnegativ)m(e)h(v)m(ector)h Fr(c)2123 2815 y Fo(T)2233 2851 y Fu(=)k(\()p Fr(c)2443 2866 y Fp(1)2483 2851 y Fr(;)17 b(c)2569 2866 y Fp(2)2608 2851 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)2887 2866 y Fo(n)2934 2851 y Fu(\),)52 b(the)d(sum)g(of)f(whose)300 2971 y(comp)s(onen)m(ts)33 b(is)f(1,)h(suc)m(h)h(that)1245 3185 y(\()p Fr(c)1325 3200 y Fp(1)1364 3185 y Fr(;)17 b(c)1450 3200 y Fp(2)1489 3185 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)1768 3200 y Fo(n)1815 3185 y Fu(\))p Fr(P)1916 3200 y Fo(n)1990 3185 y Fu(=)28 b(\()p Fr(c)2174 3200 y Fp(1)2213 3185 y Fr(;)17 b(c)2299 3200 y Fp(2)2338 3185 y Fr(;)g Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2618 3200 y Fo(n)2664 3185 y Fu(\))p Fr(:)p Black 910 w Fu(\(3.6\))p Black 300 3398 a(The)34 b(corresp)s(onding)e(densit)m(y)1544 3681 y Fr(f)1592 3696 y Fo(n)1640 3681 y Fu(\()p Fr(x)p Fu(\))c(=)1953 3557 y Fo(n)1902 3587 y Fi(X)1917 3797 y Fo(i)p Fp(=1)2154 3614 y Fr(c)2196 3629 y Fo(i)p 2073 3659 V 2073 3750 a Fr(m)p Fu(\()p Fr(I)2239 3765 y Fo(i)2267 3750 y Fu(\))2315 3681 y Fr(\037)2376 3696 y Fo(I)2407 3706 y Ff(i)2437 3681 y Fu(\()p Fr(x)p Fu(\))p Fr(:)300 3977 y Fu(This)c(famous)f(sc)m(heme)i(is)e(called)g(Ulam's)f(metho)s (d.)40 b(The)25 b(matrix)d Fr(P)2793 3992 y Fo(n)2863 3977 y Fu(is)i(called)e(the)i(companion)300 4098 y(matrix)31 b(or)h(Ulam's)g(matrix.)446 4218 y(In)43 b(1960)e(Ulam)f(conjectured)j (that)f(the)g(piecewise)h(constan)m(t)g(appro)m(ximations)d Fr(f)3599 4233 y Fo(n)3688 4218 y Fu(will)300 4338 y(con)m(v)m(erge)32 b(to)e Fr(f)872 4302 y Fl(\003)942 4338 y Fu(as)g Fr(n)h Fu(go)s(es)f(to)g(in\014nit)m(y)g([47)o(].)43 b(In)31 b(1976)e(T.)i(Y.)g(Li)e(pro)m(v)m(ed)j(this)e(conjecture)h(for)300 4459 y(a)h(class)h(of)f(piecewise)h Fr(C)1221 4423 y Fp(2)1293 4459 y Fu(and)g(stretc)m(hing)g(mappings)f([38)o(].)446 4579 y(Ulam's)46 b(metho)s(d)g(can)g(b)s(e)h(in)m(tro)s(duced)g(in)e (another)i(w)m(a)m(y)h([22],)i(using)c(the)h(concept)g(of)300 4699 y(dual)d(op)s(erators.)78 b(F)-8 b(rom)43 b(this)h(more)g(general) g(n)m(umerical)f(analysis)g(for)h(F)-8 b(rob)s(enius-P)m(erron)300 4820 y(op)s(erators,)33 b(w)m(e)i(will)c(see)j(clearly)f(that)g(Ulam's) f(metho)s(d)h(is)f(actually)g(a)h(Galerkin)f(pro)5 b(jection)300 4940 y(metho)s(d)27 b(asso)s(ciated)g(with)g(the)h(corresp)s(onding)f (subspace)j(of)d(piecewise)h(constan)m(t)g(functions.)446 5061 y(By)49 b(the)g(de\014nition)e(of)g(F)-8 b(rob)s(enius-P)m(erron) 48 b(op)s(erators)g(it)f(can)i(b)s(e)f(easily)f(pro)m(v)m(en)j(\(see) 300 5181 y([36]\))39 b(that)g(the)h(dual)f(of)g Fr(P)53 b Fu(:)39 b Fr(L)1512 5145 y Fp(1)1552 5181 y Fu(\(0)p Fr(;)17 b Fu(1\))39 b Fq(!)g Fr(L)2014 5145 y Fp(1)2054 5181 y Fu(\(0)p Fr(;)17 b Fu(1\))38 b(is)h(the)h Fj(Ko)-5 b(opman)40 b(op)-5 b(er)g(ator)39 b Fr(U)50 b Fq(\021)40 b Fr(U)3722 5196 y Fo(S)3813 5181 y Fu(:)300 5301 y Fr(L)366 5265 y Fl(1)441 5301 y Fu(\(0)p Fr(;)17 b Fu(1\))27 b Fq(!)g Fr(L)879 5265 y Fl(1)954 5301 y Fu(\(0)p Fr(;)17 b Fu(1\))32 b(with)g(resp)s(ect)i(to)e Fr(S)6 b Fu(,)33 b(de\014ned)h(b)m(y)1617 5515 y Fr(U)10 b(g)t Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(g)t Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\))p Fr(:)p Black 1281 w Fu(\(3.7\))p Black Black Black eop %%Page: 14 23 14 22 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(14)p Black 300 274 a(Supp)s(ose)46 b Fr(f)754 238 y Fl(\003)841 274 y Fq(2)i Fr(L)1021 238 y Fp(1)1061 274 y Fu(\(0)p Fr(;)17 b Fu(1\))43 b(is)h(a)h(\014xed)g (densit)m(y)h(of)e Fr(P)14 b Fu(,)47 b(i.e.,)g Fr(P)14 b(f)2731 238 y Fl(\003)2817 274 y Fu(=)48 b Fr(f)3000 238 y Fl(\003)3084 274 y Fu(with)c Fr(f)3377 238 y Fl(\003)3464 274 y Fq(\025)49 b Fu(0)44 b(and)300 395 y Fq(k)p Fr(f)409 358 y Fl(\003)448 395 y Fq(k)e Fu(=)g(1.)69 b(Let)41 b Fq(f)p Fr(\036)1094 410 y Fo(n)1140 395 y Fq(g)1190 358 y Fl(1)1190 419 y Fo(n)p Fp(=1)1368 395 y Fu(b)s(e)h(a)e(sequence)k (of)d(functions)g(in)f Fr(L)2749 358 y Fl(1)2824 395 y Fu(\(0)p Fr(;)17 b Fu(1\))40 b(suc)m(h)j(that)e(for)f(an)m(y)300 525 y Fr(f)64 b Fq(2)54 b Fr(L)598 488 y Fp(1)638 525 y Fu(\(0)p Fr(;)17 b Fu(1\),)51 b(if)1038 444 y Fi(R)1105 471 y Fp(1)1085 559 y(0)1161 525 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(\036)1409 540 y Fo(n)1455 525 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)54 b Fu(=)g(0)47 b(for)g(all)f Fr(n)p Fu(,)52 b(then)c Fr(f)64 b Fu(=)54 b(0.)88 b(Examples)48 b(of)f(suc)m(h)300 645 y(sequences)h(are)d Fq(f)p Fr(x)1035 609 y Fo(n)1082 645 y Fq(g)1132 609 y Fl(1)1132 670 y Fo(n)p Fp(=0)1314 645 y Fu(\(Lemma)e(3.1)h(in)g([12]\))h(and)f(all)f (the)i(piecewise)h(p)s(olynomials)41 b(of)300 765 y(some)36 b(\014xed)h(degree)g(corresp)s(onding)f(to)f(partitions)f(0)g(=)f Fr(x)2541 780 y Fp(0)2614 765 y Fr(<)g(x)2778 780 y Fp(1)2852 765 y Fr(<)g Fq(\001)17 b(\001)g(\001)31 b Fr(<)j(x)3275 780 y Fo(k)r Fl(\000)p Fp(1)3441 765 y Fr(<)g(x)3606 780 y Fo(k)3682 765 y Fu(=)f(1)300 886 y(with)40 b(lim)665 901 y Fo(k)r Fl(!1)866 886 y Fu(max)1047 901 y Fo(i)1075 886 y Fu(\()p Fr(x)1168 901 y Fo(i)1224 886 y Fq(\000)28 b Fr(x)1384 901 y Fo(i)p Fl(\000)p Fp(1)1503 886 y Fu(\))40 b(=)h(0.)65 b(Suc)m(h)42 b(a)e(sequence)i(will)c(b)s(e)j(called)e (complete.)65 b(The)300 1006 y(follo)m(wing)42 b(result)i(is)g(a)h (basis)f(for)g(constructing)h(pro)5 b(jection-t)m(yp)s(e)45 b(n)m(umerical)e(metho)s(ds)h(to)300 1127 y(compute)33 b(\014xed)g(p)s(oin)m(ts)g(of)f(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erators.)p Black 300 1288 a Fj(L)-5 b(emma)34 b(3.1.)p Black 48 w Fu(Let)h Fq(f)p Fr(\036)1138 1303 y Fo(n)1185 1288 y Fq(g)f Fu(b)s(e)h(a)g(complete)f(sequence)k(of)c (functions.)51 b(Then)36 b Fr(P)14 b(f)3281 1252 y Fl(\003)3351 1288 y Fu(=)31 b Fr(f)3517 1252 y Fl(\003)3591 1288 y Fu(if)j(and)300 1409 y(only)e(if)1128 1553 y Fi(Z)1228 1579 y Fp(1)1184 1778 y(0)1284 1688 y Fu([)p Fr(\036)1369 1703 y Fo(n)1416 1688 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(\036)1727 1703 y Fo(n)1774 1688 y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\)])16 b Fr(f)2149 1647 y Fl(\003)2188 1688 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)29 b Fu(=)e(0)p Fr(;)72 b Fq(8)p Fr(n:)p Black 794 w Fu(\(3.8\))p Black 446 1955 a Fm(Pro)s(of.)44 b Fu(If)32 b Fr(P)14 b(f)1026 1919 y Fl(\003)1092 1955 y Fu(=)28 b Fr(f)1255 1919 y Fl(\003)1294 1955 y Fu(,)33 b(then)g(for)f(all)e Fr(n)p Fu(,)1225 2099 y Fi(Z)1325 2125 y Fp(1)1281 2325 y(0)1381 2235 y Fr(\036)1439 2250 y Fo(n)1486 2235 y Fu(\()p Fr(x)p Fu(\))p Fr(P)14 b(f)1753 2194 y Fl(\003)1792 2235 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)2160 2099 y Fi(Z)2260 2125 y Fp(1)2216 2325 y(0)2316 2235 y Fr(\036)2374 2250 y Fo(n)2421 2235 y Fu(\()p Fr(x)p Fu(\))p Fr(f)2611 2194 y Fl(\003)2650 2235 y Fu(\()p Fr(x)p Fu(\))p Fr(dx:)300 2507 y Fu(Since)k(the)g(Ko)s(opman)e(op)s(erator)i Fr(U)42 b Fu(de\014ned)33 b(b)m(y)g(\(3.7\))e(is)h(the)g(dual)f(of)g Fr(P)14 b Fu(,)32 b(the)g(left)f(hand)h(side)300 2637 y(of)f(the)i(ab)s(o)m(v)m(e)f(equals)1148 2557 y Fi(R)1215 2583 y Fp(1)1195 2672 y(0)1271 2637 y Fr(U)10 b(\036)1405 2652 y Fo(n)1452 2637 y Fu(\()p Fr(x)p Fu(\))p Fr(f)1642 2601 y Fl(\003)1682 2637 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)2050 2557 y Fi(R)2117 2583 y Fp(1)2097 2672 y(0)2173 2637 y Fr(\036)2231 2652 y Fo(n)2277 2637 y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\))p Fr(f)2609 2601 y Fl(\003)2649 2637 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)p Fu(.)43 b(Hence)33 b(w)m(e)g(ha)m(v)m(e)g(\(3.8\).)300 2758 y(Con)m(v)m(ersely)43 b(if)d(\(3.8\))h(is)f(satis\014ed)i(for)e(some)h Fr(f)2101 2721 y Fl(\003)2140 2758 y Fu(,)i(then)f(the)g(rev)m(erse)h(pro)s(cess) f(of)f(the)g(ab)s(o)m(v)m(e)300 2878 y(argumen)m(t)32 b(giv)m(es)h(that)1267 3022 y Fi(Z)1367 3048 y Fp(1)1322 3247 y(0)1406 3157 y Fu(\()p Fr(P)14 b(f)1580 3116 y Fl(\003)1618 3157 y Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)g Fr(f)1931 3116 y Fl(\003)1970 3157 y Fu(\()p Fr(x)p Fu(\)\))p Fr(\036)2197 3172 y Fo(n)2244 3157 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)f(0)p Fr(;)44 b Fq(8)p Fr(n:)300 3430 y Fu(Since)33 b Fq(f)p Fr(\036)663 3445 y Fo(n)709 3430 y Fq(g)g Fu(is)f(complete,)g Fr(P)14 b(f)1465 3394 y Fl(\003)1531 3430 y Fu(=)27 b Fr(f)1693 3394 y Fl(\003)1733 3430 y Fu(.)p 1929 3405 89 4 v 1929 3455 4 50 v 2015 3455 V 1929 3458 89 4 v 446 3550 a(Based)40 b(on)e(the)h(ab)s(o)m(v)m (e)g(lemma,)f(a)g(general)g(algorithm)d(for)j(computing)f(a)h(\014xed)i (densit)m(y)300 3671 y(of)e Fr(P)52 b Fu(is)38 b(prop)s(osed)i(here.)62 b(This)39 b(algorithm)c(is)k(in)f(fact)g(an)h(application)d(of)i (Galerkin's)g(pro-)300 3791 y(jection)e(principle.)52 b(Let)36 b Fq(f)p Fr(\036)1356 3806 y Fo(n)1403 3791 y Fq(g)g Fu(and)g Fq(f)p Fr( )1795 3806 y Fo(n)1842 3791 y Fq(g)g Fu(b)s(e)g(t)m(w)m(o)h(complete)f(sequences)j(of)d(functions.) 54 b(F)-8 b(or)300 3912 y(the)35 b(sak)m(e)h(of)e(computing)f(appro)m (ximate)h(\014xed)i(densities)e(w)m(e)i(usually)e(require)h(that)f(eac) m(h)i Fr( )3793 3927 y Fo(n)300 4032 y Fu(b)s(e)k(nonnegativ)m(e.)67 b(Let)41 b Fr(n)f Fu(b)s(e)h(a)f(c)m(hosen)i(natural)d(n)m(um)m(b)s (er.)67 b(Then)41 b(w)m(e)g(ha)m(v)m(e)h(the)f(follo)m(wing)300 4152 y(algorithm:)300 4273 y Fj(Gener)-5 b(al)35 b(A)n(lgorithm.)42 b Fu(Let)33 b(the)g Fr(n)22 b Fq(\002)h Fr(n)33 b Fu(matrix)e Fr(A)c Fu(=)h([)p Fr(a)2374 4288 y Fo(ij)2435 4273 y Fu(])33 b(b)s(e)f(de\014ned)i(b)m(y)816 4561 y Fr(a)867 4576 y Fo(ij)956 4561 y Fu(=)1059 4425 y Fi(Z)1159 4451 y Fp(1)1115 4651 y(0)1215 4561 y Fu(\()p Fr(\036)1311 4576 y Fo(i)1339 4561 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(\036)1650 4576 y Fo(i)1678 4561 y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\)\))16 b Fr( )2068 4576 y Fo(j)2105 4561 y Fu(\()p Fr(x)p Fu(\))p Fr(dx;)73 b(i;)17 b(j)33 b Fu(=)28 b(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(n:)p Black 481 w Fu(\(3.9\))p Black 300 4828 a(Solv)m(e)33 b(the)g(homogeneous)f(linear)f(system)j(of)e(algebraic)f (equations)i Fr(Av)e Fu(=)d(0)k(for)g Fr(v)g Fu(=)300 4948 y(\()p Fr(v)385 4963 y Fp(1)425 4948 y Fr(;)17 b(v)516 4963 y Fp(2)555 4948 y Fr(;)g(:)g(:)g(:)f(v)777 4963 y Fo(n)824 4948 y Fu(\))862 4912 y Fo(T)960 4948 y Fq(6)p Fu(=)44 b(0)e(and)g Fq(k)1437 4873 y Fi(P)1542 4900 y Fo(n)1542 4977 y(i)p Fp(=1)1676 4948 y Fr(v)1723 4963 y Fo(i)1752 4948 y Fr( )1815 4963 y Fo(i)1843 4948 y Fq(k)i Fu(=)g(1.)71 b(Then)43 b Fr(f)2516 4963 y Fo(n)2607 4948 y Fu(=)2727 4873 y Fi(P)2832 4900 y Fo(n)2832 4977 y(i)p Fp(=1)2967 4948 y Fr(v)3014 4963 y Fo(i)3042 4948 y Fr( )3105 4963 y Fo(i)3176 4948 y Fu(is)e(a)h(normalized)300 5068 y(appro)m(ximate)32 b(\014xed)h(p)s(oin)m(t)f(of)g Fr(P)14 b Fu(.)446 5189 y(The)31 b(next)g(lemma)d(sho)m(ws)k(that)d (the)i(algorithm)c(is)i(w)m(ell-p)s(osed)h(in)f(the)h(sense)i(that)e Fr(f)3613 5204 y Fo(n)3688 5189 y Fq(6)p Fu(=)d(0)300 5309 y(can)33 b(alw)m(a)m(ys)g(b)s(e)g(calculated)e(for)h(an)m(y)i Fr(n)p Fu(.)p Black 300 5471 a Fj(L)-5 b(emma)34 b(3.2.)p Black 48 w Fr(Av)e Fu(=)27 b(0)33 b(has)g(a)f(non)m(trivial)e(solution) h Fr(v)t Fu(.)p Black Black eop %%Page: 15 24 15 23 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(15)p Black 446 274 a Fm(Pro)s(of.)77 b Fu(Since)44 b(the)h(constan)m(t)f(function)g(1)i(=)2288 200 y Fi(P)2393 226 y Fo(n)2393 303 y(i)p Fp(=1)2528 274 y Fr(\021)2576 289 y Fo(i)2605 274 y Fr(\036)2663 289 y Fo(i)2734 274 y Fu(for)e(a)f(nonzero)i(v)m(ector)g Fr(\021)50 b Fu(=)300 395 y(\()p Fr(\021)386 410 y Fp(1)426 395 y Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(\021)709 410 y Fo(n)756 395 y Fu(\))794 358 y Fo(T)849 395 y Fu(,)32 b(and)h(since)g Fr(U)10 b Fu(1\()p Fr(x)p Fu(\))28 b(=)g(1\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\))27 b(=)h(1,)k(w)m(e)i(ha)m(v)m(e,)g (for)e(eac)m(h)h Fr(j)6 b Fu(,)781 560 y Fo(n)730 590 y Fi(X)745 800 y Fo(i)p Fp(=1)891 685 y Fr(a)942 700 y Fo(ij)1002 685 y Fr(\021)1050 700 y Fo(i)1162 685 y Fu(=)1371 560 y Fo(n)1320 590 y Fi(X)1335 800 y Fo(i)p Fp(=1)1481 685 y Fr(\021)1529 700 y Fo(i)1574 549 y Fi(Z)1674 575 y Fp(1)1629 775 y(0)1730 685 y Fu(\()p Fr(\036)1826 700 y Fo(i)1853 685 y Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)f Fr(U)10 b(\036)2240 700 y Fo(i)2269 685 y Fu(\()p Fr(x)p Fu(\)\))17 b Fr( )2518 700 y Fo(j)2555 685 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)1162 1017 y Fu(=)1320 882 y Fi(Z)1420 908 y Fp(1)1376 1107 y(0)1476 847 y Fi( )1606 893 y Fo(n)1555 923 y Fi(X)1570 1133 y Fo(i)p Fp(=1)1716 1017 y Fr(\021)1764 1032 y Fo(i)1792 1017 y Fr(\036)1850 1032 y Fo(i)1878 1017 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(U)2275 893 y Fo(n)2224 923 y Fi(X)2239 1133 y Fo(i)p Fp(=1)2385 1017 y Fr(\021)2433 1032 y Fo(i)2461 1017 y Fr(\036)2519 1032 y Fo(i)2547 1017 y Fu(\()p Fr(x)p Fu(\))2678 847 y Fi(!)2774 1017 y Fr( )2837 1032 y Fo(j)2874 1017 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)1162 1328 y Fu(=)1320 1192 y Fi(Z)1420 1219 y Fp(1)1376 1418 y(0)1460 1328 y Fu(\(1)e Fq(\000)i Fr(U)10 b Fu(1\()p Fr(x)p Fu(\)\))p Fr( )2025 1343 y Fo(j)2063 1328 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)2431 1192 y Fi(Z)2531 1219 y Fp(1)2487 1418 y(0)2570 1328 y Fu(\(1)22 b Fq(\000)h Fu(1\))p Fr( )2929 1343 y Fo(j)2965 1328 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)29 b Fu(=)e(0)p Fr(;)300 1602 y Fu(that)32 b(is,)h Fr(A)710 1565 y Fo(T)765 1602 y Fr(\021)e Fu(=)d(0.)43 b(Hence,)34 b Fr(A)f Fu(is)f(singular.)p 2121 1577 89 4 v 2121 1627 4 50 v 2207 1627 V 2121 1630 89 4 v 300 1722 a Fm(Remark)46 b(3.1)41 b Fu(The)h(purp)s(ose)g(of)e(the)h(algorithm)d(is)i(to)g (\014nd)i(a)e(normalized)f(function)h Fr(f)53 b Fq(2)300 1842 y Fu(span)q Fq(f)p Fr( )609 1857 y Fp(1)648 1842 y Fr(;)17 b( )755 1857 y Fp(2)795 1842 y Fr(;)g(:)g(:)g(:)32 b(;)17 b( )1093 1857 y Fo(n)1140 1842 y Fq(g)33 b Fu(suc)m(h)h(that)893 1986 y Fi(Z)992 2012 y Fp(1)948 2211 y(0)1049 2121 y Fu([)p Fr(\036)1134 2136 y Fo(n)1180 2121 y Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)f Fr(\036)1491 2136 y Fo(n)1538 2121 y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\)])17 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)f(0)p Fr(;)72 b(n)28 b Fu(=)f(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(n:)p Black 510 w Fu(\(3.10\))p Black 300 2383 a(Ho)m(w)m(ev)m(er,)44 b(it)39 b(is)g(not)g(guaran)m(teed)i Fr(f)1676 2398 y Fo(n)1763 2383 y Fu(can)f(b)s(e)f(nonnegativ)m(e)i(in) d(general,)k(although)c(Ulam's)300 2503 y(metho)s(d)32 b(b)s(elo)m(w)g(mak)m(es)i(it)d(p)s(ossible.)446 2623 y(No)m(w)i(let's)f(mak)m(e)g(a)f(c)m(hoice)h(for)g Fq(f)p Fr(\036)1754 2638 y Fo(n)1800 2623 y Fq(g)g Fu(and)g Fq(f)p Fr( )2184 2638 y Fo(n)2231 2623 y Fq(g)g Fu(to)f(redisco)m(v)m (er)i(Ulam's)e(sc)m(heme:)45 b(divide)300 2744 y(the)36 b(in)m(terv)-5 b(al)35 b([0)p Fr(;)17 b Fu(1])35 b(in)m(to)g Fr(n)h Fu(equal)g(subin)m(terv)-5 b(als)36 b Fr(I)2198 2759 y Fo(i)2260 2744 y Fu(=)d([)p Fr(x)2451 2759 y Fo(i)p Fl(\000)p Fp(1)2570 2744 y Fr(;)17 b(x)2669 2759 y Fo(i)2697 2744 y Fu(])36 b(with)g(the)g(length)f Fr(h)f Fu(=)f(1)p Fr(=n)p Fu(.)300 2864 y(De\014ne)1283 3078 y Fr(\036)1341 3093 y Fo(i)1397 3078 y Fu(=)27 b Fr(\037)1561 3093 y Fo(I)1592 3103 y Ff(i)1622 3078 y Fr(;)45 b( )1757 3093 y Fo(i)1813 3078 y Fu(=)27 b(1)1965 3093 y Fo(i)1993 3078 y Fr(;)45 b(i)28 b Fu(=)f(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(n:)p Black 900 w Fu(\(3.11\))p Black 446 3292 a(Then,)40 b(a)e(simple)e(calculation)f(giv)m(es)j(that)g(the)g(\()p Fr(i;)17 b(j)6 b Fu(\))37 b(elemen)m(t)h(of)f(the)h(matrix)e Fr(A)i Fu(in)f(the)300 3413 y(general)32 b(algorithm)d(is)300 3686 y Fr(a)351 3701 y Fo(ij)495 3686 y Fu(=)654 3551 y Fi(Z)753 3577 y Fp(1)709 3776 y(0)793 3686 y Fu(\()p Fr(\037)892 3701 y Fo(I)923 3711 y Ff(i)953 3686 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(\037)1267 3701 y Fo(I)1298 3711 y Ff(i)1328 3686 y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\)\)1)1688 3701 y Fo(j)1724 3686 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)2093 3551 y Fi(Z)2193 3577 y Fp(1)2148 3776 y(0)2249 3686 y Fr(\037)2310 3701 y Fo(I)2341 3711 y Ff(i)2371 3686 y Fu(\()p Fr(x)p Fu(\)1)2551 3701 y Fo(j)2587 3686 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)23 b Fq(\000)2947 3551 y Fi(Z)3046 3577 y Fp(1)3002 3776 y(0)3102 3686 y Fr(\037)3163 3703 y Fo(S)3210 3684 y Fh(\000)p Fg(1)3293 3703 y Fp(\()p Fo(I)3351 3713 y Ff(i)3377 3703 y Fp(\))3409 3686 y Fu(\()p Fr(x)p Fu(\)1)3589 3701 y Fo(j)3625 3686 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)495 3956 y Fu(=)83 b Fr(n)729 3820 y Fi(Z)784 4046 y Fo(I)815 4056 y Ff(i)841 4046 y Fl(\\)p Fo(I)919 4056 y Ff(j)972 3956 y Fr(dx)22 b Fq(\000)h Fr(n)1275 3820 y Fi(Z)1330 4046 y Fo(S)1377 4027 y Fh(\000)p Fg(1)1459 4046 y Fp(\()p Fo(I)1517 4056 y Ff(i)1543 4046 y Fp(\))p Fl(\\)p Fo(I)1648 4056 y Ff(j)1702 3956 y Fr(dx)28 b Fu(=)f Fr(\016)1982 3971 y Fo(ij)2065 3956 y Fq(\000)2175 3888 y Fr(m)p Fu(\()p Fr(S)2364 3852 y Fl(\000)p Fp(1)2458 3888 y Fu(\()p Fr(I)2539 3903 y Fo(i)2567 3888 y Fu(\))22 b Fq(\\)h Fr(I)2759 3903 y Fo(j)2795 3888 y Fu(\))p 2175 3933 659 4 v 2383 4024 a Fr(m)p Fu(\()p Fr(I)2549 4039 y Fo(j)2586 4024 y Fu(\))2843 3956 y Fr(;)300 4237 y Fu(where)35 b Fr(\016)626 4252 y Fo(ij)721 4237 y Fu(is)e(the)i(Kronec)m(k)m(er)h(sym)m(b)s(ol,)d (i.e.,)h Fr(\016)2046 4252 y Fo(ij)2137 4237 y Fu(=)c(0)k(if)f Fr(i)d Fq(6)p Fu(=)g Fr(j)40 b Fu(and)34 b Fr(\016)2900 4252 y Fo(ii)2983 4237 y Fu(=)c(1.)47 b(Hence,)36 b Fr(Av)e Fu(=)c(0)300 4357 y(if)h(and)i(only)f(if)g Fr(v)934 4321 y Fo(T)1016 4357 y Fu(=)c Fr(v)1171 4321 y Fo(T)1225 4357 y Fr(P)1288 4372 y Fo(n)1335 4357 y Fu(,)33 b(where)868 4625 y Fr(P)931 4640 y Fo(n)1006 4625 y Fu(=)27 b([)p Fr(p)1185 4640 y Fo(ij)1246 4625 y Fu(])p Fr(;)72 b(p)1421 4640 y Fo(ij)1509 4625 y Fu(=)1622 4557 y Fr(m)p Fu(\()p Fr(I)1788 4572 y Fo(i)1839 4557 y Fq(\\)23 b Fr(S)1994 4521 y Fl(\000)p Fp(1)2088 4557 y Fu(\()p Fr(I)2169 4572 y Fo(j)2205 4557 y Fu(\)\))p 1622 4602 V 1836 4693 a Fr(m)p Fu(\()p Fr(I)2002 4708 y Fo(i)2030 4693 y Fu(\))2291 4625 y Fr(;)72 b(i;)17 b(j)34 b Fu(=)27 b(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(n:)p Black 485 w Fu(\(3.12\))p Black 300 4895 a(\(3.12\))32 b(is)g(exactly)h(the)g (matrix)e(\(3.5\))h(in)g(Ulam's)f(metho)s(d.)636 5015 y(F)-8 b(or)43 b(m)m(ulti-dimensional)d(cases,)48 b(let)c(\012)k Fq(\032)g Fr(R)2386 4979 y Fo(d)2471 5015 y Fu(b)s(e)d(a)f(b)s(ounded)h (op)s(en)f(set)h(and)g(let)300 5136 y Fr(S)33 b Fu(:)28 b(\012)g Fq(!)g Fu(\012)j(b)s(e)g(a)f(nonsingular)g(transformation)e (suc)m(h)33 b(that)d(the)h(corresp)s(onding)g(F)-8 b(rob)s(enius-)300 5256 y(P)m(erron)48 b(op)s(erator)e Fr(P)60 b Fu(has)47 b(a)f(non)m(trivial)f(\014xed)j(p)s(oin)m(t.)85 b(Let)47 b Fr(T)2736 5271 y Fo(h)2832 5256 y Fu(=)52 b Fq(f)p Fu(\012)3080 5271 y Fo(i)3109 5256 y Fq(g)3159 5220 y Fo(n)3159 5281 y(i)p Fp(=1)3323 5256 y Fu(b)s(e)47 b(a)g(shap)s(e-)300 5376 y(regular)33 b(partition)e(of)i(\012)h(with)g(the)g(mesh)g(size)f (c)m(haracterized)i(b)m(y)f Fr(h)p Fu(.)47 b(Let)34 b(1)3170 5391 y Fo(i)3227 5376 y Fu(=)3422 5337 y Fp(1)p 3343 5353 195 4 v 3343 5411 a Fo(m)p Fp(\(\012)3483 5421 y Ff(i)3510 5411 y Fp(\))3547 5376 y Fr(\037)3608 5391 y Fp(\012)3659 5401 y Ff(i)3723 5376 y Fu(for)300 5515 y Fr(i)28 b Fu(=)g(1)p Fr(;)17 b Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(n)p Fu(.)44 b(Then)34 b(eac)m(h)f(1)1403 5530 y Fo(i)1459 5515 y Fq(2)c Fr(L)1620 5478 y Fp(1)1660 5515 y Fu(\(\012\))k(is)f(a)g(densit)m(y)i(function)e(with)h(supp1)3209 5530 y Fo(i)3266 5515 y Fu(=)27 b(\012)3439 5530 y Fo(i)3468 5515 y Fu(.)44 b(Let)33 b(\001)3795 5530 y Fo(h)p Black Black eop %%Page: 16 25 16 24 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(16)p Black 300 274 a(b)s(e)31 b(the)g Fr(n)p Fu(-dimensional)d(subspace)33 b(of)d Fr(L)1804 238 y Fp(1)1844 274 y Fu(\(\012\))h(spanned)h(b)m(y)g(1)2582 289 y Fp(1)2621 274 y Fr(;)17 b(:)g(:)g(:)32 b(;)17 b Fu(1)2905 289 y Fo(n)2952 274 y Fu(,)31 b(i.e.,)g(\001)3274 289 y Fo(h)3349 274 y Fu(is)g(the)g(space)300 395 y(of)h(piecewise)h (constan)m(t)g(functions)g(asso)s(ciated)f(with)g Fr(T)2391 410 y Fo(h)2436 395 y Fu(.)44 b(Note)32 b(that)h(\001)3035 410 y Fo(h)3107 395 y Fq(\032)c Fr(L)3279 358 y Fl(1)3354 395 y Fu(\(\012\).)43 b(De\014ne)300 515 y Fr(P)363 530 y Fo(h)435 515 y Fq(\021)29 b Fr(P)604 530 y Fo(h)648 515 y Fu(\()p Fr(S)6 b Fu(\))28 b(:)f(\001)953 530 y Fo(h)1026 515 y Fq(!)g Fu(\001)1234 530 y Fo(h)1312 515 y Fu(b)m(y)1638 787 y Fr(P)1701 802 y Fo(h)1746 787 y Fu(1)1795 802 y Fo(i)1850 787 y Fu(=)2004 662 y Fo(n)1954 692 y Fi(X)1964 902 y Fo(j)t Fp(=1)2114 787 y Fr(p)2163 802 y Fo(ij)2224 787 y Fu(1)2273 802 y Fo(j)2309 787 y Fr(;)p Black 1255 w Fu(\(3.13\))p Black 300 1078 a(where)1486 1307 y Fr(p)1535 1322 y Fo(ij)1624 1307 y Fu(=)1737 1240 y Fr(m)p Fu(\(\012)1930 1255 y Fo(i)1981 1240 y Fq(\\)c Fr(S)2136 1204 y Fl(\000)p Fp(1)2230 1240 y Fu(\(\012)2338 1255 y Fo(j)2375 1240 y Fu(\)\))p 1737 1285 714 4 v 1964 1376 a Fr(m)p Fu(\(\012)2157 1391 y Fo(i)2186 1376 y Fu(\))2460 1307 y Fr(:)p Black 1104 w Fu(\(3.14\))p Black 446 1553 a(Ulam's)37 b(metho)s(d)g(is)h(to)f(compute)h(a)g(\014xed)h (densit)m(y)g Fr(f)2487 1568 y Fo(h)2569 1553 y Fq(2)e Fu(\001)2753 1568 y Fo(h)2836 1553 y Fu(of)g Fr(P)3015 1568 y Fo(h)3098 1553 y Fu(to)g(appro)m(ximate)g(a)300 1674 y(\014xed)j(densit)m(y)f Fr(f)943 1638 y Fl(\003)1020 1674 y Fu(of)f Fr(P)14 b Fu(.)61 b(T)-8 b(o)38 b(study)i(the)f(con)m(v) m(ergence)i(of)d(Ulam's)f(metho)s(d)h(as)g Fr(h)g Fq(!)f Fu(0,)j(w)m(e)300 1794 y(need)34 b(to)e(de\014ne)i(a)e(discretized)h (op)s(erator)f Fr(Q)1963 1809 y Fo(h)2035 1794 y Fu(:)c Fr(L)2156 1758 y Fp(1)2196 1794 y Fu(\(\012\))g Fq(!)f Fr(L)2563 1758 y Fp(1)2603 1794 y Fu(\(\012\))33 b(b)m(y)1628 2066 y Fr(Q)1705 2081 y Fo(h)1750 2066 y Fr(f)38 b Fu(=)1990 1941 y Fo(n)1940 1971 y Fi(X)1955 2181 y Fo(i)p Fp(=1)2100 2066 y Fr(f)2148 2081 y Fo(i)2177 2066 y Fr(\037)2238 2081 y Fp(\012)2289 2091 y Ff(i)2319 2066 y Fr(;)p Black 1245 w Fu(\(3.15\))p Black 300 2344 a(where)1561 2563 y Fr(f)1609 2578 y Fo(i)1665 2563 y Fu(=)1884 2496 y(1)p 1778 2540 260 4 v 1778 2631 a Fr(m)p Fu(\(\012)1971 2646 y Fo(i)2000 2631 y Fu(\))2065 2427 y Fi(Z)2120 2653 y Fp(\012)2171 2663 y Ff(i)2218 2563 y Fr(f)11 b(dm)p Black 1178 w Fu(\(3.16\))p Black 300 2816 a(is)35 b(the)h(a)m(v)m(erage)g(v) -5 b(alue)35 b(of)g Fr(f)46 b Fu(o)m(v)m(er)36 b(\012)1668 2831 y Fo(i)1697 2816 y Fu(.)52 b(It)35 b(is)g(ob)m(vious)g(that)h Fr(Q)2632 2831 y Fo(h)2712 2816 y Fu(is)f(a)g(Mark)m(o)m(v)i(op)s (erator)d(with)300 2936 y(dim)p Fr(R)q Fu(\()p Fr(Q)654 2951 y Fo(h)698 2936 y Fu(\))27 b(=)h Fr(n)p Fu(.)44 b(Moreo)m(v)m(er)34 b Fr(Q)1501 2951 y Fo(h)1578 2936 y Fu(is)e(a)h(Galerkin)e(pro)5 b(jection)32 b(on)m(to)g(\001)2920 2951 y Fo(h)2998 2936 y Fu(in)g(the)h(sense)h(that)1318 3132 y Fr(<)27 b(Q)1498 3147 y Fo(h)1544 3132 y Fr(f)32 b Fq(\000)23 b Fr(f)5 b(;)17 b Fu(1)1870 3147 y Fo(i)1926 3132 y Fr(>)27 b Fu(0)p Fr(;)44 b(i)28 b Fu(=)g(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(n)p Black 935 w Fu(\(3.17\))p Black 300 3328 a(for)32 b(all)f Fr(f)38 b Fq(2)28 b Fr(L)831 3291 y Fp(1)871 3328 y Fu(\(\012\).)44 b(Also)32 b(it)f(is)h(easy)i(to) e(see)i(that)e Fq(k)p Fr(Q)2333 3343 y Fo(h)2378 3328 y Fr(f)11 b Fq(k)2487 3343 y Fl(1)2589 3328 y Fq(\024)28 b(k)p Fr(f)11 b Fq(k)2853 3343 y Fl(1)2960 3328 y Fu(for)32 b(an)m(y)h Fr(f)38 b Fq(2)28 b Fr(L)3539 3291 y Fl(1)3615 3328 y Fu(\(\012\).)446 3448 y(Some)h(basic)f(prop)s(erties)h(of)f (Ulam's)g(metho)s(d)g(are)h(summarized)f(in)g(the)h(follo)m(wing)d (prop)s(o-)300 3568 y(sition.)p Black 300 3720 a Fj(Pr)-5 b(op)g(osition)34 b(3.1.)p Black 48 w Fu(\(i\))k(Let)g(\001)1429 3684 y Fl(0)1429 3746 y Fo(h)1512 3720 y Fu(=)f Fq(f)1675 3645 y Fi(P)1780 3671 y Fo(n)1780 3749 y(i)p Fp(=1)1915 3720 y Fr(a)1966 3735 y Fo(i)1994 3720 y Fu(1)2043 3735 y Fo(i)2109 3720 y Fu(:)h Fr(a)2225 3735 y Fo(i)2291 3720 y Fq(\025)g Fu(0)p Fr(;)2499 3645 y Fi(P)2603 3671 y Fo(n)2603 3749 y(i)p Fp(=1)2738 3720 y Fr(a)2789 3735 y Fo(i)2855 3720 y Fu(=)f(1)p Fq(g)p Fu(.)61 b(Then)39 b Fr(P)3478 3735 y Fo(h)3523 3720 y Fu(\(\001)3642 3684 y Fl(0)3642 3746 y Fo(h)3687 3720 y Fu(\))f Fq(\032)300 3840 y Fu(\001)381 3804 y Fl(0)381 3866 y Fo(h)426 3840 y Fu(.)44 b(Hence,)34 b(there)f(is)f(a)g(\014xed)i(densit)m(y)g Fr(f)1863 3855 y Fo(h)1940 3840 y Fu(of)e Fr(P)2114 3855 y Fo(h)2159 3840 y Fu(.)446 3961 y(\(ii\))f(lim)744 3976 y Fo(h)p Fl(!)p Fp(0)912 3961 y Fr(Q)989 3976 y Fo(h)1034 3961 y Fr(f)38 b Fu(=)28 b Fr(f)43 b Fu(for)32 b(an)m(y)h Fr(f)39 b Fq(2)28 b Fr(L)1895 3924 y Fp(1)1935 3961 y Fu(\(\012\).)446 4081 y(\(iii\))i Fr(P)699 4096 y Fo(h)771 4081 y Fu(=)e Fr(Q)952 4096 y Fo(h)997 4081 y Fr(P)46 b Fu(on)32 b(\001)1322 4096 y Fo(h)1368 4081 y Fu(.)300 4232 y Fm(Pro)s(of.)41 b Fu(\(i\))24 b Fr(P)835 4247 y Fo(h)904 4232 y Fu(is)h(a)f(Mark)m(o)m(v)j(op)s(erator)d(since)h(b)s (oth)g Fr(Q)2332 4247 y Fo(h)2402 4232 y Fu(and)g Fr(P)39 b Fu(are,)26 b(so)f Fr(P)3044 4247 y Fo(h)3089 4232 y Fu(\(\001)3208 4196 y Fl(0)3208 4258 y Fo(h)3253 4232 y Fu(\))j Fq(\032)g Fu(\001)3505 4196 y Fl(0)3505 4258 y Fo(h)3550 4232 y Fu(.)41 b(Since)300 4353 y(\001)381 4317 y Fl(0)381 4379 y Fo(h)457 4353 y Fu(is)31 b(a)g(compact)g(con)m (v)m(ex)j(subset)f(of)e(\001)1831 4368 y Fo(h)1876 4353 y Fu(,)g(b)m(y)i(Brou)m(w)m(er's)g(\014xed)f(p)s(oin)m(t)f(theorem,)g Fr(P)3478 4368 y Fo(h)3523 4353 y Fr(f)3571 4368 y Fo(h)3644 4353 y Fu(=)c Fr(f)3795 4368 y Fo(h)300 4473 y Fu(for)32 b(some)g Fr(f)741 4488 y Fo(h)814 4473 y Fq(2)c Fu(\001)989 4437 y Fl(0)989 4499 y Fo(h)1034 4473 y Fu(.)446 4594 y(\(ii\))i(It)i(is)g(enough)g(to)f(assume)i(that)e Fr(f)39 b Fq(2)28 b Fr(C)7 b Fu(\()2118 4568 y(\026)2107 4594 y(\012\).)43 b(Then)33 b(from)e(the)h(uniform)e(con)m(tin)m(uit)m(y)i (of)300 4714 y Fr(f)11 b Fu(,)32 b(for)g(an)m(y)i Fr(\017)28 b(>)f Fu(0,)33 b(for)f Fr(h)g Fu(su\016cien)m(tly)i(small,)1574 4927 y Fq(j)p Fr(f)1650 4942 y Fo(i)1700 4927 y Fq(\000)23 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)27 b Fr(<)2255 4860 y(\017)p 2158 4904 232 4 v 2158 4995 a(m)p Fu(\(\012\))p Black 3591 4927 a(\(3.18\))p Black 300 5173 a(for)32 b(all)f Fr(x)d Fq(2)g Fu(\012)832 5188 y Fo(i)893 5173 y Fu(and)33 b(all)d Fr(i)p Fu(.)44 b(Hence,)851 5439 y Fq(k)p Fr(Q)978 5454 y Fo(h)1023 5439 y Fr(f)33 b Fq(\000)22 b Fr(f)11 b Fq(k)28 b Fu(=)1494 5315 y Fo(n)1443 5345 y Fi(X)1458 5554 y Fo(i)p Fp(=1)1604 5304 y Fi(Z)1659 5529 y Fp(\012)1710 5539 y Ff(i)1757 5439 y Fq(j)p Fr(f)1833 5454 y Fo(i)1883 5439 y Fq(\000)23 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)p Fr(dx)27 b(<)2488 5315 y Fo(n)2438 5345 y Fi(X)2453 5554 y Fo(i)p Fp(=1)2598 5439 y Fr(\017)h(m)p Fu(\(\012)2858 5454 y Fo(i)2887 5439 y Fu(\))g(=)f Fr(\017:)p Black 469 w Fu(\(3.19\))p Black Black Black eop %%Page: 17 26 17 25 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(17)p Black 300 274 a(\(iii\))30 b(F)-8 b(or)31 b(eac)m(h)j Fr(i)28 b Fu(=)f(1)p Fr(;)17 b(:)g(:)g(:)33 b(;)17 b(n)p Fu(,)32 b(from)f(the)i(de\014nition)f(of)g Fr(P)14 b Fu(,)608 547 y Fr(P)671 562 y Fo(h)716 547 y Fu(1)765 562 y Fo(i)876 547 y Fu(=)83 b Fr(Q)1112 562 y Fo(h)1157 547 y Fr(P)14 b Fu(1)1283 562 y Fo(i)1338 547 y Fu(=)1492 422 y Fo(n)1442 452 y Fi(X)1452 662 y Fo(j)t Fp(=1)1585 547 y Fu(\()p Fr(P)g Fu(1)1749 562 y Fo(i)1777 547 y Fu(\))1815 562 y Fo(j)1851 547 y Fr(\037)1912 562 y Fp(\012)1963 572 y Ff(j)2028 547 y Fu(=)2182 422 y Fo(n)2131 452 y Fi(X)2142 662 y Fo(j)t Fp(=1)2292 376 y Fi(")2469 479 y Fu(1)p 2360 524 269 4 v 2360 615 a Fr(m)p Fu(\(\012)2553 630 y Fo(j)2590 615 y Fu(\))2655 411 y Fi(Z)2710 637 y Fp(\012)2761 647 y Ff(j)2814 547 y Fr(P)g Fu(1)2940 562 y Fo(i)2967 547 y Fr(dm)3103 376 y Fi(#)3178 547 y Fu(1)3227 562 y Fo(j)3264 547 y Fr(m)p Fu(\(\012)3457 562 y Fo(j)3494 547 y Fu(\))876 881 y(=)1085 757 y Fo(n)1035 787 y Fi(X)1046 997 y Fo(j)t Fp(=1)1205 814 y Fr(m)p Fu(\(\012)1398 829 y Fo(i)1449 814 y Fq(\\)23 b Fr(S)1604 778 y Fl(\000)p Fp(1)1698 814 y Fu(\(\012)1806 829 y Fo(j)1843 814 y Fu(\)\))p 1205 858 714 4 v 1432 950 a Fr(m)p Fu(\(\012)1625 965 y Fo(i)1654 950 y Fu(\))1929 881 y(1)1978 896 y Fo(j)2042 881 y Fu(=)2196 757 y Fo(n)2145 787 y Fi(X)2156 997 y Fo(j)t Fp(=1)2306 881 y Fr(p)2355 896 y Fo(ij)2415 881 y Fu(1)2464 896 y Fo(j)2501 881 y Fr(:)p 2611 856 57 4 v 2611 906 4 50 v 2664 906 V 2611 909 57 4 v 446 1162 a Fu(W)-8 b(e)38 b(also)f(use)i Fr(P)1057 1177 y Fo(h)1139 1162 y Fu(to)e(denote)i(the)f(matrix)e(represen)m (tation)j(under)f(the)g(densit)m(y)h(basis)e(of)300 1282 y(\001)381 1297 y Fo(h)460 1282 y Fu(men)m(tioned)d(ab)s(o)m(v)m(e,)i (whic)m(h)f(is)e(also)h(called)f Fj(Ulam's)j(matrix)e Fu(or)g(the)h(companion)d(matrix.)300 1403 y(Since)k Fr(P)621 1418 y Fo(h)701 1403 y Fu(is)f(a)g(Mark)m(o)m(v)i(op)s(erator) e(of)g(\014nite)g(rank,)i(it)e(giv)m(es)h(a)f(sto)s(c)m(hastic)h (matrix)e Fr(P)3526 1418 y Fo(h)3570 1403 y Fu(.)53 b(This)300 1523 y(can)33 b(also)e(b)s(e)i(seen)h(from)d(the)i(fact)g(that)f(for)g (eac)m(h)i Fr(i)p Fu(,)1369 1654 y Fo(n)1319 1684 y Fi(X)1330 1894 y Fo(j)t Fp(=1)1479 1779 y Fr(p)1528 1794 y Fo(ij)1617 1779 y Fu(=)1771 1654 y Fo(n)1720 1684 y Fi(X)1731 1894 y Fo(j)t Fp(=1)1891 1711 y Fr(m)p Fu(\(\012)2084 1726 y Fo(i)2135 1711 y Fq(\\)22 b Fr(S)2289 1675 y Fl(\000)p Fp(1)2383 1711 y Fu(\(\012)2491 1726 y Fo(j)2528 1711 y Fu(\)\))p 1891 1756 714 4 v 2117 1847 a Fr(m)p Fu(\(\012)2310 1862 y Fo(i)2339 1847 y Fu(\))2642 1779 y(=)27 b(1)p Fr(:)446 2067 y Fu(If)g Fr(f)586 2082 y Fo(h)659 2067 y Fu(=)762 1992 y Fi(P)867 2019 y Fo(n)867 2096 y(i)p Fp(=1)1002 2067 y Fr(c)1044 2082 y Fo(i)1073 2067 y Fu(1)1122 2082 y Fo(i)1177 2067 y Fq(2)h Fu(\001)1352 2082 y Fo(h)1397 2067 y Fu(,)h(then)e Fr(f)1717 2082 y Fo(h)1789 2067 y Fu(is)f(a)h(\014xed)h(p)s(oin)m(t)e(of)h Fr(P)2605 2082 y Fo(h)2676 2067 y Fu(if)f(and)h(only)f(if)g(the)i(ro)m(w)f(v)m (ector)300 2188 y(\()p Fr(c)380 2203 y Fp(1)419 2188 y Fr(;)17 b(c)505 2203 y Fp(2)544 2188 y Fr(;)g Fq(\001)g(\001)g(\001) 32 b Fr(;)17 b(c)824 2203 y Fo(n)870 2188 y Fu(\))34 b(is)g(a)g(left)f(eigen)m(v)m(ector)i(of)f(the)g(matrix)f Fr(P)2469 2203 y Fo(h)2547 2188 y Fu(asso)s(ciated)h(with)g(the)g (eigen)m(v)-5 b(alue)300 2308 y(1,)32 b(i.e.,)1246 2493 y(\()p Fr(c)1326 2508 y Fp(1)1365 2493 y Fr(;)17 b(c)1451 2508 y Fp(2)1490 2493 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)1769 2508 y Fo(n)1816 2493 y Fu(\))p Fr(P)1917 2508 y Fo(h)1989 2493 y Fu(=)28 b(\()p Fr(c)2173 2508 y Fp(1)2212 2493 y Fr(;)17 b(c)2298 2508 y Fp(2)2337 2493 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)2616 2508 y Fo(n)2663 2493 y Fu(\))p Fr(:)p Black 863 w Fu(\(3.20\))p Black 446 2679 a(Th)m(us)39 b(Ulam's)d(metho)s(d)g(is)h(w)m(ell-p)s (osed)f(for)g(an)m(y)i(partition)d(of)i(the)g(domain,)f(in)h(whic)m(h)g (a)300 2799 y(\014xed)25 b(densit)m(y)f Fr(f)902 2814 y Fo(h)974 2799 y Fq(2)29 b Fu(\001)1150 2814 y Fo(h)1218 2799 y Fu(is)23 b(computed)h(for)e(the)i(giv)m(en)g Fr(h)f Fu(to)g(appro)m(ximate)g(a)g(\014xed)h(densit)m(y)h(of)e Fr(P)300 2919 y Fu(if)32 b(suc)m(h)j(a)f(\014xed)g(densit)m(y)h (exists.)47 b(It)33 b(is)g(in)m(teresting)h(to)f(note)g(that)h (although)e(the)i(F)-8 b(rob)s(enius-)300 3040 y(P)m(erron)49 b(op)s(erator)f(ma)m(y)g(not)g(ha)m(v)m(e)h(a)f(\014xed)i(densit)m(y)-8 b(,)53 b(its)48 b(Ulam's)f(\014nite)h(appro)m(ximations)300 3160 y(alw)m(a)m(ys)28 b(ha)m(v)m(e)h(\014xed)f(densities.)42 b(Ulam)26 b(conjectured)j(that)e(suc)m(h)i(appro)m(ximate)d(\014xed)j (densities)300 3280 y(con)m(v)m(erge)f(to)d(a)h(\014xed)h(densit)m(y)g (of)e Fr(P)39 b Fu(if)25 b Fr(P)39 b Fu(has)26 b(a)g(\014xed)h(densit)m (y)g Fr(f)2689 3244 y Fl(\003)2728 3280 y Fu(.)41 b(Although)25 b(this)h(conjecture)300 3401 y(is)32 b(still)e(op)s(en,)j(it)f(can)h(b) s(e)f(pro)m(v)m(ed)i(for)e(some)h(classes)g(of)f(mappings,)446 3521 y(F)-8 b(or)28 b(the)g(con)m(v)m(ergence)j(rate)d(of)f(Ulam's)g (metho)s(d)g(for)h(one)g(dimensional)e(transformations,)300 3642 y(the)36 b(\014rst)g(approac)m(h)h(to)e(the)h(con)m(v)m(ergence)i (rate)e(analysis)f(w)m(as)i(giv)m(en)f(b)m(y)g(Keller)f([34)o(],)i (based)300 3762 y(on)29 b(the)h(concept)g(of)f(sto)s(c)m(hastic)h (stabilit)m(y)e(of)g(dynamical)g(systems.)44 b(He)30 b(obtained)e(the)i(rate)f(of)300 3882 y(O\(ln)16 b Fr(n=n)p Fu(\))32 b(under)i(the)f Fr(L)1258 3846 y Fp(1)1298 3882 y Fu(-norm)e(for)h(the)h(class)g(of)f(piecewise)i(monotonic)d (transformations,)300 4003 y(where)40 b Fr(n)e Fu(is)g(the)h(n)m(um)m (b)s(er)g(of)f(subin)m(terv)-5 b(als)38 b(of)g(the)h(partition)d(of)i ([0)p Fr(;)17 b Fu(1])38 b(in)f(Ulam's)g(metho)s(d.)300 4123 y(But)c(an)g(explicit)f(expression)i(of)f(the)g(constan)m(t)h(in)f (the)g(rate)g(w)m(as)h(not)f(giv)m(en.)46 b(The)34 b(follo)m(wing)300 4244 y(result)f(due)g(to)f(Murra)m(y)i(giv)m(es)f(an)f(explicit)f (constan)m(t)j(for)e(piecewise)h(on)m(to)f(mappings.)p Black 300 4391 a Fj(The)-5 b(or)g(em)34 b(3.1.)p Black 48 w Fu([45])e(Let)h Fr(S)g Fu(:)28 b([0)p Fr(;)17 b Fu(1])27 b Fq(!)h Fu([0)p Fr(;)17 b Fu(1])32 b(b)s(e)g(piecewise)i Fr(C)2632 4354 y Fp(2)2703 4391 y Fu(and)f(on)m(to)g(and)f(b)s(e)h(suc) m(h)h(that)446 4511 y(\(i\))e Fq(j)p Fr(S)676 4451 y Fh(0)702 4511 y Fq(j)27 b(\025)h Fr(\025)g(>)f Fu(1)446 4664 y(\(ii\))635 4616 y Fl(j)p Fo(S)702 4572 y Fh(0)o(0)746 4616 y Fl(j)p 619 4641 163 4 v 619 4706 a Fp(\()p Fo(S)693 4672 y Fh(0)719 4706 y Fp(\))746 4687 y Fg(2)819 4664 y Fq(\024)h Fr(s)p Fu(.)300 4800 y(Let)34 b Fr(P)47 b Fu(b)s(e)34 b(the)g(F)-8 b(rob)s(enius-P)m(erron)34 b(op)s(erator)f (asso)s(ciated)h(with)f Fr(S)6 b Fu(,)34 b(and)g(let)f Fr(f)3260 4764 y Fl(\003)3329 4800 y Fq(\025)d Fu(0)k(b)s(e)f(suc)m(h) 300 4920 y(that)g Fr(P)14 b(f)648 4884 y Fl(\003)715 4920 y Fu(=)28 b Fr(f)878 4884 y Fl(\003)950 4920 y Fu(and)33 b Fq(k)p Fr(f)1249 4884 y Fl(\003)1288 4920 y Fq(k)c Fu(=)f(1.)44 b(let)33 b Fr(f)1781 4935 y Fo(n)1856 4920 y Fq(2)c Fr(D)c Fq(\\)e Fu(\001)2227 4935 y Fo(n)2307 4920 y Fu(b)s(e)33 b(suc)m(h)i(that)e Fr(f)2921 4935 y Fo(n)2996 4920 y Fu(=)28 b Fr(P)3163 4935 y Fo(n)3210 4920 y Fr(f)3258 4935 y Fo(n)3305 4920 y Fu(.)45 b(Then)34 b(for)f Fr(n)300 5040 y Fu(large)e(enough)788 5278 y Fq(k)p Fr(f)886 5293 y Fo(n)955 5278 y Fq(\000)22 b Fr(f)1113 5236 y Fl(\003)1153 5278 y Fq(k)27 b(\024)1335 5137 y Fi(\024)1398 5210 y Fu(log)16 b(8)p Fr(n)p 1398 5255 250 4 v 1423 5346 a Fu(log)g Fr(\025)1680 5278 y Fu(+)22 b(\(2)p Fr(K)29 b Fq(\000)22 b Fu(1\))p Fr(n)2221 5236 y Fl(\003)2261 5137 y Fi(\025)2344 5210 y Fu(1)p 2340 5255 59 4 v 2340 5346 a Fr(n)2480 5210 y(s\025)p 2418 5255 228 4 v 2418 5346 a(\025)g Fq(\000)h Fu(1)2683 5278 y(=)k(O\()2910 5210 y(log)17 b Fr(n)p 2910 5255 201 4 v 2982 5346 a(n)3121 5278 y Fu(\))p Fr(;)p Black 405 w Fu(\(3.21\))p Black 300 5515 a(where)34 b Fr(K)r(;)17 b(n)769 5478 y Fl(\003)840 5515 y Fu(are)33 b(some)f(constan)m(ts.)p Black Black eop %%Page: 18 27 18 26 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(18)p Black 446 274 a(It)31 b(has)f(b)s(een)i(sho)m (wn)f([2])f(that)h(the)f(rate)h(of)e(Ulam's)h(metho)s(d)f(can)i(not)f (exceed)i Fr(O)s Fu(\()3520 235 y Fp(ln)11 b Fo(n)p 3520 251 114 4 v 3555 309 a(n)3643 274 y Fu(\).)43 b(In)300 395 y([16])28 b(it)f(is)g(sho)m(wn)i(that)f(the)h(order)f(of)f Fr(O)s Fu(\()1814 355 y Fp(1)p 1810 372 43 4 v 1810 429 a Fo(n)1862 395 y Fu(\))h(is)g(a)m(v)-5 b(ailable)25 b(for)j(the)g(metho)s(d)f(of)h(piecewise)h(linear)300 515 y(Mark)m(o)m(v)e(\014nite)f(appro)m(ximations.)39 b(Moreo)m(v)m(er)28 b(it)d(is)g(sho)m(wn)i(that)f(the)g(same)g(order)g (is)f(true)h(ev)m(en)300 635 y(under)34 b(the)g(stronger)f Fr(B)5 b(V)22 b Fu(-norm,)32 b(whic)m(h)h(indicates)g(that)g(the)h(new) g(metho)s(d)e(is)h(m)m(uc)m(h)h(b)s(etter)300 756 y(as)e(far)g(as)g (the)h(con)m(v)m(ergence)i(rate)d(is)f(concerned.)45 b(In)33 b(Chapter)g(4)e(w)m(e)j(giv)m(e)e(an)g(error)g(estimate)300 876 y(for)g(the)h(metho)s(d)f(of)g(piecewise)h(linear)e(Mark)m(o)m(v)j (\014nite)f(appro)m(ximations.)446 997 y(Based)f(on)f(the)h(ab)s(o)m(v) m(e)g(discussion)f(on)g(Ulam's)f(metho)s(d)h(\(3.5\),)g(\(3.6\),)g (\(3.14\))f(and)i(\(3.20\),)300 1117 y(w)m(e)e(kno)m(w)g(that)e(the)h (main)e(n)m(umerical)h(w)m(ork)h(for)f(implemen)m(ting)e(Ulam's)i (metho)s(d)g(is)g(ev)-5 b(aluat-)300 1237 y(ing)25 b(the)h(Ulam)e (matrix)g(and)i(solving)f(the)h(resulting)f(\014nite)g(dimensional)e (\014xed)k(p)s(oin)m(t)e(problem)300 1358 y(whic)m(h)36 b(is)f(a)g(homogeneous)g(system)h(of)f(algebraic)f(linear)f(equations)j (for)e(the)i(v)m(ector)g Fr(c)p Fu(.)52 b(The)300 1478 y(n)m(umerical)36 b(issue)j(on)f(ho)m(w)g(to)g(ev)-5 b(aluate)38 b(the)g(Ulam)e(matrix)h(for)g(practical)f(purp)s(ose)j (will)d(b)s(e)300 1598 y(addressed)d(in)e(Chapter)i(5.)42 b(A)m(t)32 b(the)g(end)h(of)e(this)g(c)m(hapter)h(w)m(e)h(consider)f (the)g(problem)e(of)h(ho)m(w)300 1719 y(to)h(\014nd)h Fr(c)p Fu(.)44 b(In)33 b([19)o(])g(t)m(w)m(o)g(w)m(a)m(ys)h(to)f (compute)f Fr(c)h Fu(w)m(ere)h(prop)s(osed.)446 1839 y(The)49 b(\014rst)f(one)g(is)f(based)i(the)f(ideas)f(from)g(Mark)m(o)m (v)i(c)m(hains)e(since)i(the)f(Ulam)d(matrix)300 1960 y(is)g(a)g(sto)s(c)m(hastic)g(matrix)f(and)h(so)h(it)e(induces)i(a)f (stationary)f(Mark)m(o)m(v)j(c)m(hain)e(in)f(a)h(natural)300 2080 y(w)m(a)m(y)-8 b(.)81 b(F)-8 b(rom)44 b(the)h(theory)g(of)g (irreducible)e(sto)s(c)m(hastic)i(matrices)f(w)m(e)i(can)f(deduce)i (that)d(for)300 2200 y(ergo)s(dic)g(transformations)f Fr(S)6 b Fu(,)47 b(a)e(simple)e(direct)h(iteration)f(sev)m(eral)i (times)f(can)h(pro)s(duce)g(a)300 2321 y(v)m(ery)e(go)s(o)s(d)c(appro)m (ximation)g(of)i(the)g(v)m(ector)h Fr(c)f Fu(\(see)h([29])f(for)g(more) f(detail)f(on)i(the)h(relation)300 2441 y(of)d(ergo)s(dicit)m(y)g(of)g Fr(S)46 b Fu(and)40 b(the)g(irreducibilit)m(y)d(of)i(the)h(Ulam)e (matrix\).)63 b(Th)m(us,)44 b(w)m(e)c(ha)m(v)m(e)i(the)300 2562 y(follo)m(wing)35 b Fm(iteration)41 b(algorithm)f(\(IA\))c Fu(to)h(compute)h(an)f(appro)m(ximate)g(\014xed)h(densit)m(y)g(of)300 2682 y(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erators:)p Black 419 2910 a(1.)p Black 49 w(Let)e Fr(T)773 2925 y Fo(h)846 2910 y Fu(=)d Fq(f)p Fu(\012)1069 2925 y Fo(i)1098 2910 y Fq(g)1148 2874 y Fo(n)1148 2935 y(i)p Fp(=1)1296 2910 y Fu(b)s(e)j(a)g(shap)s(e-regular)f(partition)f(of)h(\012)h(with)g (the)g(mesh)h(size)f(c)m(harac-)544 3031 y(terized)i(b)m(y)h Fr(h)p Fu(.)43 b(F)-8 b(or)32 b(example,)f(in)h(one)g(dimensional)d (cases,)34 b(c)m(ho)s(ose)f Fr(n)f Fu(equal)g(subin)m(ter-)544 3151 y(v)-5 b(als)32 b(of)g(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1].)p Black 419 3354 a(2.)p Black 49 w(Use)29 b(Ulam's)e(metho)s(d)g(\(3.5\))h(or)g(\(3.14\))f(to)h(ev)-5 b(aluate)28 b(the)g(companion)f(matrix)g Fr(P)3543 3369 y Fo(h)3615 3354 y Fu(or)h Fr(P)3793 3369 y Fo(n)544 3475 y Fu(in)k(one)h(dimensional)d(cases.)p Black 419 3678 a(3.)p Black 49 w(Select)44 b(a)g(starting)f(nonnegativ)m(e)h(v)m (ector)h Fr(c)i Fu(=)g(\()p Fr(c)2454 3693 y Fp(1)2493 3678 y Fr(;)17 b(c)2579 3693 y Fp(2)2618 3678 y Fr(;)g Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2898 3693 y Fo(n)2944 3678 y Fu(\))2982 3642 y Fo(T)3037 3678 y Fu(;)50 b(a)43 b(usual)h(c)m(hoice)g(is)544 3799 y Fr(c)28 b Fu(=)f(\(1)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17 b Fu(1\))1220 3762 y Fo(T)1275 3799 y Fu(.)p Black 419 4002 a(4.)p Black 49 w(Calculate)31 b Fr(c)1019 3966 y Fl(\003)1087 4002 y Fu(=)c Fr(P)1267 3966 y Fo(T)1253 4028 y(h)1322 4002 y Fr(c)32 b Fu(and)h(the)g(1-norm)e(error)h(Error)h (=)27 b Fq(k)p Fr(c)2785 3966 y Fl(\003)2847 4002 y Fq(\000)22 b Fr(c)p Fq(k)p Fu(.)p Black 419 4205 a(5.)p Black 49 w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 4169 y Fl(\003)1052 4205 y Fu(and)g(rep)s(eat)f(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e (Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544 4326 y(tolerance.)p Black 419 4529 a(6.)p Black 49 w(Let)34 b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 4544 y Fo(h)2545 4529 y Fu(=)2651 4454 y Fi(P)2756 4481 y Fo(n)2756 4558 y(i)p Fp(=1)2891 4529 y Fr(c)2933 4544 y Fo(i)2961 4529 y Fu(1)3010 4544 y Fo(i)3072 4529 y Fu(is)f(an)g(appro)m(ximate)544 4650 y(\014xed)g(densit)m(y)-8 b(.)446 4878 y(The)48 b(second)g(metho)s(d)e(for)h(computing)e Fr(c)i Fu(is)f(the)h (classical)f(direct)g(metho)s(d)g(based)i(on)300 4998 y(Gaussian)g(elimination.)87 b(In)48 b(other)h(w)m(ords,)k(to)48 b(solv)m(e)h(\(3.5\))f(w)m(e)i(just)e(need)i(to)e(solv)m(e)h(the)300 5119 y(homogeneous)33 b(system)g(of)f(linear)f(equations)1755 5339 y(\()p Fr(I)f Fq(\000)23 b Fr(P)2043 5297 y Fo(T)2029 5363 y(n)2098 5339 y Fu(\))p Fr(c)k Fu(=)h(0)p Fr(:)1206 b Fu(\(3.22\))p Black Black eop %%Page: 19 28 19 27 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33 b(METHOD)1907 b Fu(19)p Black 300 274 a(In)28 b(general,)g(the)g(rank)f (of)g Fr(I)20 b Fq(\000)12 b Fr(P)1479 289 y Fo(n)1553 274 y Fu(is)27 b Fr(n)12 b Fq(\000)g Fu(1)28 b(for)f(large)f Fr(n)i Fu(if)e Fr(S)33 b Fu(is)27 b(ergo)s(dic)g([29)o(],)i(so)f(the)g (tec)m(hnique)300 395 y(of)k(Gaussian)h(elimination)28 b(can)33 b(\014nd)h(the)f(unique)g(normalized)e(solution.)43 b(This)33 b(metho)s(d)f(w)m(as)300 515 y(called)f(the)i Fm(Gaussian)39 b(algorithm)c(\(GA\))d Fu(in)f([19].)446 635 y(Since)25 b(a)f(small)f(n)m(um)m(b)s(er)i(of)f(direct)g(iteration) f(requires)i(only)g(O\()p Fr(n)2857 599 y Fp(2)2896 635 y Fu(\))g(n)m(umerical)e(op)s(erations)300 756 y(as)35 b(compared)f(to)h(the)g(O\()p Fr(n)1332 720 y Fp(3)1371 756 y Fu(\))g(complexit)m(y)f(for)g(Gaussian)g(elimination,)d(it)i(is)i (exp)s(ected)h(that)300 876 y(the)30 b(Gaussian)g(algorithm)d(is)i(m)m (uc)m(h)i(more)e(time)f(consuming)i(than)g(the)g(iteration)e (algorithm,)300 997 y(as)f(con\014rmed)h(b)m(y)g(the)f(follo)m(wing)e (table)h(on)h(the)h(comparison)e(of)h(the)g(p)s(erformance)g(of)g(the)g (t)m(w)m(o)300 1117 y(algorithms)j(for)i(the)h(logistic)d(mo)s(del)h Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p Fu(\(1)22 b Fq(\000)h Fr(x)p Fu(\).)446 1237 y(The)h(exp)s(erimen)m(ts)g(w)m(ere) g(p)s(erformed)f(on)g(the)g(200)g(MHz)g(P)m(en)m(tium)g(Pro)g(computer) g(running)300 1358 y(Lin)m(ux.)41 b(Both)26 b(algorithms)e(w)m(ere)j (implemen)m(ted)e(in)g(C)i(co)s(de)f(\(see)h(App)s(endix)g(B\))f(and)g (all)e(times)300 1478 y(rep)s(orted)34 b(here)g(are)g(a)m(v)m(erages)h (of)e(m)m(ultiple)e(runs.)48 b(In)34 b(T)-8 b(able)33 b(3.1,)h Fr(n)f Fu(denotes)i(the)f(n)m(um)m(b)s(er)g(of)300 1598 y(sub-in)m(terv)-5 b(als)34 b(from)f(the)i(partition)d(of)i([0)p Fr(;)17 b Fu(1].)48 b Fr(T)g Fu(is)34 b(the)g(CPU)h(time)e(in)h (seconds,)j(and)d(Err)g(is)300 1719 y(the)29 b Fr(L)530 1683 y Fp(1)570 1719 y Fu(-error)f(of)g(the)h(computed)g(solution)e(to) i(the)g(exact)g(solution.)41 b(It)29 b(can)g(b)s(e)f(observ)m(ed)j (that)p Black Black Black 1133 1858 1874 4 v 1131 1978 4 121 v 1135 1978 V 1231 1942 a Fr(n)p 1381 1978 V 144 w(T)11 b(=I)d(A)p 1721 1978 V 99 w(T)j(=GA)p 2088 1978 V 99 w(E)6 b(r)s(r)s(=I)i(A)p 2532 1978 V 99 w(E)e(r)s(r)s(=GA)p 3002 1978 V 3006 1978 V 1133 1981 1874 4 v 1131 2102 4 121 v 1135 2102 V 1211 2066 a Fu(32)p 1381 2102 V 157 w(0.01)p 1721 2102 V 180 w(0.02)p 2088 2102 V 182 w(0.1651)p 2532 2102 V 185 w(0.1648)p 3002 2102 V 3006 2102 V 1133 2105 1874 4 v 1131 2226 4 121 v 1135 2226 V 1211 2189 a(64)p 1381 2226 V 157 w(0.04)p 1721 2226 V 180 w(0.10)p 2088 2226 V 182 w(0.1262)p 2532 2226 V 185 w(0.1262)p 3002 2226 V 3006 2226 V 1133 2229 1874 4 v 1131 2349 4 121 v 1135 2349 V 1187 2313 a(128)p 1381 2349 V 132 w(0.17)p 1721 2349 V 180 w(0.80)p 2088 2349 V 182 w(0.0954)p 2532 2349 V 185 w(0.0955)p 3002 2349 V 3006 2349 V 1133 2353 1874 4 v 1131 2473 4 121 v 1135 2473 V 1187 2437 a(256)p 1381 2473 V 132 w(0.72)p 1721 2473 V 180 w(6.28)p 2088 2473 V 182 w(0.0707)p 2532 2473 V 185 w(0.0707)p 3002 2473 V 3006 2473 V 1133 2476 1874 4 v 1131 2597 4 121 v 1135 2597 V 1187 2561 a(512)p 1381 2597 V 132 w(3.09)p 1721 2597 V 155 w(51.33)p 2088 2597 V 158 w(0.0534)p 2532 2597 V 185 w(0.0534)p 3002 2597 V 3006 2597 V 1133 2600 1874 4 v Black 870 2760 a(T)-8 b(able)32 b(3.1:)43 b(P)m(erformance)33 b(comparison)e(b)s(et)m(w)m(een)k(IA)e(and)g(GA)p Black Black 300 3105 a(as)44 b(the)h(n)m(um)m(b)s(er)g(of)f(sub-in)m (terv)-5 b(als)44 b(increases)h(the)f(iteration)f(algorithm)e(outp)s (erforms)j(the)300 3225 y(Gaussian)33 b(algorithm.)43 b(F)-8 b(or)33 b(example,)h(when)g Fr(n)c Fu(=)f(512,)k(the)h (iteration)e(algorithm)f(is)i(almost)300 3346 y(17)h(times)f(faster)i (than)f(the)h(Gaussian)f(algorithm,)d(while)j(pro)s(ducing)f(the)i (same)f(error.)49 b(The)300 3466 y(only)33 b(explanation)g(of)h(this)f (big)g(di\013erence)i(is)e(that)h(the)g(iteration)e(algorithm)f (required)j(only)300 3587 y(13-14)d(iterations)g(for)h(the)h(con)m(v)m (ergence)j(for)c(the)h(problem)e(studied.)p Black Black eop %%Page: 20 29 20 28 bop Black Black Black Black 1714 127 a Fn(Chapter)53 b(4)p Black Black 862 559 a(PIECEWISE)g(LINEAR)h(MARK)l(O)l(V)1351 741 y(APPR)l(O)l(XIMA)-13 b(TION)465 1443 y Fu(As)36 b(men)m(tioned)f(b)s(efore,)h(for)e(a)h(giv)m(en)h(nonsingular)e (transformation)f Fr(S)38 b Fu(:)32 b([0)p Fr(;)17 b Fu(1])32 b Fq(!)f Fu([0)p Fr(;)17 b Fu(1],)300 1563 y(the)33 b(op)s(erator)f Fr(P)41 b Fu(:)28 b Fr(L)1086 1527 y Fp(1)1126 1563 y Fu(\(0)p Fr(;)17 b Fu(1\))26 b Fq(!)i Fr(L)1564 1527 y Fp(1)1603 1563 y Fu(\(0)p Fr(;)17 b Fu(1\))32 b(de\014ned)i(b)m(y)1467 1676 y Fi(Z)1523 1902 y Fo(A)1596 1812 y Fr(P)14 b(f)d(dm)27 b Fu(=)1999 1676 y Fi(Z)2054 1902 y Fo(S)2101 1883 y Fh(\000)p Fg(1)2183 1902 y Fp(\()p Fo(A)p Fp(\))2312 1812 y Fr(f)11 b(dm)p Black 1132 w Fu(\(4.1\))p Black 300 2081 a(for)25 b(ev)m(ery)i Fr(m)p Fu(-measurable)e Fr(A)j Fq(\032)g Fu([0)p Fr(;)17 b Fu(1])25 b(is)g(called)g(the)h(F)-8 b(rob)s(enius-P)m(erron)25 b(op)s(erator)g(asso)s(ciated)300 2201 y(with)30 b Fr(S)6 b Fu(.)42 b Fr(P)h Fu(is)30 b(a)f(p)s(ositiv)m(e)g(linear)g(op)s (erator)g(with)g(norm)g(1,)i(so)f(it)f(is)g(a)h(Mark)m(o)m(v)h(op)s (erator.)42 b(F)-8 b(or)300 2322 y(an)m(y)39 b(densit)m(y)h Fr(f)892 2286 y Fl(\003)969 2322 y Fu(\(i.e.,)g Fr(f)1258 2286 y Fl(\003)1335 2322 y Fq(\025)e Fu(0)g(and)h Fq(k)p Fr(f)1842 2286 y Fl(\003)1881 2322 y Fq(k)f Fu(=)f(1\),)j(the)f (absolutely)f(con)m(tin)m(uous)h(probabilit)m(y)300 2442 y(measure)1087 2666 y Fr(\026)p Fu(\()p Fr(A)p Fu(\))28 b(=)1426 2530 y Fi(Z)1482 2756 y Fo(A)1555 2666 y Fr(f)1614 2625 y Fl(\003)1653 2666 y Fr(dm)56 b Fq(8)f Fu(measurable)32 b(sets)d Fr(A)f Fq(\032)g Fu([0)p Fr(;)17 b Fu(1])300 2913 y(is)32 b(in)m(v)-5 b(arian)m(t)31 b(under)j Fr(S)k Fu(if)31 b(and)i(only)f(if)g Fr(f)1824 2877 y Fl(\003)1895 2913 y Fu(is)g(a)h(\014xed)g(p)s(oin)m(t)f(of)g Fr(P)14 b Fu(,)32 b(i.e.,)g Fr(P)14 b(f)3132 2877 y Fl(\003)3199 2913 y Fu(=)27 b Fr(f)3361 2877 y Fl(\003)3400 2913 y Fu(.)446 3033 y(F)-8 b(or)30 b(the)h(computational)c(purp)s(ose)k(w)m (e)h(ask)f(ho)m(w)g(to)f(appro)m(ximate)f(the)i(\014xed)g(densit)m(y)h Fr(f)3774 2997 y Fl(\003)3813 3033 y Fu(.)300 3154 y(Since)23 b Fr(P)36 b Fu(is)22 b(an)g(in\014nite)g(dimensional)e(Mark)m(o)m(v)k (op)s(erator,)g(it)e(is)g(natural)f(to)h(construct)i(its)e(\014nite)300 3274 y(appro)m(ximations)g(whic)m(h)i(are)f(also)g(Mark)m(o)m(v)i(op)s (erators.)40 b(Ulam's)23 b(original)d(piecewise)k(constan)m(t)300 3394 y(metho)s(d)32 b(falls)f(in)m(to)h(this)g(category)-8 b(,)33 b(although)e(it)h(con)m(v)m(erges)j(slo)m(wly)d(if)f(it)h(do)s (es.)44 b(This)33 b(lac)m(k)f(of)300 3515 y(high)38 b(sp)s(eed)h(of)f (con)m(v)m(ergence)j(lead)d(to)g(the)h(follo)m(wing)d(construction)j (of)f(a)g(Mark)m(o)m(v)i(metho)s(d)300 3635 y(based)34 b(on)e(piecewise)h(linear)e(appro)m(ximations)g([16])h([21].)446 3755 y(Divide)g(the)h(in)m(terv)-5 b(al)32 b([0)p Fr(;)17 b Fu(1])32 b(in)m(to)h Fr(n)g Fu(equal)g(subin)m(terv)-5 b(als)33 b Fr(I)2635 3770 y Fo(i)2691 3755 y Fu(=)28 b([)p Fr(x)2877 3770 y Fo(i)p Fl(\000)p Fp(1)2996 3755 y Fr(;)17 b(x)3095 3770 y Fo(i)3123 3755 y Fu(])33 b(with)g(the)g (length)300 3876 y Fr(h)i Fu(=)f(1)p Fr(=n)p Fu(.)55 b(Then)38 b(the)e(corresp)s(onding)h(con)m(tin)m(uous)g(piecewise)g (linear)e(\014nite)i(elemen)m(t)f(space)300 3996 y(\001)381 4011 y Fo(n)456 3996 y Fq(\032)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])28 b(is)g(\()p Fr(n)14 b Fu(+)g(1\)-dimensional.)40 b(Its)29 b(standard)g(basis)g(consists)g(of)g(the)g Fj(tent)i (functions)1340 4235 y Fr(\036)1398 4250 y Fo(i)1426 4235 y Fu(\()p Fr(x)p Fu(\))d(=)f Fr(\036)p Fu(\()1794 4167 y Fr(x)22 b Fq(\000)h Fr(x)2026 4182 y Fo(i)p 1794 4212 261 4 v 1896 4303 a Fr(h)2065 4235 y Fu(\))p Fr(;)44 b(i)28 b Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(n;)300 4460 y Fu(where)1194 4660 y Fr(\036)p Fu(\()p Fr(x)p Fu(\))28 b(=)g(\(1)21 b Fq(\000)i(j)p Fr(x)p Fq(j)p Fu(\))p Fr(\037)1933 4676 y Fp([)p Fl(\000)p Fp(1)p Fo(;)p Fp(1])2121 4660 y Fu(\()p Fr(x)p Fu(\))p Fr(;)45 b Fq(\0001)28 b Fr(<)f(x)h(<)g Fq(1)p Fr(:)300 4860 y Fu(Here)42 b Fr(\037)600 4875 y Fo(A)699 4860 y Fu(represen)m(ts)i(the)e(c)m(haracteristic)f(function)g(of)g Fr(A)p Fu(.)71 b(This)42 b(basis)f(has)h(the)g(prop)s(ert)m(y)300 4981 y(that)33 b Fr(f)39 b Fu(=)704 4906 y Fi(P)809 4932 y Fo(n)809 5010 y(i)p Fp(=0)944 4981 y Fr(q)987 4996 y Fo(i)1015 4981 y Fr(\036)1073 4996 y Fo(i)1134 4981 y Fu(if)32 b(and)h(only)g(if)f Fr(f)11 b Fu(\()p Fr(x)1871 4996 y Fo(i)1899 4981 y Fu(\))29 b(=)f Fr(q)2113 4996 y Fo(i)2175 4981 y Fu(for)k(all)f Fr(i)p Fu(.)46 b(Note)33 b(that)g(the)g(supp)s(ort)h(of)e Fr(\036)3713 4996 y Fo(i)3774 4981 y Fu(is)300 5101 y Fr(I)343 5116 y Fo(i)394 5101 y Fq([)23 b Fr(I)526 5116 y Fo(i)p Fp(+1)677 5101 y Fu(for)33 b Fr(i)c Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)31 b(;)17 b(n)23 b Fq(\000)g Fu(1,)33 b(and)g(that)g(of)g Fr(\036)2232 5116 y Fp(0)2304 5101 y Fu(and)g Fr(\036)2552 5116 y Fo(n)2632 5101 y Fu(is)g Fr(I)2774 5116 y Fp(1)2847 5101 y Fu(and)g Fr(I)3080 5116 y Fo(n)3127 5101 y Fu(,)g(resp)s(ectiv)m (ely)-8 b(.)47 b(In)300 5221 y(the)33 b(follo)m(wing,)d(denote)1756 5464 y Fr(f)1804 5479 y Fo(i)1860 5464 y Fu(=)1977 5397 y(1)p 1973 5441 57 4 v 1973 5533 a Fr(h)2056 5329 y Fi(Z)2112 5554 y Fo(I)2143 5564 y Ff(i)2189 5464 y Fr(f)11 b(dm)p Black 2021 5764 a Fu(20)p Black eop %%Page: 21 30 21 29 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35 b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410 b Fu(21)p Black 300 274 a(whic)m(h)33 b(is)f(the)h(a)m(v)m(erage)h(v)-5 b(alue)32 b(of)g Fr(f)43 b Fu(o)m(v)m(er)34 b Fr(I)1901 289 y Fo(i)1929 274 y Fu(.)43 b(No)m(w)34 b(de\014ne)1189 563 y Fr(Q)1266 578 y Fo(n)1314 563 y Fr(f)k Fu(=)28 b Fr(f)1552 578 y Fp(1)1591 563 y Fr(\036)1649 578 y Fp(0)1710 563 y Fu(+)1814 439 y Fo(n)p Fl(\000)p Fp(1)1808 469 y Fi(X)1823 679 y Fo(i)p Fp(=1)1979 496 y Fr(f)2027 511 y Fo(i)2077 496 y Fu(+)22 b Fr(f)2223 511 y Fo(i)p Fp(+1)p 1979 540 363 4 v 2136 632 a Fu(2)2352 563 y Fr(\036)2410 578 y Fo(i)2460 563 y Fu(+)g Fr(f)2606 578 y Fo(n)2653 563 y Fr(\036)2711 578 y Fo(n)2757 563 y Fr(:)p Black 855 w Fu(\(4.2\))p Black 300 850 a(Let)30 b Fr(\034)514 865 y Fo(i)573 850 y Fu(b)s(e)h(the)g(supp)s(ort)f(of)g Fr(\036)1395 865 y Fo(i)1453 850 y Fu(for)g Fr(i)e Fu(=)g(0)p Fr(;)17 b Fu(1)p Fr(;)g(:)g(:)g(:)31 b(;)17 b(n)p Fu(.)43 b(Then)31 b(the)g(ab)s(o)m(v)m(e)g(de\014nition)e(for)h Fr(Q)3616 865 y Fo(n)3694 850 y Fu(can)300 971 y(also)i(b)s(e)g (written)h(compactly)f(as)1359 1245 y Fr(Q)1436 1260 y Fo(n)1483 1245 y Fr(f)38 b Fu(=)1723 1121 y Fo(n)1673 1151 y Fi(X)1688 1361 y Fo(i)p Fp(=0)1935 1178 y Fu(1)p 1843 1222 232 4 v 1843 1314 a Fr(m)p Fu(\()p Fr(\034)2008 1329 y Fo(i)2037 1314 y Fu(\))2102 1110 y Fi(Z)2157 1335 y Fo(\034)2188 1345 y Ff(i)2235 1245 y Fr(f)11 b(dm)22 b Fq(\001)g Fr(\036)2560 1260 y Fo(i)2588 1245 y Fr(:)p Black 1024 w Fu(\(4.3\))p Black 300 1542 a Fm(Remark)54 b(4.1)47 b Fu(The)h(v)m(ersion)f(\(4.3\))g(for)f(the)i(de\014nition)e (of)h Fr(Q)2737 1557 y Fo(n)2831 1542 y Fu(can)g(b)s(e)g(extended)i(to) e Fr(L)3800 1506 y Fp(1)300 1662 y Fu(functions)27 b Fr(f)38 b Fu(de\014ned)28 b(on)f(the)h Fr(d)p Fu(-dimensional)23 b(cub)s(e)28 b([0)p Fr(;)17 b Fu(1])2459 1626 y Fo(d)2499 1662 y Fu(;)29 b(see)f([24])f(for)f(more)h(dev)m(elopmen)m(ts)300 1783 y(along)k(this)h(line.)446 1903 y(It)46 b(w)m(as)g(pro)m(v)m(ed)h (in)e([16)o(])h(that)f Fr(Q)1720 1918 y Fo(n)1817 1903 y Fu(:)k Fr(L)1959 1867 y Fp(1)1999 1903 y Fu(\(0)p Fr(;)17 b Fu(1\))49 b Fq(!)g Fr(L)2481 1867 y Fp(1)2520 1903 y Fu(\(0)p Fr(;)17 b Fu(1\))45 b(is)g(a)g(Mark)m(o)m(v)i(op)s(erator)d (of)300 2024 y(\014nite)35 b(rank)h(and)g(lim)1109 2039 y Fo(n)p Fl(!1)1313 2024 y Fq(k)p Fr(Q)1440 2039 y Fo(n)1487 2024 y Fr(f)f Fq(\000)25 b Fr(f)11 b Fq(k)32 b Fu(=)h(0)i(for)h Fr(f)43 b Fq(2)33 b Fr(L)2415 1987 y Fp(1)2455 2024 y Fu(\(0)p Fr(;)17 b Fu(1\).)52 b(It)36 b(is)f(also)f(easy)j(to)e(see)i (that)300 2144 y Fq(k)p Fr(Q)427 2159 y Fo(n)474 2144 y Fr(f)11 b Fq(k)583 2159 y Fl(1)685 2144 y Fq(\024)28 b(k)p Fr(f)11 b Fq(k)949 2159 y Fl(1)1056 2144 y Fu(for)32 b(all)e Fr(f)39 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1].)446 2264 y(Let)47 b Fr(P)698 2279 y Fo(n)796 2264 y Fu(=)k Fr(Q)1000 2279 y Fo(n)1047 2264 y Fr(P)14 b Fu(.)84 b(Then)47 b Fr(P)1566 2279 y Fo(n)1659 2264 y Fu(is)f(a)g(Mark)m(o)m(v)i(op)s(erator)d(of)h(\014nite)g(dimensional) e(range,)300 2385 y(and)e(lim)635 2400 y Fo(n)p Fl(!1)840 2385 y Fr(P)903 2400 y Fo(n)949 2385 y Fr(f)56 b Fu(=)44 b Fr(P)14 b(f)52 b Fu(strongly)42 b(for)g(an)m(y)h Fr(f)55 b Fq(2)45 b Fr(L)2370 2349 y Fp(1)2409 2385 y Fu(\(0)p Fr(;)17 b Fu(1\).)72 b(The)44 b(represen)m(tation)f(of)f(the)300 2505 y(restriction)33 b(of)h Fr(P)944 2520 y Fo(n)1026 2505 y Fu(to)g(\001)1228 2520 y Fo(n)1309 2505 y Fu(under)i(an)m(y)f (densit)m(y)g(function)f(basis)h(of)f(\001)2932 2520 y Fo(n)3013 2505 y Fu(is)g(giv)m(en)h(b)m(y)g(an)g(\()p Fr(n)23 b Fu(+)300 2625 y(1\))j Fq(\002)g Fu(\()p Fr(n)g Fu(+)g(1\))38 b(sto)s(c)m(hastic)h(matrix.)59 b(F)-8 b(rom)36 b(the)j(F)-8 b(rob)s(enius-P)m(erron)38 b(theory)h(of)f (nonnegativ)m(e)300 2746 y(matrices,)e(there)h(is)e(a)h(\014xed)h (densit)m(y)g Fr(f)1788 2761 y Fo(n)1871 2746 y Fu(of)e Fr(P)2048 2761 y Fo(n)2131 2746 y Fu(in)g(\001)2329 2761 y Fo(n)2412 2746 y Fu(\(see)i(also)e([16])h(for)f(a)h(pro)s(of)7 b(\).)53 b(Hence)300 2866 y(the)36 b(Mark)m(o)m(v)i(metho)s(d)d(is)h(a) f(w)m(ell-p)s(osed)h(n)m(umerical)e(sc)m(heme)k(to)d(calculate)g(an)h (appro)m(ximate)300 2987 y(\014xed)e(densit)m(y)-8 b(.)300 3107 y Fm(Remark)49 b(4.2)44 b Fu(Although)e(Ulam's)g(metho)s(d)h (shares)h(the)g(same)f(prop)s(ert)m(y)h(of)f(the)h(Mark)m(o)m(v)300 3227 y(metho)s(d)d(that)h(it)f(also)g(giv)m(es)h(\014nite)f (dimensional)f(Mark)m(o)m(v)j(op)s(erators)f(for)f(computing)g(ap-)300 3348 y(pro)m(ximate)26 b(\014xed)j(densities,)f(it)e(con)m(v)m(erges)k (slo)m(wly)-8 b(.)41 b(On)27 b(the)h(other)f(hand,)h(Galerkin's)f(pro)5 b(jec-)300 3468 y(tion)35 b(metho)s(d)g(with)h(piecewise)g(linear)f(or) g(higher)h(order)g(p)s(olynomials)c(ma)m(y)k(not)g(b)s(e)g(able)f(to) 300 3589 y(calculate)30 b(an)i(appro)m(ximate)f(\014xed)h Fj(density)g Fu(of)f(a)g(Mark)m(o)m(v)i(op)s(erator)e(since)h(the)g (appro)m(ximate)300 3709 y(op)s(erator)37 b(of)h(\014nite)f(rank)i(is)e (not)h(a)g(p)s(ositiv)m(e)f(op)s(erator)g(in)h(general)f(\(see)i([17])f ([14)o(])g(for)g(more)300 3829 y(details)f(on)i(pro)5 b(jection)38 b(metho)s(ds\).)61 b(F)-8 b(rom)37 b(previous)i (theoretical)e(and)i(n)m(umerical)e(analysis)300 3950 y(of)28 b(the)g(piecewise)h(linear)e(Mark)m(o)m(v)i(\014nite)f(appro)m (ximations)f(b)m(y)i(suc)m(h)g(authors)g(as)f(Chiu,)h(Ding,)300 4070 y(Du,)i(Hun)m(t,)h(Li,)f(Miller,)e(and)i(Zhou)g(in)g([7)o(])h([16) o(])f([18])g([24])g([30)o(])h([29)o(],)g(w)m(e)g(see)g(that)f(the)h (metho)s(d)300 4190 y(of)i(piecewise)i(linear)d(Mark)m(o)m(v)k (\014nite)d(appro)m(ximations)g(not)g(only)h(shares)h(the)f(nice)g (prop)s(ert)m(y)300 4311 y(of)f(Ulam's)g(metho)s(d)h(that)f(it)g(pro)s (duces)i(an)f(appro)m(ximate)f(\014xed)i(densit)m(y)g(rather)f(easily) -8 b(,)35 b(but)300 4431 y(also)26 b(shares)j(the)e(nice)h(prop)s(ert)m (y)g(of)e(pro)5 b(jection)27 b(metho)s(ds)g(that)g(it)g(is)f(a)h (higher)g(order)g(metho)s(d.)300 4552 y(Indeed)32 b(the)e(n)m(umerical) f(exp)s(erimen)m(ts)i(in)f([16)o(])h(and)f([11])g(ha)m(v)m(e)i(sho)m (wn)f(that)f(the)h(higher)f(order)300 4672 y(metho)s(d)f(w)m(orks)i(m)m (uc)m(h)f(faster)g(than)g(Ulam's)f(metho)s(d)g(without)g(signi\014can)m (tly)g(increasing)g(the)300 4792 y(n)m(umerical)i(w)m(ork.)446 4913 y(Motiv)-5 b(ated)40 b(b)m(y)h(the)f(con)m(v)m(ergence)j(rate)d (analysis)f(in)g([7])h([18])g([29)o(])g(for)g(piecewise)h(linear)300 5033 y(Mark)m(o)m(v)28 b(appro)m(ximations,)d(no)m(w)i(w)m(e)h(in)m(v)m (estigate)e(the)g(appro)m(ximation)e(order)j(problem)e(of)h(the)300 5153 y(n)m(umerical)h(metho)s(d.)42 b(The)29 b(original)c(analyses)k (in)f([7])g(and)h([29)o(])g(ha)m(v)m(e)h(some)e(\015a)m(ws,)j(whic)m(h) e(lead)300 5274 y(to)k(a)f(comprehensiv)m(e)j(sp)s(ectral)d(analysis)h (in)f([15])h([13)o(])g([26])g(and)g(a)g(correct)g(error)g(analysis)g (in)300 5394 y([18])28 b(based)g(on)g(the)g(concept)h(of)f (quasi-compactness.)42 b(A)28 b(con)m(v)m(ergence)j(order)d(analysis)f (based)300 5515 y(on)g(appro)m(ximations)e(of)h(con)m(tin)m(uous)h (functions)g(instead)g(of)f(functions)h(of)f(b)s(ounded)h(v)-5 b(ariation)p Black Black eop %%Page: 22 31 22 30 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35 b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410 b Fu(22)p Black 300 274 a(as)39 b(giv)m(en)f(in)g([7])h([18)o(])g(w)m (as)g(\014rst)g(presen)m(ted)i(in)d([30],)i(but)f(it)e(also)h(con)m (tains)g(some)h(mistak)m(es.)300 395 y(A)i(ma)5 b(jor)40 b(error)h(is)f(that)h(the)g(author)g(though)m(t)g(that)g(the)g (piecewise)h(linear)d(Mark)m(o)m(v)j(\014nite)300 515 y(appro)m(ximation)47 b(k)m(eeps)k(a)d(piecewise)i(linear)d(function)h (\014xed)i(lik)m(e)e(a)h(pro)5 b(jection)48 b(metho)s(d,)300 635 y(whic)m(h)g(is)f(wrong.)88 b(The)48 b(fact)f(is)g(that)g(a)g (Galerkin)f(pro)5 b(jection)47 b(metho)s(d)g(of)g(order)g(ab)s(o)m(v)m (e)300 756 y(0)40 b(is)f(no)h(longer)f(a)g(Mark)m(o)m(v)j(appro)m (ximation)37 b(metho)s(d,)k(and)f(the)h(piecewise)f(linear)f(Mark)m(o)m (v)300 876 y(appro)m(ximation)33 b(metho)s(d)i(is)g(not)h(a)f(pro)5 b(jection)36 b(metho)s(d.)52 b(The)36 b(purp)s(ose)g(of)g(this)f(c)m (hapter)h(is)300 997 y(to)f(giv)m(e)h(a)f(rigorous)g(mathematical)d (analysis)j(on)h(the)g(con)m(v)m(ergence)i(order)e(of)f(this)g(metho)s (d,)300 1117 y(based)43 b(on)f(the)g(theory)h(of)f(appro)m(ximations)e (of)h(con)m(tin)m(uous)i(functions)f(b)m(y)h(p)s(ositiv)m(e)f(linear) 300 1237 y(op)s(erators)32 b(in)g([10].)446 1358 y(It)24 b(is)e(w)m(ell)h(kno)m(wn)h(that)f(the)h(error)f Fq(k)p Fr(f)1807 1373 y Fo(n)1857 1358 y Fq(\000)s Fr(f)1996 1322 y Fl(\003)2035 1358 y Fq(k)g Fu(of)g(the)h(appro)m(ximate)e (\014xed)i(densit)m(y)g Fr(f)3524 1373 y Fo(n)3595 1358 y Fu(to)f(the)300 1478 y(exact)30 b(\014xed)h(densit)m(y)f Fr(f)1179 1442 y Fl(\003)1247 1478 y Fu(dep)s(ends)h(on)f(the)f(\\lo)s (cal)e(error")i Fq(k)p Fr(Q)2605 1493 y Fo(n)2652 1478 y Fr(f)2711 1442 y Fl(\003)2766 1478 y Fq(\000)16 b Fr(f)2918 1442 y Fl(\003)2957 1478 y Fq(k)29 b Fu(of)g(the)h(appro)m(ximate)300 1598 y(op)s(erator)c Fr(Q)764 1613 y Fo(n)838 1598 y Fu(applied)g(to)h(the)g(densit)m(y)h Fr(f)1840 1562 y Fl(\003)1906 1598 y Fu(\(see)g(equalit)m(y)e(\(4.15\))g(b)s(elo)m(w)h (or)g([18)o(]\).)42 b(So)27 b(in)f(order)300 1719 y(to)h(obtain)g(a)g (con)m(v)m(ergence)j(order)e(for)f Fq(k)p Fr(f)1815 1734 y Fo(n)1874 1719 y Fq(\000)12 b Fr(f)2022 1683 y Fl(\003)2062 1719 y Fq(k)p Fu(,)28 b(it)f(is)g(su\016cien)m(t)h(to)g(ha)m(v)m(e)h (an)e(appro)m(ximation)300 1839 y(order)k(for)f Fq(k)p Fr(Q)827 1854 y Fo(n)875 1839 y Fr(f)f Fq(\000)19 b Fr(f)11 b Fq(k)p Fu(.)43 b(Since)31 b(w)m(e)h(only)e(consider)h(con)m(tin)m (uous)h(functions)f Fr(f)42 b Fu(and)31 b(use)h(results)300 1960 y(in)g([10)o(],)h(w)m(e)h(need)f(to)g(study)g(the)g(functions)g Fr(Q)2050 1975 y Fo(n)2097 1960 y Fr(e)2142 1975 y Fo(i)2171 1960 y Fu(,)f(where)i Fr(e)2557 1975 y Fo(i)2585 1960 y Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(x)2903 1923 y Fo(i)2964 1960 y Fu(for)k Fr(i)c Fu(=)g(0)p Fr(;)17 b Fu(1)p Fr(;)g Fu(2.)446 2080 y(First)35 b(note)h(that)f Fr(Q)1198 2095 y Fo(n)1246 2080 y Fr(e)1291 2095 y Fp(0)1363 2080 y Fu(=)e Fr(e)1517 2095 y Fp(0)1557 2080 y Fu(.)52 b(But)36 b(since)g Fr(Q)2152 2095 y Fo(n)2235 2080 y Fu(is)f Fj(not)h Fu(a)f(Galerkin)g(pro)5 b(jection)35 b(on)m(to)h(\001)3766 2095 y Fo(n)3813 2080 y Fu(,)300 2200 y(in)44 b(general)g Fr(Q)851 2215 y Fo(n)942 2200 y Fu(do)s(es)h(not)f(map)g(a)g(piecewise) i(linear)c(function)i(in)g(\001)3000 2215 y Fo(n)3092 2200 y Fu(to)g(itself.)78 b(And)45 b(in)300 2321 y(particular)26 b Fr(Q)822 2336 y Fo(n)897 2321 y Fu(do)s(es)i(not)f(map)g(a)h(linear)e (function)h(to)g(itself.)41 b(Instead)29 b(w)m(e)f(ha)m(v)m(e)i(the)e (follo)m(wing)300 2441 y(result.)p Black 300 2603 a Fj(L)-5 b(emma)34 b(4.1.)p Black 48 w Fu(Let)f Fr(f)11 b Fu(\()p Fr(t)p Fu(\))27 b(=)h Fr(at)23 b Fu(+)f Fr(b)33 b Fu(on)f([0)p Fr(;)17 b Fu(1].)43 b(Then)1074 2941 y Fr(Q)1151 2956 y Fo(n)1198 2941 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))28 b(=)1499 2737 y Fi(8)1499 2827 y(<)1499 3006 y(:)1639 2781 y Fo(a)p 1639 2797 38 4 v 1640 2854 a Fp(2)1687 2820 y Fu(\()p Fr(t)22 b Fu(+)g Fr(h)p Fu(\))g(+)g Fr(b;)255 b(t)27 b Fq(2)i Fr(I)2617 2835 y Fp(1)1629 2941 y Fr(at)23 b Fu(+)f Fr(b;)513 b(t)27 b Fq(2)i([)2640 2899 y Fo(n)p Fl(\000)p Fp(1)2640 2966 y Fo(i)p Fp(=2)2777 2941 y Fr(I)2820 2956 y Fo(i)1639 3022 y(a)p 1639 3038 V 1640 3095 a Fp(2)1687 3061 y Fu(\()p Fr(t)22 b Fu(+)g(1)g Fq(\000)h Fr(h)p Fu(\))f(+)g Fr(b;)84 b(t)27 b Fq(2)i Fr(I)2617 3076 y Fo(n)2664 3061 y Fr(:)p Black 3639 2941 a Fu(\(4.4\))p Black 446 3289 a Fm(Pro)s(of.)42 b Fu(F)-8 b(rom)27 b(the)i (de\014nition)f(of)g Fr(Q)1821 3304 y Fo(n)1896 3289 y Fu(it)g(is)g(ob)m(vious)g(that)h Fr(Q)2717 3304 y Fo(n)2764 3289 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))27 b(=)h Fr(f)11 b Fu(\()p Fr(t)p Fu(\))28 b(for)g Fr(t)g Fq(2)g([)3631 3248 y Fo(n)p Fl(\000)p Fp(1)3631 3314 y Fo(i)p Fp(=2)3769 3289 y Fr(I)3812 3304 y Fo(i)300 3409 y Fu(since)40 b Fr(f)49 b Fu(is)39 b(linear.)61 b(Since)40 b Fr(Q)1415 3424 y Fo(n)1462 3409 y Fr(f)11 b Fu(\(0\))38 b(=)h(\()p Fr(f)11 b Fu(\(0\))25 b(+)i Fr(f)11 b Fu(\()p Fr(h)p Fu(\)\))p Fr(=)p Fu(2)38 b(and)h Fr(Q)2787 3424 y Fo(n)2835 3409 y Fr(f)11 b Fu(\()p Fr(h)p Fu(\))38 b(=)h Fr(f)11 b Fu(\()p Fr(h)p Fu(\),)40 b(and)g(since)300 3530 y Fr(Q)377 3545 y Fo(n)424 3530 y Fr(f)45 b Fu(is)34 b(linear)f(on)h Fr(I)1070 3545 y Fp(1)1110 3530 y Fu(,)g(w)m(e)i(easily)d(get)i Fr(Q)1829 3545 y Fo(n)1876 3530 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))30 b(=)2193 3491 y Fo(a)p 2193 3507 V 2194 3564 a Fp(2)2240 3530 y Fu(\()p Fr(t)24 b Fu(+)f Fr(h)p Fu(\))g(+)h Fr(b)34 b Fu(for)g Fr(t)d Fq(2)g Fr(I)3085 3545 y Fp(1)3125 3530 y Fu(.)48 b(The)36 b(expression)300 3650 y(of)c Fr(Q)488 3665 y Fo(n)535 3650 y Fr(f)44 b Fu(on)32 b Fr(I)805 3665 y Fo(n)885 3650 y Fu(can)g(b)s(e)h(obtained)f(similarly) -8 b(.)p 2152 3625 89 4 v 2152 3675 4 50 v 2238 3675 V 2152 3678 89 4 v 446 3770 a(In)38 b(the)g(follo)m(wing)d(let)i Fr(\013)1372 3734 y Fp(2)1371 3795 y Fo(n)1418 3770 y Fu(\()p Fr(x)p Fu(\))f(=)g Fr(Q)1774 3785 y Fo(n)1822 3770 y Fu(\(\()p Fr(t)25 b Fq(\000)h Fr(x)p Fu(\))2154 3734 y Fp(2)2194 3770 y Fr(;)17 b(x)p Fu(\))38 b(and)f Fr(r)2607 3785 y Fo(n)2690 3770 y Fu(=)f(max)p Fq(f)p Fr(\013)3096 3785 y Fo(n)3143 3770 y Fu(\()p Fr(x)p Fu(\))g(:)g Fr(x)h Fq(2)g Fu([0)p Fr(;)17 b Fu(1])p Fq(g)p Fu(.)300 3891 y(Com)m(bining)31 b(the)i(ab)s(o)m(v)m(e)g(with)f(\(A.22\))h(in)e (Lemma)h(A.1)g(\(App)s(endix)h(A\))g(giv)m(es)p Black 300 4053 a Fj(L)-5 b(emma)34 b(4.2.)p Black 48 w Fu(If)f Fr(f)38 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1],)32 b(then)1443 4273 y Fq(k)p Fr(Q)1570 4288 y Fo(n)1617 4273 y Fr(f)h Fq(\000)22 b Fr(f)11 b Fq(k)1906 4288 y Fl(1)2008 4273 y Fq(\024)29 b Fu(2)p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)2421 4288 y Fo(n)2466 4273 y Fu(\))p Fr(;)p Black 1108 w Fu(\(4.5\))p Black 300 4493 a(where)34 b Fr(w)s Fu(\()p Fr(f)5 b(;)17 b Fq(\001)p Fu(\))31 b(is)h(the)h(mo)s (dulus)f(of)g(con)m(tin)m(uit)m(y)h(of)f Fr(f)43 b Fu(as)33 b(de\014ned)h(in)e(App)s(endix)h(A.)446 4655 y(Using)g(\(A.23\))f(and)g (Lemma)g(4.1,)g(and)g(noting)g(the)h(fact)f Fr(Q)2679 4670 y Fo(n)2727 4655 y Fr(e)2772 4670 y Fp(0)2839 4655 y Fu(=)27 b Fr(e)2987 4670 y Fp(0)3027 4655 y Fu(,)33 b(w)m(e)g(ha)m(v)m(e)p Black 300 4817 a Fj(L)-5 b(emma)34 b(4.3.)p Black 48 w Fu(If)f Fr(x)28 b Fq(2)g Fu([0)p Fr(;)17 b Fu(1])32 b(is)g(\014xed)i(and)e(if)g Fr(f)38 b Fq(2)28 b Fr(C)2226 4780 y Fp(1)2266 4817 y Fu([0)p Fr(;)17 b Fu(1],)32 b(then)949 5092 y Fq(j)p Fr(Q)1054 5107 y Fo(n)1101 5092 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)1884 5024 y(j)p Fr(f)1971 4988 y Fl(0)1993 5024 y Fu(\()p Fr(x)p Fu(\))p Fq(j)p 1884 5069 269 4 v 1993 5160 a Fu(2)2162 5092 y(\()p Fr(h)22 b Fq(\000)h Fr(x)p Fu(\))g(+)f Fr(W)2684 5107 y Fo(f)2729 5092 y Fu(\()p Fr(x)p Fu(\))p Fr(;)45 b(x)28 b Fq(2)g Fr(I)3152 5107 y Fp(1)p Black 3639 5092 a Fu(\(4.6\))p Black 1211 5451 a Fq(j)p Fr(Q)1316 5466 y Fo(n)1363 5451 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)f Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)g Fr(W)2228 5466 y Fo(f)2274 5451 y Fu(\()p Fr(x)p Fu(\))p Fr(;)45 b(x)28 b Fq(2)g([)2720 5410 y Fo(n)p Fl(\000)p Fp(1)2720 5477 y Fo(i)p Fp(=2)2857 5451 y Fr(I)2900 5466 y Fo(i)p Black 3639 5451 a Fu(\(4.7\))p Black Black Black eop %%Page: 23 32 23 31 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35 b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410 b Fu(23)p Black 861 317 a Fq(j)p Fr(Q)966 332 y Fo(n)1013 317 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)1796 249 y(j)p Fr(f)1883 213 y Fl(0)1905 249 y Fu(\()p Fr(x)p Fu(\))p Fq(j)p 1796 294 269 4 v 1906 385 a Fu(2)2074 317 y(\()p Fr(x)23 b Fq(\000)f Fu(1)g(+)g Fr(h)p Fu(\))h(+)f Fr(W)2765 332 y Fo(f)2810 317 y Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)28 b Fq(2)g Fr(I)3205 332 y Fo(n)3252 317 y Fr(:)p Black 360 w Fu(\(4.8\))p Black 300 558 a(Here,)33 b Fr(W)649 573 y Fo(f)695 558 y Fu(\()p Fr(x)p Fu(\))28 b(=)f(2)p Fr(\013)1068 573 y Fo(n)1115 558 y Fu(\()p Fr(x)p Fu(\))p Fr(w)s Fu(\()p Fr(f)1416 522 y Fl(0)1439 558 y Fu(;)17 b Fr(\013)1545 573 y Fo(n)1592 558 y Fu(\()p Fr(x)p Fu(\)\).)446 716 y(The)34 b(next)f(lemma)e(sho)m(ws)j(that)e Fr(\013)1734 731 y Fo(n)1781 716 y Fu(\()p Fr(x)p Fu(\))h(is)f(simple)f(and)i(only)f (dep)s(ends)i(on)f Fr(n)p Fu(.)p Black 300 874 a Fj(L)-5 b(emma)34 b(4.4.)p Black 48 w Fr(\013)915 889 y Fo(n)962 874 y Fu(\()p Fr(x)p Fu(\))28 b Fq(\021)g Fr(h=)1331 791 y Fq(p)p 1414 791 49 4 v 83 x Fu(3.)44 b(Hence)33 b Fr(r)1867 889 y Fo(n)1942 874 y Fu(=)28 b Fr(h=)2151 791 y Fq(p)p 2234 791 V 83 x Fu(3)o(.)446 1031 y Fm(Pro)s(of.)44 b Fu(Since)32 b Fr(Q)1124 1046 y Fo(n)1204 1031 y Fu(is)g(linear,)f(b)m (y)j(Lemma)d(4.1,)954 1242 y Fr(\013)1017 1200 y Fp(2)1016 1266 y Fo(n)1063 1242 y Fu(\()p Fr(x)p Fu(\))84 b(=)f Fr(Q)1514 1257 y Fo(n)1561 1242 y Fu(\(\()p Fr(t)22 b Fq(\000)h Fr(x)p Fu(\))1887 1200 y Fp(2)1927 1242 y Fr(;)17 b(x)p Fu(\))27 b(=)h Fr(Q)2272 1257 y Fo(n)2319 1242 y Fu(\()p Fr(t)2392 1200 y Fp(2)2454 1242 y Fq(\000)22 b Fu(2)p Fr(xt)h Fu(+)f Fr(x)2868 1200 y Fp(2)2908 1242 y Fr(;)17 b(x)p Fu(\))1278 1387 y(=)83 b Fr(Q)1514 1402 y Fo(n)1561 1387 y Fu(\()p Fr(t)1634 1346 y Fp(2)1673 1387 y Fr(;)17 b(x)p Fu(\))23 b(+)f Fr(Q)2008 1402 y Fo(n)2055 1387 y Fu(\()p Fq(\000)p Fu(2)p Fr(xt)h Fu(+)f Fr(x)2485 1346 y Fp(2)2525 1387 y Fr(;)17 b(x)p Fu(\))1278 1650 y(=)83 b Fr(Q)1514 1665 y Fo(n)1561 1650 y Fu(\()p Fr(t)1634 1609 y Fp(2)1673 1650 y Fr(;)17 b(x)p Fu(\))23 b(+)1931 1446 y Fi(8)1931 1536 y(<)1931 1715 y(:)2061 1529 y Fq(\000)p Fr(hx)330 b Fu(if)27 b Fr(x)h Fq(2)g Fr(I)2884 1544 y Fp(1)2061 1650 y Fq(\000)p Fr(x)2193 1613 y Fp(2)2579 1650 y Fu(if)f Fr(x)h Fq(2)g([)2907 1608 y Fo(n)p Fl(\000)p Fp(1)2907 1675 y Fo(i)p Fp(=2)3045 1650 y Fr(I)3088 1665 y Fo(i)2061 1770 y Fq(\000)p Fr(x)p Fu(\(1)23 b Fq(\000)f Fr(h)p Fu(\))83 b(if)27 b Fr(x)h Fq(2)g Fr(I)2884 1785 y Fo(n)1278 2017 y Fu(=)83 b Fr(Q)1514 2032 y Fo(n)1561 2017 y Fu(\()p Fr(t)1634 1976 y Fp(2)1673 2017 y Fr(;)17 b(x)p Fu(\))23 b Fq(\000)1938 1892 y Fo(n)p Fl(\000)p Fp(1)1932 1922 y Fi(X)1947 2132 y Fo(i)p Fp(=1)2076 2017 y Fu(\()p Fr(ih)p Fu(\))2241 1976 y Fp(2)2281 2017 y Fr(\036)2339 2032 y Fo(i)2367 2017 y Fu(\()p Fr(x)p Fu(\))f Fq(\000)h Fu(\(1)f Fq(\000)g Fr(h)p Fu(\))p Fr(\036)2980 2032 y Fo(n)3027 2017 y Fu(\()p Fr(x)p Fu(\))p Fr(:)300 2315 y Fu(Using)32 b(the)h(de\014nition)f(\(4.3\))g(of)g Fr(Q)1597 2330 y Fo(n)1644 2315 y Fu(,)h(w)m(e)g(\014nd)g(that)604 2615 y Fr(Q)681 2630 y Fo(n)728 2615 y Fu(\()p Fr(t)801 2574 y Fp(2)840 2615 y Fr(;)17 b(x)p Fu(\))28 b(=)1119 2548 y Fr(h)1175 2512 y Fp(2)p 1119 2592 96 4 v 1142 2684 a Fu(3)1241 2445 y Fi(")1299 2615 y Fr(\036)1357 2630 y Fp(0)1396 2615 y Fu(\()p Fr(x)p Fu(\))23 b(+)1653 2491 y Fo(n)p Fl(\000)p Fp(1)1648 2521 y Fi(X)1662 2731 y Fo(i)p Fp(=1)1791 2615 y Fu(\(3)p Fr(i)1911 2574 y Fp(2)1973 2615 y Fu(+)f(1\))p Fr(\036)2216 2630 y Fo(i)2244 2615 y Fu(\()p Fr(x)p Fu(\))g(+)2495 2475 y Fi(\022)2578 2548 y Fu(3\(1)g Fq(\000)h Fr(h)p Fu(\))p 2578 2592 352 4 v 2706 2684 a Fr(h)2762 2655 y Fp(2)2962 2615 y Fu(+)f(1)3109 2475 y Fi(\023)3199 2615 y Fr(\036)3257 2630 y Fo(n)3303 2615 y Fu(\()p Fr(x)p Fu(\))3434 2445 y Fi(#)3509 2615 y Fr(:)300 2916 y Fu(Therefore,)34 b(since)1008 2841 y Fi(P)1113 2867 y Fo(n)1113 2945 y(i)p Fp(=0)1248 2916 y Fr(\036)1306 2931 y Fo(i)1334 2916 y Fu(\()p Fr(x)p Fu(\))28 b Fq(\021)g Fu(1,)300 3220 y Fr(\013)363 3179 y Fp(2)362 3245 y Fo(n)409 3220 y Fu(\()p Fr(x)p Fu(\))83 b(=)792 3153 y Fr(h)848 3117 y Fp(2)p 792 3198 96 4 v 816 3289 a Fu(3)914 3050 y Fi(")972 3220 y Fr(\036)1030 3235 y Fp(0)1070 3220 y Fu(\()p Fr(x)p Fu(\))22 b(+)1327 3096 y Fo(n)p Fl(\000)p Fp(1)1321 3126 y Fi(X)1336 3336 y Fo(i)p Fp(=1)1465 3220 y Fu(\(3)p Fr(i)1585 3179 y Fp(2)1647 3220 y Fu(+)g(1)f Fq(\000)i Fu(3)p Fr(i)1997 3179 y Fp(2)2037 3220 y Fu(\))p Fr(\036)2133 3235 y Fo(i)2160 3220 y Fu(\()p Fr(x)p Fu(\))g(+)2412 3080 y Fi(\022)2495 3153 y Fu(3\(1)f Fq(\000)g Fr(h)p Fu(\))p 2495 3198 352 4 v 2623 3289 a Fr(h)2679 3260 y Fp(2)2879 3220 y Fu(+)g(1)g Fq(\000)3157 3153 y Fu(3\(1)g Fq(\000)g Fr(h)p Fu(\))p 3157 3198 V 3285 3289 a Fr(h)3341 3260 y Fp(2)3518 3080 y Fi(\023)3608 3220 y Fr(\036)3666 3235 y Fo(n)3713 3220 y Fu(\()p Fr(x)p Fu(\))3844 3050 y Fi(#)623 3542 y Fu(=)792 3475 y Fr(h)848 3438 y Fp(2)p 792 3519 96 4 v 816 3610 a Fu(3)965 3417 y Fo(n)914 3447 y Fi(X)929 3657 y Fo(i)p Fp(=0)1075 3542 y Fr(\036)1133 3557 y Fo(i)1161 3542 y Fu(\()p Fr(x)p Fu(\))28 b(=)1433 3475 y Fr(h)1489 3438 y Fp(2)p 1433 3519 V 1457 3610 a Fu(3)1539 3542 y Fr(:)p 1649 3517 89 4 v 1649 3567 4 50 v 1735 3567 V 1649 3570 89 4 v 446 3835 a Fu(The)35 b(follo)m(wing)30 b(t)m(w)m(o)k(theorems)g (giv)m(e)g(the)f(error)h(of)f(the)g(appro)m(ximation)f(in)g(terms)i(of) f(the)300 3955 y(uniform)e(norm)h(and)g(the)h Fr(L)1344 3919 y Fp(1)1384 3955 y Fu(-norm,)e(resp)s(ectiv)m(ely)-8 b(.)p Black 300 4113 a Fj(The)j(or)g(em)34 b(4.1.)p Black 48 w Fu(\(i\))d(Let)i Fr(f)39 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1].)42 b(Then)1413 4373 y Fq(k)p Fr(Q)1540 4388 y Fo(n)1587 4373 y Fr(f)32 b Fq(\000)23 b Fr(f)11 b Fq(k)1876 4388 y Fl(1)1978 4373 y Fq(\024)28 b Fu(2)p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)2392 4305 y Fr(h)p 2355 4350 132 4 v 2355 4370 a Fq(p)p 2438 4370 49 4 v 82 x Fu(3)2496 4373 y(\))p Fr(:)p Black 1078 w Fu(\(4.9\))p Black 446 4642 a(\(ii\))31 b(Let)i Fr(f)38 b Fq(2)28 b Fr(C)1041 4606 y Fp(1)1081 4642 y Fu([0)p Fr(;)17 b Fu(1].)42 b(Then)1095 4908 y Fq(k)p Fr(Q)1222 4923 y Fo(n)1269 4908 y Fr(f)33 b Fq(\000)23 b Fr(f)11 b Fq(k)1559 4923 y Fl(1)1660 4908 y Fq(\024)1776 4840 y(k)p Fr(f)1885 4804 y Fl(0)1907 4840 y Fq(k)1957 4855 y Fl(1)p 1776 4885 257 4 v 1879 4976 a Fu(2)2042 4908 y Fr(h)22 b Fu(+)2270 4840 y(2)p 2228 4885 132 4 v 2228 4905 a Fq(p)p 2311 4905 49 4 v 82 x Fu(3)2370 4908 y Fr(hw)s Fu(\()p Fr(f)2596 4867 y Fl(0)2618 4908 y Fu(;)2710 4840 y Fr(h)p 2672 4885 132 4 v 2672 4905 a Fq(p)p 2755 4905 49 4 v 82 x Fu(3)2814 4908 y(\))p Fr(:)p Black 712 w Fu(\(4.10\))p Black 300 5168 a(F)-8 b(urthermore,)32 b(if)f Fr(f)44 b Fu(is)32 b(constan)m(t)h(on)g Fr(I)1743 5183 y Fp(1)1815 5168 y Fu(and)f Fr(I)2047 5183 y Fo(n)2094 5168 y Fu(,)h(then)1321 5422 y Fq(k)p Fr(Q)1448 5437 y Fo(n)1495 5422 y Fr(f)g Fq(\000)23 b Fr(f)11 b Fq(k)1785 5437 y Fl(1)1887 5422 y Fq(\024)2043 5355 y Fu(2)p 2002 5399 132 4 v 2002 5419 a Fq(p)p 2085 5419 49 4 v 82 x Fu(3)2144 5422 y Fr(hw)s Fu(\()p Fr(f)2370 5381 y Fl(0)2392 5422 y Fu(;)2484 5355 y Fr(h)p 2446 5399 132 4 v 2446 5419 a Fq(p)p 2529 5419 49 4 v 82 x Fu(3)2588 5422 y(\))p Fr(:)p Black 938 w Fu(\(4.11\))p Black Black Black eop %%Page: 24 33 24 32 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35 b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410 b Fu(24)p Black 446 274 a Fm(Pro)s(of.)43 b Fu(\(i\))31 b(is)g(immediate)e(from)i(Lemmas)g(4.2)g(and)h(4.4.)43 b(\(4.10\))31 b(follo)m(ws)f(from)h(Lemmas)300 395 y(4.3)g(and)h(4.4.) 43 b(If)32 b Fr(f)38 b Fq(2)28 b Fr(C)1194 358 y Fp(1)1234 395 y Fu([0)p Fr(;)17 b Fu(1])31 b(is)g(constan)m(t)i(on)f Fr(I)2129 410 y Fp(1)2200 395 y Fu(and)g Fr(I)2432 410 y Fo(n)2479 395 y Fu(,)g(then)g(the)h(\014rst)f(term)f(of)h(the)g(righ) m(t)300 515 y(side)h(of)f(\(4.6\))g(and)g(\(4.8\))g(disapp)s(ears,)h (so)g(w)m(e)h(ha)m(v)m(e)g(\(4.11\).)p 2705 490 89 4 v 2705 540 4 50 v 2790 540 V 2705 543 89 4 v Black 300 677 a Fj(The)-5 b(or)g(em)34 b(4.2.)p Black 48 w Fu(Let)f Fr(f)38 b Fq(2)28 b Fr(C)1345 641 y Fp(1)1385 677 y Fu([0)p Fr(;)17 b Fu(1].)42 b(Then)1123 946 y Fq(k)p Fr(Q)1250 961 y Fo(n)1297 946 y Fr(f)33 b Fq(\000)22 b Fr(f)11 b Fq(k)27 b(\024)i(k)p Fr(f)1828 905 y Fl(0)1850 946 y Fq(k)1900 961 y Fl(1)1975 946 y Fr(h)2031 905 y Fp(2)2093 946 y Fu(+)2242 879 y(2)p 2201 923 132 4 v 2201 943 a Fq(p)p 2284 943 49 4 v 83 x Fu(3)2342 946 y Fr(hw)s Fu(\()p Fr(f)2568 905 y Fl(0)2591 946 y Fu(;)2682 879 y Fr(h)p 2645 923 132 4 v 2645 943 a Fq(p)p 2728 943 49 4 v 83 x Fu(3)2786 946 y(\))p Fr(:)p Black 740 w Fu(\(4.12\))p Black 446 1222 a Fm(Pro)s(of.)42 b Fu(In)m(tegrating)28 b Fr(Q)1368 1237 y Fo(n)1415 1222 y Fr(f)c Fq(\000)13 b Fr(f)40 b Fu(o)m(v)m(er)29 b([0)p Fr(;)17 b Fu(1])27 b(and)i(using)f(Lemmas)f(4.3)h(and)g(4.4,)h(w)m(e)g(obtain)300 1342 y(the)k(error)f(estimate)g(\(4.12\))g(of)g Fr(Q)1567 1357 y Fo(n)1614 1342 y Fr(f)h Fq(\000)23 b Fr(f)43 b Fu(in)32 b(terms)g(of)g(the)h Fr(L)2616 1306 y Fp(1)2656 1342 y Fu(-norm.)p 3108 1317 89 4 v 3108 1367 4 50 v 3193 1367 V 3108 1370 89 4 v 300 1462 a Fm(Remark)38 b(4.3)c Fu(If)g Fr(f)41 b Fq(2)30 b Fr(C)1264 1426 y Fo(k)r Fp(+1)1397 1462 y Fu([0)p Fr(;)17 b Fu(1],)34 b(then)g Fr(w)s Fu(\()p Fr(f)2047 1426 y Fp(\()p Fo(k)r Fp(\))2144 1462 y Fu(;)17 b Fr(r)s Fu(\))29 b(=)h Fr(O)s Fu(\()p Fr(r)s Fu(\))i([41].)47 b(Th)m(us)36 b(for)d(smo)s(oth)g Fr(f)45 b Fu(the)300 1583 y(upp)s(er)33 b(b)s(ounds)g(ab)s(o)m(v)m(e)h (can)f(b)s(e)f(expressed)k(in)c(terms)g(of)g Fr(h)h Fu(only)-8 b(.)446 1703 y(No)m(w)30 b(w)m(e)g(w)m(ould)f(lik)m(e)f(to)h(apply)g (the)g(ab)s(o)m(v)m(e)h(results)f(to)g(the)g(con)m(v)m(ergence)j(rate)d (analysis)f(of)300 1824 y(the)38 b(Mark)m(o)m(v)g(metho)s(d)f(for)g (solving)f(the)h(\014xed)i(densit)m(y)f(problem)e(of)h(the)g(F)-8 b(rob)s(enius-P)m(erron)300 1944 y(op)s(erator)32 b(asso)s(ciated)g (with)h(Lasota-Y)-8 b(ork)m(e)32 b(class)h(of)f(mappings)f([37].)446 2064 y(Let)39 b Fr(S)45 b Fu(:)38 b([0)p Fr(;)17 b Fu(1])38 b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])38 b(b)s(e)h(a)g(Lasota-Y)-8 b(ork)m(e)39 b(mapping,)g(i.e.,)h Fr(S)k Fu(is)39 b(piecewise)g Fr(C)3572 2028 y Fp(2)3650 2064 y Fu(with)300 2185 y Fr(\025)g Fu(=)f(inf)23 b Fq(j)p Fr(S)739 2149 y Fl(0)761 2185 y Fq(j)39 b Fr(>)f Fu(2,)j(and)e(let)f Fr(P)52 b Fu(:)39 b Fr(L)1649 2149 y Fp(1)1689 2185 y Fu(\(0)p Fr(;)17 b Fu(1\))37 b Fq(!)i Fr(L)2149 2149 y Fp(1)2188 2185 y Fu(\(0)p Fr(;)17 b Fu(1\))38 b(b)s(e)i(the)f(corresp)s(onding)g (F)-8 b(rob)s(enius-)300 2305 y(P)m(erron)33 b(op)s(erator.)43 b(Then,)34 b(as)f(pro)m(v)m(ed)h(in)e([37)o(],)h(for)f(an)m(y)h Fr(f)39 b Fq(2)28 b Fr(L)2673 2269 y Fp(1)2713 2305 y Fu(\(0)p Fr(;)17 b Fu(1\),)1179 2491 y Fp(1)1142 2521 y Fi(_)1179 2730 y Fp(0)1269 2615 y Fr(P)d(f)38 b Fq(\024)1551 2548 y Fu(2)p 1547 2592 57 4 v 1547 2684 a Fr(\025)1668 2491 y Fp(1)1630 2521 y Fi(_)1668 2730 y Fp(0)1758 2615 y Fr(f)32 b Fu(+)22 b Fr(M)10 b Fq(k)p Fr(f)h Fq(k)p Fr(;)73 b(M)38 b Fu(is)32 b(a)g(constan)m(t)q Fr(:)446 2922 y Fu(Supp)s(ose)44 b Fr(f)898 2886 y Fl(\003)980 2922 y Fu(is)e(a)g(unique)h(\014xed)h(densit)m(y)g(of)e Fr(P)14 b Fu(.)73 b(It)43 b(has)g(b)s(een)g(sho)m(wn)h(in)e([18])h (that)f(if)300 3043 y Fr(f)348 3058 y Fo(n)423 3043 y Fq(2)28 b Fu(\001)598 3058 y Fo(n)678 3043 y Fu(is)k(the)h Fr(n)p Fu(-th)f(estimate)g(of)g Fr(f)1720 3007 y Fl(\003)1792 3043 y Fu(via)f(the)i(Mark)m(o)m(v)h(metho)s(d,)e(then)1065 3263 y Fq(k)p Fr(f)1163 3278 y Fo(n)1232 3263 y Fq(\000)23 b Fr(f)1391 3222 y Fl(\003)1430 3263 y Fq(k)1480 3278 y Fo(B)s(V)1625 3263 y Fu(=)28 b Fr(O)s Fu(\()p Fq(k)p Fr(Q)1972 3278 y Fo(n)2018 3263 y Fr(f)2077 3222 y Fl(\003)2138 3263 y Fq(\000)23 b Fr(f)2297 3222 y Fl(\003)2336 3263 y Fq(k)2386 3278 y Fo(B)s(V)2503 3263 y Fu(\))28 b(=)f Fr(O)s Fu(\()p Fr(h)p Fu(\))p Fr(;)p Black 682 w Fu(\(4.13\))p Black 300 3483 a(where)i(the)e(v)-5 b(ariation)25 b(norm)i Fq(k)p Fr(f)11 b Fq(k)1552 3498 y Fo(B)s(V)1696 3483 y Fq(\021)28 b(k)p Fr(f)11 b Fq(k)g Fu(+)2058 3408 y Fi(W)2142 3434 y Fp(1)2142 3512 y(0)2198 3483 y Fr(f)g Fu(.)41 b(In)28 b(other)f(w)m(ords,)j(under)e(the)g Fr(B)5 b(V)21 b Fu(-norm)300 3603 y(the)38 b(error)g(of)f(the)i(appro)m (ximate)e(solution)f Fr(f)1998 3618 y Fo(n)2083 3603 y Fu(to)i Fr(f)2267 3567 y Fl(\003)2343 3603 y Fu(is)g(of)f(the)i(same) e(order)h(as)g(that)g(of)g(the)300 3724 y(appro)m(ximation)30 b Fr(Q)1027 3739 y Fo(n)1075 3724 y Fr(f)1134 3687 y Fl(\003)1205 3724 y Fu(to)i Fr(f)1383 3687 y Fl(\003)1423 3724 y Fu(.)43 b(It)33 b(is)f(unkno)m(wn)i(whether)1367 3944 y Fq(k)p Fr(f)1465 3959 y Fo(n)1534 3944 y Fq(\000)22 b Fr(f)1692 3902 y Fl(\003)1731 3944 y Fq(k)28 b Fu(=)f Fr(O)s Fu(\()p Fq(k)p Fr(Q)2155 3959 y Fo(n)2202 3944 y Fr(f)2261 3902 y Fl(\003)2322 3944 y Fq(\000)c Fr(f)2481 3902 y Fl(\003)2520 3944 y Fq(k)p Fu(\))p Black 983 w(\(4.14\))p Black 300 4164 a(for)38 b(the)h(Lasota-Y)-8 b(ork)m(e)39 b(class)g(of)f(mappings)f(or)i(more)f(general)g(piecewise)h(monotonic)e (ones)300 4284 y(\(it)j(is)g(not)h(true)g(for)f(Ulam's)g(metho)s(d;)k (see)e([45)o(]\),)h(but)e(n)m(umerical)f(exp)s(erimen)m(ts)h([21])g(ha) m(v)m(e)300 4404 y(strongly)32 b(indicated)g(so.)44 b(Since)1326 4624 y(\()p Fr(I)30 b Fq(\000)22 b Fr(P)1599 4639 y Fo(n)1646 4624 y Fu(\)\()p Fr(f)1770 4639 y Fo(n)1839 4624 y Fq(\000)h Fr(f)1998 4583 y Fl(\003)2037 4624 y Fu(\))k(=)h Fr(Q)2283 4639 y Fo(n)2330 4624 y Fr(f)2389 4583 y Fl(\003)2451 4624 y Fq(\000)22 b Fr(f)2609 4583 y Fl(\003)p Black 3591 4624 a Fu(\(4.15\))p Black 300 4854 a(and)35 b(the)g(restriction)f (of)h Fr(I)d Fq(\000)24 b Fr(P)1484 4869 y Fo(n)1566 4854 y Fu(on)34 b Fr(B)5 b(V)1839 4869 y Fp(0)1911 4854 y Fq(\021)32 b(f)p Fr(f)42 b Fq(2)32 b Fr(B)5 b(V)54 b Fu(:)2507 4774 y Fi(R)2573 4800 y Fp(1)2554 4889 y(0)2629 4854 y Fr(f)11 b(dm)32 b Fu(=)f(0)p Fq(g)k Fu(is)f(in)m(v)m(ertible)g (for)h Fr(n)300 4974 y Fu(large)c(enough)i([18],)g(w)m(e)g(ha)m(v)m(e)h (the)f(follo)m(wing)d(error)j(estimate)e(result.)p Black 300 5136 a Fj(The)-5 b(or)g(em)34 b(4.3.)p Black 48 w Fu(If)e(sup)1157 5160 y Fo(n)1204 5136 y Fq(fk)p Fu(\(\()p Fr(I)e Fq(\000)22 b Fr(P)1615 5151 y Fo(n)1662 5136 y Fu(\))p Fq(j)1728 5151 y Fo(B)s(V)1825 5160 y Fg(0)1864 5136 y Fu(\))1902 5100 y Fl(\000)p Fp(1)1996 5136 y Fq(kg)28 b Fr(<)f Fq(1)p Fu(,)33 b(then)g Fq(k)p Fr(f)2707 5151 y Fo(n)2776 5136 y Fq(\000)22 b Fr(f)2934 5100 y Fl(\003)2974 5136 y Fq(k)27 b Fu(=)h Fr(O)s Fu(\()p Fr(h)3327 5100 y Fp(2)3365 5136 y Fu(\).)p Black Black eop %%Page: 25 34 25 33 bop Black Black Black Black 1714 150 a Fn(Chapter)53 b(5)p Black Black 614 581 a(QUASI-MONTE)h(CARLO)g(ALGORITHM)493 1283 y Fu(The)47 b(main)d(n)m(umerical)g(w)m(ork)j(in)e(Ulam's)g(metho) s(d)g(is)g(ev)-5 b(aluating)44 b(all)g(the)i(en)m(tries)g(of)300 1403 y(the)i Fr(n)33 b Fq(\002)g Fr(n)47 b Fu(matrix)f Fr(P)1184 1418 y Fo(n)1279 1403 y Fu(b)m(y)i(form)m(ula)e(\(3.5\))h (and)h(solving)e(the)i(corresp)s(onding)g(system)g(of)300 1524 y(linear)31 b(equations)i(\(3.6\))g(\()p Fr(P)1343 1539 y Fo(n)1390 1524 y Fu(\))1428 1488 y Fo(T)1483 1524 y Fr(v)f Fu(=)c Fr(v)t Fu(,)33 b(whic)m(h)g(can)g(b)s(e)g(successfully) i(obtained)d(b)m(y)i(the)f(direct)300 1644 y(iteration)j([19].)59 b(But)39 b(the)f(other)g(n)m(umerical)f(issues)i(should)e(b)s(e)i (further)f(in)m(v)m(estigated)g(if)f(w)m(e)300 1764 y(w)m(an)m(t)c(to)e (mak)m(e)h(this)g(metho)s(d)f(a)h(really)e(practical)h(one)h(in)f(ph)m (ysical)h(applications)e(whic)m(h)i(will)300 1885 y(b)s(e)h(discussed)h (in)e(this)g(c)m(hapter.)446 2005 y(Although)g(the)h(\()p Fr(i;)17 b(j)6 b Fu(\))32 b(en)m(try)i(of)e Fr(P)1705 2020 y Fo(n)1784 2005 y Fu(is)g(giv)m(en)g(b)m(y)i(the)f(form)m(ula)d (\(3.5\))i(or)g(\(3.14\),)g(generally)300 2126 y(sp)s(eaking,)41 b(this)d(is)g(a)h(di\016cult)f(problem)g(since)h(the)g(in)m(v)m(erse)h (image)d(of)i(a)f(subset)j(under)f(the)300 2246 y(mapping)26 b Fr(S)33 b Fu(is)27 b(hard)g(to)h(get)f(in)g(man)m(y)g(cases,)j(suc)m (h)f(as)e Fr(S)34 b Fu(do)s(es)27 b(not)h(ha)m(v)m(e)g(an)g(expression) h(since)300 2366 y Fr(S)38 b Fu(is)31 b(only)g(from)g(some)h(ph)m (ysical)g(exp)s(erimen)m(ts)g(or)g(the)g(expression)h(of)f Fr(S)37 b Fu(is)32 b(to)s(o)f(complicated)300 2487 y(to)d(use)g(\(see,) i(e.g.,)g(examples)d(in)g([1])h(and)g([3]\),)h(esp)s(ecially)e(for)g(m) m(ulti-dimensional)c(mappings.)300 2607 y(Here)29 b(the)g(idea)f(of)h (Mon)m(te)g(Carlo)f(approac)m(h)h(is)f(emplo)m(y)m(ed,)i(whic)m(h)f (has)g(the)g(adv)-5 b(an)m(tage)29 b(of)f(not)300 2728 y(requiring)42 b(explicit)f(ev)-5 b(aluation)41 b(of)h(suc)m(h)j(en)m (tries)e(of)f(the)h(appro)m(ximate)f(F)-8 b(rob)s(enius-P)m(erron)300 2848 y(op)s(erator)31 b Fr(P)755 2863 y Fo(n)801 2848 y Fu(.)43 b(In)32 b(fact)f(since)h Fr(P)1484 2863 y Fo(n)1562 2848 y Fu(is)f(only)g(an)g(appro)m(ximation)e(to)i Fr(P)14 b Fu(,)31 b(it)f(is)h(b)m(y)h(no)f(means)h(nec-)300 2968 y(essary)f(to)e(ev)-5 b(aluate)29 b(the)h(en)m(tries)h(of)e Fr(P)1729 2983 y Fo(n)1805 2968 y Fj(exactly)h Fu(if)e(it)h(is)g (di\016cult)f(to)i(do)f(so.)43 b(Th)m(us)31 b(the)f(Mon)m(te)300 3089 y(Carlo)k(metho)s(d)g(whic)m(h)h(will)d(b)s(e)j(sho)m(wn)h(as)f (follo)m(ws,)f(is)h(an)f(ideal)f(means)i(for)f(appro)m(ximating)300 3209 y Fr(P)363 3224 y Fo(n)410 3209 y Fu(.)446 3329 y(Considering)d(the)g(one)g(dimensional)e(case,)j(let's)f(rewrite)g (the)g(en)m(tries)h(of)e(the)h(companion)300 3450 y(matrix)g(of)h (Ulam's)g(metho)s(d)f(as)1109 3704 y Fr(p)1158 3719 y Fo(ij)1246 3704 y Fu(=)1360 3637 y Fr(m)p Fu(\()p Fr(I)1526 3652 y Fo(i)1576 3637 y Fq(\\)23 b Fr(S)1731 3601 y Fl(\000)p Fp(1)1825 3637 y Fu(\()p Fr(I)1906 3652 y Fo(j)1942 3637 y Fu(\)\))p 1360 3681 659 4 v 1573 3772 a Fr(m)p Fu(\()p Fr(I)1739 3787 y Fo(i)1767 3772 y Fu(\))2056 3704 y(=)2169 3637 y Fr(m)p Fu(\()p Fr(I)2335 3652 y Fo(i)2386 3637 y Fq(\\)g Fr(S)2541 3601 y Fl(\000)p Fp(1)2635 3637 y Fu(\()p Fr(I)2716 3652 y Fo(j)2752 3637 y Fu(\)\))p 2169 3681 V 2471 3772 a Fr(h)2838 3704 y(:)p Black 774 w Fu(\(5.1\))p Black 446 3974 a(The)39 b(basic)f(idea)g(of)f(the)i(Mon)m(te)g(Carlo)e (approac)m(h)i(is)e(that)h(within)f(eac)m(h)i(subin)m(terv)-5 b(al)38 b Fr(I)3812 3989 y Fo(i)300 4095 y Fu(of)e(the)g(partition)e (of)h([0)p Fr(;)17 b Fu(1])p Fr(;)50 b(N)c Fu(p)s(oin)m(ts)36 b(are)g(selected)h(whic)m(h)g(are)f(called)e Fq(f)p Fr(z)3160 4110 y Fo(i;k)3247 4095 y Fq(g)3297 4059 y Fo(N)3297 4121 y(k)r Fp(=1)3429 4095 y Fu(.)54 b(F)-8 b(or)35 b(an)m(y)300 4215 y(pair)45 b(\()p Fr(i;)17 b(j)6 b Fu(\))47 b(with)f Fr(i;)17 b(j)57 b Fu(=)51 b(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(n)p Fu(,)50 b(let)c Fr(q)1914 4230 y Fo(ij)2021 4215 y Fu(b)s(e)h(the)f(n)m(um)m(b)s(er)h(of)f(p)s(oin)m(ts)g Fr(S)6 b Fu(\()p Fr(z)3299 4230 y Fo(i;k)3386 4215 y Fu(\))46 b(in)g Fr(I)3641 4230 y Fo(j)3723 4215 y Fu(for)300 4336 y Fr(k)31 b Fu(=)c(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(N)10 b Fu(.)44 b(Then)34 b(w)m(e)f(ha)m(v)m(e)1395 4542 y Fr(q)1438 4557 y Fo(ij)p 1395 4586 104 4 v 1403 4678 a Fr(N)1537 4609 y Fq(\031)1652 4542 y Fr(m)p Fu(\()p Fr(I)1818 4557 y Fo(i)1869 4542 y Fq(\\)22 b Fr(S)2023 4506 y Fl(\000)p Fp(1)2117 4542 y Fu(\()p Fr(I)2198 4557 y Fo(j)2235 4542 y Fu(\)\))p 1652 4586 659 4 v 1953 4678 a Fr(h)2348 4609 y Fu(=)28 b Fr(p)2501 4624 y Fo(ij)2561 4609 y Fr(:)p Black 1051 w Fu(\(5.2\))p Black 446 4860 a(The)33 b(original)28 b(Mon)m(te)33 b(Carlo)d(metho)s(d)i(\014rst)g (prop)s(osed)g(in)f([30)o(])h(selected)h(the)f Fr(N)42 b Fu(n)m(um)m(b)s(ers)300 4981 y(randomly)-8 b(.)55 b(That)38 b(is,)g(the)f(p)s(oin)m(ts)g Fr(z)1674 4996 y Fo(i;k)1797 4981 y Fu(are)g(obtained)g(from)f(a)g(random)g(n)m(um)m(b)s(er)i (generator.)300 5101 y(Numerical)47 b(exp)s(erimen)m(ts)i(indicate)f (that)h(the)g(resulting)f(error)h(ma)m(y)f(b)s(e)h(relativ)m(ely)f (large)300 5221 y(compared)c(with)f(the)i(exact)g(Ulam)d(metho)s(d,)k (that)e(is)g(ev)-5 b(aluating)42 b Fr(p)2970 5236 y Fo(ij)3074 5221 y Fu(exactly)j(b)m(y)f(\(5.1\))g(.)300 5342 y(T)-8 b(o)30 b(get)f(a)h(b)s(etter)g(appro)m(ximation)d(in)i(\(5.2\),)h(the)g (idea)f(of)g(the)h Fj(quasi-Monte)i(Carlo)f(metho)-5 b(d)29 b Fu(is)300 5462 y(used.)p Black 2021 5764 a(25)p Black eop %%Page: 26 35 26 34 bop Black 300 10 a Fk(CHAPTER)34 b(5.)76 b(QUASI-MONTE)34 b(CARLO)e(ALGORITHM)1004 b Fu(26)p Black 446 274 a Fm(Quasi-Mon)m(te)31 b(Carlo)e(metho)s(ds)c Fu(are)h(based)h(on)f(the)g(idea)f(that)g (random)g(Mon)m(te)i(Carlo)300 395 y(tec)m(hniques)47 b(can)e(often)h(b)s(e)f(impro)m(v)m(ed)g(b)m(y)h(replacing)e(the)h (underlying)g(source)h(of)f(random)300 515 y(n)m(um)m(b)s(ers)g(with)f (a)f(more)h(uniformly)e(distributed)h(deterministic)g(sequence,)49 b(and)44 b(leads)g(to)300 635 y(a)d(lo)m(w)m(er)g(discrepancy)i([44)o (].)69 b(Based)42 b(on)f(this)g(idea,)i(here)f(the)f(test)h(p)s(oin)m (ts)f Fr(z)3262 650 y Fo(i;k)3389 635 y Fu(are)g(c)m(hosen)300 756 y Fj(deterministic)-5 b(al)5 b(ly)p Fu(.)43 b(In)32 b(other)h(w)m(ords,)h(if)d Fr(I)1887 771 y Fo(i)1943 756 y Fu(=)d([)p Fr(x)2129 771 y Fo(i)p Fl(\000)p Fp(1)2248 756 y Fr(;)17 b(x)2347 771 y Fo(i)p Fl(\000)p Fp(1)2487 756 y Fu(+)22 b Fr(h)p Fu(],)33 b(then)1255 998 y Fr(z)1300 1013 y Fo(i;k)1414 998 y Fu(=)28 b Fr(x)1573 1013 y Fo(i)p Fl(\000)p Fp(1)1713 998 y Fu(+)1839 930 y Fr(k)p 1821 975 89 4 v 1821 1066 a(N)1920 998 y(h;)44 b(k)31 b Fu(=)d(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)31 b(;)17 b(N)5 b(:)p Black 920 w Fu(\(5.3\))p Black 446 1215 a(Numerical)29 b(results)j(in)e(the)i(last)e(part)h(of)f(the)i(c)m(hapter)f(will)e (sho)m(w)j(that)f(the)h(quasi-Mon)m(te)300 1336 y(Carlo)f(metho)s(d)g (is)h(m)m(uc)m(h)g(b)s(etter)g(than)g(the)h(original)28 b(Mon)m(te)33 b(Carlo)e(metho)s(d)g(\(see)i(also)e([20]\).)446 1456 y(Another)43 b(reason)g(wh)m(y)g(the)g(quasi-Mon)m(te)g(Carlo)e (metho)s(d)h(p)s(erforms)g(b)s(etter)g(than)h(the)300 1576 y(standard)30 b(Mon)m(te)g(Carlo)f(metho)s(d)f(for)h(one)h (dimensional)d(transformations)h(is)h(the)h(follo)m(wing.)300 1697 y(F)-8 b(rom)21 b(the)i(expression)h(\(5.1\))e(one)h(sees)h(that)e Fr(p)1992 1712 y Fo(ij)2075 1697 y Fu(is)g(exactly)h(the)g(fraction)e (of)h(all)f(the)i(p)s(oin)m(ts)f(in)g Fr(I)3812 1712 y Fo(i)300 1817 y Fu(that)g(are)f(mapp)s(ed)h(in)m(to)f Fr(I)1243 1832 y Fo(j)1301 1817 y Fu(b)m(y)i Fr(S)6 b Fu(.)39 b(Since)22 b(the)h(one)f(dimensional)d(transformation)h Fr(S)27 b Fu(considered)300 1938 y(in)22 b(this)g(pap)s(er)h(is)f (usually)f(a)i(piecewise)g(con)m(tin)m(uous)g(and)g(monotonic)e (deterministic)f(mapping,)300 2058 y(the)37 b(in)m(v)m(erse)i(image)c Fr(S)1152 2022 y Fl(\000)p Fp(1)1246 2058 y Fu(\()p Fr(I)1327 2073 y Fo(j)1363 2058 y Fu(\))i(and)g(so)g(the)g(set)h Fr(I)2128 2073 y Fo(i)2181 2058 y Fq(\\)26 b Fr(S)2339 2022 y Fl(\000)p Fp(1)2433 2058 y Fu(\()p Fr(I)2514 2073 y Fo(j)2550 2058 y Fu(\))37 b(are)g(just)g(the)h(union)e(of)g(sev)m (eral)300 2178 y(in)m(terv)-5 b(als.)49 b(Th)m(us,)37 b(a)d(go)s(o)s(d)g(estimate)g(of)g Fr(p)1891 2193 y Fo(ij)1986 2178 y Fu(with)h(the)g(Mon)m(te)g(Carlo)f(approac)m(h)h(is)f(c)m(ho)s (osing)300 2299 y(ev)m(enly)43 b(distributed,)h(not)d(randomly)g (distributed,)j(test)e(p)s(oin)m(ts)f(from)g Fr(I)3098 2314 y Fo(i)3126 2299 y Fu(.)71 b(This)42 b(giv)m(es)h(the)300 2419 y(idea)32 b(of)g(the)h(quasi-Mon)m(te)g(Carlo)f(metho)s(d)g(that)g (is)g(adopted)h(here.)600 2539 y(F)-8 b(or)27 b(m)m(ulti-dimensional)c (cases,)31 b(the)e(basic)f(idea)f(of)h(the)h(quasi-Mon)m(te)f(Carlo)g (metho)s(d)300 2660 y(is)35 b(similar)d(to)j(the)h(ab)s(o)m(v)m(e.)52 b(With)35 b(the)h(same)f(notation)f(of)h(the)h(last)e(section,)i(let)f Fr(S)j Fu(:)33 b(\012)g Fq(!)f Fu(\012)300 2780 y(b)s(e)j(a)g (nonsingular)e(transformation,)h(and)h Fr(T)1991 2795 y Fo(h)2068 2780 y Fu(=)c Fq(f)p Fu(\012)2295 2795 y Fo(i)2324 2780 y Fq(g)2374 2744 y Fo(n)2374 2805 y(i)p Fp(=1)2527 2780 y Fu(b)s(e)k(a)f(shap)s(e-regular)h(partition)d(of)300 2901 y(\012)i(with)g(the)h(mesh)f(size)g(c)m(haracterized)h(b)m(y)g Fr(h)p Fu(.)48 b(Let)35 b(1)2324 2916 y Fo(i)2382 2901 y Fu(=)2577 2861 y Fp(1)p 2498 2878 195 4 v 2498 2935 a Fo(m)p Fp(\(\012)2638 2945 y Ff(i)2665 2935 y Fp(\))2702 2901 y Fr(\037)2763 2916 y Fp(\012)2814 2926 y Ff(i)2879 2901 y Fu(for)e Fr(i)e Fu(=)f(1)p Fr(;)17 b Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(n)p Fu(.)48 b(Then)300 3021 y(the)33 b(en)m(tries)g(of)f (the)h(companion)e(matrix)g(of)i(Ulam's)e(metho)s(d)h(are)1486 3267 y Fr(p)1535 3282 y Fo(ij)1624 3267 y Fu(=)1737 3200 y Fr(m)p Fu(\(\012)1930 3215 y Fo(i)1981 3200 y Fq(\\)23 b Fr(S)2136 3163 y Fl(\000)p Fp(1)2230 3200 y Fu(\(\012)2338 3215 y Fo(j)2375 3200 y Fu(\)\))p 1737 3244 714 4 v 1964 3335 a Fr(m)p Fu(\(\012)2157 3350 y Fo(i)2186 3335 y Fu(\))2460 3267 y Fr(:)p Black 1152 w Fu(\(5.4\))p Black 446 3522 a(Ev)m(enly)45 b(distributed)e(p)s(oin)m(ts)h(in)f(\012)1791 3537 y Fo(i)1863 3522 y Fu(are)h(pro)5 b(jected)45 b(whic)m(h)f(are)f (called)g Fq(f)p Fr(z)3325 3537 y Fo(i;k)3411 3522 y Fq(g)3461 3486 y Fo(N)3461 3548 y(k)r Fp(=1)3594 3522 y Fu(.)77 b(F)-8 b(or)300 3642 y(an)m(y)35 b(pair)e(\()p Fr(i;)17 b(j)6 b Fu(\))34 b(with)g Fr(i;)17 b(j)37 b Fu(=)31 b(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(n)p Fu(,)34 b(let)g Fr(q)1995 3657 y Fo(ij)2090 3642 y Fu(b)s(e)h(the)g(n)m(um)m(b) s(er)f(of)g(p)s(oin)m(ts)g Fr(S)6 b Fu(\()p Fr(z)3308 3657 y Fo(i;k)3394 3642 y Fu(\))35 b(in)e(\012)3652 3657 y Fo(j)3723 3642 y Fu(for)300 3763 y Fr(k)e Fu(=)c(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(N)10 b Fu(.)44 b(Then)34 b(w)m(e)f(ha)m(v)m(e)1790 3973 y Fr(p)1839 3988 y Fo(ij)1928 3973 y Fq(\031)2043 3905 y Fr(q)2086 3920 y Fo(ij)p 2043 3950 104 4 v 2051 4041 a Fr(N)2156 3973 y(:)p Black 1456 w Fu(\(5.5\))p Black 446 4190 a(In)j(the)g(m)m(ulti-dimensional)31 b(case,)37 b(m)m(uc)m(h)f(more)f(p)s(oin)m(ts)g(in)g(\012)2770 4205 y Fo(i)2834 4190 y Fu(ha)m(v)m(e)i(to)e(b)s(e)g(pro)5 b(jected)37 b(to)300 4311 y(k)m(eep)42 b(the)e(least)g(computation)f (tolerance.)66 b(This)40 b(means)h(that)f(the)g(pro)s(cess)i(of)d(the)i (Mon)m(te)300 4431 y(Carlo)27 b(is)h(rather)h(slo)m(w)f(in)g(suc)m(h)i (cases,)h(and)d(sometimes)g(using)g(only)g(one)h(pro)s(cessor)g(is)f (imp)s(os-)300 4552 y(sible)g(to)h(implemen)m(t)e(the)i(computation.)41 b(F)-8 b(ortunately)g(,)28 b(from)g(the)h(expression)i(of)d Fr(p)3440 4567 y Fo(ij)3529 4552 y Fu(in)g(\(5.4\))300 4672 y(w)m(e)35 b(kno)m(wn)g(that)f(the)h(ev)-5 b(aluation)32 b(of)h Fr(p)1769 4687 y Fo(ij)1864 4672 y Fu(is)g(indep)s(enden)m(t)i (of)f(eac)m(h)h(other.)48 b(Therefore)35 b(paral-)300 4792 y(lel)e(computers)i(can)g(b)s(e)g(used)h(to)e(sp)s(eedup)i(the)f (calculation)d(pro)s(cess.)51 b(The)35 b(related)g(parallel)300 4913 y(algorithms)30 b(are)i(discussed)j(later.)446 5033 y(Therefore,)c(the)f(quasi-Mon)m(te)g(Carlo)e(metho)s(d)h(is)f(based)i (on)g(the)f(standard)h(Mon)m(te)g(Carlo)300 5153 y(metho)s(d)37 b(and)g(impro)m(v)m(es)h(the)g(e\016ciency)g(b)m(y)h(pro)5 b(jecting)37 b(uniformly)e(distributed)i(determin-)300 5274 y(istic)d(sequences)k(rather)e(than)f(random)f(n)m(um)m(b)s(ers.) 52 b(The)36 b(term)f(of)g(discrepancy)h(for)f(random)300 5394 y(n)m(um)m(b)s(ers)h(is)f(a)g(measure)h(of)f(the)h(uniformit)m(y)d (of)i(the)h(n)m(um)m(b)s(ers.)52 b(The)37 b(de\014nition)d(of)h (discrep-)300 5515 y(ancy)e(is)f(the)h(follo)m(wing.)p Black Black eop %%Page: 27 36 27 35 bop Black 300 10 a Fk(CHAPTER)34 b(5.)76 b(QUASI-MONTE)34 b(CARLO)e(ALGORITHM)1004 b Fu(27)p Black Black 300 274 a Fj(De\014nition)34 b(5.1.)p Black 48 w Fu([44)o(])d(Consider)g(a)f (set)h Fq(f)p Fr(x)1889 289 y Fo(i)1917 274 y Fq(g)f Fu(of)g Fr(N)41 b Fu(p)s(oin)m(ts)30 b(in)g(the)g Fr(d)p Fu(-dimensional)d(unit)j(cub)s(e.)300 395 y(The)k(discrepancy)f(of)g (this)f(set)h(is)1252 702 y Fr(D)1333 717 y Fo(N)1427 702 y Fu(=)28 b(sup)1577 783 y Fo(E)1694 702 y Fq(j)1752 634 y Fu(1)p 1732 679 89 4 v 1732 770 a Fr(N)1888 577 y Fo(N)1847 607 y Fi(X)1853 816 y Fo(n)p Fp(=1)2008 702 y Fr(\037)2069 717 y Fo(E)2128 702 y Fu(\()p Fr(x)2221 717 y Fo(n)2269 702 y Fu(\))22 b Fq(\000)g Fr(m)p Fu(\()p Fr(E)6 b Fu(\))p Fq(j)p Fr(:)p Black 917 w Fu(\(5.6\))p Black 300 1009 a(Here)31 b Fr(E)36 b Fu(is)29 b(a)h(sub-rectangle)g(of) g(the)g(unit)g(cub)s(e,)h Fr(m)p Fu(\()p Fr(E)6 b Fu(\))30 b(is)g(the)g(v)m(olume)g(of)f Fr(E)6 b Fu(,)31 b(and)f(the)h(sup)f(is) 300 1129 y(tak)m(en)k(o)m(v)m(er)f(all)e(suc)m(h)j(sub-rectangles,)f (and)g Fr(\037)2043 1144 y Fo(E)2135 1129 y Fu(is)f(the)h(c)m (haracteristic)f(function)g(of)h Fr(E)6 b Fu(.)446 1291 y(A)46 b(uniformly)d(distributed)i(in\014nite)g(sequence)j(of)d(p)s (oin)m(ts)h(in)e(the)i Fr(d)p Fu(-dimensional)d(unit)300 1412 y(cub)s(e)33 b(is)f(a)h(sequence)i(for)d(whic)m(h)1721 1632 y(lim)1687 1694 y Fo(N)7 b Fl(!1)1908 1632 y Fr(D)1989 1647 y Fo(N)2084 1632 y Fq(!)27 b Fu(0)p Fr(:)p Black 1352 w Fu(\(5.7\))p Black 300 1881 a(The)34 b(exp)s(ected)g(v)-5 b(alue)32 b(of)g(the)h(discrepancy)h(of)e(a)g(random)g(sequence)j (satis\014es)1434 2175 y Fr(E)6 b Fu(\()p Fr(D)1631 2190 y Fo(N)1698 2175 y Fu(\))27 b(=)h Fr(O)s Fu(\()1983 2016 y Fi(r)p 2082 2016 394 4 v 2092 2108 a Fu(log)16 b(log)h Fr(N)p 2092 2152 374 4 v 2234 2243 a(N)2475 2175 y Fu(\))p Fr(:)p Black 1099 w Fu(\(5.8\))p Black 300 2428 a(But)33 b(a)f(quasi-random)f(or)h(lo)m(w)h(discrepancy)h(sequence)h (satis\014es)e(the)g(condition)1632 2712 y Fr(D)1713 2727 y Fo(N)1808 2712 y Fq(\024)28 b Fr(C)1983 2727 y Fo(d)2033 2645 y Fu(log)2159 2602 y Fo(d)2216 2645 y Fr(N)p 2033 2689 272 4 v 2125 2780 a(N)2315 2712 y(:)p Black 1297 w Fu(\(5.9\))p Black 300 2957 a(Here)k Fr(C)599 2972 y Fo(d)671 2957 y Fu(is)g(a)f(constan)m(t)i(for)e(the)h(sequence,) j(whic)m(h)d(is)f(indep)s(enden)m(t)i(of)e Fr(N)42 b Fu(but)32 b(ma)m(y)g(dep)s(end)300 3078 y(on)g(the)h(dimension)f Fr(d)p Fu(.)446 3198 y(F)-8 b(rom)42 b(the)i(ab)s(o)m(v)m(e)h(form)m (ulae,)f(it)f(can)h(b)s(e)f(seen)i(that)e(the)h(error)g(b)s(ound)g(for) f(the)g(quasi-)300 3319 y(Mon)m(te)g(Carlo)e(metho)s(d)g(\(ab)s(out)h Fr(O)s Fu(\()p Fr(N)1783 3282 y Fl(\000)p Fp(1)1877 3319 y Fu(\)\))g(is)f(m)m(uc)m(h)i(b)s(etter)g(than)f(that)f(for)h(the)h (standard)300 3439 y(Mon)m(te)33 b(Carlo)f(metho)s(d)g(\(ab)s(out)g Fr(O)s Fu(\()p Fr(N)1745 3403 y Fl(\000)p Fp(1)p Fo(=)p Fp(2)1910 3439 y Fu(\)\).)446 3559 y(The)24 b(n)m(umerical)d(implemen)m (tation)e(of)j(Ulam's)g(metho)s(d)g(com)m(bined)g(with)g(the)h(ab)s(o)m (v)m(e)g(quasi-)300 3680 y(Mon)m(te)35 b(Carlo)d(approac)m(h)i(giv)m (es)h(rise)e(to)g(the)i(follo)m(wing)c Fm(quasi-Mon)m(te)39 b(Carlo)f(algorithm)300 3800 y Fu(for)32 b(the)h(computation)e(of)h (\014xed)i(densities)f(of)f(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erators)g([19])h([20)o(]:)p Black 419 4028 a(1.)p Black 49 w(Let)d Fr(T)773 4043 y Fo(h)846 4028 y Fu(=)d Fq(f)p Fu(\012)1069 4043 y Fo(i)1098 4028 y Fq(g)1148 3992 y Fo(n)1148 4053 y(i)p Fp(=1)1296 4028 y Fu(b)s(e)j(a)g(shap)s (e-regular)f(partition)f(of)h(\012)h(with)g(the)g(mesh)h(size)f(c)m (harac-)544 4149 y(terized)i(b)m(y)h Fr(h)p Fu(.)43 b(F)-8 b(or)32 b(example,)f(in)h(one)g(dimensional)d(cases,)34 b(c)m(ho)s(ose)f Fr(n)f Fu(equal)g(subin)m(ter-)544 4269 y(v)-5 b(als)32 b(of)g(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1].)p Black 419 4473 a(2.)p Black 49 w(Use)34 b(the)g(quasi-Mon)m (te)f(Carlo)g(metho)s(d)f(and)i(form)m(ulae)d(\(5.1\))i(to)g(\(5.5\))g (to)g(ev)-5 b(aluate)32 b(of)544 4593 y(the)h(matrix)e Fr(P)1092 4608 y Fo(h)1137 4593 y Fu(.)p Black 419 4796 a(3.)p Black 49 w(Select)44 b(a)g(starting)f(nonnegativ)m(e)h(v)m (ector)h Fr(c)i Fu(=)g(\()p Fr(c)2454 4811 y Fp(1)2493 4796 y Fr(;)17 b(c)2579 4811 y Fp(2)2618 4796 y Fr(;)g Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2898 4811 y Fo(n)2944 4796 y Fu(\))2982 4760 y Fo(T)3037 4796 y Fu(;)50 b(a)43 b(usual)h(c)m(hoice)g(is)544 4917 y Fr(c)28 b Fu(=)f(\(1)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17 b Fu(1\))1220 4881 y Fo(T)1275 4917 y Fu(.)p Black 419 5120 a(4.)p Black 49 w(Calculate)31 b Fr(c)1019 5084 y Fl(\003)1087 5120 y Fu(=)c Fr(P)1267 5084 y Fo(T)1253 5146 y(h)1322 5120 y Fr(c)32 b Fu(and)h(the)g(1-norm)e(error)h(Error)h (=)27 b Fq(k)p Fr(c)2785 5084 y Fl(\003)2847 5120 y Fq(\000)22 b Fr(c)p Fq(k)p Fu(.)p Black 419 5324 a(5.)p Black 49 w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 5287 y Fl(\003)1052 5324 y Fu(and)g(rep)s(eat)f(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e (Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544 5444 y(tolerance.)p Black Black eop %%Page: 28 37 28 36 bop Black 300 10 a Fk(CHAPTER)34 b(5.)76 b(QUASI-MONTE)34 b(CARLO)e(ALGORITHM)1004 b Fu(28)p Black Black 419 274 a(6.)p Black 49 w(Let)34 b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 289 y Fo(h)2545 274 y Fu(=)2651 200 y Fi(P)2756 226 y Fo(n)2756 303 y(i)p Fp(=1)2891 274 y Fr(c)2933 289 y Fo(i)2961 274 y Fu(1)3010 289 y Fo(i)3072 274 y Fu(is)f(an)g(appro)m (ximate)544 395 y(\014xed)g(densit)m(y)-8 b(.)446 623 y(Some)29 b(results)h(of)f(the)g(n)m(umerical)f(exp)s(erimen)m(t)i (with)e(the)i(quasi-Mon)m(te)g(Carlo)e(algorithm)300 743 y(will)42 b(b)s(e)i(presen)m(ted)i(in)e(Chapter)h(7,)i(and)d(from)f (there)i(w)m(e)g(can)f(see)h(clearly)f(that)f(the)i(new)300 864 y(algorithm)36 b(dev)m(elop)s(ed)41 b(in)e(this)g(thesis)h(w)m (orks)h(m)m(uc)m(h)f(more)f(e\016cien)m(tly)h(than)g(the)g(standard)300 984 y(Mon)m(te)33 b(Carlo)f(metho)s(d,)g(as)h(predicted)g(b)m(y)g(the)g (theoretical)f(analysis)g(in)g(this)g(c)m(hapter.)p Black Black eop %%Page: 29 38 29 37 bop Black Black Black Black 1714 150 a Fn(Chapter)53 b(6)p Black Black 1050 581 a(P)-13 b(ARALLEL)53 b(ALGORITHMS)459 1283 y Fu(In)33 b(implemen)m(ting)d(Ulam's)i(metho)s(d,)g(the)i (quasi-Mon)m(te)f(Carlo)f(metho)s(d)g(studied)h(in)g(the)300 1403 y(previous)j(c)m(hapter)g(has)f(o)m(v)m(ercome)h(the)f(di\016cult) m(y)g(on)g(the)h(ev)-5 b(aluation)33 b(of)i(the)g(Ulam)e(matrix)300 1524 y(when)26 b(the)f(in)m(v)m(erse)h(image)d(is)h(hard)h(or)f(imp)s (ossible)e(to)j(obtain.)40 b(But)24 b(an)m(y)i(t)m(yp)s(e)f(of)f(Mon)m (te)i(Carlo)300 1644 y(approac)m(h)j(has)g(the)g(disadv)-5 b(an)m(tage)28 b(of)g(time)f(consuming.)42 b(F)-8 b(or)27 b(example,)i(if)e(the)i(in)m(terv)-5 b(al)28 b([0)p Fr(;)17 b Fu(1])300 1764 y(is)36 b(divided)g(in)m(to)g(1000)g(subin)m(terv)-5 b(als)36 b(in)g(Ulam's)f(metho)s(d,)i(and)g(if)e(for)h(eac)m(h)i(subin) m(terv)-5 b(al)36 b(w)m(e)300 1885 y(c)m(ho)s(ose)42 b(1000)d(test)j(p)s(oin)m(ts)e(for)g(the)h(Mon)m(te)h(Carlo)e (computation,)h(then)g(the)g(ev)-5 b(aluation)39 b(of)300 2005 y(all)e(the)i(1000)26 b Fq(\002)h Fu(1000)37 b(=)i(1000000)e(en)m (tries)j(of)e(the)i(corresp)s(onding)f(Ulam)e(matrix)g(requires)300 2126 y(ab)s(out)42 b(1000000)28 b Fq(\002)i Fu(1000)44 b(=)h(1000000000)e(=)i(10)2180 2089 y Fp(9)2262 2126 y Fu(mapping)c(ev)-5 b(aluations)41 b(alone,)k(whic)m(h)e(is)300 2246 y(time)32 b(exp)s(ensiv)m(e.)47 b(If)33 b(the)h(transformation)d (is)h(m)m(ulti-dimensional,)d(the)k(resulting)f(n)m(umerical)300 2366 y(w)m(ork)37 b(of)g(the)g(mapping)e(ev)-5 b(aluation)34 b(from)i(the)h(Mon)m(te)g(Carlo)f(approac)m(h)h(is)f(v)m(ery)i(time)d (con-)300 2487 y(suming.)42 b(Therefore,)33 b(for)e(high)f(dimensional) f(transformations,)h(it)g(is)h(v)m(ery)i(di\016cult)d(or)h(ev)m(en)300 2607 y(imp)s(ossible)36 b(for)h(a)h(single)f(computer)h(to)g(\014nish)g (the)h(n)m(umerical)d(w)m(ork)j(within)e(a)h(reasonable)300 2728 y(time.)k(Ho)m(w)m(ev)m(er,)34 b(in)e(ph)m(ysical)g(applications)e (the)i(dimension)f Fr(d)g Fu(of)h(the)g(transformation)e(ma)m(y)300 2848 y(b)s(e)39 b(v)m(ery)h(large.)61 b(F)-8 b(or)38 b(example,)h(in)f(coupled)h(mapping)e(lattices,)j(whic)m(h)f(ha)m(v)m (e)h(b)s(een)f(widely)300 2968 y(used)25 b(to)f(mo)s(del)f(the)h(v)-5 b(arious)24 b(t)m(yp)s(es)i(of)d(spatiotemp)s(oral)f(c)m(haos)j (arising)d(in)i(spatially)e(extended)300 3089 y(systems,)34 b(w)m(e)g(are)e(in)m(terested)i(in)e(a)g(one)h(dimensional)d(arra)m(y)j (of)f(the)h(form)1161 3326 y Fr(x)1216 3285 y Fo(t)p Fp(+1)1216 3352 y Fo(i)1363 3326 y Fu(=)28 b(\(1)22 b Fq(\000)g Fr(\017)p Fu(\))p Fr(f)11 b Fu(\()p Fr(x)1904 3285 y Fo(t)1904 3351 y(i)1935 3326 y Fu(\))22 b(+)2107 3259 y Fr(\017)p 2103 3303 49 4 v 2103 3395 a Fu(2)2161 3326 y([)p Fr(f)11 b Fu(\()p Fr(x)2340 3285 y Fo(t)2340 3351 y(i)p Fl(\000)p Fp(1)2459 3326 y Fu(\))22 b(+)g Fr(f)11 b Fu(\()p Fr(x)2769 3285 y Fo(t)2769 3351 y(i)p Fp(+1)2887 3326 y Fu(\)])p Fr(;)300 3572 y Fu(where)46 b Fr(f)56 b Fu(is)45 b(a)g(one)g(dimensional)e(mapping,)k Fr(t)e Fu(is)g(the)g(discrete)h(time,)h Fr(i)i Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(d)44 b Fu(is)300 3692 y(a)f(lattice)f(site,)k(and)d Fr(\017)j Fq(2)g Fu(\(0)p Fr(;)17 b Fu(1\))43 b(is)f(the)i(coupling)e(parameter)h ([9].)75 b(Note)43 b(that)g(the)h(ab)s(o)m(v)m(e)300 3813 y(expressions)g(de\014ne)f(an)f Fr(d)p Fu(-dimensional)c(mapping.) 71 b(T)-8 b(o)42 b(study)h(the)f(statistical)e(prop)s(erties)300 3933 y(of)d(the)h(system)g(one)g(should)g(b)s(e)f(able)g(to)g(compute)h (a)f(\014xed)i(densit)m(y)f(of)f(the)h(corresp)s(onding)300 4053 y(F)-8 b(rob)s(enius-P)m(erron)38 b(op)s(erator.)58 b(In)38 b(t)m(ypical)f(situations)g(w)m(e)i(are)f(dealing)e(with)i (systems)h(of)e(a)300 4174 y(large)27 b(spatial)g(extension,)j(for)d (example)h Fr(d)g Fu(ma)m(y)g(b)s(e)h(as)f(big)f(as)i(10)2724 4137 y Fp(6)2763 4174 y Fu(.)42 b(Then)29 b(the)g(corresp)s(onding)300 4294 y(n)m(um)m(b)s(er)35 b(of)g(the)g(mapping)e(ev)-5 b(aluations)34 b(with)g(the)i(Mon)m(te)f(Carlo)f(approac)m(h)i(ma)m(y)e (b)s(e)h(ab)s(out)300 4414 y(\(1000)9 b Fq(\002)g Fu(1000\))863 4378 y Fp(10)933 4355 y Fg(6)979 4414 y Fq(\002)g Fu(10)1163 4378 y Fp(3)1229 4414 y Fu(=)28 b(10)1431 4378 y Fp(6000003)1682 4414 y Fu(.)41 b(Th)m(us,)29 b(ev)m(en)e(a)f(curren)m(t)h(sup)s (ercomputer)g(cannot)f(\014nish)300 4535 y(the)33 b(n)m(umerical)e(w)m (ork)j(within)d(the)i(required)g(time.)446 4655 y(F)-8 b(ortunately)28 b(from)f(the)h(expression)i(\(3.5\),)e(w)m(e)h (immediately)c(see)30 b(that)e(the)g(ev)-5 b(aluation)26 b(of)300 4776 y(the)k(en)m(tries)h(of)f Fr(P)947 4791 y Fo(n)1023 4776 y Fu(is)g Fj(indep)-5 b(endent)31 b(of)f Fu(eac)m(h)h(other.)42 b(Therefore)31 b(the)g(parallel)c(computers)k (can)300 4896 y(b)s(e)k(used)i(to)d(do)h(the)h(Mon)m(te)g(Carlo)e(ev)-5 b(aluation)33 b(to)i(reduce)i(the)e(total)f(computational)e(time.)300 5016 y(Because)e(of)f(the)g(errors)g(from)f(the)h(Mon)m(te)h(Carlo)e (ev)-5 b(aluation,)28 b(the)h(resulting)f(appro)m(ximation)300 5137 y(of)i(the)h(Ulam)e(matrix)h(is)g(not)h(exactly)g(sto)s(c)m (hastic.)43 b(Hence)32 b(in)e(our)h(algorithm,)d(after)i(forming)300 5257 y(the)g(Ulam)f(matrix)f(n)m(umerically)-8 b(,)29 b(w)m(e)i(normalize)c(its)j(ro)m(ws)h(to)e(mak)m(e)i(it)d(a)i(sto)s(c)m (hastic)g(one.)43 b(As)300 5377 y(w)m(e)e(men)m(tioned)e(in)g(Chapter)i (3,)g(this)f(matrix)e(can)i(b)s(e)g(view)m(ed)h(as)f(a)f(transition)f (matrix)g(for)300 5498 y(a)e(Mark)m(o)m(v)i(c)m(hain.)54 b(So)36 b(from)f(the)i(theory)f(and)h(metho)s(ds)f(of)g(Mark)m(o)m(v)h (c)m(hains)g([32)o(],)h(a)d(simple)p Black 2021 5764 a(29)p Black eop %%Page: 30 39 30 38 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8 b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(30)p Black 300 274 a(iteration)39 b(of)i(the)h(matrix)d(will)g(usually)i(giv)m(e)g(an)g (accurate)h(\014xed)h(densit)m(y)f(in)e(man)m(y)h(cases,)300 395 y(suc)m(h)34 b(as)f(when)h Fr(S)k Fu(is)32 b(ergo)s(dic)g(\(see)h (some)g(argumen)m(ts)f(in)g([29])g(in)g(this)h(direction\).)446 515 y(Based)40 b(on)e(the)i(ab)s(o)m(v)m(e)f(computational)d (consideration,)j(w)m(e)h(are)f(ready)g(to)f(prop)s(ose)i(the)300 635 y(follo)m(wing)e(t)m(w)m(o)k(parallel)c(algorithms)g(for)i (calculating)e(a)j(\014xed)h(densit)m(y)f(of)g(the)g(F)-8 b(rob)s(enius-)300 756 y(P)m(erron)37 b(op)s(erator)e Fr(P)14 b Fu(.)54 b(The)37 b(\014rst)f(one)h(computes)f(the)h(Ulam)d (matrix)h(with)h(m)m(ulti-pro)s(cessor)300 876 y(and)f(calculates)f (the)i(appro)m(ximate)e(\014xed)i(densit)m(y)g(with)e(a)h(single)f(pro) s(cessor)i(via)e(the)h(direct)300 997 y(iteration)h(sc)m(heme.)59 b(In)38 b(the)g(second)h(algorithm)34 b(the)k(computation)e(of)h(the)h (\014xed)h(densit)m(y)f(is)300 1117 y(also)32 b(parallelized.)446 1237 y(Supp)s(ose)46 b Fr(p)f Fu(pro)s(cessors)h(are)e(used)i(to)f (compute)f(the)h(matrix)f Fr(P)2933 1252 y Fo(n)3024 1237 y Fu(in)g(Ulam's)f(metho)s(d.)300 1358 y(Cho)s(ose)29 b(the)h(n)m(um)m(b)s(er)f Fr(n)g Fu(of)f(the)i(partitions)d(to)h(b)s(e) h Fr(n)f Fu(=)g Fr(pr)s Fu(.)41 b(Then)30 b(the)g(ro)m(w)f(or)f(column) g(based)300 1478 y(strip)41 b(partition)f(metho)s(d)h(is)g(emplo)m(y)m (ed)h(to)g(manipulate)d(the)k Fr(pr)31 b Fq(\002)d Fr(pr)45 b Fu(matrix)40 b(b)m(y)j(using)e Fr(p)300 1598 y Fu(pro)s(cessors.)46 b(That)33 b(is,)f(eac)m(h)i(pro)s(cessor)g(computes)f Fr(r)j Fu(ro)m(ws)d(or)g(columns)f(of)g(the)h(matrix,)f(and)300 1719 y(eac)m(h)h(en)m(try)h(of)e(the)h(matrix)e(is)h(calculated)g(b)m (y)i(using)e(the)h(quasi-Mon)m(te)g(Carlo)e(metho)s(d.)446 1839 y(The)37 b(idea)e(of)g(the)i(\014rst)f(parallel)d(algorithm)f(is)k (that,)g(after)f(all)f(the)i(en)m(tries)h(of)e(eac)m(h)i(ro)m(w)300 1960 y(or)30 b(column)e(are)i(calculated,)g(they)h(are)f(sen)m(t)h(to)f (the)g(\014rst)g(pro)s(cessor)h(for)f(the)g(computation)e(of)300 2080 y(the)33 b(\014xed)h(densit)m(y)f(function)f(b)m(y)i(the)f(direct) f(iteration)f(metho)s(d)h([19)o(].)446 2200 y(Com)m(bining)h(Ulam's)g (metho)s(d)h(and)h(the)f(quasi-Mon)m(te)h(Carlo)f(approac)m(h)g(for)g (computing)300 2321 y(a)d(\014xed)h(densit)m(y)g(of)e(the)h(F)-8 b(rob)s(enius-P)m(erron)31 b(op)s(erator,)g(the)g(\014rst)h(parallel)c (algorithm)g(can)j(b)s(e)300 2441 y(describ)s(ed)i(as)g(follo)m(ws:)300 2645 y Fm(Ulam's)k(Matrix)g(P)m(arallel)e(Algorithm)f(\(UMP)-9 b(A\):)p Black 419 2873 a Fu(1.)p Black 49 w(Let)46 b Fr(T)789 2888 y Fo(h)884 2873 y Fu(=)j Fq(f)p Fu(\012)1129 2888 y Fo(i)1158 2873 y Fq(g)1208 2837 y Fo(n)1208 2897 y(i)p Fp(=1)1372 2873 y Fu(b)s(e)c(a)h(shap)s(e-regular)f(partition)e (of)i(\012.)83 b(F)-8 b(or)45 b(example,)k(in)c(one)544 2993 y(dimensional)40 b(cases,)46 b(c)m(ho)s(ose)d Fr(n)g Fu(equal)f(subin)m(terv)-5 b(als)42 b(of)g(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1])42 b(and)544 3114 y(select)33 b Fr(p)f Fu(pro)s(cessors)i(for)e(the)h(computation.)p Black 419 3317 a(2.)p Black 49 w(Use)i(the)f(quasi-Mon)m(te)h(Carlo)e(metho)s(d)g (and)h(form)m(ula)e(\(5.1\))i Fq(\030)g Fu(\(5.5\))g(to)g(p)s(erform)f (the)544 3437 y(parallel)e(ev)-5 b(aluation)31 b(of)i(the)h(matrix)e Fr(P)2023 3452 y Fo(h)2068 3437 y Fu(.)46 b(Then)35 b(send)g(all)c(the) j(en)m(tries)g Fr(p)3288 3452 y Fo(ij)3382 3437 y Fu(to)f(the)h (\014rst)544 3558 y(pro)s(cessor)f(and)g(set)g(all)e(the)i(other)g(pro) s(cessors)h(idle.)p Black 419 3761 a(3.)p Black 49 w(In)26 b(the)h(\014rst)f(pro)s(cessor,)j(select)d(a)g(starting)f(nonnegativ)m (e)h(v)m(ector)h Fr(c)h Fu(=)g(\()p Fr(c)3230 3776 y Fp(1)3269 3761 y Fr(;)17 b(c)3355 3776 y Fp(2)3394 3761 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)3673 3776 y Fo(n)3720 3761 y Fu(\))3758 3725 y Fo(T)3813 3761 y Fu(;)544 3882 y(a)32 b(usual)g(c)m(hoice)h(is)f Fr(c)c Fu(=)g(\(1)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17 b Fu(1\))1945 3845 y Fo(T)1999 3882 y Fu(.)p Black 419 4085 a(4.)p Black 49 w(Calculate)31 b Fr(c)1019 4049 y Fl(\003)1087 4085 y Fu(=)c Fr(P)1267 4049 y Fo(T)1253 4111 y(h)1322 4085 y Fr(c)32 b Fu(and)h(the)g(1-norm)e(error)h(Error)h (=)27 b Fq(k)p Fr(c)2785 4049 y Fl(\003)2847 4085 y Fq(\000)22 b Fr(c)p Fq(k)p Fu(.)p Black 419 4288 a(5.)p Black 49 w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 4252 y Fl(\003)1052 4288 y Fu(and)g(rep)s(eat)f(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e (Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544 4409 y(tolerance.)p Black 419 4612 a(6.)p Black 49 w(Let)34 b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 4627 y Fo(h)2545 4612 y Fu(=)2651 4537 y Fi(P)2756 4564 y Fo(n)2756 4641 y(i)p Fp(=1)2891 4612 y Fr(c)2933 4627 y Fo(i)2961 4612 y Fu(1)3010 4627 y Fo(i)3072 4612 y Fu(is)f(an)g(appro)m(ximate)544 4733 y(\014xed)g(densit)m(y)-8 b(.)446 4961 y(In)25 b(the)g(parallel)c (algorithm)g(implemen)m(tation,)i(w)m(e)j(emplo)m(y)e(the)g (distributed)g(\(h)m(yp)s(ercub)s(e\))300 5081 y(net)m(w)m(ork)33 b(arc)m(hitecture.)44 b(The)32 b(ab)s(o)m(v)m(e)g(all-to-one)d(accum)m (ulation)g(pro)s(cedure)k(can)f(b)s(e)f(referred)300 5202 y(to)h(Program)g(3.1)g(of)g([35].)446 5322 y(Let)e Fr(t)653 5337 y Fo(s)720 5322 y Fu(b)s(e)g(the)g(startup)g(time)f(whic) m(h)h(is)f(the)i(time)d(required)i(to)g(handle)f(a)h(message)g(at)g (the)300 5442 y(sending)h(pro)s(cessor,)h(and)f(let)f Fr(t)1465 5457 y Fo(w)1553 5442 y Fu(b)s(e)h(the)g(p)s(er-w)m(ord)g (transfer)g(time.)42 b(In)31 b(the)g(comm)m(unication,)p Black Black eop %%Page: 31 40 31 39 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8 b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(31)p Black 300 274 a(the)27 b(n)m(um)m(b)s(er)h(of)e(data)h(in)f(the)i Fr(i)p Fu(th)f(transformation)e(is)h Fr(n)p Fu(\()p Fr(r)s Fu(2)2500 238 y Fo(i)2539 274 y Fu(+)11 b(1\).)41 b(Then)28 b(the)f(comm)m (unication)300 395 y(time)k(in)h(the)h(algorithm)c(should)k(b)s(e)706 703 y Fr(T)763 718 y Fo(comm)985 703 y Fu(=)1097 578 y Fo(d)p Fl(\000)p Fp(1)1089 608 y Fi(X)1103 818 y Fo(i)p Fp(=0)1232 703 y Fu(\()p Fr(t)1305 718 y Fo(s)1365 703 y Fu(+)22 b Fr(t)1498 718 y Fo(w)1554 703 y Fr(n)p Fu(\()p Fr(r)s Fu(2)1746 661 y Fo(i)1796 703 y Fu(+)g(1\)\))28 b(=)f(\()p Fr(t)2223 718 y Fo(s)2282 703 y Fu(+)22 b Fr(t)2415 718 y Fo(w)2472 703 y Fr(n)p Fu(\))p Fr(l)r(og)2693 718 y Fp(2)2733 703 y Fr(p)g Fu(+)g Fr(t)2937 718 y Fo(w)2993 703 y Fr(n)3051 661 y Fp(2)3091 703 y Fu(\(1)g Fq(\000)3310 635 y Fu(1)p 3310 680 49 4 v 3310 771 a Fr(p)3368 703 y Fu(\))p Fr(:)206 b Fu(\(6.1\))446 1005 y(Let)30 b Fr(t)653 1020 y Fo(mc)780 1005 y Fu(b)s(e)g(the)g(Mon)m(te)g(Carlo)f (computation)f(time)g(for)h(eac)m(h)i(elemen)m(t)e Fr(p)3192 1020 y Fo(ij)3282 1005 y Fu(of)g(the)h(matrix)300 1125 y Fr(P)363 1140 y Fo(n)442 1125 y Fu(\(5.1\))i Fq(\030)h Fu(\(5.5\).)43 b(Then)34 b(the)f(parallel)d(computation)h(time)g (should)i(b)s(e)1570 1405 y Fr(T)1627 1420 y Fo(comp)1821 1405 y Fu(=)28 b Fr(r)s(nt)2065 1420 y Fo(mc)2190 1405 y Fu(=)2303 1337 y Fr(n)2361 1301 y Fp(2)p 2303 1382 98 4 v 2328 1473 a Fr(p)2411 1405 y(t)2446 1420 y Fo(mc)2543 1405 y Fr(:)1069 b Fu(\(6.2\))446 1669 y(In)30 b(the)f(\014xed)h (densit)m(y)g(v)m(ector)g(computation,)e(let's)h(denote)g(the)h(n)m(um) m(b)s(er)f(of)g(the)g(iteration)300 1790 y(is)35 b Fr(M)46 b Fu(and)36 b(the)g(time)e(for)h(the)h(pro)s(duct)f(of)g(t)m(w)m(o)h(n) m(um)m(b)s(ers)h(is)e Fr(t)2655 1805 y Fo(pr)r(od)2799 1790 y Fu(.)52 b(F)-8 b(or)35 b(eac)m(h)h(iteration,)f(the)300 1910 y(time)c(of)h(the)h(\014xed)h(densit)m(y)g(v)m(ector)f (computation)e(is)1759 2130 y Fr(T)1816 2145 y Fo(v)r(ect)1974 2130 y Fu(=)c Fr(n)2135 2089 y Fp(2)2175 2130 y Fr(t)2210 2145 y Fo(pr)r(od)2354 2130 y Fr(:)1258 b Fu(\(6.3\))300 2350 y(Then)34 b(the)f(total)e(time)g(of)h(the)h(Ulam)e(matrix)g (parallel)f(computation)h(is)300 2624 y Fr(T)357 2639 y Fo(par)r(a)533 2624 y Fu(=)d Fr(T)694 2639 y Fo(comp)883 2624 y Fu(+)22 b Fr(T)1038 2639 y Fo(comm)1254 2624 y Fu(+)g Fr(M)10 b(T)1513 2639 y Fo(v)r(ect)1671 2624 y Fu(=)1785 2556 y Fr(n)1843 2520 y Fp(2)p 1785 2601 V 1809 2692 a Fr(p)1892 2624 y Fu(\()p Fr(t)1965 2639 y Fo(mc)2085 2624 y Fu(+)22 b Fr(t)2218 2639 y Fo(w)2275 2624 y Fu(\()p Fr(p)g Fq(\000)g Fu(1\)\))g(+)g(\()p Fr(t)2801 2639 y Fo(s)2860 2624 y Fu(+)g Fr(t)2993 2639 y Fo(w)3050 2624 y Fr(n)p Fu(\))p Fr(l)r(og)3271 2639 y Fp(2)3310 2624 y Fr(p)h Fu(+)f Fr(M)10 b(n)3642 2583 y Fp(2)3682 2624 y Fr(t)3717 2639 y Fo(pr)r(od)3861 2624 y Fr(:)3639 2804 y Fu(\(6.4\))446 3017 y(The)35 b(UMP)-8 b(A)35 b(should)g(sp)s (eedup)g(the)g(matrix)e(ev)-5 b(aluation)32 b(pro)s(cess,)k(but)e(as)h (w)m(e)g(describ)s(ed)300 3138 y(ab)s(o)m(v)m(e,)k(it)c(con)m(tains)i (a)f(sequen)m(tial)h(part)g(with)f(whic)m(h)h(the)g(\014xed)h(densit)m (y)g(appro)m(ximation)c(is)300 3258 y(calculated)24 b(b)m(y)h(the)g (iteration)e(metho)s(d.)40 b(Th)m(us,)28 b(while)c(the)h(\014rst)g(pro) s(cessor)h(do)s(es)f(the)g(iteration)300 3378 y(pro)s(cess,)38 b(other)f(pro)s(cessors)h(are)e(set)h(idle.)53 b(This)36 b(ma)m(y)g(not)g(b)s(e)h(v)m(ery)h(e\016cien)m(t)f(in)e(the)i(actual) 300 3499 y(computation.)446 3619 y(Therefore,)k(w)m(e)f(prop)s(ose)e(a) g(complete)g(parallel)e(algorithm)f(whic)m(h)j(is)g(comp)s(osed)h(of)f (the)300 3740 y(parallel)28 b(computation)h(of)h(the)h(matrix)e Fr(P)1865 3755 y Fo(n)1912 3740 y Fu(,)i(whic)m(h)g(is)g(the)g(same)f (as)h(ab)s(o)m(v)m(e,)h(and)f(the)g(parallel)300 3860 y(computation)i(of)h(the)i(\014xed)f(densit)m(y)h Fr(f)1779 3875 y Fo(n)1861 3860 y Fu(of)e(the)h(appro)m(ximate)f(F)-8 b(rob)s(enius-P)m(erron)35 b(op)s(erator)300 3980 y Fr(P)363 3995 y Fo(n)410 3980 y Fu(.)300 4184 y Fm(Completely)g(P)m(arallel)g (Algorithm)g(\(CP)-9 b(A\):)p Black 419 4412 a Fu(1.)p Black 49 w(Let)46 b Fr(T)789 4427 y Fo(h)884 4412 y Fu(=)j Fq(f)p Fu(\012)1129 4427 y Fo(i)1158 4412 y Fq(g)1208 4376 y Fo(n)1208 4437 y(i)p Fp(=1)1372 4412 y Fu(b)s(e)c(a)h(shap)s (e-regular)f(partition)e(of)i(\012.)83 b(F)-8 b(or)45 b(example,)k(in)c(one)544 4532 y(dimensional)40 b(cases,)46 b(c)m(ho)s(ose)d Fr(n)g Fu(equal)f(subin)m(terv)-5 b(als)42 b(of)g(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1])42 b(and)544 4653 y(select)33 b Fr(p)f Fu(pro)s(cessors)i(for)e(the)h (computation.)p Black 419 4856 a(2.)p Black 49 w(Use)f(the)f(quasi-Mon) m(te)g(Carlo)f(metho)s(d)g(and)h(form)m(ulas)e(\(5.1\))i Fq(\030)g Fu(\(5.5\))f(to)h(p)s(erform)f(the)544 4977 y(parallel)g(ev)-5 b(aluation)30 b(of)j(the)g(matrix)e Fr(P)2019 4992 y Fo(h)2063 4977 y Fu(.)p Black 419 5180 a(3.)p Black 49 w(F)-8 b(or)22 b(the)h Fr(i)p Fu(th)h(pro)s(cessor,)i (whic)m(h)d(computes)h Fr(r)h Fu(columns)e(\(denoted)h(as)f Fr(P)3166 5195 y Fo(hi)3235 5180 y Fu(\))g(of)f(the)h(matrix)544 5300 y Fr(P)607 5315 y Fo(h)652 5300 y Fu(,)32 b(select)g(a)g(starting) f(nonnegativ)m(e)i(v)m(ector)g Fr(c)27 b Fu(=)h(\()p Fr(c)2507 5315 y Fp(1)2546 5300 y Fr(;)17 b(c)2632 5315 y Fp(2)2671 5300 y Fr(;)g Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2951 5315 y Fo(n)2997 5300 y Fu(\))3035 5264 y Fo(T)3090 5300 y Fu(;)32 b(a)g(usual)g(c)m(hoice)g(is)544 5421 y Fr(c)c Fu(=)f(\(1)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g (\001)30 b Fr(;)17 b Fu(1\))1220 5385 y Fo(T)1275 5421 y Fu(.)43 b(Here,)34 b Fr(r)c Fu(=)e Fr(n=p)p Fu(.)p Black Black eop %%Page: 32 41 32 40 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8 b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(32)p Black Black 419 274 a(4.)p Black 49 w(Calculate)36 b Fr(c)1024 238 y Fl(\003)1024 299 y Fo(i)1098 274 y Fu(=)f Fr(P)1286 238 y Fo(T)1272 300 y(hi)1341 274 y Fr(c)p Fu(.)57 b(Then)38 b(all-to-all)31 b(broadcast)38 b(the)f(v)m(ector)h Fr(c)3081 238 y Fl(\003)3081 299 y Fo(i)3158 274 y Fu(\()p Fr(i)d Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17 b(p)p Fu(\))544 395 y(and)31 b(comp)s(ose)g(the)g Fr(n)19 b Fq(\002)g Fu(1)30 b(v)m(ector)i Fr(d)p Fu(.)43 b(Compute)31 b(the)g(1-norm)e(error)i(Error)g(=)c Fq(k)p Fr(c)3567 358 y Fl(\003)3625 395 y Fq(\000)19 b Fr(c)p Fq(k)p Fu(.)p Black 419 593 a(5.)p Black 49 w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 557 y Fl(\003)1052 593 y Fu(and)g(rep)s(eat)f (the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e(Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544 714 y(tolerance.)p Black 419 912 a(6.)p Black 49 w(Let)34 b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 927 y Fo(h)2545 912 y Fu(=)2651 838 y Fi(P)2756 864 y Fo(n)2756 941 y(i)p Fp(=1)2891 912 y Fr(c)2933 927 y Fo(i)2961 912 y Fu(1)3010 927 y Fo(i)3072 912 y Fu(is)f(an)g(appro)m(ximate)544 1033 y(\014xed)g(densit)m(y)-8 b(.)446 1242 y(No)m(w)45 b(w)m(e)h(w)m(ould)e(lik)m(e)f(to)h(\014nd)h(the)g(parallel)d(time)h (form)m(ula)f(for)i(the)h(CP)-8 b(A.)45 b(The)g(same)300 1362 y(analysis)28 b(as)i(for)e(the)i(UMP)-8 b(A)29 b(sho)m(ws)i(that)e (the)g(time)f(of)h(the)g(parallel)d(matrix)i(computation)f(is)1570 1619 y Fr(T)1641 1555 y Fh(0)1627 1644 y Fo(comp)1821 1619 y Fu(=)h Fr(r)s(nt)2065 1634 y Fo(mc)2190 1619 y Fu(=)2303 1552 y Fr(n)2361 1516 y Fp(2)p 2303 1597 98 4 v 2328 1688 a Fr(p)2411 1619 y(t)2446 1634 y Fo(mc)2543 1619 y Fr(:)1069 b Fu(\(6.5\))300 1868 y(And)33 b(similarly)c(w)m(e)34 b(can)e(\014nd)h(that)g(the)g(time)e(of)h(the)h(parallel)d(\014xed)k(v) m(ector)f(computation)e(is)1541 2125 y Fr(T)1612 2060 y Fh(0)1598 2149 y Fo(v)r(ect)1756 2125 y Fu(=)d Fr(r)s(nt)2000 2140 y Fo(pr)r(od)2171 2125 y Fu(=)2285 2057 y Fr(n)2343 2021 y Fp(2)p 2285 2102 V 2309 2193 a Fr(p)2392 2125 y(t)2427 2140 y Fo(pr)r(od)2571 2125 y Fr(:)1041 b Fu(\(6.6\))446 2373 y(F)-8 b(or)27 b(the)h(all-to-all)22 b(comm)m(unication)j(of)i (the)h(v)m(ector)g(data)g(in)e(the)i(net)m(w)m(ork,)i(the)e(lo)s(op)e (time)300 2493 y(is)32 b Fr(d)22 b Fq(\000)h Fu(1.)44 b(F)-8 b(or)32 b(the)h Fr(i)p Fu(-th)g(comm)m(unication,)d(the)j (length)g(of)f(the)h(data)f(is)h(1)22 b(+)g Fr(r)s Fu(2)3264 2457 y Fo(i)3291 2493 y Fu(,)33 b(so)g(the)g(total)300 2614 y(comm)m(unication)d(time)h(is)731 2890 y Fr(T)802 2825 y Fh(0)788 2914 y Fo(comm)1010 2890 y Fu(=)1114 2761 y Fo(l)q(og)1204 2770 y Fg(2)1238 2761 y Fo(p)p Fl(\000)p Fp(1)1167 2795 y Fi(X)1181 3005 y Fo(i)p Fp(=0)1363 2890 y Fu(\()p Fr(t)1436 2905 y Fo(s)1495 2890 y Fu(+)22 b Fr(t)1628 2905 y Fo(w)1685 2890 y Fu(\(1)g(+)g Fr(r)s Fu(2)1988 2848 y Fo(i)2016 2890 y Fu(\)\))27 b(=)h(\()p Fr(t)2296 2905 y Fo(s)2355 2890 y Fu(+)22 b Fr(t)2488 2905 y Fo(w)2545 2890 y Fu(\))p Fr(l)r(og)2708 2905 y Fp(2)2747 2890 y Fr(p)g Fu(+)g Fr(t)2951 2905 y Fo(w)3008 2890 y Fr(n)p Fu(\(1)g Fq(\000)3285 2822 y Fu(1)p 3285 2867 49 4 v 3285 2958 a Fr(p)3343 2890 y Fu(\))p Fr(:)231 b Fu(\(6.7\))300 3175 y(Therefore)34 b(the)f(total)e(time)g(of)h(the)h (CP)-8 b(A)33 b(is)300 3413 y Fr(T)371 3348 y Fh(0)357 3438 y Fo(par)r(a)533 3413 y Fu(=)28 b Fr(T)708 3348 y Fh(0)694 3438 y Fo(comp)883 3413 y Fu(+)22 b Fr(M)10 b Fu(\()p Fr(T)1194 3348 y Fh(0)1180 3438 y Fo(v)r(ect)1333 3413 y Fu(+)22 b Fr(T)1502 3348 y Fh(0)1488 3438 y Fo(comm)1681 3413 y Fu(\))28 b(=)1861 3346 y Fr(n)1919 3309 y Fp(2)p 1861 3390 98 4 v 1885 3481 a Fr(p)1968 3413 y(t)2003 3428 y Fo(mc)2123 3413 y Fu(+)22 b Fr(M)10 b Fu(\()2373 3346 y Fr(n)2431 3309 y Fp(2)p 2373 3390 V 2398 3481 a Fr(p)2481 3413 y(t)2516 3428 y Fo(pr)r(od)2682 3413 y Fu(+)22 b(\()p Fr(t)2853 3428 y Fo(s)2912 3413 y Fu(+)g Fr(t)3045 3428 y Fo(w)3102 3413 y Fu(\))p Fr(l)r(og)3265 3428 y Fp(2)3304 3413 y Fr(p)h Fu(+)f Fr(t)3509 3428 y Fo(w)3565 3413 y Fr(n)p Fu(\(1)g Fq(\000)3842 3346 y Fu(1)p 3842 3390 49 4 v 3842 3481 a Fr(p)3901 3413 y Fu(\)\))p Fr(:)3639 3593 y Fu(\(6.8\))446 3790 y(No)m(w)34 b(w)m(e)g(in)m(tro)s(duce)f(some)f(p)s(erformance)h(metrics)f(for)h (the)g(parallel)d(system.)46 b(A)33 b(parallel)300 3910 y(system)f(is)e(the)h(com)m(bination)e(of)h(the)h(parallel)d(algorithm) g(and)i(the)i(parallel)c(arc)m(hitecture)j(on)300 4031 y(whic)m(h)40 b(it)e(is)h(implemen)m(ted.)63 b(The)40 b Fj(p)-5 b(ar)g(al)5 b(lel)40 b(run)i(time)k Fu(is)39 b(the)h(time)e(that)h(elapses)h(from)f(the)300 4151 y(momen)m(t)29 b(that)i(the)g(parallel)c(computation)i(starts)i(to)f(the)h(momen)m(t)e (that)i(the)f(last)g(pro)s(cessor)300 4271 y(\014nishes)37 b(the)g(execution.)57 b(The)37 b Fj(sp)-5 b(e)g(e)g(dup)38 b Fr(s)e Fu(is)g(de\014ned)i(as)f(the)g(ratio)e(of)h(the)h(serial)e (run)i(time)300 4392 y Fr(T)357 4407 y Fo(seq)496 4392 y Fu(of)e(the)h(b)s(est)g(sequen)m(tial)f(algorithm)e(for)h(solving)h (a)g(problem)f(to)h(the)h(time)e Fr(T)3423 4407 y Fo(par)r(a)3607 4392 y Fu(tak)m(en)300 4512 y(b)m(y)f(the)g(parallel)d(algorithm)g(to)i (solv)m(e)h(the)g(same)f(problem)g(on)g Fr(p)h Fu(pro)s(cessors,)1772 4758 y Fr(s)28 b Fu(=)1982 4691 y Fr(T)2039 4706 y Fo(seq)p 1959 4735 206 4 v 1959 4827 a Fr(T)2016 4842 y Fo(par)r(a)2175 4758 y Fr(:)p Black 1437 w Fu(\(6.9\))p Black 300 5015 a(The)41 b Fj(e\016ciency)g Fr(E)46 b Fu(of)39 b(a)h(parallel)d(system) k(is)e(a)h(measure)g(of)g(the)g(fraction)f(of)h(the)g(time)e(for)300 5135 y(whic)m(h)31 b(a)f(pro)s(cessor)i(is)e(emplo)m(y)m(ed,)h(and)g (it)e(is)h(de\014ned)i(as)f(the)g(ratio)e(of)h(the)h(sp)s(eedup)h Fr(s)e Fu(to)h(the)300 5256 y(n)m(um)m(b)s(er)i(of)f(pro)s(cessors)i Fr(p)p Fu(,)1834 5477 y Fr(E)g Fu(=)2055 5409 y Fr(s)p 2054 5454 49 4 v 2054 5545 a(p)2113 5477 y(:)p Black 1451 w Fu(\(6.10\))p Black Black Black eop %%Page: 33 42 33 41 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8 b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(33)p Black 300 274 a(The)39 b Fj(c)-5 b(ost)39 b Fr(C)44 b Fu(of)37 b(solving)g(a)g (problem)g(on)g(a)g(parallel)e(system)k(is)e(de\014ned)i(as)f(the)g (pro)s(duct)f(of)300 395 y(the)d(parallel)e(time)g(and)i(the)g(n)m(um)m (b)s(er)h(of)e(pro)s(cessors)j(used,)f(that)f(is,)g Fr(C)j Fu(=)29 b Fr(pT)3246 410 y Fo(par)r(a)3395 395 y Fu(.)48 b(The)34 b(cost)300 515 y(re\015ects)f(the)f(sum)f(of)g(the)h(time)e (that)i(eac)m(h)g(pro)s(cessor)g(sp)s(ends)h(solving)e(the)h(problem.) 42 b(Hence)300 635 y(w)m(e)34 b(ha)m(v)m(e)1659 879 y Fr(E)f Fu(=)1925 811 y Fr(T)1982 826 y Fo(seq)p 1878 856 255 4 v 1878 947 a Fr(pT)1984 962 y Fo(par)r(a)2170 879 y Fu(=)2284 811 y Fr(T)2341 826 y Fo(seq)p 2284 856 161 4 v 2325 947 a Fr(C)2454 879 y(:)1110 b Fu(\(6.11\))300 1152 y(This)33 b(form)m(ula)d(means)j(that)f(the)h(e\016ciency)h Fr(E)39 b Fu(is)32 b(in)m(v)m(ersely)i(prop)s(ortional)c(to)i(the)h (cost)g Fr(C)7 b Fu(.)446 1272 y(F)-8 b(or)31 b(the)h(Ulam)e(matrix)g (parallel)f(computation,)h(the)i(time)e(of)h(the)h(b)s(est)g(sequen)m (tial)g(algo-)300 1393 y(rithm)f(is)1124 1613 y Fr(T)1181 1628 y Fo(seq)1312 1613 y Fu(=)d Fr(n)1474 1572 y Fp(2)1514 1613 y Fr(t)1549 1628 y Fo(mc)1668 1613 y Fu(+)22 b Fr(M)10 b(t)1905 1628 y Fo(pr)r(od)2050 1613 y Fr(n)2108 1572 y Fp(2)2175 1613 y Fu(=)28 b Fr(n)2337 1572 y Fp(2)2377 1613 y Fu(\()p Fr(t)2450 1628 y Fo(mc)2569 1613 y Fu(+)22 b Fr(M)10 b(t)2806 1628 y Fo(pr)r(od)2951 1613 y Fu(\))p Fr(:)575 b Fu(\(6.12\))300 1833 y(So)32 b(considering)g(\(6.4\))g(and)h (\(6.12\),)f(the)h(sp)s(eedup)h(of)e(the)h(UMP)-8 b(A)34 b(is)614 2112 y Fr(s)28 b Fu(=)824 2045 y Fr(T)881 2060 y Fo(seq)p 801 2089 206 4 v 801 2180 a Fr(T)858 2195 y Fo(par)r(a)1045 2112 y Fu(=)1861 2045 y Fr(pn)1968 2009 y Fp(2)2008 2045 y Fu(\()p Fr(t)2081 2060 y Fo(mc)2200 2045 y Fu(+)22 b Fr(M)10 b(t)2437 2060 y Fo(pr)r(od)2582 2045 y Fu(\))p 1158 2089 2165 4 v 1158 2180 a Fr(n)1216 2152 y Fp(2)1256 2180 y Fu(\()p Fr(t)1329 2195 y Fo(mc)1448 2180 y Fu(+)22 b Fr(t)1581 2195 y Fo(w)1638 2180 y Fu(\()p Fr(p)g Fq(\000)h Fu(1\)\))f(+)g(\()p Fr(t)2165 2195 y Fo(s)2224 2180 y Fu(+)g Fr(nt)2415 2195 y Fo(w)2472 2180 y Fu(\))p Fr(pl)r(og)2684 2195 y Fp(2)2723 2180 y Fr(p)g Fu(+)g Fr(pn)2999 2152 y Fp(2)3039 2180 y Fr(M)10 b(t)3178 2195 y Fo(pr)r(od)3333 2112 y Fr(:)p Black 231 w Fu(\(6.13\))p Black 300 2385 a(The)34 b(e\016ciency)g(of)e(the)h(UMP)-8 b(A)33 b(is)677 2659 y Fr(E)g Fu(=)897 2592 y Fr(s)p 896 2636 49 4 v 896 2727 a(p)982 2659 y Fu(=)1823 2592 y Fr(n)1881 2555 y Fp(2)1921 2592 y Fu(\()p Fr(t)1994 2607 y Fo(mc)2113 2592 y Fu(+)22 b Fr(M)10 b(t)2350 2607 y Fo(pr)r(od)2495 2592 y Fu(\))p 1096 2636 2165 4 v 1096 2727 a Fr(n)1154 2699 y Fp(2)1194 2727 y Fu(\()p Fr(t)1267 2742 y Fo(mc)1386 2727 y Fu(+)22 b Fr(t)1519 2742 y Fo(w)1576 2727 y Fu(\()p Fr(p)g Fq(\000)h Fu(1\)\))e(+)h(\()p Fr(t)2102 2742 y Fo(s)2161 2727 y Fu(+)g Fr(nt)2352 2742 y Fo(w)2409 2727 y Fu(\))p Fr(pl)r(og)2621 2742 y Fp(2)2661 2727 y Fr(p)g Fu(+)g Fr(pn)2937 2699 y Fp(2)2976 2727 y Fr(M)10 b(t)3115 2742 y Fo(pr)r(od)3270 2659 y Fr(:)p Black 294 w Fu(\(6.14\))p Black 300 2932 a(If)33 b Fr(n)f Fu(is)g(k)m(ept)i (\014xed,)g(then)f(w)m(e)h(can)f(get)f(the)h(relation)e(b)s(et)m(w)m (een)k Fr(E)j Fu(and)33 b Fr(p)f Fu(as)h(follo)m(ws.)758 3206 y Fr(E)6 b Fu(\()p Fr(p)p Fu(\))83 b(=)1937 3139 y Fr(n)1995 3102 y Fp(2)2035 3139 y Fu(\()p Fr(t)2108 3154 y Fo(mc)2228 3139 y Fu(+)22 b Fr(M)10 b(t)2465 3154 y Fo(pr)r(od)2609 3139 y Fu(\))p 1213 3183 2159 4 v 1213 3274 a Fr(pl)r(og)1387 3289 y Fp(2)1426 3274 y Fr(p)p Fu(\()p Fr(t)1548 3289 y Fo(s)1607 3274 y Fu(+)23 b Fr(nt)1799 3289 y Fo(w)1856 3274 y Fu(\))f(+)g Fr(pn)2121 3246 y Fp(2)2160 3274 y Fu(\()p Fr(t)2233 3289 y Fo(w)2312 3274 y Fu(+)g Fr(M)10 b(t)2549 3289 y Fo(pr)r(od)2694 3274 y Fu(\))22 b(+)g Fr(n)2910 3246 y Fp(2)2950 3274 y Fu(\()p Fr(t)3023 3289 y Fo(mc)3142 3274 y Fq(\000)h Fr(t)3277 3289 y Fo(w)3334 3274 y Fu(\))1044 3471 y(=)1554 3403 y Fr(K)1637 3418 y Fo(n)p 1213 3448 811 4 v 1213 3539 a Fr(pl)r(og)1387 3554 y Fp(2)1426 3539 y Fr(p)g Fu(+)f Fr(pK)1735 3505 y Fp(1)1728 3567 y Fo(d)1796 3539 y Fu(+)g Fr(K)1984 3505 y Fp(2)1977 3567 y Fo(d)2034 3471 y Fr(;)300 3744 y Fu(where)31 b(a)e(series)h(of)g Fr(K)7 b Fu(s)30 b(are)f(di\013eren)m(t)h(constan)m(ts.)44 b(F)-8 b(rom)28 b(the)i(form)m(ula)e(w)m(e)j(can)f(de\014nitely)f(sa)m(y)300 3864 y(that)j(for)g(the)h(UMP)-8 b(A,)34 b(when)g Fr(p)e Fu(increases,)i Fr(E)k Fu(will)31 b(decrease.)446 3985 y(If)i Fr(p)f Fu(is)g(k)m(ept)i(\014xed,)g(w)m(e)g(can)e(get)h(the)g (relation)e(b)s(et)m(w)m(een)j Fr(E)39 b Fu(and)33 b Fr(n)f Fu(as)h(follo)m(ws.)706 4259 y Fr(E)6 b Fu(\()p Fr(n)p Fu(\))84 b(=)1942 4191 y Fr(n)2000 4155 y Fp(2)2040 4191 y Fu(\()p Fr(t)2113 4206 y Fo(mc)2232 4191 y Fu(+)22 b Fr(M)10 b(t)2469 4206 y Fo(pr)r(od)2614 4191 y Fu(\))p 1171 4236 2254 4 v 1171 4327 a Fr(n)1229 4298 y Fp(2)1268 4327 y Fu(\()p Fr(t)1341 4342 y Fo(mc)1461 4327 y Fu(+)22 b Fr(M)10 b(pt)1747 4342 y Fo(pr)r(od)1914 4327 y Fu(+)22 b Fr(t)2047 4342 y Fo(w)2103 4327 y Fu(\()p Fr(p)g Fq(\000)h Fu(1\)\))f(+)g Fr(nt)2650 4342 y Fo(w)2707 4327 y Fr(pl)r(og)2881 4342 y Fp(2)2920 4327 y Fr(p)g Fu(+)g Fr(t)3124 4342 y Fo(s)3161 4327 y Fr(pl)r(og)3335 4342 y Fp(2)3375 4327 y Fr(p)1002 4534 y Fu(=)1391 4467 y Fr(n)1449 4431 y Fp(2)1488 4467 y Fr(E)1560 4482 y Fo(u)p 1171 4511 656 4 v 1171 4603 a Fr(n)1229 4574 y Fp(2)1290 4603 y Fu(+)g Fr(nK)1536 4568 y Fp(1)1529 4630 y Fo(d)1598 4603 y Fu(+)g Fr(K)1786 4568 y Fp(2)1779 4630 y Fo(d)1836 4534 y Fr(:)300 4807 y Fu(F)-8 b(rom)45 b(the)i(form)m(ula)e(w)m(e)i(kno)m(w)h(that)e (with)g(the)h(increase)g(of)f Fr(n)p Fu(,)k(the)d(e\016ciency)h Fr(E)53 b Fu(in)46 b(the)300 4928 y(UMP)-8 b(A)39 b(will)d(sho)m(w)k(a) e(complicated)f(b)s(eha)m(vior.)60 b(That)39 b(means)f(that)h Fr(E)44 b Fu(ma)m(y)38 b(decrease,)k(and)300 5048 y(also)47 b(under)h(some)g(conditions)f(it)g(will)e(increase)j(dep)s(ending)g(on) g(the)g(parameters)g(of)g(the)300 5169 y(parallel)30 b(computers.)44 b(When)33 b Fr(n)g Fu(go)s(es)g(to)f(in\014nit)m(y)-8 b(,)32 b Fr(E)38 b Fu(will)31 b(approac)m(h)i(a)f(constan)m(t)1293 5431 y Fr(E)1365 5446 y Fo(u)1438 5431 y Fu(=)1829 5364 y Fr(t)1864 5379 y Fo(mc)1984 5364 y Fu(+)22 b Fr(M)10 b(t)2221 5379 y Fo(pr)r(od)p 1551 5408 1093 4 v 1551 5500 a Fr(t)1586 5515 y Fo(mc)1706 5500 y Fu(+)22 b Fr(M)10 b(pt)1992 5515 y Fo(pr)r(od)2159 5500 y Fu(+)22 b Fr(t)2292 5515 y Fo(w)2349 5500 y Fu(\()p Fr(p)g Fq(\000)g Fu(1\))2654 5431 y Fr(:)p Black 910 w Fu(\(6.15\))p Black Black Black eop %%Page: 34 43 34 42 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8 b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(34)p Black 446 274 a(No)m(w)42 b(w)m(e)g(tak)m(e)g(a)f(lo)s(ok)f(at)h(the)h(equation)e (\(6.15\).)69 b(When)42 b(the)g(pro)s(cessor)g(n)m(um)m(b)s(er)f Fr(p)g Fu(is)300 395 y(1,)i Fr(E)491 410 y Fo(u)577 395 y Fu(is)e(1.)69 b(The)42 b(larger)e Fr(p)h Fu(is,)i(the)e(smaller)e Fr(E)2142 410 y Fo(u)2228 395 y Fu(will)g(b)s(e.)69 b(If)41 b Fr(p)g Fu(go)s(es)h(to)e(in\014nit)m(y)-8 b(,)43 b Fr(E)3602 410 y Fo(u)3688 395 y Fu(will)300 515 y(approac)m(h)d(0.)62 b(This)40 b(is)e(b)s(ecause)j(with)d(the)i(UMP)-8 b(A)40 b(the)f(parallel)e(time)g Fr(T)3116 530 y Fo(par)r(a)3304 515 y Fu(of)i(\(6.4\))f(con-)300 635 y(tains)31 b(a)g(sequen)m(tial)g (part)h Fr(M)10 b(n)1445 599 y Fp(2)1485 635 y Fr(t)1520 650 y Fo(pr)r(od)1696 635 y Fu(whic)m(h)31 b(will)e(de\014nitely)j (degrade)g(the)f(e\016ciency)i(when)g Fr(n)300 756 y Fu(increases.)44 b(Numerical)28 b(exp)s(erimen)m(ts)i(in)g(the)g(next)h (c)m(hapter)g(will)d(illustrate)g(this)h(conclusion.)446 876 y(F)-8 b(rom)31 b Fr(T)759 891 y Fo(par)r(a)941 876 y Fu(of)h(equation)g(\(6.4\),)g(w)m(e)i(obtain)d(the)i(cost)g(of)f(the) h(UMP)-8 b(A)34 b(is)594 1096 y Fr(C)h Fu(=)27 b Fr(pT)908 1111 y Fo(par)r(a)1085 1096 y Fu(=)g Fr(n)1246 1055 y Fp(2)1286 1096 y Fu(\()p Fr(t)1359 1111 y Fo(mc)1478 1096 y Fu(+)22 b Fr(t)1611 1111 y Fo(w)1668 1096 y Fu(\()p Fr(p)g Fq(\000)h Fu(1\)\))f(+)g(\()p Fr(t)2195 1111 y Fo(s)2254 1096 y Fu(+)g Fr(nt)2445 1111 y Fo(w)2502 1096 y Fu(\))p Fr(pl)r(og)2714 1111 y Fp(2)2753 1096 y Fr(p)g Fu(+)g Fr(pn)3029 1055 y Fp(2)3069 1096 y Fr(M)10 b(t)3208 1111 y Fo(pr)r(od)3353 1096 y Fr(:)p Black 211 w Fu(\(6.16\))p Black 446 1316 a(W)-8 b(e)40 b(no)m(w)h(analyze)f(the)g(complete)f (parallel)e(algorithm)f(\(CP)-8 b(A\).)41 b(The)g(time)d(of)h(the)h(b)s (est)300 1437 y(sequen)m(tial)33 b(algorithm)c(is)j(the)h(same)g(as)f (\(6.12\),)g(that)h(is,)1124 1657 y Fr(T)1195 1592 y Fh(0)1181 1681 y Fo(seq)1312 1657 y Fu(=)28 b Fr(n)1474 1615 y Fp(2)1514 1657 y Fr(t)1549 1672 y Fo(mc)1668 1657 y Fu(+)22 b Fr(M)10 b(t)1905 1672 y Fo(pr)r(od)2050 1657 y Fr(n)2108 1615 y Fp(2)2175 1657 y Fu(=)28 b Fr(n)2337 1615 y Fp(2)2377 1657 y Fu(\()p Fr(t)2450 1672 y Fo(mc)2569 1657 y Fu(+)22 b Fr(M)10 b(t)2806 1672 y Fo(pr)r(od)2951 1657 y Fu(\))p Fr(:)575 b Fu(\(6.17\))300 1877 y(Considering)32 b(\(6.8\))g(and)h(\(6.17\),)f(the)h(sp)s(eedup)h(of)e(the)h(CP)-8 b(A)33 b(is)f(obtained)g(as)559 2173 y Fr(s)605 2109 y Fh(0)659 2173 y Fu(=)795 2097 y Fr(T)866 2037 y Fh(0)852 2121 y Fo(seq)p 772 2150 206 4 v 772 2241 a Fr(T)843 2194 y Fh(0)829 2266 y Fo(par)r(a)1016 2173 y Fu(=)1874 2106 y Fr(pn)1981 2070 y Fp(2)2021 2106 y Fu(\()p Fr(t)2094 2121 y Fo(mc)2213 2106 y Fu(+)22 b Fr(M)10 b(t)2450 2121 y Fo(pr)r(od)2595 2106 y Fu(\))p 1129 2150 2250 4 v 1129 2241 a Fr(n)1187 2213 y Fp(2)1227 2241 y Fr(t)1262 2256 y Fo(mc)1381 2241 y Fu(+)22 b Fr(M)10 b(n)1641 2213 y Fp(2)1682 2241 y Fr(t)1717 2256 y Fo(pr)r(od)1883 2241 y Fu(+)22 b Fr(M)10 b Fu(\()p Fr(t)2158 2256 y Fo(s)2218 2241 y Fu(+)22 b Fr(t)2351 2256 y Fo(w)2408 2241 y Fu(\))p Fr(pl)r(og)2620 2256 y Fp(2)2659 2241 y Fr(p)g Fu(+)g Fr(t)2863 2256 y Fo(w)2920 2241 y Fr(M)10 b Fu(\()p Fr(p)23 b Fq(\000)f Fu(1\))p Fr(n)3388 2173 y(:)p Black 176 w Fu(\(6.18\))p Black 300 2456 a(The)34 b(e\016ciency)g(is)620 2738 y Fr(E)698 2673 y Fh(0)752 2738 y Fu(=)866 2671 y Fr(s)912 2611 y Fh(0)p 866 2715 73 4 v 878 2806 a Fr(p)976 2738 y Fu(=)1848 2671 y Fr(n)1906 2634 y Fp(2)1946 2671 y Fu(\()p Fr(t)2019 2686 y Fo(mc)2138 2671 y Fu(+)22 b Fr(M)10 b(t)2375 2686 y Fo(pr)r(od)2520 2671 y Fu(\))p 1089 2715 2228 4 v 1089 2806 a Fr(n)1147 2778 y Fp(2)1187 2806 y Fu(\()p Fr(t)1260 2821 y Fo(mc)1380 2806 y Fu(+)22 b Fr(M)10 b(t)1617 2821 y Fo(pr)r(od)1762 2806 y Fu(\))22 b(+)g Fr(M)10 b Fu(\()p Fr(t)2097 2821 y Fo(s)2156 2806 y Fu(+)22 b Fr(t)2289 2821 y Fo(w)2346 2806 y Fu(\))p Fr(pl)r(og)2558 2821 y Fp(2)2597 2806 y Fr(p)h Fu(+)f Fr(t)2802 2821 y Fo(w)2858 2806 y Fr(M)10 b Fu(\()p Fr(p)23 b Fq(\000)g Fu(1\))p Fr(n)3327 2738 y(:)p Black 237 w Fu(\(6.19\))p Black 300 3015 a(If)33 b Fr(n)f Fu(is)g(k)m(ept)i (\014xed,)g(w)m(e)g(can)e(get)h(the)g(relation)e(b)s(et)m(w)m(een)j Fr(E)2531 2979 y Fl(0)2587 3015 y Fu(and)f Fr(p)f Fu(as)h(follo)m(ws.) 647 3289 y Fr(E)725 3248 y Fl(0)749 3289 y Fu(\()p Fr(p)p Fu(\))82 b(=)1949 3221 y Fr(n)2007 3185 y Fp(2)2047 3221 y Fu(\()p Fr(t)2120 3236 y Fo(mc)2239 3221 y Fu(+)22 b Fr(M)10 b(t)2476 3236 y Fo(pr)r(od)2621 3221 y Fu(\))p 1125 3266 2358 4 v 1125 3357 a Fr(pl)r(og)1299 3372 y Fp(2)1339 3357 y Fr(pM)g Fu(\()p Fr(t)1565 3372 y Fo(s)1624 3357 y Fu(+)22 b Fr(t)1757 3372 y Fo(w)1814 3357 y Fu(\))g(+)g Fr(pt)2056 3372 y Fo(w)2113 3357 y Fr(M)10 b(n)23 b Fu(+)f Fr(n)2454 3328 y Fp(2)2494 3357 y Fu(\()p Fr(t)2567 3372 y Fo(mc)2686 3357 y Fu(+)g Fr(M)10 b(t)2923 3372 y Fo(pr)r(od)3068 3357 y Fu(\))22 b Fq(\000)h Fr(t)3263 3372 y Fo(w)3320 3357 y Fr(M)10 b(n)956 3554 y Fu(=)1469 3486 y Fr(K)1552 3501 y Fo(d)p 1125 3531 811 4 v 1125 3622 a Fr(pl)r(og)1299 3637 y Fp(2)1339 3622 y Fr(p)22 b Fu(+)g Fr(pK)1647 3588 y Fp(1)1640 3650 y Fo(d)1708 3622 y Fu(+)g Fr(K)1896 3588 y Fp(2)1889 3650 y Fo(d)1946 3554 y Fr(:)300 3831 y Fu(F)-8 b(rom)25 b(the)h(form)m(ula)f(w)m(e)i(also)e(kno)m(w)i(that)f (for)g(the)h(CP)-8 b(A,)27 b(when)g Fr(p)f Fu(increases,)j Fr(E)3233 3795 y Fl(0)3282 3831 y Fu(will)24 b(decrease.)300 3951 y(If)33 b Fr(p)f Fu(is)g(k)m(ept)i(\014xed,)g(w)m(e)f(can)g(get)g (the)g(relation)d(b)s(et)m(w)m(een)35 b Fr(E)2522 3915 y Fl(0)2578 3951 y Fu(and)e Fr(n)f Fu(as)h(follo)m(ws.)708 4225 y Fr(E)786 4184 y Fl(0)809 4225 y Fu(\()p Fr(n)p Fu(\))83 b(=)1954 4157 y Fr(n)2012 4121 y Fp(2)2051 4157 y Fu(\()p Fr(t)2124 4172 y Fo(mc)2244 4157 y Fu(+)22 b Fr(M)10 b(t)2481 4172 y Fo(pr)r(od)2626 4157 y Fu(\))p 1195 4202 2228 4 v 1195 4293 a Fr(n)1253 4264 y Fp(2)1293 4293 y Fu(\()p Fr(t)1366 4308 y Fo(mc)1485 4293 y Fu(+)22 b Fr(M)10 b(t)1722 4308 y Fo(pr)r(od)1867 4293 y Fu(\))22 b(+)g Fr(nt)2118 4308 y Fo(w)2175 4293 y Fr(M)10 b Fu(\()p Fr(p)23 b Fq(\000)g Fu(1\))e(+)h Fr(M)10 b Fu(\()p Fr(t)2872 4308 y Fo(s)2932 4293 y Fu(+)22 b Fr(t)3065 4308 y Fo(w)3122 4293 y Fu(\))p Fr(pl)r(og)3334 4308 y Fp(2)3373 4293 y Fr(p)1026 4501 y Fu(=)1474 4433 y Fr(n)1532 4397 y Fp(2)p 1195 4478 656 4 v 1195 4569 a Fr(n)1253 4540 y Fp(2)1315 4569 y Fu(+)g Fr(nK)1561 4535 y Fp(1)1554 4597 y Fo(d)1623 4569 y Fu(+)g Fr(K)1811 4535 y Fp(2)1804 4597 y Fo(d)1860 4501 y Fr(:)300 4792 y Fu(So)34 b(w)m(e)h(can)f(see)h (that)e(with)g(the)i(increase)f(of)f(the)i(problem)d(size)i Fr(n)p Fu(,)g(the)h(e\016ciency)g Fr(E)3532 4732 y Fh(0)3592 4792 y Fu(of)f(the)300 4912 y(CP)-8 b(A)40 b(will)d(also)h(exhibit)h (complicated)f(prop)s(erties)h(dep)s(ending)g(on)h(the)f(parameters)h (of)f(the)300 5033 y(parallel)30 b(computers.)44 b(When)33 b Fr(n)g Fu(go)s(es)g(to)f(in\014nit)m(y)-8 b(,)32 b Fr(E)2299 4973 y Fh(0)2358 5033 y Fu(will)e Fj(eventual)5 b(ly)35 b(incr)-5 b(e)g(ase)66 b Fu(to)33 b(1.)446 5153 y(According)g(to)f(\(6.8\),)g(w)m(e)i(get)e(the)h(cost)g(of)f(the)h(CP) -8 b(A)34 b(is)550 5373 y Fr(C)627 5308 y Fh(0)681 5373 y Fu(=)27 b Fr(pT)904 5308 y Fh(0)890 5398 y Fo(par)r(a)1066 5373 y Fu(=)h Fr(n)1228 5332 y Fp(2)1268 5373 y Fu(\()p Fr(t)1341 5388 y Fo(mc)1460 5373 y Fu(+)22 b Fr(M)10 b(t)1697 5388 y Fo(pr)r(od)1842 5373 y Fu(\))22 b(+)g Fr(M)10 b Fu(\()p Fr(t)2177 5388 y Fo(s)2237 5373 y Fu(+)22 b Fr(t)2370 5388 y Fo(w)2427 5373 y Fu(\))p Fr(pl)r(og)2639 5388 y Fp(2)2678 5373 y Fr(p)g Fu(+)g Fr(t)2882 5388 y Fo(w)2939 5373 y Fr(M)10 b(n)p Fu(\()p Fr(p)23 b Fq(\000)g Fu(1\))p Fr(:)p Black 166 w Fu(\(6.20\))p Black Black Black eop %%Page: 35 44 35 43 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8 b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(35)p Black 446 274 a(Finally)30 b(w)m(e)k(compare)e(the)h(p)s(erformance)f(of)g(the)h(t)m (w)m(o)g(parallel)d(algorithms.)41 b(Comparing)300 395 y(\(6.16\))32 b(and)g(\(6.20\),)g(in)g(most)g(cases,)i(if)e(it)f(is)h (true)h(that)381 615 y(\()p Fr(p)22 b Fq(\000)h Fu(1\))p Fr(n)p Fu(\()p Fr(t)808 630 y Fo(w)864 615 y Fu(\()p Fr(n)g Fq(\000)f Fr(M)10 b Fu(\))23 b(+)f Fr(t)1380 630 y Fo(pr)r(od)1524 615 y Fr(nM)10 b Fu(\))23 b(+)f(\()p Fr(t)1918 630 y Fo(w)1975 615 y Fu(\()p Fr(n)h Fq(\000)f Fu(1\))g Fq(\000)h Fu(\()p Fr(t)2475 630 y Fo(w)2554 615 y Fu(+)f Fr(t)2687 630 y Fo(s)2724 615 y Fu(\)\()p Fr(M)32 b Fq(\000)23 b Fu(1\)\))p Fr(pl)r(og)3325 630 y Fp(2)3364 615 y Fr(p)k(>)h Fu(0)p Black -2 w(\(6.21\))p Black 300 835 a(w)m(e)48 b(can)e(obtain)g Fr(C)58 b(>)52 b(C)1301 775 y Fh(0)1327 835 y Fu(.)85 b(This)47 b(means)g(that)f(the)h (cost)g(of)f(the)h(Ulam)e(matrix)g(parallel)300 955 y(algorithm)22 b(\(UMP)-8 b(A\))25 b(is)g(greater)g(than)g(the)g(cost)g(of)g(the)g (complete)f(parallel)f(algorithm)e(\(CP)-8 b(A\))300 1075 y(in)28 b(most)h(cases.)44 b(Therefore,)31 b(the)e(CP)-8 b(A)30 b(is)f(more)f(e\016cien)m(t)i(than)g(the)f(UMP)-8 b(A,)30 b(whic)m(h)g(will)d(also)300 1196 y(b)s(e)33 b(sho)m(wn)h(from)d(the)i(n)m(umerical)e(results)i(in)f(the)h(next)g(c) m(hapter.)446 1316 y(In)38 b(summary)-8 b(,)38 b(when)g(the)g(n)m(um)m (b)s(er)g(of)f(pro)s(cessors)i Fr(p)e Fu(increases,)j(the)d (e\016ciency)i(of)e(b)s(oth)300 1437 y(the)h(UMP)-8 b(A)38 b(and)f(the)g(CP)-8 b(A)38 b(is)f(decreasing.)57 b(When)38 b(the)g(n)m(um)m(b)s(er)g Fr(n)f Fu(of)g(sub-in)m(terv)-5 b(als)36 b(from)300 1557 y(the)c(partition)e(of)i([0)p Fr(;)17 b Fu(1])31 b(increases,)j(the)e(e\016ciency)h Fr(E)38 b Fu(of)32 b(the)g(CP)-8 b(A)33 b(will)d(ev)m(en)m(tually)i (increase)300 1677 y(to)i(1.)47 b(Mean)m(while,)35 b(the)f(e\016ciency) i Fr(E)k Fu(of)33 b(the)i(UMP)-8 b(A)35 b(will)d(ev)m(en)m(tually)i (decrease)i(to)e(a)f(small)300 1798 y(constan)m(t)28 b(as)g Fr(n)g Fu(increases)g(\(supp)s(ose)h Fr(p)e Fu(is)g(large\).)41 b(In)28 b(most)f(cases,)j(the)e(CP)-8 b(A)28 b(will)d(outp)s(erform)300 1918 y(the)45 b(UMP)-8 b(A.)46 b(In)f(the)h(next)f(c)m(hapter,)k(w)m(e) d(will)d(apply)h(our)h(parallel)d(algorithms)g(to)j(a)f(test)300 2038 y(mapping)32 b(and)h(also)g(to)g(the)h(computation)d(of)i(the)h (probabilit)m(y)d(densit)m(y)k(function)e(\(PDF\))f(of)300 2159 y(the)27 b(Digital)d(Phase-Lo)s(c)m(k)m(ed)29 b(Lo)s(op)d (\(DPLL\))g(in)h(electronics,)h(and)f(the)g(p)s(erformance)g(analysis) 300 2279 y(of)32 b(the)h(algorithms)d(will)g(b)s(e)j(presen)m(ted,)i (to)s(o.)p Black Black eop %%Page: 36 45 36 44 bop Black Black Black Black 1714 150 a Fn(Chapter)53 b(7)p Black Black 1168 581 a(NUMERICAL)h(RESUL)-13 b(TS)488 1283 y Fu(In)44 b(this)g(c)m(hapter)h(w)m(e)g(presen)m(t)g(some)f(n)m (umerical)e(results)i(for)g(three)g(one)g(dimensional)300 1403 y(transformations)37 b(with)i(Ulam's)f(metho)s(d.)62 b(F)-8 b(or)38 b(the)i(purp)s(ose)g(of)e(comparison)g(on)h(the)g(p)s (er-)300 1524 y(formance)34 b(of)g(our)h(new)h(quasi-Mon)m(te)f(Carlo)f (algorithm,)e(w)m(e)k(also)d(include)i(the)g(exp)s(erimen)m(t)300 1644 y(results)i(from)e(the)j(original)33 b(Mon)m(te)k(Carlo)f (algorithm)e(prop)s(osed)j(b)m(y)g(Hun)m(t)h(in)e([30)o(].)56 b(T)-8 b(o)37 b(see)300 1764 y(ho)m(w)45 b(w)m(ell)e(our)g(quasi-Mon)m (te)i(Carlo)e(metho)s(d)g(appro)m(ximates)g(the)i(Ulam)d(matrix,)j(for) f(the)300 1885 y(logistic)d(mo)s(del)g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))46 b(=)g(4)p Fr(x)p Fu(\(1)29 b Fq(\000)h Fr(x)p Fu(\),)46 b(since)e(the)g(in)m(v)m(erse)g(image)e(of)h(a)g (subset)h(under)g Fr(S)49 b Fu(is)300 2005 y(relativ)m(ely)44 b(easy)i(to)e(\014nd)h(analytically)-8 b(,)45 b(w)m(e)h(use)g(the)f (analytic)f(expression)i(of)e(the)i(in)m(v)m(erse)300 2126 y(mappings)34 b(of)h(eac)m(h)i(monotonic)d(branc)m(h)i(of)f(the)h (mappings)f(to)g(ev)-5 b(aluate)35 b(the)h(Ulam)d(matrix)300 2246 y Fj(exactly)p Fu(.)41 b(And)26 b(w)m(e)g(compare)f(the)h (resulting)f Fr(L)2005 2210 y Fp(1)2045 2246 y Fu(-error)f(of)h(the)h (appro)m(ximate)f(densit)m(y)h(from)e(this)300 2366 y(exact)32 b(Ulam)e(metho)s(d)h(with)g(that)g(from)g(our)g(quasi-Mon)m(te)h(Carlo) e(metho)s(d.)43 b(F)-8 b(or)31 b(the)h(second)300 2487 y(transformation)42 b Fr(S)1036 2502 y Fp(2)1120 2487 y Fu(b)s(elo)m(w)j(w)m(e)h(also)d(include)h(the)h(error)g(from)e(the)i (exact)h(Ulam)d(metho)s(d)300 2607 y(obtained)33 b(from)f([16)o(])h (\(also)g(included)f(in)h([30)o(])h(for)e(the)i(comparison)e(of)g(Hun)m (t's)j(Mon)m(te)f(Carlo)300 2728 y(algorithm)c(with)j(the)h(exact)h (Ulam)c(metho)s(d\))i(to)g(compare)g(with)g(the)h(error)f(with)h(the)f (quasi-)300 2848 y(Mon)m(te)h(Carlo)f(algorithm.)43 b(In)34 b(addition,)e(for)i(the)g(third)e(transformation)g Fr(S)3182 2863 y Fp(3)3255 2848 y Fu(b)s(elo)m(w)h(w)m(e)i(also)300 2968 y(presen)m(t)44 b(the)f(n)m(umerical)e(results)i(from)e(the)i(t)m (w)m(o)h(parallel)39 b(algorithms)h(from)i(the)g(previous)300 3089 y(c)m(hapter)33 b(and)f(compare)f(their)g(p)s(erformance)g(on)h (di\013eren)m(t)g(n)m(um)m(b)s(ers)h(of)e(pro)s(cessors.)45 b(Finally)300 3209 y(w)m(e)c(apply)f(our)g(parallel)d(algorithms)g(to)j (an)g(applied)f(problem)g(in)g(electronics)h(to)g(end)g(this)300 3329 y(c)m(hapter.)p Black Black 517 3600 a Fm(7.1)113 b(Numerical)35 b(Results)h(from)h(the)g(Quasi-Mon)m(te)i(Carlo)d (Approac)m(h)458 3819 y Fu(The)d(one)g(dimensional)d(test)j(mappings)f (are)547 4092 y Fr(S)607 4107 y Fp(1)646 4092 y Fu(\()p Fr(x)p Fu(\))83 b(=)1019 3951 y Fi(\032)1135 4031 y Fu(0)249 b(if)54 b Fr(x)28 b Fu(=)g(0)1135 4151 y Fq(f)1197 4112 y Fp(1)p 1195 4128 40 4 v 1195 4185 a Fo(x)1245 4151 y Fq(g)138 b Fu(if)54 b Fr(x)28 b Fq(6)p Fu(=)g(0)p Fr(;)547 4388 y(S)607 4403 y Fp(2)646 4388 y Fu(\()p Fr(x)p Fu(\))83 b(=)1019 4248 y Fi(\022)1102 4321 y Fu(1)p 1102 4365 49 4 v 1102 4457 a(8)1183 4388 y Fq(\000)23 b Fu(2)p Fq(j)p Fr(x)f Fq(\000)1547 4321 y Fu(1)p 1547 4365 V 1547 4457 a(2)1605 4388 y Fq(j)1633 4347 y Fp(3)1672 4248 y Fi(\023)1746 4270 y Fp(1)p Fo(=)p Fp(3)1878 4388 y Fu(+)1986 4321 y(1)p 1986 4365 V 1986 4457 a(2)2045 4388 y Fr(;)547 4690 y(S)607 4705 y Fp(3)646 4690 y Fu(\()p Fr(x)p Fu(\))83 b(=)1019 4520 y Fi(\()1180 4574 y Fp(1)p 1151 4591 95 4 v 1151 4601 a Fl(p)p 1210 4601 36 3 v 55 x Fp(2)1277 4614 y Fq(\000)1377 4531 y(p)p 1460 4531 49 4 v 83 x Fu(2)o Fq(j)1546 4574 y Fp(1)p 1546 4591 36 4 v 1546 4648 a(2)1614 4614 y Fq(\000)22 b Fr(x)p Fq(j)654 b Fu(if)54 b Fr(x)28 b Fq(2)g Fu([0)p Fr(;)2898 4574 y Fp(1)p 2869 4591 95 4 v 2869 4601 a Fl(p)p 2928 4601 36 3 v 55 x Fp(8)2973 4614 y Fu(])22 b Fq([)h Fu([1)f Fq(\000)3348 4574 y Fp(1)p 3318 4591 95 4 v 3318 4601 a Fl(p)p 3377 4601 36 3 v 55 x Fp(8)3422 4614 y Fr(;)17 b Fu(1])1141 4757 y(1)22 b Fq(\000)1351 4718 y Fp(1)p 1321 4734 95 4 v 1321 4744 a Fl(p)p 1380 4744 36 3 v 55 x Fp(2)1425 4672 y Fi(p)p 1525 4672 787 4 v 85 x Fu(1)g Fq(\000)h Fu(\(1)e Fq(\000)i(j)p Fu(1)f Fq(\000)g Fu(2)p Fr(x)p Fq(j)p Fu(\))2272 4729 y Fp(2)2450 4757 y Fu(if)54 b Fr(x)28 b Fq(2)g Fu([)2806 4718 y Fp(1)p 2776 4734 95 4 v 2776 4744 a Fl(p)p 2835 4744 36 3 v 55 x Fp(8)2881 4757 y Fr(;)17 b Fu(1)k Fq(\000)3134 4718 y Fp(1)p 3105 4734 95 4 v 3105 4744 a Fl(p)p 3164 4744 36 3 v 55 x Fp(8)3209 4757 y Fu(])p Fr(:)300 4998 y(S)360 5013 y Fp(1)439 4998 y Fu(is)40 b(called)e(the)j(Gaussian)e(transformation)f (in)h(whic)m(h)i Fq(f)p Fr(a)p Fq(g)e Fu(is)h(the)g(fractional)e(part)h (of)h Fr(a)p Fu(,)300 5118 y(and)29 b Fr(S)546 5133 y Fp(2)615 5118 y Fu(and)g Fr(S)861 5133 y Fp(3)930 5118 y Fu(are)g(the)h(test)g(examples)f Fr(\034)1900 5133 y Fp(1)1969 5118 y Fu(and)g Fr(\034)2197 5133 y Fp(2)2266 5118 y Fu(resp)s(ectiv)m(ely)h(in)f([30)o(].)43 b(The)30 b(unique)g(\014xed)p Black 2021 5764 a(36)p Black eop %%Page: 37 46 37 45 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(37)p Black 300 274 a(densities)33 b(of)f Fr(S)868 289 y Fo(i)928 274 y Fu(are)h(giv)m(en)g(b)m(y)1508 533 y Fr(f)1567 492 y Fl(\003)1556 558 y Fp(1)1606 533 y Fu(\()p Fr(x)p Fu(\))84 b(=)2038 466 y(1)p 1989 510 147 4 v 1989 601 a(ln)16 b(2)2244 466 y(1)p 2156 510 225 4 v 2156 601 a(1)22 b(+)g Fr(x)2390 533 y(;)1508 803 y(f)1567 762 y Fl(\003)1556 828 y Fp(2)1606 803 y Fu(\()p Fr(x)p Fu(\))84 b(=)e(12)2094 663 y Fi(\022)2167 803 y Fr(x)23 b Fq(\000)2354 736 y Fu(1)p 2354 780 49 4 v 2354 872 a(2)2413 663 y Fi(\023)2486 685 y Fp(2)2542 803 y Fr(;)1508 1006 y(f)1567 965 y Fl(\003)1556 1030 y Fp(3)1606 1006 y Fu(\()p Fr(x)p Fu(\))84 b(=)e(2\(1)22 b Fq(\000)h(j)p Fu(1)e Fq(\000)i Fu(2)p Fr(x)p Fq(j)p Fu(\))p Fr(:)446 1226 y Fu(The)33 b(exp)s(erimen)m(ts)f(for)f(the)h (computation)f(w)m(ere)i(made)e(on)g(an)h(SA)m(G)g(P)m(en)m(tium)f(Pro) h(com-)300 1346 y(puter)37 b(of)e(the)i(Departmen)m(t)f(of)f(Computer)i (Science)g(and)f(Statistics)f(of)h(USM)h(with)f Fr(C)43 b Fu(co)s(de)300 1467 y(\(see)34 b(App)s(endix)f(B\).)446 1587 y(First)j(w)m(e)i(use)g(di\013eren)m(t)f(n)m(um)m(b)s(ers)h(of)e Fr(N)47 b Fu(for)37 b(the)g(quasi-Mon)m(te)g(Carlo)f(metho)s(d)g(for)h (the)300 1707 y(logistic)42 b(mo)s(del)g(and)i(the)g(mapping)f Fr(S)1797 1722 y Fp(2)1880 1707 y Fu(to)h(test)g(whic)m(h)h(n)m(um)m(b) s(er)f(is)g(the)g(b)s(est)h(among)e(the)300 1828 y(c)m(hoice)33 b(for)e(the)i(n)m(um)m(b)s(er)g(of)f(\\uniform)e(sampling)g(p)s(oin)m (ts")i(within)f(eac)m(h)i(sub-in)m(terv)-5 b(al)32 b(of)g(the)300 1948 y(partition)c(of)i(the)g(in)m(terv)-5 b(al)29 b([0)p Fr(;)17 b Fu(1].)42 b(Then)31 b(w)m(e)g(use)g(this)f(n)m(um)m(b)s(er)g (in)g(our)g(exp)s(erimen)m(ts)g(with)g(all)300 2069 y(the)j(test)g (mappings)f(and)g(the)h(application)d(problem.)446 2189 y(T)-8 b(able)31 b(7.1)g(and)h(T)-8 b(able)31 b(7.2)g(giv)m(e)g(the)h (errors)f(and)h(the)g(computational)c(time)i(\(in)h(millisec-)300 2309 y(onds\))i(with)f(the)g(QMC)h(for)f Fr(N)38 b Fu(=)28 b(500,)j Fr(N)39 b Fu(=)27 b(1000,)32 b(and)g Fr(N)38 b Fu(=)28 b(1500,)j(for)h(the)h(logistic)d(mo)s(del)300 2430 y Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p Fu(\(1)22 b Fq(\000)h Fr(x)p Fu(\))33 b(and)g Fr(S)1317 2445 y Fp(2)1356 2430 y Fu(,)g(resp)s(ectiv)m(ely)-8 b(.)p Black Black Black 691 2574 2759 4 v 689 2695 4 121 v 693 2695 V 744 2658 a Fm(n)p 939 2695 V 939 2695 V 369 w Fr(N)38 b Fu(=)27 b(500)p 1774 2695 V 1774 2695 V 445 w Fr(N)38 b Fu(=)27 b(1000)p 2609 2695 V 2609 2695 V 420 w Fr(N)38 b Fu(=)28 b(1500)p 3444 2695 V 3448 2695 V 940 2698 2509 4 v 689 2815 4 121 v 693 2815 V 939 2815 V 1104 2779 a(Err)p 1408 2815 V 213 w(T\(ms\))p 1774 2815 V 214 w(Err)p 2243 2815 V 214 w(T\(ms\))p 2609 2815 V 213 w(Err)p 3078 2815 V 214 w(T\(ms\))p 3444 2815 V 3448 2815 V 691 2818 2759 4 v 689 2939 4 121 v 693 2939 V 744 2902 a(16)p 939 2939 V 148 w(2.463E-1)p 1408 2939 V 183 w(40)p 1774 2939 V 183 w(2.450E-1)p 2243 2939 V 183 w(60)p 2609 2939 V 183 w(2.441E-1)p 3078 2939 V 183 w(80)p 3444 2939 V 3448 2939 V 691 2942 2759 4 v 689 3062 4 121 v 693 3062 V 744 3026 a(32)p 939 3062 V 148 w(1.941E-1)p 1408 3062 V 158 w(130)p 1774 3062 V 159 w(1.936E-1)p 2243 3062 V 159 w(220)p 2609 3062 V 158 w(1.935E-1)p 3078 3062 V 159 w(320)p 3444 3062 V 3448 3062 V 691 3066 2759 4 v 689 3186 4 121 v 693 3186 V 744 3150 a(64)p 939 3186 V 148 w(1.495E-1)p 1408 3186 V 158 w(520)p 1774 3186 V 159 w(1.478E-1)p 2243 3186 V 159 w(860)p 2609 3186 V 158 w(1.472E-1)p 3078 3186 V 134 w(1290)p 3444 3186 V 3448 3186 V 691 3189 2759 4 v 689 3310 4 121 v 693 3310 V 744 3274 a(128)p 939 3310 V 99 w(1.136E-1)p 1408 3310 V 134 w(2080)p 1774 3310 V 134 w(1.129E-1)p 2243 3310 V 134 w(3480)p 2609 3310 V 134 w(1.127E-1)p 3078 3310 V 134 w(5150)p 3444 3310 V 3448 3310 V 691 3313 2759 4 v 689 3433 4 121 v 693 3433 V 744 3397 a(256)p 939 3433 V 99 w(8.398E-2)p 1408 3433 V 134 w(8310)p 1774 3433 V 134 w(8.345E-2)p 2243 3433 V 110 w(13860)p 2609 3433 V 109 w(8.314E-2)p 3078 3433 V 110 w(20500)p 3444 3433 V 3448 3433 V 691 3437 2759 4 v Black 804 3607 a(T)-8 b(able)32 b(7.1:)43 b Fr(L)1333 3571 y Fp(1)1406 3607 y Fu(error/time)31 b(comparison)g(for)h(the)h(logistic)d(mo)s(del)p Black Black Black Black Black 678 3976 2785 4 v 676 4096 4 121 v 680 4096 V 731 4060 a Fm(n)p 925 4096 V 925 4096 V 368 w Fr(N)39 b Fu(=)27 b(500)p 1760 4096 V 1760 4096 V 444 w Fr(N)38 b Fu(=)28 b(1000)p 2596 4096 V 2596 4096 V 433 w Fr(N)38 b Fu(=)28 b(1500)p 3457 4096 V 3461 4096 V 927 4099 2536 4 v 676 4216 4 121 v 680 4216 V 925 4216 V 1091 4180 a(Err)p 1395 4216 V 213 w(T\(ms\))p 1760 4216 V 214 w(Err)p 2230 4216 V 213 w(T\(ms\))p 2596 4216 V 214 w(Err)p 3065 4216 V 227 w(T\(ms\))p 3457 4216 V 3461 4216 V 678 4220 2785 4 v 676 4340 4 121 v 680 4340 V 731 4304 a(16)p 925 4340 V 148 w(1.022E-1)p 1395 4340 V 158 w(170)p 1760 4340 V 159 w(1.025E-1)p 2230 4340 V 158 w(340)p 2596 4340 V 159 w(1.026E-1)p 3065 4340 V 172 w(500)p 3457 4340 V 3461 4340 V 678 4343 2785 4 v 676 4464 4 121 v 680 4464 V 731 4428 a(32)p 925 4464 V 148 w(5.258E-2)p 1395 4464 V 158 w(670)p 1760 4464 V 159 w(5.264E-2)p 2230 4464 V 134 w(1360)p 2596 4464 V 134 w(5.266E-2)p 3065 4464 V 147 w(2020)p 3457 4464 V 3461 4464 V 678 4467 2785 4 v 676 4588 4 121 v 680 4588 V 731 4551 a(64)p 925 4588 V 148 w(2.606E-2)p 1395 4588 V 134 w(2710)p 1760 4588 V 134 w(2.582E-2)p 2230 4588 V 134 w(5380)p 2596 4588 V 134 w(2.575E-2)p 3065 4588 V 147 w(8060)p 3457 4588 V 3461 4588 V 678 4591 2785 4 v 676 4711 4 121 v 680 4711 V 731 4675 a(128)p 925 4711 V 99 w(1.359E-2)p 1395 4711 V 109 w(10760)p 1760 4711 V 110 w(1.344E-2)p 2230 4711 V 110 w(21520)p 2596 4711 V 109 w(1.344E-2)p 3065 4711 V 123 w(32210)p 3457 4711 V 3461 4711 V 678 4715 2785 4 v 676 4835 4 121 v 680 4835 V 731 4799 a(256)p 925 4835 V 99 w(7.300E-3)p 1395 4835 V 109 w(43020)p 1760 4835 V 110 w(6.644E-3)p 2230 4835 V 110 w(85890)p 2596 4835 V 109 w(6.570E-3)p 3065 4835 V 99 w(128840)p 3457 4835 V 3461 4835 V 678 4838 2785 4 v Black 1149 5009 a(T)-8 b(able)32 b(7.2:)43 b Fr(L)1678 4972 y Fp(1)1750 5009 y Fu(error/time)31 b(comparison)h(for)g Fr(S)2952 5024 y Fp(2)p Black Black 446 5353 a Fu(F)-8 b(rom)40 b(the)h(t)m(w)m(o)h(tables)f(w)m(e)h(see)h (that)d(if)g Fr(N)52 b Fu(is)41 b(only)f(500,)j(although)d(the)h(time)f (sp)s(en)m(t)i(is)300 5473 y(not)c(large,)h(the)g Fr(L)992 5437 y Fp(1)1031 5473 y Fu(-error)f(is)g(relativ)m(ely)f(large.)60 b(When)39 b Fr(N)48 b Fu(=)37 b(1500,)i(it)e(is)h(m)m(uc)m(h)h(more)e (time)p Black Black eop %%Page: 38 47 38 46 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(38)p Black 300 274 a(consuming,)39 b(while)e(the)h(the)h(error)f(is)f(basically)f(ab)s(out)i(the)g(same)g (as)g(that)g(for)g Fr(N)47 b Fu(=)37 b(1000.)300 395 y(Th)m(us,)30 b(in)c(our)h(n)m(umerical)e(exp)s(erimen)m(ts)j(w)m(e)g (exclusiv)m(ely)g(c)m(ho)s(ose)f Fr(N)39 b Fu(=)27 b(1000,)g(whic)m(h)h (w)m(as)g(also)300 515 y(used)34 b(b)m(y)f(Hun)m(t)g(in)f(the)h(pap)s (er)g([30].)446 635 y(In)27 b(the)h(follo)m(wing)c(table,)j(T)-8 b(able)27 b(7.3,)g Fr(n)g Fu(denotes)i(the)e(n)m(um)m(b)s(er)g(of)f (the)i(equal)e(sub-in)m(terv)-5 b(als)300 756 y(of)27 b(the)g(partition)e(of)i([0)p Fr(;)17 b Fu(1].)41 b(The)28 b Fr(L)1600 720 y Fp(1)1639 756 y Fu(-errors)f(of)g(the)g(computed)h (\014xed)g(densit)m(y)g Fr(f)3265 771 y Fo(n)3339 756 y Fu(to)f(the)g(exact)300 876 y(\014xed)35 b(densit)m(y)f Fr(f)933 840 y Fl(\003)1006 876 y Fu(from)f(the)h(original)c(Mon)m(te) 35 b(Carlo)d(metho)s(d)h(\(MC\))i(and)e(the)i(quasi-Mon)m(te)300 997 y(Carlo)25 b(metho)s(d)h(\(QMC\))h(with)g Fr(N)38 b Fu(=)27 b(1000)f(p)s(oin)m(ts)g(c)m(hosen)i(in)e(eac)m(h)h(sub-in)m (terv)-5 b(al)26 b(is)g(presen)m(ted)300 1117 y(in)32 b(the)h(table.)p Black Black Black 535 1233 3070 4 v 533 1353 4 121 v 537 1353 V 588 1317 a Fm(n)p 783 1353 V 783 1353 V 554 w Fr(S)1264 1332 y Fp(1)p 1722 1353 V 1722 1353 V 2143 1317 a Fr(S)2203 1332 y Fp(2)p 2661 1353 V 2661 1353 V 3082 1317 a Fr(S)3142 1332 y Fp(3)p 3600 1353 V 3604 1353 V 785 1356 2821 4 v 533 1473 4 121 v 537 1473 V 783 1473 V 939 1437 a Fu(MC)p 1252 1473 V 273 w(QMC)p 1722 1473 V 272 w(MC)p 2191 1473 V 273 w(QMC)p 2661 1473 V 272 w(MC)p 3130 1473 V 273 w(QMC)p 3600 1473 V 3604 1473 V 535 1477 3070 4 v 533 1597 4 121 v 537 1597 V 588 1561 a(16)p 783 1597 V 148 w(2.172E-2)p 1252 1597 V 99 w(1.354E-2)p 1722 1597 V 98 w(1.172E-1)p 2191 1597 V 99 w(1.025E-1)p 2661 1597 V 98 w(8.576E-2)p 3130 1597 V 99 w(7.289E-2)p 3600 1597 V 3604 1597 V 535 1600 3070 4 v 533 1721 4 121 v 537 1721 V 588 1685 a(32)p 783 1721 V 148 w(2.106E-2)p 1252 1721 V 99 w(8.470E-3)p 1722 1721 V 98 w(6.122E-2)p 2191 1721 V 99 w(5.264E-2)p 2661 1721 V 98 w(4.290E-2)p 3130 1721 V 99 w(3.826E-2)p 3600 1721 V 3604 1721 V 535 1724 3070 4 v 533 1844 4 121 v 537 1844 V 588 1808 a(64)p 783 1844 V 148 w(2.279E-2)p 1252 1844 V 99 w(6.789E-3)p 1722 1844 V 98 w(3.603E-2)p 2191 1844 V 99 w(2.581E-2)p 2661 1844 V 98 w(3.470E-2)p 3130 1844 V 99 w(1.788E-2)p 3600 1844 V 3604 1844 V 535 1848 3070 4 v 533 1968 4 121 v 537 1968 V 588 1932 a(128)p 783 1968 V 99 w(2.465E-2)p 1252 1968 V 99 w(7.164E-4)p 1722 1968 V 98 w(3.682E-2)p 2191 1968 V 99 w(1.344E-2)p 2661 1968 V 98 w(3.520E-2)p 3130 1968 V 99 w(8.640E-3)p 3600 1968 V 3604 1968 V 535 1971 3070 4 v 533 2092 4 121 v 537 2092 V 588 2056 a(256)p 783 2092 V 99 w(2.483E-2)p 1252 2092 V 99 w(6.725E-4)p 1722 2092 V 98 w(3.389E-2)p 2191 2092 V 99 w(6.644E-3)p 2661 2092 V 98 w(2.702E-2)p 3130 2092 V 99 w(4.475E-3)p 3600 2092 V 3604 2092 V 535 2095 3070 4 v Black 876 2265 a(T)-8 b(able)32 b(7.3:)43 b Fr(L)1405 2229 y Fp(1)1477 2265 y Fu(error)33 b(comparisons)f(of)g (the)h(QMC)g(to)f(the)h(MC)p Black Black 446 2625 a(The)k(results)f(of) g(the)g(MC)h(for)e Fr(S)1657 2640 y Fp(2)1732 2625 y Fu(and)h Fr(S)1985 2640 y Fp(3)2061 2625 y Fu(are)g(similar)c(to)k (those)g(in)f([30].)53 b(Ho)m(w)m(ev)m(er,)40 b(the)300 2746 y(QMC)27 b(giv)m(es)g(m)m(uc)m(h)f(smaller)f(errors)h(than)h(the)f (MC)h(with)f(the)h(increasing)e(n)m(um)m(b)s(er)i(of)f(the)h(sub-)300 2866 y(in)m(terv)-5 b(als.)56 b(F)-8 b(or)36 b(the)h(mapping)f Fr(S)1559 2881 y Fp(1)1598 2866 y Fu(,)i(the)f(computational)e(error)h (with)h(the)g(MC)h(is)e(vibrating,)300 2987 y(but)d(the)g(error)f(with) g(the)h(QMC)h(is)e(decreasing)h(quic)m(kly)-8 b(.)446 3107 y(Wh)m(y)49 b(do)s(es)f(not)f(the)h(standard)g(Mon)m(te)g(Carlo)e (p)s(erform)h(w)m(ell)f(for)h Fr(S)3143 3122 y Fp(1)3183 3107 y Fu(?)88 b(Because)49 b(the)300 3227 y(Gaussian)43 b(transformation)e(has)i(in\014nitely)f(man)m(y)h(branc)m(hes)i(in)e (an)m(y)g(neigh)m(b)s(orho)s(o)s(d)f(of)h(0,)300 3348 y(the)29 b(deriv)-5 b(ativ)m(e)28 b Fr(S)973 3312 y Fl(0)967 3372 y Fp(1)1006 3348 y Fu(\()p Fr(x)p Fu(\))h(is)f(v)m(ery)i(large)d (as)h Fr(x)h Fu(is)f(near)h(0)f(\(when)h Fr(x)g Fu(approac)m(hes)h(0,)f (the)f(deriv)-5 b(ativ)m(e)300 3468 y(go)s(es)41 b(to)h(in\014nit)m (y\).)69 b(W)-8 b(e)42 b(kno)m(w)g(that)g(the)f(larger)g(the)h(deriv)-5 b(ativ)m(e,)43 b(the)f(more)e(sensitiv)m(e)j(the)300 3589 y(iterates)30 b(dep)s(end)g(on)g(the)g(initial)c(conditions,)k (whic)m(h)g(is)f(the)h(basic)g(idea)f(b)s(ehind)h(the)g(concept)300 3709 y(of)47 b(Ly)m(apuno)m(v)i(exp)s(onen)m(ts)h([50].)88 b(Th)m(us,)53 b(when)c(the)f(n)m(um)m(b)s(er)g(of)f(the)h(partitions)e (of)i([0)p Fr(;)17 b Fu(1])300 3829 y(is)41 b(increasing,)h(due)g(to)f (the)g(v)m(ery)i(large)c(deriv)-5 b(ativ)m(e)41 b(v)-5 b(alues)41 b(of)g(the)g(mapping)f(for)g(the)i(sub-)300 3950 y(in)m(terv)-5 b(als)47 b(near)h(0,)k(w)m(e)d(cannot)f(exp)s(ect)i (the)e(randomly)f(c)m(hosen)i(n)m(um)m(b)s(ers)g(in)f(the)g(Mon)m(te) 300 4070 y(Carlo)29 b(metho)s(d)h(can)h(e\013ectiv)m(ely)g(ev)-5 b(aluate)30 b(the)h(Ulam)e(matrix)g(in)g(Ulam's)h(metho)s(d.)42 b(In)31 b(other)300 4190 y(w)m(ords,)36 b(the)e(resulting)f(accum)m (ulated)h(error)g(ma)m(y)g(not)f(b)s(e)i(smaller)d(for)h(\014ner)i (partitions.)46 b(On)300 4311 y(the)28 b(other)f(hand,)h(the)g (quasi-Mon)m(te)f(Carlo)g(metho)s(d)f(is)h(based)h(on)f(the)g (deterministic)f(pro)s(cess)300 4431 y(of)g(c)m(ho)s(osing)h(the)g (uniform)e(sampling)f(p)s(oin)m(ts)j(with)f(eac)m(h)i(sub-in)m(terv)-5 b(al.)40 b(So)27 b(ev)m(en)h(for)e(the)i(sub-)300 4552 y(in)m(terv)-5 b(als)29 b(near)h(0,)h(the)f(error)g(can)g(b)s(e)g (e\013ectiv)m(ely)h(con)m(trolled)e(from)g(the)h(O\()p Fr(N)3214 4515 y Fl(\000)p Fp(1)3309 4552 y Fu(\))g(complexit)m(y)300 4672 y(of)k(the)i(quasi-Mon)m(te)f(Carlo)f(metho)s(d)g([44].)50 b(This)35 b(explains)g(wh)m(y)h(for)f Fr(S)3021 4687 y Fp(1)3060 4672 y Fu(,)h(the)f(MC)h(fails)d(but)300 4792 y(the)k(QMC)f(w)m(orks)i(w)m(ell.)54 b(The)37 b(ab)s(o)m(v)m(e)g (n)m(umerical)e(results)h(also)f(con\014rm)h(the)h(conclusion.)54 b(A)300 4913 y(more)39 b(detailed)f(list)g(of)h(the)h(errors)f(with)g (the)h Fr(M)10 b(C)47 b Fu(for)39 b Fr(S)2513 4928 y Fp(1)2592 4913 y Fu(is)f(Figure)h(7.1)g(for)g Fr(n)g Fu(from)f(4)h(to)300 5033 y(1024.)446 5153 y(No)m(w)j(w)m(e)f(compare)f (the)h(p)s(erformance)g(of)f(the)h(MC,)g(the)g(QMC,)h(and)e(the)h (exact)h(Ulam)300 5274 y(metho)s(d)28 b(for)g(the)h(logistic)d(mo)s (del)h(and)h Fr(S)1818 5289 y Fp(2)1858 5274 y Fu(.)42 b(T)-8 b(able)28 b(7.4)g(sho)m(ws)i(the)f Fr(L)2850 5238 y Fp(1)2919 5274 y Fu(error)f(and)h(the)g(time)e(\(in)300 5394 y(milliseconds\))34 b(comparisons)i(of)h(the)g(exact)g(Ulam)e (metho)s(d)i(in)f(Chapter)h(3)g(with)f(the)h(QMC)300 5515 y(and)f(the)f(MC)i(for)d(the)i(logistic)d(mo)s(del)h Fr(S)6 b Fu(\()p Fr(x)p Fu(\))33 b(=)f(4)p Fr(x)p Fu(\(1)24 b Fq(\000)h Fr(x)p Fu(\).)52 b(And)36 b(T)-8 b(able)35 b(7.5)g(only)g(lists)g(the)p Black Black eop %%Page: 39 48 39 47 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(39)p Black Black Black Black 720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/s1.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Sat Jul 1 01:13:50 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 684 360 M 63 0 V 2649 0 R -63 0 V 612 360 M (0) Rshow 684 562 M 63 0 V 2649 0 R -63 0 V 612 562 M (0.005) Rshow 684 763 M 63 0 V 2649 0 R -63 0 V 612 763 M (0.01) Rshow 684 965 M 63 0 V 2649 0 R -63 0 V 612 965 M (0.015) Rshow 684 1166 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.02) Rshow 684 1368 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.025) Rshow 684 1570 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.03) Rshow 684 1771 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.035) Rshow 684 1973 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.04) Rshow 684 2174 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.045) Rshow 684 2376 M 63 0 V 2649 0 R -63 0 V -2721 0 R (0.05) Rshow 684 360 M 0 63 V 0 1953 R 0 -63 V 684 240 M (2) Cshow 1023 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 1362 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 1701 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (5) Cshow 2040 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (6) Cshow 2379 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (7) Cshow 2718 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (8) Cshow 3057 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (9) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (10) Cshow 1.000 UL LTb 684 360 M 2712 0 V 0 2016 V -2712 0 V 684 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (L1 error) Cshow grestore 2040 60 M (i \(n=2^i\) ) Cshow 1.000 UL LT0 2829 2253 M (MC for S1) Rshow 2901 2253 M 351 0 V 684 2217 M 339 -603 V 339 -378 V 339 -27 V 339 70 V 339 75 V 339 7 V 339 165 V 339 -77 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 1133 2268 a(Figure)31 b(7.1:)43 b Fr(L)1701 2232 y Fp(1)1774 2268 y Fu(error)32 b(with)g(c)m(hange)i(of)e Fr(n)h Fu(for)f Fr(S)2968 2283 y Fp(1)p Black Black 300 2661 a Fu(errors.)51 b(Because)36 b(the)f(in)m(v)-5 b(arian)m(t)34 b(densit)m(y)i(for)e(the)h(logistic)e(mo)s(del)g Fr(S)40 b Fu(is)35 b(un)m(b)s(ounded)h(near)f(0)300 2781 y(and)j(1,)h(the)f (error)g(is)f(relativ)m(ely)f(large)h(ev)m(en)j(for)d(the)h(exact)h (Ulam)d(metho)s(d)h(if)f(the)j(n)m(um)m(b)s(er)300 2902 y Fr(n)h Fu(of)f(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1])39 b(is)g(not)g(big)g(enough.)65 b(F)-8 b(rom)38 b(the)i(t)m(w)m(o)g(tables)f(w)m(e)i(see)f(that)g(in)300 3022 y(implemen)m(ting)23 b(the)j(quasi-Mon)m(te)g(Carlo)f(metho)s(d,)h (the)g(errors)g(are)g(almost)e(as)i(small)d(as)j(those)300 3143 y(from)38 b(the)h(exact)h(Ulam)d(metho)s(d)h(in)g(whic)m(h)i(the)f (en)m(tries)h(of)e(the)h(matrix)f Fr(P)3182 3158 y Fo(n)3267 3143 y Fu(are)h(ev)-5 b(aluated)300 3263 y(exactly)33 b(b)m(y)g(the)g(form)m(ula)e(\(3.5\).)446 3383 y(Here)g(w)m(e)g(p)s (oin)m(t)e(out)g(again)g(that,)h(since)g(the)g(exact)h(ev)-5 b(aluation)28 b(of)h(the)h(en)m(tries)h(of)e(Ulam's)300 3504 y(matrix)h Fr(P)679 3519 y Fo(n)757 3504 y Fu(is)h(imp)s(ossible)e (for)i(most)g(applied)f(problems)g(due)i(to)f(the)h(fact)f(in)g(suc)m (h)i(cases)g(the)300 3624 y(the)d(in)m(v)m(erse)g(image)e(of)g(a)h (subset)i(under)f(the)g(mapping)d Fr(S)35 b Fu(can)30 b(not)f(b)s(e)g(obtained)g(analytically)300 3744 y(\(e.g.,)38 b Fr(S)k Fu(do)s(es)37 b(not)g(ha)m(v)m(e)h(an)e(expression)i(or)e(the) h(the)g(expression)h(of)e Fr(S)43 b Fu(is)36 b(to)s(o)g(complicated)300 3865 y(to)e(use\),)h(the)f(only)g(w)m(a)m(y)h(to)e(ev)-5 b(aluate)34 b(the)g(Ulam)e(matrix)h(appro)m(ximately)f(is)i(via)f(the)h (Mon)m(te)300 3985 y(Carlo)g(approac)m(h.)52 b(Of)35 b(course,)i(for)e(one)g(dimensional)e(mappings)h(as)i(simple)d(as)j (the)f(logistic)300 4106 y(mo)s(del,)j(the)h(exact)h(Ulam)c(metho)s(d)i (the)h(most)f(time)f(e\016cien)m(t,)k(and)e(it)e(is)h(not)g(necessary)j (to)300 4226 y(adopt)26 b(the)h(Mon)m(te)g(Carlo)e(approac)m(h)i(since) f(the)h(exact)g(ev)-5 b(aluation)25 b(of)g(the)i(matrix)e(is)h(p)s (ossible.)p Black Black 713 4496 a Fm(7.2)112 b(Numerical)35 b(Results)i(from)g(the)g(P)m(arallel)e(Computation)456 4716 y Fu(No)m(w)c(w)m(e)h(presen)m(t)h(the)e(n)m(umerical)f(results)h (from)f(the)h(parallel)d(quasi-Mon)m(te)j(Carlo)f(algo-)300 4836 y(rithms)d(to)i(the)g(mapping)e Fr(S)1342 4851 y Fp(3)1381 4836 y Fu(.)42 b(The)30 b(parallel)c(algorithms)g(w)m(ere)k (implemen)m(ted)d(on)h(the)h(Wiglaf)300 4956 y(parallel)34 b(computer)i(at)g(USM)h(and)f(on)g(the)h(Sw)m(eetgum)g(at)f(the)h (MCSR,)g(b)m(y)g(using)f(the)h(MPI)300 5077 y(\(Message)d(P)m(assing)f (In)m(terface\))h(pac)m(k)-5 b(age)33 b([46)o(])g(with)f(C)h(co)s(de)g (\(see)h(App)s(endix)f(B\).)p Black Black eop %%Page: 40 49 40 48 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(40)p Black Black Black Black 640 178 2861 4 v 638 298 4 121 v 642 298 V 693 262 a Fm(n)p 936 298 V 936 298 V 460 w(Exact)p 1772 298 V 1772 298 V 614 w(MC)p 2633 298 V 2633 298 V 633 w(QMC)p 3495 298 V 3499 298 V 938 302 2563 4 v 638 419 4 121 v 642 419 V 936 419 V 1102 383 a Fu(Err)p 1406 419 V 213 w(T\(ms\))p 1772 419 V 214 w(Err)p 2241 419 V 227 w(T\(ms\))p 2633 419 V 227 w(Err)p 3103 419 V 227 w(T\(ms\))p 3495 419 V 3499 419 V 640 422 2861 4 v 638 542 4 121 v 642 542 V 693 506 a(16)p 936 542 V 197 w(2.420E-1)p 1406 542 V 207 w(0)p 1772 542 V 208 w(2.615E-1)p 2241 542 V 196 w(70)p 2633 542 V 197 w(2.450E-1)p 3103 542 V 196 w(60)p 3495 542 V 3499 542 V 640 546 2861 4 v 638 666 4 121 v 642 666 V 693 630 a(32)p 936 666 V 197 w(1.935E-1)p 1406 666 V 207 w(0)p 1772 666 V 208 w(2.007E-1)p 2241 666 V 172 w(270)p 2633 666 V 172 w(1.936E-1)p 3103 666 V 171 w(220)p 3495 666 V 3499 666 V 640 669 2861 4 v 638 790 4 121 v 642 790 V 693 754 a(64)p 936 790 V 197 w(1.464E-1)p 1406 790 V 183 w(10)p 1772 790 V 183 w(1.486E-1)p 2241 790 V 147 w(1060)p 2633 790 V 148 w(1.478E-1)p 3103 790 V 171 w(860)p 3495 790 V 3499 790 V 640 793 2861 4 v 638 914 4 121 v 642 914 V 693 877 a(128)p 936 914 V 148 w(1.122E-1)p 1406 914 V 183 w(60)p 1772 914 V 183 w(1.195E-1)p 2241 914 V 147 w(4200)p 2633 914 V 148 w(1.129E-1)p 3103 914 V 147 w(3480)p 3495 914 V 3499 914 V 640 917 2861 4 v 638 1037 4 121 v 642 1037 V 693 1001 a(256)p 936 1037 V 148 w(8.290E-2)p 1406 1037 V 158 w(330)p 1772 1037 V 159 w(8.856E-2)p 2241 1037 V 123 w(16670)p 2633 1037 V 123 w(8.345E-2)p 3103 1037 V 123 w(13860)p 3495 1037 V 3499 1037 V 640 1041 2861 4 v 638 1161 4 121 v 642 1161 V 693 1125 a(512)p 936 1161 V 148 w(6.280E-2)p 1406 1161 V 134 w(1280)p 1772 1161 V 134 w(7.284E-2)p 2241 1161 V 123 w(66450)p 2633 1161 V 123 w(6.323E-2)p 3103 1161 V 123 w(55850)p 3495 1161 V 3499 1161 V 640 1164 2861 4 v 638 1285 4 121 v 642 1285 V 693 1249 a(1024)p 936 1285 V 99 w(4.580E-2)p 1406 1285 V 134 w(6510)p 1772 1285 V 134 w(6.301E-2)p 2241 1285 V 99 w(265540)p 2633 1285 V 98 w(4.621E-2)p 3103 1285 V 98 w(223540)p 3495 1285 V 3499 1285 V 640 1288 2861 4 v Black 340 1458 a(T)-8 b(able)32 b(7.4:)43 b Fr(L)869 1422 y Fp(1)942 1458 y Fu(error/time)31 b(comparison)g(of)h(QMC,)h(MC,)h(and)e(Exact)i(for)e (logistic)e(mo)s(del)p Black Black Black Black Black 1239 1694 1662 4 v 1237 1814 4 121 v 1241 1814 V 1293 1778 a Fr(n)p 1487 1814 V 249 w Fu(Exact)p 1957 1814 V 266 w(MC)p 2426 1814 V 273 w(QMC)p 2896 1814 V 2900 1814 V 1239 1818 1662 4 v 1237 1938 4 121 v 1241 1938 V 1293 1902 a(16)p 1487 1938 V 148 w(1.027E-1)p 1957 1938 V 98 w(1.172E-1)p 2426 1938 V 99 w(1.025E-1)p 2896 1938 V 2900 1938 V 1239 1941 1662 4 v 1237 2062 4 121 v 1241 2062 V 1293 2026 a(32)p 1487 2062 V 148 w(5.257E-2)p 1957 2062 V 98 w(6.122E-2)p 2426 2062 V 99 w(5.264E-2)p 2896 2062 V 2900 2062 V 1239 2065 1662 4 v 1237 2186 4 121 v 1241 2186 V 1293 2149 a(64)p 1487 2186 V 148 w(2.564E-2)p 1957 2186 V 98 w(3.603E-2)p 2426 2186 V 99 w(2.581E-2)p 2896 2186 V 2900 2186 V 1239 2189 1662 4 v 1237 2309 4 121 v 1241 2309 V 1293 2273 a(128)p 1487 2309 V 99 w(1.337E-2)p 1957 2309 V 98 w(3.682E-2)p 2426 2309 V 99 w(1.344E-2)p 2896 2309 V 2900 2309 V 1239 2313 1662 4 v 1237 2433 4 121 v 1241 2433 V 1293 2397 a(256)p 1487 2433 V 99 w(6.450E-3)p 1957 2433 V 98 w(3.389E-2)p 2426 2433 V 99 w(6.644E-3)p 2896 2433 V 2900 2433 V 1239 2436 1662 4 v Black 720 2607 a(T)-8 b(able)32 b(7.5:)43 b Fr(L)1249 2570 y Fp(1)1322 2607 y Fu(error)32 b(comparison)g(of)g (QMC,)h(MC,)g(and)g(Exact)h(for)e Fr(S)3381 2622 y Fp(2)p Black Black Black Black 1170 2999 a Fm(7.2.1)150 b(Numerical)35 b(Results)h(on)i(Wiglaf)476 3184 y Fu(Wiglaf)f(is)i(the)g(USM)h(Beo)m (wulf)f(Cluster)h(with)f(32)g(P)m(en)m(tium)g(I)s(I)g(pro)s(cessors)i (whic)m(h)f(run)300 3305 y(LAM)g(6.3.1/MPI)g(2)f(C++/R)m(OMIO)h(of)f (Univ)m(ersit)m(y)h(of)f(Notre)h(Dame.)63 b(The)40 b(compiler)e(w)m(e) 300 3425 y(used)43 b(is)e Fr(hcc)h Fu(with)f(the)h(optimizing)c (compilation)g(option)j(-O3.)69 b(The)43 b(no)s(de)f(con\014guration) 300 3545 y(of)36 b(Wiglaf)e(is:)51 b(233)36 b(MHz)h(CPU)g(sp)s(eed,)i (256)d(MB)h(memory)-8 b(,)36 b(4)h(GB)f(hard)g(disk,)i(and)f(3COM)300 3666 y(3c905)32 b(10/100)f(PCI)j(Ethernet)f(with)g(Ba)m(y)g(Net)m(w)m (orks)h(350T)f(F)-8 b(ast)32 b(Ethernet)i(Switc)m(h.)446 3786 y(In)25 b(the)g(exp)s(erimen)m(ts,)i(all)22 b(times)i(rep)s(orted) g(here)h(are)g(the)g(b)s(est)g(ones)g(of)f(3)g(to)g(5)g(runs.)42 b(In)25 b(the)300 3906 y(follo)m(wing)i(tables)j(and)g(\014gures,)h Fr(p)f Fu(represen)m(ts)i(the)e(n)m(um)m(b)s(er)g(of)g(w)m(orking)f (parallel)e(pro)s(cessors.)300 4027 y Fr(T)58 b Fu(means)44 b(the)h(computation)e(time)g(in)h(seconds.)80 b Fr(s)45 b Fu(is)e(the)i(sp)s(eedup,)k(and)c(the)g(e\016ciency)300 4147 y(is)f(denoted)h(b)m(y)g Fr(E)6 b Fu(.)79 b(All)43 b(the)h(data)g(are)g(rounded)i(o\013)e(to)f(the)i(second)h(decimal)c (place.)79 b(In)300 4268 y(the)32 b(quasi-Mon)m(te)f(Carlo)f (computation,)g(1000)g(sampling)f(n)m(um)m(b)s(ers)j(are)f(used,)i (that)e(is,)g(eac)m(h)300 4388 y(partition)h([)p Fr(ih;)17 b Fu(\()p Fr(i)23 b Fu(+)g(1\))p Fr(h)p Fu(])34 b(\()p Fr(i)c Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g Fu(2)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17 b(n)23 b Fq(\000)g Fu(1\))34 b(of)f([0)p Fr(;)17 b Fu(1])33 b(is)h(ev)m(enly)h(re-divided) e(in)m(to)g(1000)300 4508 y(sub-in)m(terv)-5 b(als,)32 b(where)i Fr(h)28 b Fu(=)f(1)p Fr(=n)p Fu(.)446 4629 y(W)-8 b(e)36 b(discuss)h(the)f(p)s(erformances)g(of)f(the)h(UMP)-8 b(A)36 b(and)g(the)g(CP)-8 b(A)36 b(on)g(the)g(Wiglaf.)50 b(T)-8 b(able)300 4749 y(7.6)31 b(sho)m(ws)i(the)f(computation)e(time)g (\(in)g(seconds\),)k(sp)s(eedup,)f(and)f(e\016ciency)g(of)f(the)h(UMP) -8 b(A)300 4870 y(and)33 b(the)g(CP)-8 b(A)33 b(for)f(the)h(test)g (mapping)e Fr(S)1860 4885 y Fp(3)1900 4870 y Fu(.)446 4990 y(F)-8 b(rom)32 b(the)h(results)g(it)f(is)h(easy)h(to)e(\014nd)i (that)e(the)i(computation)d(time)h(of)g(the)h(CP)-8 b(A)34 b(is)f(less)300 5110 y(than)40 b(that)g(of)f(the)h(UMP)-8 b(A)41 b(for)e(the)i(same)e(problem)g(size)h Fr(n)g Fu(\(the)g(n)m(um)m (b)s(er)h(of)e(subin)m(terv)-5 b(als)300 5231 y(from)30 b(the)i(partition)d(of)h([0)p Fr(;)17 b Fu(1]\).)43 b(Th)m(us)32 b(the)g(CP)-8 b(A)32 b(is)f(faster)g(than)g(the)h(UMP)-8 b(A)32 b(with)f(the)g(same)300 5351 y(problem.)446 5471 y(Figure)24 b(7.2)h(and)g(Figure)e(7.3)i(sho)m(w)h(the)f(e\016ciency)h (of)f(the)g(UMP)-8 b(A)26 b(and)f(CP)-8 b(A)25 b(with)g(resp)s(ect)p Black Black eop %%Page: 41 50 41 49 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(41)p Black Black Black Black 782 178 2576 4 v 780 298 4 121 v 784 298 V 835 262 a Fm(n)p 1030 298 V 1030 298 V 592 w(UMP)-9 b(A)p 2290 298 V 2290 298 V 873 w(CP)g(A)p 3353 298 V 3357 298 V 782 302 2576 4 v 780 422 4 121 v 784 422 V 1030 422 V 1105 386 a Fr(p)p 1227 422 V 164 w(T)14 b Fu(\()p Fr(s)p Fu(\))p 1597 422 V 226 w Fr(s)p 1919 422 V 206 w(E)6 b Fu(\(\045\))p 2290 422 V 157 w Fr(T)14 b Fu(\()p Fr(s)p Fu(\))p 2660 422 V 226 w Fr(s)p 2982 422 V 206 w(E)6 b Fu(\(\045\))p 3353 422 V 3357 422 V 1031 425 2327 4 v 780 542 4 121 v 784 542 V 1030 542 V 1106 506 a(1)p 1227 542 V 148 w(29.22)p 1597 542 V 147 w(1.00)p 1919 542 V 124 w(100.00)p 2290 542 V 123 w(26.27)p 2660 542 V 147 w(1.00)p 2982 542 V 124 w(100.00)p 3353 542 V 3357 542 V 1031 546 2327 4 v 780 663 4 121 v 784 663 V 1030 663 V 1106 627 a(2)p 1227 663 V 148 w(15.93)p 1597 663 V 147 w(1.83)p 1919 663 V 148 w(91.71)p 2290 663 V 148 w(13.63)p 2660 663 V 147 w(1.93)p 2982 663 V 148 w(96.37)p 3353 663 V 3357 663 V 1031 666 2327 4 v 780 783 4 121 v 784 783 V 835 747 a(128)p 1030 783 V 124 w(4)p 1227 783 V 172 w(8.11)p 1597 783 V 172 w(3.60)p 1919 783 V 148 w(90.07)p 2290 783 V 172 w(6.85)p 2660 783 V 172 w(3.84)p 2982 783 V 148 w(95.88)p 3353 783 V 3357 783 V 1031 786 2327 4 v 780 904 4 121 v 784 904 V 1030 904 V 1106 867 a(8)p 1227 904 V 197 w(4.1)p 1597 904 V 196 w(7.13)p 1919 904 V 148 w(89.09)p 2290 904 V 172 w(3.44)p 2660 904 V 172 w(7.64)p 2982 904 V 148 w(95.46)p 3353 904 V 3357 904 V 1031 907 2327 4 v 780 1024 4 121 v 784 1024 V 1030 1024 V 1081 988 a(16)p 1227 1024 V 148 w(2.09)p 1597 1024 V 148 w(13.98)p 1919 1024 V 123 w(87.38)p 2290 1024 V 172 w(1.74)p 2660 1024 V 148 w(15.10)p 2982 1024 V 123 w(94.36)p 3353 1024 V 3357 1024 V 1031 1027 2327 4 v 780 1144 4 121 v 784 1144 V 1030 1144 V 1081 1108 a(32)p 1227 1144 V 148 w(1.09)p 1597 1144 V 148 w(26.81)p 1919 1144 V 123 w(83.77)p 2290 1144 V 172 w(1.09)p 2660 1144 V 148 w(24.10)p 2982 1144 V 123 w(75.32)p 3353 1144 V 3357 1144 V 782 1148 2576 4 v 780 1268 4 121 v 784 1268 V 1030 1268 V 1106 1232 a(1)p 1227 1268 V 123 w(116.93)p 1597 1268 V 123 w(1.00)p 1919 1268 V 124 w(100.00)p 2290 1268 V 98 w(105.08)p 2660 1268 V 123 w(1.00)p 2982 1268 V 124 w(100.00)p 3353 1268 V 3357 1268 V 1031 1271 2327 4 v 780 1388 4 121 v 784 1388 V 1030 1388 V 1106 1352 a(2)p 1227 1388 V 148 w(63.76)p 1597 1388 V 147 w(1.83)p 1919 1388 V 148 w(91.70)p 2290 1388 V 172 w(54.5)p 2660 1388 V 172 w(1.93)p 2982 1388 V 148 w(96.40)p 3353 1388 V 3357 1388 V 1031 1392 2327 4 v 780 1509 4 121 v 784 1509 V 835 1473 a(256)p 1030 1509 V 124 w(4)p 1227 1509 V 148 w(32.53)p 1597 1509 V 147 w(3.59)p 1919 1509 V 148 w(89.86)p 2290 1509 V 148 w(27.31)p 2660 1509 V 147 w(3.85)p 2982 1509 V 148 w(96.19)p 3353 1509 V 3357 1509 V 1031 1512 2327 4 v 780 1629 4 121 v 784 1629 V 1030 1629 V 1106 1593 a(8)p 1227 1629 V 148 w(16.43)p 1597 1629 V 147 w(7.12)p 1919 1629 V 148 w(88.96)p 2290 1629 V 148 w(13.71)p 2660 1629 V 147 w(7.66)p 2982 1629 V 148 w(95.81)p 3353 1629 V 3357 1629 V 1031 1632 2327 4 v 780 1750 4 121 v 784 1750 V 1030 1750 V 1081 1713 a(16)p 1227 1750 V 148 w(8.37)p 1597 1750 V 148 w(13.97)p 1919 1750 V 123 w(87.31)p 2290 1750 V 172 w(6.87)p 2660 1750 V 148 w(15.30)p 2982 1750 V 123 w(95.60)p 3353 1750 V 3357 1750 V 1031 1753 2327 4 v 780 1870 4 121 v 784 1870 V 1030 1870 V 1081 1834 a(32)p 1227 1870 V 148 w(4.37)p 1597 1870 V 148 w(26.76)p 1919 1870 V 123 w(83.62)p 2290 1870 V 172 w(3.67)p 2660 1870 V 148 w(28.63)p 2982 1870 V 123 w(89.50)p 3353 1870 V 3357 1870 V 782 1873 2576 4 v 780 1994 4 121 v 784 1994 V 1030 1994 V 1106 1958 a(1)p 1227 1994 V 123 w(467.85)p 1597 1994 V 123 w(1.00)p 1919 1994 V 186 w(100)p 2290 1994 V 161 w(420.59)p 2660 1994 V 123 w(1.00)p 2982 1994 V 124 w(100.00)p 3353 1994 V 3357 1994 V 1031 1997 2327 4 v 780 2114 4 121 v 784 2114 V 1030 2114 V 1106 2078 a(2)p 1227 2114 V 123 w(255.27)p 1597 2114 V 123 w(1.83)p 1919 2114 V 148 w(91.64)p 2290 2114 V 123 w(217.74)p 2660 2114 V 123 w(1.93)p 2982 2114 V 148 w(96.58)p 3353 2114 V 3357 2114 V 1031 2117 2327 4 v 780 2234 4 121 v 784 2234 V 835 2198 a(512)p 1030 2234 V 124 w(4)p 1227 2234 V 123 w(130.12)p 1597 2234 V 123 w(3.60)p 1919 2234 V 148 w(89.89)p 2290 2234 V 123 w(109.26)p 2660 2234 V 123 w(3.85)p 2982 2234 V 148 w(96.24)p 3353 2234 V 3357 2234 V 1031 2238 2327 4 v 780 2355 4 121 v 784 2355 V 1030 2355 V 1106 2319 a(8)p 1227 2355 V 148 w(66.04)p 1597 2355 V 147 w(7.08)p 1919 2355 V 148 w(88.55)p 2290 2355 V 148 w(54.69)p 2660 2355 V 147 w(7.69)p 2982 2355 V 148 w(96.13)p 3353 2355 V 3357 2355 V 1031 2358 2327 4 v 780 2475 4 121 v 784 2475 V 1030 2475 V 1081 2439 a(16)p 1227 2475 V 124 w(33.66)p 1597 2475 V 123 w(13.90)p 1919 2475 V 123 w(86.87)p 2290 2475 V 148 w(27.43)p 2660 2475 V 123 w(15.33)p 2982 2475 V 123 w(95.83)p 3353 2475 V 3357 2475 V 1031 2478 2327 4 v 780 2596 4 121 v 784 2596 V 1030 2596 V 1081 2559 a(32)p 1227 2596 V 124 w(17.58)p 1597 2596 V 123 w(26.61)p 1919 2596 V 123 w(83.16)p 2290 2596 V 148 w(13.98)p 2660 2596 V 123 w(30.09)p 2982 2596 V 123 w(94.02)p 3353 2596 V 3357 2596 V 782 2599 2576 4 v Black 760 2759 a(T)-8 b(able)32 b(7.6:)43 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)34 b(and)e(CP)-8 b(A)34 b(for)e Fr(S)2859 2774 y Fp(3)2931 2759 y Fu(on)g(Wiglaf)p Black Black 300 3152 a(to)g Fr(p)h Fu(and)f Fr(n)h Fu(on)g(Wiglaf)d(resp)s(ectiv)m(ely)-8 b(.)446 3273 y(The)25 b(ab)s(o)m(v)m(e)f(results)g(sho)m(w)g(that,)h (when)g(the)f(pro)s(cessor)g(n)m(um)m(b)s(er)g Fr(p)f Fu(increases,)j(the)e(sp)s(eedup)300 3393 y Fr(s)h Fu(of)g(b)s(oth)g (the)h(UMP)-8 b(A)26 b(and)f(the)h(CP)-8 b(A)26 b(will)d(also)i (increase;)j(the)e(computation)d(time)h Fr(T)39 b Fu(of)25 b(b)s(oth)300 3513 y(will)c(decrease;)28 b(the)c(e\016ciency)h Fr(E)k Fu(of)23 b(b)s(oth)h(will)d(decrease.)42 b(With)23 b(the)g(increase)h(of)f(the)h(problem)300 3634 y(size)j Fr(n)p Fu(,)h(the)f(e\016ciency)i Fr(E)k Fu(of)26 b(the)h(UMP)-8 b(A)28 b(will)c(decrease,)30 b(while)c Fr(E)33 b Fu(of)26 b(the)h(CP)-8 b(A)28 b(will)c(increase.)300 3754 y(When)34 b Fr(n)29 b Fu(=)f(512)k(the)i(p)s(erformance)e(\(computation)g(time,)g (sp)s(eedup,)i(and)g(e\016ciency\))g(of)f(the)300 3875 y(CP)-8 b(A)29 b(is)e(m)m(uc)m(h)h(b)s(etter)h(than)e(the)i(p)s (erformance)e(of)h(the)g(UMP)-8 b(A.)29 b(Therefore)f(w)m(e)h(can)f (conclude)300 3995 y(that)k(the)h(CP)-8 b(A)34 b(outp)s(erforms)e(the)h (UMP)-8 b(A)33 b(when)h Fr(n)e Fu(is)h(large.)446 4115 y(Here)k(the)g(e\016ciency)h Fr(E)43 b Fu(of)36 b(the)h(UMP)-8 b(A)37 b(decreases)h(with)f(the)f(increase)h(of)f(the)h(problem)300 4236 y(size)g Fr(n)h Fu(b)s(ecause)g(of)f(the)g(sequen)m(tial)h(part)f (of)f(the)i(algorithm.)54 b(This)37 b(means)g(that)g(when)i(the)300 4356 y(problem)26 b(size)g Fr(n)h Fu(increases,)i(the)e(single)f(pro)s (cessor)i(in)e(whic)m(h)h(the)g(\014xed)h(densit)m(y)g(is)e(calculated) 300 4477 y(has)g(to)f(tak)m(e)i(more)d(time)h(to)g(do)g(the)h(job)g (while)e(other)i(pro)s(cessors)h(are)f(set)g(idle.)40 b(Therefore)27 b(the)300 4597 y(total)i(computation)g(time)h(for)g(the) h(UMP)-8 b(A)31 b(will)e(increase)i(and)g(the)g(e\016ciency)h(will)c (decrease.)446 4717 y(Figure)44 b(7.3)h(also)f(indicates)g(that,)k (when)e(the)f(n)m(um)m(b)s(er)h Fr(p)f Fu(of)f(the)h(pro)s(cessors)i (is)d(small)300 4838 y(\()p Fr(p)34 b(<)g Fu(16\),)j(the)g(e\016ciency) h(of)e(the)h(CP)-8 b(A)37 b(do)s(es)g(not)f(c)m(hange)h(to)s(o)f(m)m (uc)m(h)h(with)f(resp)s(ect)h(to)g(the)300 4958 y(problem)j(size)h Fr(n)p Fu(.)68 b(But)41 b(when)h(the)g(n)m(um)m(b)s(er)f Fr(p)g Fu(of)f(the)i(pro)s(cessors)g(is)e(large)g(\()p Fr(p)i Fq(\025)g Fu(16\),)h(the)300 5078 y(increase)c(of)f(the)h (problem)f(size)h Fr(n)f Fu(will)f(lead)h(to)g(the)h(increase)g(of)f (the)h(e\016ciency)i(eviden)m(tly)-8 b(.)300 5199 y(This)27 b(is)f(b)s(ecause)i(when)g Fr(p)f Fu(is)f(small,)g(there)h(is)f(not)h (to)s(o)f(m)m(uc)m(h)h(comm)m(unication)e(in)g(the)j(parallel)300 5319 y(computation.)42 b(In)32 b(this)f(case,)h(the)g(e\016ciency)h (will)d(not)h(c)m(hange)h(v)m(ery)i(m)m(uc)m(h)e(if)e(the)i(c)m(hange)g (of)300 5440 y Fr(n)j Fu(is)f(not)g(to)s(o)g(m)m(uc)m(h.)50 b(But)35 b(when)g Fr(p)g Fu(is)f(large,)g(the)h(pro)s(cessors)h(comm)m (unicate)d(a)i(lot)e(and)i(the)p Black Black eop %%Page: 42 51 42 50 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(42)p Black Black Black Black 720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/u.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Wed Jul 5 17:20:39 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (80) Rshow 540 864 M 63 0 V 2793 0 R -63 0 V 468 864 M (85) Rshow 540 1368 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 1872 M 63 0 V 2793 0 R -63 0 V -2865 0 R (95) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 1111 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 2825 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (5) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 2376 M 571 -835 V 571 -166 V 572 -99 V 571 -172 V 3396 740 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 2376 M 571 -837 V 571 -185 V 572 -91 V 571 -166 V 3396 725 L 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 2376 M 571 -843 V 571 -176 V 572 -135 V 571 -169 V 3396 679 L stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 1029 2268 a(Figure)32 b(7.2:)43 b(E\016ciency)34 b(of)e(UMP)-8 b(A)33 b(for)f Fr(S)2621 2283 y Fp(3)2693 2268 y Fu(on)h(Wiglaf)p Black Black Black Black Black 720 4385 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/c.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Wed Jul 5 15:23:45 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (70) Rshow 540 648 M 63 0 V 2793 0 R -63 0 V 468 648 M (75) Rshow 540 936 M 63 0 V 2793 0 R -63 0 V 468 936 M (80) Rshow 540 1224 M 63 0 V 2793 0 R -63 0 V -2865 0 R (85) Rshow 540 1512 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 1800 M 63 0 V 2793 0 R -63 0 V -2865 0 R (95) Rshow 540 2088 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (105) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 1111 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 2825 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (5) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 2088 M 571 -209 V 571 -29 V 572 -24 V 571 -63 V 3396 666 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 2088 M 571 -207 V 571 -12 V 572 -23 V 571 -12 V 571 -352 V 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 2088 M 571 -197 V 571 -20 V 572 -6 V 571 -17 V 571 -105 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 1075 4588 a(Figure)f(7.3:)43 b(E\016ciency)34 b(of)e(CP)-8 b(A)33 b(for)f Fr(S)2575 4603 y Fp(3)2647 4588 y Fu(on)h(Wiglaf)p Black Black 300 4981 a(e\016ciency)h(will)c(b)s (e)j(degraded)g(if)f(the)h(problem)e(size)i Fr(n)g Fu(is)f(small.)p Black Black eop %%Page: 43 52 43 51 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(43)p Black Black Black 1083 274 a Fm(7.2.2)149 b(Numerical)36 b(Results)g(on)i(Sw)m(eetgum)451 459 y Fu(Let's)27 b(discuss)g(the)f(p)s(erformances)g(of)g(the)g(UMP)-8 b(A)27 b(and)f(the)g(CP)-8 b(A)27 b(running)f(on)g(the)g(Sw)m(eet-)300 579 y(gum)33 b(at)g(the)i(MCSR)f(\(Mississippi)f(Cen)m(ter)i(of)e(Sup)s (ercomputing)g(Researc)m(h\).)49 b(Sw)m(eetgum)34 b(is)300 700 y(an)44 b(Origin)d(2000)i(sup)s(ercomputer)h(equipp)s(ed)h(with)e (sixt)m(y-four)h(R12000)e(pro)s(cessing)i(units)300 820 y(\(CPUs\))29 b(and)e(16)g(gigab)m(ytes)g(of)g(memory)-8 b(.)41 b(The)28 b(CPU)h(clo)s(c)m(k)e(sp)s(eed)i(is)d(300)h(MHz.)43 b(The)28 b(Origin)300 941 y(2000)39 b(runs)i(the)g(IRIX)f(op)s(erating) f(system.)67 b(IRIX)40 b(is)g(a)g(UNIX-deriv)m(ed)h(op)s(erating)e (system)300 1061 y(with)32 b(SGI)h(extensions.)44 b(The)34 b(compiler)d(w)m(e)i(used)h(is)e(cc)h(with)f(optimization)d(option)j (-O3.)446 1181 y(The)37 b(computation)c(time)h Fr(T)14 b Fu(\()p Fr(s)p Fu(\),)36 b(the)g(sp)s(eedup)h Fr(s)p Fu(,)f(and)f(the)h(e\016ciency)h Fr(E)k Fu(of)35 b(the)h(UMP)-8 b(A)300 1302 y(and)33 b(the)g(CP)-8 b(A)33 b(for)f(the)h(mapping)e Fr(S)1670 1317 y Fp(3)1742 1302 y Fu(on)i(the)g(Sw)m(eetgum)g(is)f(sho) m(wn)i(in)e(T)-8 b(able)32 b(7.7.)p Black Black Black 855 1441 2430 4 v 853 1561 4 121 v 857 1561 V 908 1525 a Fm(n)p 1103 1561 V 1103 1561 V 544 w(UMP)-9 b(A)p 2266 1561 V 2266 1561 V 799 w(CP)g(A)p 3280 1561 V 3284 1561 V 855 1564 2430 4 v 853 1685 4 121 v 857 1685 V 1103 1685 V 1179 1649 a Fr(p)p 1300 1685 V 138 w(T)14 b Fu(\()p Fr(s)p Fu(\))p 1622 1685 V 178 w Fr(s)p 1895 1685 V 181 w(E)6 b Fu(\(\045\))p 2266 1685 V 133 w Fr(T)14 b Fu(\()p Fr(s)p Fu(\))p 2587 1685 V 202 w Fr(s)p 2909 1685 V 206 w(E)6 b Fu(\(\045\))p 3280 1685 V 3284 1685 V 1105 1688 2181 4 v 853 1805 4 121 v 857 1805 V 1103 1805 V 1179 1769 a(1)p 1300 1805 V 148 w(4.87)p 1622 1805 V 123 w(1.00)p 1895 1805 V 99 w(100.00)p 2266 1805 V 123 w(4.49)p 2587 1805 V 148 w(1.00)p 2909 1805 V 124 w(100.00)p 3280 1805 V 3284 1805 V 1105 1808 2181 4 v 853 1925 4 121 v 857 1925 V 1103 1925 V 1179 1889 a(2)p 1300 1925 V 148 w(2.61)p 1622 1925 V 123 w(1.87)p 1895 1925 V 124 w(93.30)p 2266 1925 V 147 w(2.39)p 2587 1925 V 148 w(1.88)p 2909 1925 V 148 w(93.93)p 3280 1925 V 3284 1925 V 1105 1929 2181 4 v 853 2046 4 121 v 857 2046 V 908 2010 a(128)p 1103 2046 V 124 w(4)p 1300 2046 V 148 w(1.71)p 1622 2046 V 123 w(2.85)p 1895 2046 V 124 w(71.20)p 2266 2046 V 147 w(1.76)p 2587 2046 V 148 w(2.55)p 2909 2046 V 148 w(63.78)p 3280 2046 V 3284 2046 V 1105 2049 2181 4 v 853 2166 4 121 v 857 2166 V 1103 2166 V 1179 2130 a(8)p 1300 2166 V 148 w(1.69)p 1622 2166 V 123 w(2.88)p 1895 2166 V 124 w(36.02)p 2266 2166 V 147 w(2.72)p 2587 2166 V 148 w(1.65)p 2909 2166 V 148 w(20.63)p 3280 2166 V 3284 2166 V 1105 2170 2181 4 v 853 2287 4 121 v 857 2287 V 1103 2287 V 1154 2250 a(16)p 1300 2287 V 100 w(10.64)p 1622 2287 V 98 w(0.46)p 1895 2287 V 148 w(2.86)p 2266 2287 V 148 w(17.64)p 2587 2287 V 123 w(0.25)p 2909 2287 V 172 w(1.59)p 3280 2287 V 3284 2287 V 855 2290 2430 4 v 853 2410 4 121 v 857 2410 V 1103 2410 V 1179 2374 a(1)p 1300 2410 V 124 w(19.04)p 1622 2410 V 98 w(1.00)p 1895 2410 V 99 w(100.00)p 2266 2410 V 99 w(18.53)p 2587 2410 V 123 w(1.00)p 2909 2410 V 124 w(100.00)p 3280 2410 V 3284 2410 V 1105 2414 2181 4 v 853 2531 4 121 v 857 2531 V 1103 2531 V 1179 2495 a(2)p 1300 2531 V 148 w(9.89)p 1622 2531 V 123 w(1.93)p 1895 2531 V 124 w(96.26)p 2266 2531 V 123 w(10.20)p 2587 2531 V 123 w(1.82)p 2909 2531 V 148 w(90.83)p 3280 2531 V 3284 2531 V 1105 2534 2181 4 v 853 2651 4 121 v 857 2651 V 908 2615 a(256)p 1103 2651 V 124 w(4)p 1300 2651 V 148 w(5.27)p 1622 2651 V 123 w(3.61)p 1895 2651 V 124 w(90.32)p 2266 2651 V 147 w(5.49)p 2587 2651 V 148 w(3.38)p 2909 2651 V 148 w(84.38)p 3280 2651 V 3284 2651 V 1105 2654 2181 4 v 853 2771 4 121 v 857 2771 V 1103 2771 V 1179 2735 a(8)p 1300 2771 V 172 w(3.6)p 1622 2771 V 148 w(5.29)p 1895 2771 V 124 w(66.11)p 2266 2771 V 147 w(6.40)p 2587 2771 V 124 w(2.901)p 2909 2771 V 123 w(36.19)p 3280 2771 V 3284 2771 V 1105 2775 2181 4 v 853 2892 4 121 v 857 2892 V 1103 2892 V 1154 2856 a(16)p 1300 2892 V 100 w(11.25)p 1622 2892 V 98 w(1.69)p 1895 2892 V 124 w(10.58)p 2266 2892 V 123 w(13.85)p 2587 2892 V 123 w(1.34)p 2909 2892 V 172 w(8.36)p 3280 2892 V 3284 2892 V 855 2895 2430 4 v 853 3015 4 121 v 857 3015 V 1103 3015 V 1179 2979 a(1)p 1300 3015 V 124 w(77.32)p 1622 3015 V 98 w(1.00)p 1895 3015 V 99 w(100.00)p 2266 3015 V 99 w(77.19)p 2587 3015 V 123 w(1.00)p 2909 3015 V 124 w(100.00)p 3280 3015 V 3284 3015 V 1105 3019 2181 4 v 853 3136 4 121 v 857 3136 V 1103 3136 V 1179 3100 a(2)p 1300 3136 V 124 w(40.69)p 1622 3136 V 98 w(1.90)p 1895 3136 V 124 w(95.01)p 2266 3136 V 123 w(39.02)p 2587 3136 V 123 w(1.98)p 2909 3136 V 148 w(98.91)p 3280 3136 V 3284 3136 V 1105 3139 2181 4 v 853 3256 4 121 v 857 3256 V 908 3220 a(512)p 1103 3256 V 124 w(4)p 1300 3256 V 124 w(21.41)p 1622 3256 V 98 w(3.61)p 1895 3256 V 124 w(90.28)p 2266 3256 V 123 w(21.92)p 2587 3256 V 123 w(3.52)p 2909 3256 V 148 w(88.04)p 3280 3256 V 3284 3256 V 1105 3260 2181 4 v 853 3377 4 121 v 857 3377 V 1103 3377 V 1179 3341 a(8)p 1300 3377 V 124 w(12.93)p 1622 3377 V 98 w(5.98)p 1895 3377 V 124 w(74.75)p 2266 3377 V 123 w(12.82)p 2587 3377 V 123 w(6.02)p 2909 3377 V 148 w(75.26)p 3280 3377 V 3284 3377 V 1105 3380 2181 4 v 853 3497 4 121 v 857 3497 V 1103 3497 V 1154 3461 a(16)p 1300 3497 V 100 w(21.61)p 1622 3497 V 98 w(3.58)p 1895 3497 V 124 w(22.36)p 2266 3497 V 123 w(15.65)p 2587 3497 V 123 w(4.93)p 2909 3497 V 148 w(30.83)p 3280 3497 V 3284 3497 V 855 3500 2430 4 v Black 685 3661 a(T)-8 b(able)32 b(7.7:)44 b(P)m(erformance)32 b(of)h(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f Fr(S)2784 3676 y Fp(3)2856 3661 y Fu(on)g(Sw)m(eetgum)p Black Black 446 4005 a(T)-8 b(able)38 b(7.7)h(sho)m(ws)h(that,)g(when)f Fr(p)f Fu(=)f(16,)j(the)f(computational)d(time)h(on)h(the)h(Sw)m (eetgum)300 4126 y(is)i(large.)68 b(This)41 b(is)g(b)s(ecause)h(in)f (the)g(Sw)m(eetgum,)j(there)e(are)f(to)s(o)g(man)m(y)g(jobs)g(running)g (and)300 4246 y(the)k(comm)m(unication)c(costs)46 b(a)d(lot)g(if)g(the) i(parallel)c(w)m(orking)k(pro)s(cessor)g(n)m(um)m(b)s(er)f(is)g(large.) 300 4367 y(Comparing)33 b(this)i(table)f(with)g(T)-8 b(able)35 b(7.6)f(for)h(the)g(Wiglaf,)e(the)i(p)s(erformance)g(of)f(Sw) m(eetgum)300 4487 y(is)e(b)s(etter)h(than)g(that)f(of)g(the)h(Wiglaf)d (if)i Fr(p)g Fu(is)g(small.)446 4607 y(Figure)k(7.4)g(and)h(Figure)f (7.5)g(sho)m(w)i(the)f(e\016ciency)h(of)e(the)h(UMP)-8 b(A)38 b(and)f(the)g(CP)-8 b(A)37 b(with)300 4728 y(di\013eren)m(t)c Fr(n)p Fu(.)446 4848 y(The)43 b(ab)s(o)m(v)m(e)g(results)f(indicate)e (that,)k(with)e(the)g(increase)g(of)f Fr(p)p Fu(,)k(the)d(e\016ciency)h (of)e(b)s(oth)300 4968 y(UMP)-8 b(A)41 b(and)g(the)g(CP)-8 b(A)42 b(will)c(decrease.)69 b(When)42 b Fr(n)f Fu(increases,)j(the)d (e\016ciency)h(of)e(b)s(oth)g(will)300 5089 y(increase)33 b(in)f(most)g(cases.)45 b(This)33 b(is)f(di\013eren)m(t)h(from)f(the)h (situation)e(of)h(the)h(UMP)-8 b(A)34 b(on)e(Wiglaf)300 5209 y(where)k(the)f(e\016ciency)i(decreases)g(with)d(the)h(increase)h (of)e Fr(n)p Fu(.)50 b(Because)37 b(Sw)m(eetgum)e(is)g(a)f(h)m(uge)300 5330 y(memory)d(and)i(fast)f(CPU)h(sup)s(ercomputer,)g(when)h Fr(n)e Fu(is)g(not)g(to)s(o)g(large,)f(the)i(sequen)m(tial)f(part)300 5450 y(of)g(the)h(UMP)-8 b(A)34 b(do)s(es)f(not)f(tak)m(e)h(to)s(o)f(m) m(uc)m(h)h(computation)e(time.)p Black Black eop %%Page: 44 53 44 52 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(44)p Black Black Black Black 720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/us.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Tue Jul 4 23:17:22 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 543 M 63 0 V 2793 0 R -63 0 V 468 543 M (10) Rshow 540 747 M 63 0 V 2793 0 R -63 0 V 468 747 M (20) Rshow 540 951 M 63 0 V 2793 0 R -63 0 V 468 951 M (30) Rshow 540 1154 M 63 0 V 2793 0 R -63 0 V -2865 0 R (40) Rshow 540 1358 M 63 0 V 2793 0 R -63 0 V -2865 0 R (50) Rshow 540 1561 M 63 0 V 2793 0 R -63 0 V -2865 0 R (60) Rshow 540 1765 M 63 0 V 2793 0 R -63 0 V -2865 0 R (70) Rshow 540 1969 M 63 0 V 2793 0 R -63 0 V -2865 0 R (80) Rshow 540 2172 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 897 360 M 0 63 V 0 1953 R 0 -63 V 897 240 M (0.5) Cshow 1254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1611 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1.5) Cshow 1968 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2325 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2.5) Cshow 2682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 3039 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3.5) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 2376 M 714 -137 V 714 -449 V 714 -717 V 3396 398 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 2376 M 714 -76 V 714 -121 V 714 -493 V 3396 555 L 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 2376 M 714 -102 V 714 -96 V 714 -316 V 3396 795 L stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 955 2268 a(Figure)31 b(7.4:)43 b(E\016ciency)34 b(of)f(UMP)-8 b(A)33 b(for)f Fr(S)2547 2283 y Fp(3)2619 2268 y Fu(on)g(Sw)m(eetgum)p Black Black Black Black Black 720 4385 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/cs.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Tue Jul 4 23:20:13 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 543 M 63 0 V 2793 0 R -63 0 V 468 543 M (10) Rshow 540 747 M 63 0 V 2793 0 R -63 0 V 468 747 M (20) Rshow 540 951 M 63 0 V 2793 0 R -63 0 V 468 951 M (30) Rshow 540 1154 M 63 0 V 2793 0 R -63 0 V -2865 0 R (40) Rshow 540 1358 M 63 0 V 2793 0 R -63 0 V -2865 0 R (50) Rshow 540 1561 M 63 0 V 2793 0 R -63 0 V -2865 0 R (60) Rshow 540 1765 M 63 0 V 2793 0 R -63 0 V -2865 0 R (70) Rshow 540 1969 M 63 0 V 2793 0 R -63 0 V -2865 0 R (80) Rshow 540 2172 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 897 360 M 0 63 V 0 1953 R 0 -63 V 897 240 M (0.5) Cshow 1254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1611 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1.5) Cshow 1968 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2325 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2.5) Cshow 2682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 3039 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3.5) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 2376 M 714 -124 V 714 -614 V 2682 760 L 3396 372 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 2376 M 714 -187 V 714 -131 V 714 -981 V 3396 510 L 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 2376 M 714 -22 V 714 -222 V 714 -260 V 3396 967 L stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 1001 4588 a(Figure)f(7.5:)43 b(E\016ciency)34 b(of)f(CP)-8 b(A)33 b(for)f Fr(S)2501 4603 y Fp(3)2573 4588 y Fu(on)g(Sw)m(eetgum)p Black Black 446 4981 a(Comparing)d(the)i (CP)-8 b(A)31 b(with)g(the)f(UMP)-8 b(A,)32 b(the)f(e\016ciency)h(of)e (the)h(CP)-8 b(A)31 b(impro)m(v)m(es)g(b)s(etter)300 5102 y(than)e(the)f(e\016ciency)i(of)e(the)h(UMP)-8 b(A)29 b(when)h Fr(n)f Fu(increases.)43 b(This)28 b(is)g(b)s(ecause)i(when)g Fr(n)e Fu(b)s(ecomes)300 5222 y(large,)33 b(the)g(sequen)m(tial)h(part) f(of)g(the)h(UMP)-8 b(A)34 b(will)d(b)s(egin)h(taking)h(more)g(time,)f (so)h(the)h(UMP)-8 b(A)300 5342 y(will)31 b(not)j(impro)m(v)m(e)f(to)s (o)g(m)m(uc)m(h.)48 b(But)33 b(the)h(CP)-8 b(A)35 b(do)s(es.)47 b(This)34 b(is)f(nearly)h(the)g(same)f(conclusion)300 5463 y(as)g(that)f(made)g(on)h(Wiglaf.)p Black Black eop %%Page: 45 54 45 53 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(45)p Black 446 274 a(F)-8 b(urthermore,)41 b(from)e(T)-8 b(able)39 b(7.6)g(on)h(Wiglaf)e(and)h(T)-8 b(able)40 b(7.7)f(on)h(Sw)m(eetgum,)i(when)f(w)m(e)300 395 y(run)e(a)f(single)f(pro)s(cessor)j(\()p Fr(p)d Fu(=)h(1)g(with)g (no)h(comm)m(unication\),)e(Sw)m(eetgum)i(runs)h(nearly)e(six)300 515 y(times)e(faster)h(than)g(Wiglaf.)53 b(F)-8 b(rom)36 b(T)-8 b(able)36 b(7.6)g(on)h(Wiglaf,)f(and)h(T)-8 b(able)36 b(7.7)g(on)h(Sw)m(eetgum,)300 635 y(when)44 b Fr(p)i Fu(=)f(2,)h(the)d(sp)s(eedup)i(and)e(e\016ciency)h(on)f(Sw)m(eetgum)h (are)f(greater)g(than)g(those)h(on)300 756 y(Wiglaf.)c(When)31 b Fr(p)d Fu(=)f(8,)j(the)h(comparison)d(of)i(the)g(e\016ciency)h(c)m (hange)g(on)f(the)g(Wiglaf)e(and)i(the)300 876 y(Sw)m(eetgum)d(with)f Fr(n)g Fu(is)g(sho)m(wn)i(in)d(Figure)g(7.6.)41 b(The)27 b(results)g(indicate)e(that)h(when)h Fr(n)g Fu(increases,)300 997 y(the)37 b(p)s(erformance)g(impro)m(v)m(emen)m(t)f(of)h(the)g(UMP) -8 b(A)37 b(on)g(Sw)m(eetgum)h(is)e(m)m(uc)m(h)h(b)s(etter)h(and)f(the) 300 1117 y(e\016ciency)f(on)f(Sw)m(eetgum)h(will)c(approac)m(h)k(the)f (e\016ciency)h(on)f(the)h(Wiglaf)c(while)i(Sw)m(eetgum)300 1237 y(is)27 b(six)h(times)f(faster)h(than)f(Wiglaf)f(for)h(the)h (sequen)m(tial)g(computation.)40 b(The)29 b(same)f(results)g(can)300 1358 y(b)s(e)34 b(obtained)f(for)g(the)h(CP)-8 b(A.)34 b(This)g(means)f(that)g(with)g(the)h(increase)g(of)f Fr(n)p Fu(,)h(the)g(p)s(erformance)300 1478 y(on)e(Sw)m(eetgum)h(will)d (impro)m(v)m(e)i(m)m(uc)m(h)h(b)s(etter)f(and)g(the)h(parallel)c (computation)i(on)h(Sw)m(eetgum)300 1598 y(will)e(b)s(e)j(m)m(uc)m(h)g (faster)g(than)g(that)f(on)g(Wiglaf.)p Black Black Black 720 3624 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/sw1.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: sw1.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu Jul 6 18:30:26 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (30) Rshow 540 648 M 63 0 V 2793 0 R -63 0 V 468 648 M (40) Rshow 540 936 M 63 0 V 2793 0 R -63 0 V 468 936 M (50) Rshow 540 1224 M 63 0 V 2793 0 R -63 0 V -2865 0 R (60) Rshow 540 1512 M 63 0 V 2793 0 R -63 0 V -2865 0 R (70) Rshow 540 1800 M 63 0 V 2793 0 R -63 0 V -2865 0 R (80) Rshow 540 2088 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (7) Cshow 1254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (7.5) Cshow 1968 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (8) Cshow 2682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (8.5) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (9) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (k \(n=2^k\) ) Cshow 1.000 UL LT0 2829 2253 M (Sweetgum ) Rshow 2901 2253 M 351 0 V 540 533 M 1428 867 V 1428 249 V 1.000 UL LT1 2829 2133 M (Wiglaf) Rshow 2901 2133 M 351 0 V 540 2062 M 1428 -4 V 1428 -12 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 445 3827 a(Figure)g(7.6:)43 b(E\016ciency)34 b(comparison)d(of)h(UMP)-8 b(A)34 b(for)e Fr(S)2553 3842 y Fp(3)2625 3827 y Fu(on)g(Sw)m(eetgum)h(and)g(Wiglaf)p Black Black 446 4172 a(W)-8 b(e)30 b(need)g(to)f(men)m(tion)f(that)g (the)i(data)f(on)g(Sw)m(eetgum)g(seem)h(not)f(so)g(smo)s(oth)f(as)h (those)h(on)300 4292 y(Wiglaf.)59 b(This)39 b(is)f(b)s(ecause)i(Sw)m (eetgum)f(is)f(a)g(sup)s(ercomputer)h(and)g(it)f(has)g(to)s(o)g(man)m (y)h(users)300 4413 y(and)34 b(jobs)g(running)f(on)g(it)g(all)f(the)i (time.)45 b(But)34 b(since)g(w)m(e)h(run)f(b)s(enc)m(hmarks)h(on)e (Wiglaf)f(to)h(do)300 4533 y(the)i(exp)s(erimen)m(ts,)g(so)f(the)h (data)e(obtained)h(on)g(Wiglaf)e(is)i(v)m(ery)h(smo)s(oth)f(and)g(also) f(it)g(should)300 4654 y(b)s(e)g(more)f(reliable.)p Black Black 1046 5024 a Fm(7.3)113 b(An)37 b(Applied)f(Computational)g (Problem)484 5243 y Fu(W)-8 b(e)43 b(include)e(an)i(application)c (problem)j(to)f(end)i(this)f(c)m(hapter.)74 b(This)43 b(computational)300 5363 y(problem)31 b(has)h(an)g(origin)e(in)h(the)i (pap)s(er)f([48)o(],)g(in)g(whic)m(h)g(the)h(authors)f(used)h(a)f(v)m (ery)h(primitiv)m(e)300 5483 y(n)m(umerical)40 b(sc)m(heme)j(to)e (\014nd)h(a)f(probabilit)m(y)f(densit)m(y)i(function)f(\(PDF\))g(asso)s (ciated)g(with)g(a)p Black Black eop %%Page: 46 55 46 54 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(46)p Black 300 274 a(c)m(haotic)36 b(system)i(for)e(a)g(so-called)f(digital)f(phase-lo)s(c)m(k)m(ed)j(lo)s (op)e(\(DPLL\))i(in)e(electronics)i(\(see)300 395 y([49])i(for)g (detail)e(on)j(the)f(sub)5 b(ject\).)66 b(It)39 b(w)m(as)h(men)m (tioned)f(there)h(that)g(some)f(non-parametric)300 515 y(n)m(umerical)j(metho)s(ds)h(used)i(in)e(engineering)f(to)h(compute)h (PDFs)f(are)h(based)g(on)f(the)h(time)300 635 y(resp)s(onse)29 b(of)d(the)i(ob)5 b(jectiv)m(e)28 b(system)g(and)g(the)f(metho)s(ds)g (need)i(a)d(long)g(sequence)k(of)d(input)g(and)300 756 y(output)39 b(sample)g(signals)f(as)h(the)h(time)e(resp)s(onses.)65 b(With)39 b(the)g(recursion)h(of)f(the)g(resp)s(onse,)300 876 y(the)c(n)m(umerical)f(estimation)f(inevitably)g(con)m(tains)i (accum)m(ulated)g(inaccuracies)g(in)f(the)h(form)300 997 y(of)d(erroneous)i(\015uctuations.)446 1117 y(T)-8 b(o)41 b(impro)m(v)m(e)f(the)h(non-parametric)e(metho)s(ds,)k(the)e (authors)g(of)f([48)o(])h(prop)s(osed)g(a)f(PDF)300 1237 y(estimation)32 b(algorithm)f(based)j(on)g(the)h(statistical)c(study)36 b(of)d(the)h(systems,)i(whic)m(h)f(basically)300 1358 y(consists)44 b(of)f(the)h(n)m(umerical)e(iteration)f(of)i(the)h(F)-8 b(rob)s(enius)43 b(-P)m(erron)h(op)s(erator)f([49)o(].)76 b(F)-8 b(rom)300 1478 y(Chapter)35 b(2)f(w)m(e)i(see)g(that,)e(for)g(a) g(one)h(dimensional)d(mapping)h Fr(S)k Fu(:)31 b([)p Fr(a;)17 b(b)p Fu(])31 b Fq(!)g Fu([)p Fr(a;)17 b(b)p Fu(],)35 b(the)g(corre-)300 1598 y(sp)s(onding)c(F)-8 b(rob)s(enius-P)m(erron)31 b(op)s(erator)f(has)i(the)f(explicit)f (expression)j(\(2.9\).)42 b(Let)31 b Fr(S)37 b Fu(ha)m(v)m(e)c Fr(k)300 1719 y Fu(monotonic)e(pieces)i Fr(S)1119 1734 y Fp(1)1159 1719 y Fr(;)17 b(S)1263 1734 y Fp(2)1302 1719 y Fr(;)g(:)g(:)g(:)32 b(;)17 b(S)1597 1734 y Fo(k)1640 1719 y Fu(.)43 b(Then)34 b(the)f(form)m(ula)d(\(2.9\))i(has)h(the)g (form)1347 2032 y Fr(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))27 b(=)1798 1908 y Fo(k)1745 1938 y Fi(X)1805 2148 y Fo(i)1906 2032 y Fq(j)1944 1965 y Fr(dS)2061 1929 y Fl(\000)p Fp(1)2154 1965 y Fu(\()p Fr(x)p Fu(\))p 1944 2009 343 4 v 2061 2101 a Fr(dx)2295 2032 y Fq(j)p Fr(f)11 b Fu(\()p Fr(S)2486 1991 y Fl(\000)p Fp(1)2480 2058 y Fo(i)2580 2032 y Fu(\()p Fr(x)p Fu(\)\))p Fr(;)863 b Fu(\(7.1\))300 2350 y(where)34 b Fr(S)648 2308 y Fl(\000)p Fp(1)642 2375 y Fo(i)774 2350 y Fu(is)f(the)g(in)m(v)m(erse)h(mapping)d(of)h Fr(S)1936 2365 y Fo(i)1964 2350 y Fu(.)446 2536 y(The)e(\\n)m(umerical)c(op)s (erator)i(function)g(ev)-5 b(aluation)26 b(algorithm")f(used)k(in)f ([48])g(to)g(compute)300 2657 y(the)33 b(PDF)f(can)h(b)s(e)g(describ)s (ed)g(as)g(follo)m(ws.)p Black 419 2885 a(1.)p Black 49 w(Cho)s(ose)e(an)g(initial)c(PDF)j Fr(f)1578 2900 y Fp(0)1618 2885 y Fu(\()p Fr(x)p Fu(\))h(whic)m(h)g(describ)s(es)h (the)f(system's)i(state)e(at)f(time)g Fr(i)e Fu(=)f(0.)p Black 419 3088 a(2.)p Black 49 w(Select)j Fr(N)41 b Fu(arbitrary)30 b(p)s(oin)m(ts)g Fr(x)1701 3103 y Fp(1)1741 3088 y Fr(;)17 b(x)1840 3103 y Fp(2)1879 3088 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(x)2171 3103 y Fo(N)2269 3088 y Fu(in)30 b(the)g(domain)f (of)h Fr(S)6 b Fu(,)31 b(and)f(compute)h(the)544 3209 y(function)h(v)-5 b(alues)32 b(of)h Fr(f)1376 3224 y Fp(1)1443 3209 y Fu(=)27 b Fr(P)14 b(f)1671 3224 y Fp(0)1743 3209 y Fu(at)32 b(eac)m(h)h(p)s(oin)m(t)f Fr(x)2391 3224 y Fo(i)2452 3209 y Fu(from)g(the)h(expression)g(\(7.1\).)p Black 419 3412 a(3.)p Black 49 w(Rep)s(eat)e(the)g(last)e(step)j(to)e (obtain)g(further)h(ev)m(olv)m(ed)h(PDFs)e(un)m(til)g(the)h(computed)f (PDF)544 3533 y(is)i(accurate)h(enough)g(b)m(y)h(some)e(criterion.)446 3761 y(The)k(authors)e(guessed)i(that)e(in)g(the)g(case)h(of)f(the)h (dynamical)d(system)j(whic)m(h)g(exhibits)f(a)300 3881 y(stationary)25 b(b)s(eha)m(vior,)i(under)f(the)h(iteration)c(of)i(the) i(asso)s(ciated)e(F)-8 b(rob)s(enius-P)m(erron)26 b(op)s(erator)300 4002 y(expression)k(\(7.1\),)f(a)g(priori)d(PDF)j(of)f(the)h(state)g (will)e(con)m(v)m(erge)j(to)f(the)g(stationary)f(PDF)g(with)300 4122 y(the)f(rate)g(b)s(eing)f(determined)h(b)m(y)g(the)h(prop)s (erties)e(of)h(the)g(system.)42 b(Unfortunately)27 b(no)g(further)300 4242 y(w)m(ork)j(has)g(b)s(een)h(done)f(ab)s(out)f(suc)m(h)i(statemen)m (ts,)g(and)e(it)g(is)g(in)g(general)g(not)g(guaran)m(teed)h(that)300 4363 y(the)j(iterates)f(of)g(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erators)f(will)e(con)m(v)m(erge)35 b([36)o(].)446 4483 y(Th)m(us,)52 b(the)47 b(\\op)s(erator)e(function)h(ev)-5 b(aluation)45 b(metho)s(d")h(in)f([48])i(has)g(sev)m(eral)g(ob)m(vious) 300 4604 y(limitations.)55 b(First,)38 b(the)g(expression)h(\(7.1\))e (ma)m(y)h(b)s(e)f(to)s(o)g(complicated)f(for)i(the)g(ev)-5 b(aluation)300 4724 y(since)39 b(it)e(in)m(v)m(olv)m(es)j(the)f(in)m(v) m(erse)h(mappings)d(of)h(the)h(monotonic)e(branc)m(hes)j(of)e(the)h (mapping.)300 4844 y(F)-8 b(urthermore,)30 b(if)e(the)i(initial)c(PDF)j Fr(f)1702 4859 y Fp(0)1771 4844 y Fu(is)g(c)m(hosen)i(inappropriately) -8 b(,)29 b(the)h(calculation)d(pro)s(cess)300 4965 y(can)34 b(b)s(e)h(time-consuming)c(or)j(div)m(erge.)48 b(Also)34 b(it)f(will)e(b)s(e)j(v)m(ery)i(di\016cult)d(to)h(use)h(this)f(metho)s (d)300 5085 y(in)e(m)m(ulti-dimensional)27 b(cases.)446 5205 y(W)-8 b(e)36 b(kno)m(w)g(that)f(the)g(PDF)g(computation)e(of)i (the)g(DPLL)g(is)f(just)i(to)e(compute)h(the)h(\014xed)300 5326 y(densit)m(y)e(of)f(the)g(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erator)f(asso)s(ciated)h(with)g(the)g(DPLL.)g(F)-8 b(rom)32 b(our)h(dis-)300 5446 y(cussion)j(in)f(the)i(previous)f(c)m (hapters,)i(it)d(is)g(ob)m(vious)h(to)g(see)h(that)e(the)h(parallel)e (quasi-Mon)m(te)p Black Black eop %%Page: 47 56 47 55 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(47)p Black 300 274 a(Carlo)29 b(metho)s(d)g(that)h(w)m(e)h(ha)m(v)m(e)h(dev)m(elop)s(ed)f(is)e(an)h (ideal)f(to)s(ol)f(for)i(the)g(fast)g(and)g(e\016cien)m(t)h(com-)300 395 y(putation)j(of)h(a)g(PDF)g(for)g(the)h(DPLL.)f(The)i(ab)s(o)m(v)m (e)f(shortages)g(with)f(the)h(op)s(erator)e(function)300 515 y(ev)-5 b(aluation)34 b(metho)s(d)g(are)i(no)f(longer)g(presen)m(t) i(with)e(our)g(new)h(metho)s(d)f(b)s(ecause)i(\014rstly)-8 b(,)36 b(our)300 635 y(algorithm)d(do)s(es)j(not)g(need)h(a)f(priori)e (PDF)i(to)f(start)h(with,)h(secondly)-8 b(,)38 b(the)e(parallel)e (compu-)300 756 y(tation)d(can)h(solv)m(e)h(the)g(time)e(cost)h (problem)f(pro)s(duced)i(b)m(y)g(m)m(ulti-dimensional)28 b(mo)s(dels,)j(and)300 876 y(lastly)-8 b(,)30 b(the)h(new)h(algorithm) 27 b(do)s(es)k(not)g(need)h(to)e(construct)i(the)f(F)-8 b(rob)s(enius-P)m(erron)31 b(op)s(erator)300 997 y(equation)39 b(explicitly)e(and)j(the)f(quasi-Mon)m(te)h(Carlo)e(metho)s(d)h(w)m (orks)h(for)f(the)h(mo)s(del)d(m)m(uc)m(h)300 1117 y(more)32 b(e\016cien)m(tly)-8 b(.)446 1320 y(No)m(w)29 b(w)m(e)g(consider)g(a)e (t)m(ypical)h(dynamical)e(equation)i(of)g(the)g(\014rst)h(order)f(DPLL) g(as)g(follo)m(ws)300 1441 y([49].)1104 1705 y Fr(x)1159 1720 y Fo(i)p Fp(+1)1306 1705 y Fu(=)f Fr(f)11 b Fu(\()p Fr(x)1561 1720 y Fo(i)1589 1705 y Fu(\))28 b(=)g(\()p Fr(x)1852 1720 y Fo(i)1902 1705 y Fu(+)2230 1638 y(8)p Fr(:)p Fu(5)p 2010 1682 564 4 v 2010 1773 a(1)22 b(+)g(0)p Fr(:)p Fu(25)p Fr(sinx)2545 1788 y Fo(i)2584 1705 y Fu(\)\(mo)s(d)15 b(2)p Fr(\031)t Fu(\))p Fr(:)603 b Fu(\(7.2\))300 1966 y(The)44 b(graph)e(of)g(the)h(\014rst)g(order)g(DPLL)g(is)f(sho)m(wn)i (in)e(Figure)f(7.7.)73 b(F)-8 b(rom)42 b(the)h(expression)300 2086 y(\(7.2\))33 b(of)h(the)g(DPLL,)g(w)m(e)h(kno)m(w)g(that)f(the)g (in)m(v)m(erse)h(image)e(of)g(a)h(subset)h(of)f([0)p Fr(;)17 b Fu(2)p Fr(\031)t Fu(])33 b(under)i(the)300 2206 y(mapping)27 b(is)h(imp)s(ossible)e(to)h(\014nd)i(analytically)-8 b(.)39 b(So)28 b(w)m(e)i(ha)m(v)m(e)f(to)f(use)i(the)e(quasi-Mon)m(te)h (Carlo)300 2327 y(approac)m(h)k(to)f(ev)-5 b(aluate)32 b(the)h(Ulam)e(matrix)g Fr(P)2032 2342 y Fo(n)2079 2327 y Fu(.)p Black Black Black 720 4352 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/dpll.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: dpll.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Sat May 13 19:09:03 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 276 240 M 63 0 V 3057 0 R -63 0 V 204 240 M (0) Rshow 276 580 M 63 0 V 3057 0 R -63 0 V 204 580 M (1) Rshow 276 920 M 63 0 V 3057 0 R -63 0 V 204 920 M (2) Rshow 276 1260 M 63 0 V 3057 0 R -63 0 V -3129 0 R (3) Rshow 276 1600 M 63 0 V 3057 0 R -63 0 V -3129 0 R (4) Rshow 276 1940 M 63 0 V 3057 0 R -63 0 V -3129 0 R (5) Rshow 276 2280 M 63 0 V 3057 0 R -63 0 V -3129 0 R (6) Rshow 276 240 M 0 63 V 0 2073 R 0 -63 V 276 120 M (0) Cshow 773 240 M 0 63 V 0 2073 R 0 -63 V 773 120 M (1) Cshow 1269 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (2) Cshow 1766 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (3) Cshow 2262 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (4) Cshow 2759 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (5) Cshow 3255 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (6) Cshow 1.000 UL LTb 276 240 M 3120 0 V 0 2136 V -3120 0 V 276 240 L 1.000 UL LT0 2829 2253 M (DPLL) Rshow 3076 2253 Pnt 276 994 Pnt 279 991 Pnt 282 989 Pnt 285 986 Pnt 288 984 Pnt 292 982 Pnt 295 979 Pnt 298 977 Pnt 301 975 Pnt 304 973 Pnt 307 970 Pnt 310 968 Pnt 313 966 Pnt 317 964 Pnt 320 961 Pnt 323 959 Pnt 326 957 Pnt 329 955 Pnt 332 953 Pnt 335 951 Pnt 338 949 Pnt 341 946 Pnt 345 944 Pnt 348 942 Pnt 351 940 Pnt 354 938 Pnt 357 936 Pnt 360 934 Pnt 363 932 Pnt 366 930 Pnt 370 928 Pnt 373 926 Pnt 376 925 Pnt 379 923 Pnt 382 921 Pnt 385 919 Pnt 388 917 Pnt 391 915 Pnt 395 913 Pnt 398 912 Pnt 401 910 Pnt 404 908 Pnt 407 906 Pnt 410 905 Pnt 413 903 Pnt 416 901 Pnt 420 900 Pnt 423 898 Pnt 426 896 Pnt 429 895 Pnt 432 893 Pnt 435 892 Pnt 438 890 Pnt 441 889 Pnt 444 887 Pnt 448 886 Pnt 451 884 Pnt 454 883 Pnt 457 881 Pnt 460 880 Pnt 463 878 Pnt 466 877 Pnt 469 875 Pnt 473 874 Pnt 476 873 Pnt 479 871 Pnt 482 870 Pnt 485 869 Pnt 488 868 Pnt 491 866 Pnt 494 865 Pnt 498 864 Pnt 501 863 Pnt 504 862 Pnt 507 860 Pnt 510 859 Pnt 513 858 Pnt 516 857 Pnt 519 856 Pnt 522 855 Pnt 526 854 Pnt 529 853 Pnt 532 852 Pnt 535 851 Pnt 538 850 Pnt 541 849 Pnt 544 848 Pnt 547 847 Pnt 551 846 Pnt 554 845 Pnt 557 845 Pnt 560 844 Pnt 563 843 Pnt 566 842 Pnt 569 841 Pnt 572 841 Pnt 576 840 Pnt 579 839 Pnt 582 838 Pnt 585 838 Pnt 588 837 Pnt 591 836 Pnt 594 836 Pnt 597 835 Pnt 601 835 Pnt 604 834 Pnt 607 833 Pnt 610 833 Pnt 613 832 Pnt 616 832 Pnt 619 831 Pnt 622 831 Pnt 625 831 Pnt 629 830 Pnt 632 830 Pnt 635 829 Pnt 638 829 Pnt 641 829 Pnt 644 828 Pnt 647 828 Pnt 650 828 Pnt 654 827 Pnt 657 827 Pnt 660 827 Pnt 663 827 Pnt 666 827 Pnt 669 826 Pnt 672 826 Pnt 675 826 Pnt 678 826 Pnt 682 826 Pnt 685 826 Pnt 688 826 Pnt 691 826 Pnt 694 826 Pnt 697 826 Pnt 700 826 Pnt 703 826 Pnt 707 826 Pnt 710 826 Pnt 713 826 Pnt 716 826 Pnt 719 826 Pnt 722 826 Pnt 725 826 Pnt 728 827 Pnt 731 827 Pnt 735 827 Pnt 738 827 Pnt 741 828 Pnt 744 828 Pnt 747 828 Pnt 750 829 Pnt 753 829 Pnt 756 829 Pnt 760 830 Pnt 763 830 Pnt 766 830 Pnt 769 831 Pnt 772 831 Pnt 775 832 Pnt 778 832 Pnt 781 833 Pnt 785 833 Pnt 788 834 Pnt 791 834 Pnt 794 835 Pnt 797 836 Pnt 800 836 Pnt 803 837 Pnt 806 837 Pnt 810 838 Pnt 813 839 Pnt 816 840 Pnt 819 840 Pnt 822 841 Pnt 825 842 Pnt 828 843 Pnt 831 843 Pnt 834 844 Pnt 838 845 Pnt 841 846 Pnt 844 847 Pnt 847 848 Pnt 850 849 Pnt 853 850 Pnt 856 850 Pnt 859 851 Pnt 863 852 Pnt 866 853 Pnt 869 854 Pnt 872 856 Pnt 875 857 Pnt 878 858 Pnt 881 859 Pnt 884 860 Pnt 888 861 Pnt 891 862 Pnt 894 863 Pnt 897 865 Pnt 900 866 Pnt 903 867 Pnt 906 868 Pnt 909 869 Pnt 912 871 Pnt 916 872 Pnt 919 873 Pnt 922 875 Pnt 925 876 Pnt 928 877 Pnt 931 879 Pnt 934 880 Pnt 937 882 Pnt 941 883 Pnt 944 885 Pnt 947 886 Pnt 950 888 Pnt 953 889 Pnt 956 891 Pnt 959 892 Pnt 962 894 Pnt 966 895 Pnt 969 897 Pnt 972 899 Pnt 975 900 Pnt 978 902 Pnt 981 904 Pnt 984 905 Pnt 987 907 Pnt 990 909 Pnt 994 911 Pnt 997 912 Pnt 1000 914 Pnt 1003 916 Pnt 1006 918 Pnt 1009 920 Pnt 1012 922 Pnt 1015 923 Pnt 1019 925 Pnt 1022 927 Pnt 1025 929 Pnt 1028 931 Pnt 1031 933 Pnt 1034 935 Pnt 1037 937 Pnt 1040 939 Pnt 1044 941 Pnt 1047 943 Pnt 1050 945 Pnt 1053 948 Pnt 1056 950 Pnt 1059 952 Pnt 1062 954 Pnt 1065 956 Pnt 1068 958 Pnt 1072 961 Pnt 1075 963 Pnt 1078 965 Pnt 1081 967 Pnt 1084 970 Pnt 1087 972 Pnt 1090 974 Pnt 1093 977 Pnt 1097 979 Pnt 1100 981 Pnt 1103 984 Pnt 1106 986 Pnt 1109 989 Pnt 1112 991 Pnt 1115 994 Pnt 1118 996 Pnt 1121 999 Pnt 1125 1001 Pnt 1128 1004 Pnt 1131 1006 Pnt 1134 1009 Pnt 1137 1011 Pnt 1140 1014 Pnt 1143 1017 Pnt 1146 1019 Pnt 1150 1022 Pnt 1153 1025 Pnt 1156 1027 Pnt 1159 1030 Pnt 1162 1033 Pnt 1165 1036 Pnt 1168 1038 Pnt 1171 1041 Pnt 1175 1044 Pnt 1178 1047 Pnt 1181 1050 Pnt 1184 1053 Pnt 1187 1056 Pnt 1190 1058 Pnt 1193 1061 Pnt 1196 1064 Pnt 1200 1067 Pnt 1203 1070 Pnt 1206 1073 Pnt 1209 1076 Pnt 1212 1079 Pnt 1215 1082 Pnt 1218 1086 Pnt 1221 1089 Pnt 1224 1092 Pnt 1228 1095 Pnt 1231 1098 Pnt 1234 1101 Pnt 1237 1104 Pnt 1240 1108 Pnt 1243 1111 Pnt 1246 1114 Pnt 1249 1117 Pnt 1253 1121 Pnt 1256 1124 Pnt 1259 1127 Pnt 1262 1131 Pnt 1265 1134 Pnt 1268 1137 Pnt 1271 1141 Pnt 1274 1144 Pnt 1278 1148 Pnt 1281 1151 Pnt 1284 1154 Pnt 1287 1158 Pnt 1290 1161 Pnt 1293 1165 Pnt 1296 1168 Pnt 1299 1172 Pnt 1302 1176 Pnt 1306 1179 Pnt 1309 1183 Pnt 1312 1186 Pnt 1315 1190 Pnt 1318 1194 Pnt 1321 1197 Pnt 1324 1201 Pnt 1327 1205 Pnt 1331 1209 Pnt 1334 1212 Pnt 1337 1216 Pnt 1340 1220 Pnt 1343 1224 Pnt 1346 1228 Pnt 1349 1232 Pnt 1352 1235 Pnt 1356 1239 Pnt 1359 1243 Pnt 1362 1247 Pnt 1365 1251 Pnt 1368 1255 Pnt 1371 1259 Pnt 1374 1263 Pnt 1377 1267 Pnt 1380 1271 Pnt 1384 1275 Pnt 1387 1279 Pnt 1390 1283 Pnt 1393 1288 Pnt 1396 1292 Pnt 1399 1296 Pnt 1402 1300 Pnt 1405 1304 Pnt 1409 1308 Pnt 1412 1313 Pnt 1415 1317 Pnt 1418 1321 Pnt 1421 1326 Pnt 1424 1330 Pnt 1427 1334 Pnt 1430 1338 Pnt 1434 1343 Pnt 1437 1347 Pnt 1440 1352 Pnt 1443 1356 Pnt 1446 1361 Pnt 1449 1365 Pnt 1452 1369 Pnt 1455 1374 Pnt 1458 1379 Pnt 1462 1383 Pnt 1465 1388 Pnt 1468 1392 Pnt 1471 1397 Pnt 1474 1401 Pnt 1477 1406 Pnt 1480 1411 Pnt 1483 1415 Pnt 1487 1420 Pnt 1490 1425 Pnt 1493 1429 Pnt 1496 1434 Pnt 1499 1439 Pnt 1502 1444 Pnt 1505 1449 Pnt 1508 1453 Pnt 1511 1458 Pnt 1515 1463 Pnt 1518 1468 Pnt 1521 1473 Pnt 1524 1478 Pnt 1527 1483 Pnt 1530 1488 Pnt 1533 1493 Pnt 1536 1498 Pnt 1540 1503 Pnt 1543 1508 Pnt 1546 1513 Pnt 1549 1518 Pnt 1552 1523 Pnt 1555 1528 Pnt 1558 1533 Pnt 1561 1538 Pnt 1565 1543 Pnt 1568 1549 Pnt 1571 1554 Pnt 1574 1559 Pnt 1577 1564 Pnt 1580 1570 Pnt 1583 1575 Pnt 1586 1580 Pnt 1590 1585 Pnt 1593 1591 Pnt 1596 1596 Pnt 1599 1601 Pnt 1602 1607 Pnt 1605 1612 Pnt 1608 1618 Pnt 1611 1623 Pnt 1614 1629 Pnt 1618 1634 Pnt 1621 1640 Pnt 1624 1645 Pnt 1627 1651 Pnt 1630 1656 Pnt 1633 1662 Pnt 1636 1667 Pnt 1639 1673 Pnt 1643 1679 Pnt 1646 1684 Pnt 1649 1690 Pnt 1652 1696 Pnt 1655 1701 Pnt 1658 1707 Pnt 1661 1713 Pnt 1664 1719 Pnt 1668 1724 Pnt 1671 1730 Pnt 1674 1736 Pnt 1677 1742 Pnt 1680 1748 Pnt 1683 1753 Pnt 1686 1759 Pnt 1689 1765 Pnt 1692 1771 Pnt 1696 1777 Pnt 1699 1783 Pnt 1702 1789 Pnt 1705 1795 Pnt 1708 1801 Pnt 1711 1807 Pnt 1714 1813 Pnt 1717 1819 Pnt 1721 1825 Pnt 1724 1831 Pnt 1727 1837 Pnt 1730 1844 Pnt 1733 1850 Pnt 1736 1856 Pnt 1739 1862 Pnt 1742 1868 Pnt 1746 1874 Pnt 1749 1881 Pnt 1752 1887 Pnt 1755 1893 Pnt 1758 1899 Pnt 1761 1906 Pnt 1764 1912 Pnt 1767 1918 Pnt 1770 1925 Pnt 1774 1931 Pnt 1777 1937 Pnt 1780 1944 Pnt 1783 1950 Pnt 1786 1957 Pnt 1789 1963 Pnt 1792 1970 Pnt 1795 1976 Pnt 1799 1983 Pnt 1802 1989 Pnt 1805 1996 Pnt 1808 2002 Pnt 1811 2009 Pnt 1814 2015 Pnt 1817 2022 Pnt 1820 2028 Pnt 1824 2035 Pnt 1827 2042 Pnt 1830 2048 Pnt 1833 2055 Pnt 1836 2062 Pnt 1839 2068 Pnt 1842 2075 Pnt 1845 2082 Pnt 1848 2088 Pnt 1852 2095 Pnt 1855 2102 Pnt 1858 2109 Pnt 1861 2115 Pnt 1864 2122 Pnt 1867 2129 Pnt 1870 2136 Pnt 1873 2143 Pnt 1877 2150 Pnt 1880 2156 Pnt 1883 2163 Pnt 1886 2170 Pnt 1889 2177 Pnt 1892 2184 Pnt 1895 2191 Pnt 1898 2198 Pnt 1902 2205 Pnt 1905 2212 Pnt 1908 2219 Pnt 1911 2226 Pnt 1914 2233 Pnt 1917 2240 Pnt 1920 2247 Pnt 1923 2254 Pnt 1926 2261 Pnt 1930 2268 Pnt 1933 2275 Pnt 1936 2282 Pnt 1939 2289 Pnt 1942 2296 Pnt 1945 2303 Pnt 1948 2310 Pnt 1951 2317 Pnt 1955 2324 Pnt 1958 2332 Pnt 1961 2339 Pnt 1964 2346 Pnt 1967 2353 Pnt 1970 2360 Pnt 1973 2367 Pnt 1976 2374 Pnt 1980 246 Pnt 1983 253 Pnt 1986 260 Pnt 1989 267 Pnt 1992 274 Pnt 1995 282 Pnt 1998 289 Pnt 2001 296 Pnt 2004 303 Pnt 2008 310 Pnt 2011 318 Pnt 2014 325 Pnt 2017 332 Pnt 2020 339 Pnt 2023 347 Pnt 2026 354 Pnt 2029 361 Pnt 2033 368 Pnt 2036 376 Pnt 2039 383 Pnt 2042 390 Pnt 2045 398 Pnt 2048 405 Pnt 2051 412 Pnt 2054 419 Pnt 2058 427 Pnt 2061 434 Pnt 2064 441 Pnt 2067 448 Pnt 2070 456 Pnt 2073 463 Pnt 2076 470 Pnt 2079 478 Pnt 2082 485 Pnt 2086 492 Pnt 2089 499 Pnt 2092 507 Pnt 2095 514 Pnt 2098 521 Pnt 2101 529 Pnt 2104 536 Pnt 2107 543 Pnt 2111 550 Pnt 2114 558 Pnt 2117 565 Pnt 2120 572 Pnt 2123 579 Pnt 2126 587 Pnt 2129 594 Pnt 2132 601 Pnt 2136 608 Pnt 2139 615 Pnt 2142 623 Pnt 2145 630 Pnt 2148 637 Pnt 2151 644 Pnt 2154 651 Pnt 2157 658 Pnt 2160 666 Pnt 2164 673 Pnt 2167 680 Pnt 2170 687 Pnt 2173 694 Pnt 2176 701 Pnt 2179 708 Pnt 2182 715 Pnt 2185 722 Pnt 2189 730 Pnt 2192 737 Pnt 2195 744 Pnt 2198 751 Pnt 2201 758 Pnt 2204 765 Pnt 2207 772 Pnt 2210 779 Pnt 2214 785 Pnt 2217 792 Pnt 2220 799 Pnt 2223 806 Pnt 2226 813 Pnt 2229 820 Pnt 2232 827 Pnt 2235 834 Pnt 2238 840 Pnt 2242 847 Pnt 2245 854 Pnt 2248 861 Pnt 2251 868 Pnt 2254 874 Pnt 2257 881 Pnt 2260 888 Pnt 2263 894 Pnt 2267 901 Pnt 2270 908 Pnt 2273 914 Pnt 2276 921 Pnt 2279 927 Pnt 2282 934 Pnt 2285 940 Pnt 2288 947 Pnt 2292 953 Pnt 2295 960 Pnt 2298 966 Pnt 2301 972 Pnt 2304 979 Pnt 2307 985 Pnt 2310 991 Pnt 2313 997 Pnt 2316 1004 Pnt 2320 1010 Pnt 2323 1016 Pnt 2326 1022 Pnt 2329 1028 Pnt 2332 1034 Pnt 2335 1041 Pnt 2338 1047 Pnt 2341 1053 Pnt 2345 1059 Pnt 2348 1064 Pnt 2351 1070 Pnt 2354 1076 Pnt 2357 1082 Pnt 2360 1088 Pnt 2363 1094 Pnt 2366 1099 Pnt 2370 1105 Pnt 2373 1111 Pnt 2376 1116 Pnt 2379 1122 Pnt 2382 1128 Pnt 2385 1133 Pnt 2388 1139 Pnt 2391 1144 Pnt 2394 1149 Pnt 2398 1155 Pnt 2401 1160 Pnt 2404 1165 Pnt 2407 1171 Pnt 2410 1176 Pnt 2413 1181 Pnt 2416 1186 Pnt 2419 1191 Pnt 2423 1196 Pnt 2426 1202 Pnt 2429 1207 Pnt 2432 1211 Pnt 2435 1216 Pnt 2438 1221 Pnt 2441 1226 Pnt 2444 1231 Pnt 2448 1236 Pnt 2451 1240 Pnt 2454 1245 Pnt 2457 1250 Pnt 2460 1254 Pnt 2463 1259 Pnt 2466 1263 Pnt 2469 1268 Pnt 2472 1272 Pnt 2476 1276 Pnt 2479 1281 Pnt 2482 1285 Pnt 2485 1289 Pnt 2488 1293 Pnt 2491 1297 Pnt 2494 1302 Pnt 2497 1306 Pnt 2501 1310 Pnt 2504 1313 Pnt 2507 1317 Pnt 2510 1321 Pnt 2513 1325 Pnt 2516 1329 Pnt 2519 1332 Pnt 2522 1336 Pnt 2526 1340 Pnt 2529 1343 Pnt 2532 1347 Pnt 2535 1350 Pnt 2538 1354 Pnt 2541 1357 Pnt 2544 1360 Pnt 2547 1364 Pnt 2550 1367 Pnt 2554 1370 Pnt 2557 1373 Pnt 2560 1376 Pnt 2563 1379 Pnt 2566 1382 Pnt 2569 1385 Pnt 2572 1388 Pnt 2575 1391 Pnt 2579 1394 Pnt 2582 1396 Pnt 2585 1399 Pnt 2588 1402 Pnt 2591 1404 Pnt 2594 1407 Pnt 2597 1409 Pnt 2600 1412 Pnt 2604 1414 Pnt 2607 1416 Pnt 2610 1418 Pnt 2613 1421 Pnt 2616 1423 Pnt 2619 1425 Pnt 2622 1427 Pnt 2625 1429 Pnt 2628 1431 Pnt 2632 1433 Pnt 2635 1435 Pnt 2638 1437 Pnt 2641 1438 Pnt 2644 1440 Pnt 2647 1442 Pnt 2650 1443 Pnt 2653 1445 Pnt 2657 1446 Pnt 2660 1448 Pnt 2663 1449 Pnt 2666 1451 Pnt 2669 1452 Pnt 2672 1453 Pnt 2675 1454 Pnt 2678 1455 Pnt 2682 1457 Pnt 2685 1458 Pnt 2688 1459 Pnt 2691 1460 Pnt 2694 1460 Pnt 2697 1461 Pnt 2700 1462 Pnt 2703 1463 Pnt 2706 1464 Pnt 2710 1464 Pnt 2713 1465 Pnt 2716 1465 Pnt 2719 1466 Pnt 2722 1466 Pnt 2725 1467 Pnt 2728 1467 Pnt 2731 1468 Pnt 2735 1468 Pnt 2738 1468 Pnt 2741 1468 Pnt 2744 1468 Pnt 2747 1469 Pnt 2750 1469 Pnt 2753 1469 Pnt 2756 1469 Pnt 2760 1469 Pnt 2763 1468 Pnt 2766 1468 Pnt 2769 1468 Pnt 2772 1468 Pnt 2775 1467 Pnt 2778 1467 Pnt 2781 1467 Pnt 2784 1466 Pnt 2788 1466 Pnt 2791 1465 Pnt 2794 1465 Pnt 2797 1464 Pnt 2800 1464 Pnt 2803 1463 Pnt 2806 1462 Pnt 2809 1461 Pnt 2813 1461 Pnt 2816 1460 Pnt 2819 1459 Pnt 2822 1458 Pnt 2825 1457 Pnt 2828 1456 Pnt 2831 1455 Pnt 2834 1454 Pnt 2838 1453 Pnt 2841 1452 Pnt 2844 1450 Pnt 2847 1449 Pnt 2850 1448 Pnt 2853 1447 Pnt 2856 1445 Pnt 2859 1444 Pnt 2862 1443 Pnt 2866 1441 Pnt 2869 1440 Pnt 2872 1438 Pnt 2875 1437 Pnt 2878 1435 Pnt 2881 1433 Pnt 2884 1432 Pnt 2887 1430 Pnt 2891 1428 Pnt 2894 1427 Pnt 2897 1425 Pnt 2900 1423 Pnt 2903 1421 Pnt 2906 1420 Pnt 2909 1418 Pnt 2912 1416 Pnt 2916 1414 Pnt 2919 1412 Pnt 2922 1410 Pnt 2925 1408 Pnt 2928 1406 Pnt 2931 1404 Pnt 2934 1402 Pnt 2937 1400 Pnt 2940 1397 Pnt 2944 1395 Pnt 2947 1393 Pnt 2950 1391 Pnt 2953 1389 Pnt 2956 1386 Pnt 2959 1384 Pnt 2962 1382 Pnt 2965 1379 Pnt 2969 1377 Pnt 2972 1375 Pnt 2975 1372 Pnt 2978 1370 Pnt 2981 1367 Pnt 2984 1365 Pnt 2987 1362 Pnt 2990 1360 Pnt 2994 1357 Pnt 2997 1355 Pnt 3000 1352 Pnt 3003 1350 Pnt 3006 1347 Pnt 3009 1345 Pnt 3012 1342 Pnt 3015 1339 Pnt 3018 1337 Pnt 3022 1334 Pnt 3025 1331 Pnt 3028 1329 Pnt 3031 1326 Pnt 3034 1323 Pnt 3037 1320 Pnt 3040 1318 Pnt 3043 1315 Pnt 3047 1312 Pnt 3050 1309 Pnt 3053 1306 Pnt 3056 1304 Pnt 3059 1301 Pnt 3062 1298 Pnt 3065 1295 Pnt 3068 1292 Pnt 3072 1289 Pnt 3075 1286 Pnt 3078 1284 Pnt 3081 1281 Pnt 3084 1278 Pnt 3087 1275 Pnt 3090 1272 Pnt 3093 1269 Pnt 3096 1266 Pnt 3100 1263 Pnt 3103 1260 Pnt 3106 1257 Pnt 3109 1254 Pnt 3112 1251 Pnt 3115 1248 Pnt 3118 1245 Pnt 3121 1242 Pnt 3125 1239 Pnt 3128 1236 Pnt 3131 1233 Pnt 3134 1230 Pnt 3137 1227 Pnt 3140 1224 Pnt 3143 1221 Pnt 3146 1218 Pnt 3150 1215 Pnt 3153 1212 Pnt 3156 1209 Pnt 3159 1206 Pnt 3162 1203 Pnt 3165 1200 Pnt 3168 1197 Pnt 3171 1194 Pnt 3174 1191 Pnt 3178 1188 Pnt 3181 1185 Pnt 3184 1182 Pnt 3187 1179 Pnt 3190 1176 Pnt 3193 1173 Pnt 3196 1170 Pnt 3199 1167 Pnt 3203 1164 Pnt 3206 1161 Pnt 3209 1158 Pnt 3212 1155 Pnt 3215 1152 Pnt 3218 1149 Pnt 3221 1146 Pnt 3224 1143 Pnt 3228 1141 Pnt 3231 1138 Pnt 3234 1135 Pnt 3237 1132 Pnt 3240 1129 Pnt 3243 1126 Pnt 3246 1123 Pnt 3249 1120 Pnt 3253 1117 Pnt 3256 1114 Pnt 3259 1111 Pnt 3262 1108 Pnt 3265 1105 Pnt 3268 1103 Pnt 3271 1100 Pnt 3274 1097 Pnt 3277 1094 Pnt 3281 1091 Pnt 3284 1088 Pnt 3287 1086 Pnt 3290 1083 Pnt 3293 1080 Pnt 3296 1077 Pnt 3299 1074 Pnt 3302 1072 Pnt 3306 1069 Pnt 3309 1066 Pnt 3312 1063 Pnt 3315 1061 Pnt 3318 1058 Pnt 3321 1055 Pnt 3324 1052 Pnt 3327 1050 Pnt 3330 1047 Pnt 3334 1044 Pnt 3337 1042 Pnt 3340 1039 Pnt 3343 1036 Pnt 3346 1034 Pnt 3349 1031 Pnt 3352 1029 Pnt 3355 1026 Pnt 3359 1023 Pnt 3362 1021 Pnt 3365 1018 Pnt 3368 1016 Pnt 3371 1013 Pnt 3374 1011 Pnt 3377 1008 Pnt 3380 1006 Pnt 3384 1003 Pnt 3387 1001 Pnt 3390 998 Pnt 3393 996 Pnt stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 1377 4556 a(Figure)h(7.7:)43 b(The)33 b(graph)g(of)f(DPLL)p Black Black Black Black 935 5040 a Fm(7.3.1)112 b(Numerical)35 b(Results)i(for)g(DPLL)h(on)f(Wiglaf)486 5224 y Fu(W)-8 b(e)44 b(discuss)g(the)f(PDF)g(computation)f(of)g(the)i (DPLL)e(with)h(the)h(completely)e(parallel)300 5345 y(algorithm)j(\(CP) -8 b(A\))50 b(compared)e(with)g(the)h(Ulam's)f(matrix)f(parallel)f (algorithm)f(\(UMP)-8 b(A\))300 5465 y(implemen)m(ted)26 b(on)h(the)g(USM)h(Wiglaf)d(parallel)f(computers.)42 b(The)28 b(computer)f(program)f(source)p Black Black eop %%Page: 48 57 48 56 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(48)p Black 300 274 a(co)s(de)33 b(in)f(C)h(is)g(attac)m(hed)g(in)f(App)s(endix)h(B,)g(whic)m(h)g(can)h (also)d(b)s(e)i(used)h(for)e(a)h(general)f(purp)s(ose)300 395 y(of)h(computing)e(in)m(v)-5 b(arian)m(t)32 b(measures)i(after)f(a) g(minor)e(revision.)44 b(In)34 b(the)f(follo)m(wing)e(tables)i(the)300 515 y(notations)f(ha)m(v)m(e)i(the)f(same)f(meaning)f(as)i(ab)s(o)m(v)m (e.)446 635 y(T)-8 b(able)30 b(7.8)g(sho)m(ws)i(the)e(computation)f (time)g Fr(T)14 b Fu(\()p Fr(s)p Fu(\),)30 b(the)h(sp)s(eedup)h Fr(s)p Fu(,)e(and)h(the)f(e\016ciency)i Fr(E)300 756 y Fu(of)g(the)g(UMP)-8 b(A)33 b(and)g(the)f(CP)-8 b(A)33 b(on)f(Wiglaf)e(in)i(the)g(case)h(of)f(the)h(problem)e(size)h Fr(n)g Fu(is)g(128,)g(256,)300 876 y(and)h(512.)p Black Black Black 782 996 2576 4 v 780 1116 4 121 v 784 1116 V 835 1080 a Fm(n)p 1030 1116 V 1030 1116 V 592 w(UMP)-9 b(A)p 2290 1116 V 2290 1116 V 873 w(CP)g(A)p 3353 1116 V 3357 1116 V 782 1119 2576 4 v 780 1240 4 121 v 784 1240 V 1030 1240 V 1105 1204 a Fr(p)p 1227 1240 V 164 w(T)14 b Fu(\()p Fr(s)p Fu(\))p 1597 1240 V 226 w Fr(s)p 1919 1240 V 206 w(E)6 b Fu(\(\045\))p 2290 1240 V 157 w Fr(T)14 b Fu(\()p Fr(s)p Fu(\))p 2660 1240 V 226 w Fr(s)p 2982 1240 V 206 w(E)6 b Fu(\(\045\))p 3353 1240 V 3357 1240 V 1031 1243 2327 4 v 780 1360 4 121 v 784 1360 V 1030 1360 V 1106 1324 a(1)p 1227 1360 V 148 w(52.24)p 1597 1360 V 147 w(1.00)p 1919 1360 V 124 w(100.00)p 2290 1360 V 123 w(52.34)p 2660 1360 V 147 w(1.00)p 2982 1360 V 124 w(100.00)p 3353 1360 V 3357 1360 V 1031 1364 2327 4 v 780 1481 4 121 v 784 1481 V 1030 1481 V 1106 1444 a(2)p 1227 1481 V 148 w(26.18)p 1597 1481 V 147 w(1.99)p 1919 1481 V 148 w(99.77)p 2290 1481 V 172 w(26.6)p 2660 1481 V 172 w(1.97)p 2982 1481 V 148 w(98.38)p 3353 1481 V 3357 1481 V 1031 1484 2327 4 v 780 1601 4 121 v 784 1601 V 835 1565 a(128)p 1030 1601 V 124 w(4)p 1227 1601 V 148 w(13.15)p 1597 1601 V 147 w(3.97)p 1919 1601 V 148 w(99.32)p 2290 1601 V 148 w(13.46)p 2660 1601 V 147 w(3.89)p 2982 1601 V 148 w(97.21)p 3353 1601 V 3357 1601 V 1031 1604 2327 4 v 780 1721 4 121 v 784 1721 V 1030 1721 V 1106 1685 a(8)p 1227 1721 V 172 w(6.59)p 1597 1721 V 172 w(7.93)p 1919 1721 V 148 w(99.09)p 2290 1721 V 172 w(6.78)p 2660 1721 V 172 w(7.72)p 2982 1721 V 148 w(96.50)p 3353 1721 V 3357 1721 V 1031 1725 2327 4 v 780 1842 4 121 v 784 1842 V 1030 1842 V 1081 1806 a(16)p 1227 1842 V 148 w(3.32)p 1597 1842 V 148 w(15.73)p 1919 1842 V 123 w(98.34)p 2290 1842 V 197 w(3.5)p 2660 1842 V 172 w(14.95)p 2982 1842 V 123 w(93.46)p 3353 1842 V 3357 1842 V 1031 1845 2327 4 v 780 1962 4 121 v 784 1962 V 1030 1962 V 1081 1926 a(32)p 1227 1962 V 148 w(1.72)p 1597 1962 V 148 w(30.37)p 1919 1962 V 123 w(94.91)p 2290 1962 V 172 w(2.13)p 2660 1962 V 148 w(24.57)p 2982 1962 V 123 w(76.79)p 3353 1962 V 3357 1962 V 782 1965 2576 4 v 780 2086 4 121 v 784 2086 V 1030 2086 V 1106 2050 a(1)p 1227 2086 V 123 w(208.83)p 1597 2086 V 123 w(1.00)p 1919 2086 V 124 w(100.00)p 2290 2086 V 98 w(203.46)p 2660 2086 V 123 w(1.00)p 2982 2086 V 124 w(100.00)p 3353 2086 V 3357 2086 V 1031 2089 2327 4 v 780 2206 4 121 v 784 2206 V 1030 2206 V 1106 2170 a(2)p 1227 2206 V 123 w(104.76)p 1597 2206 V 123 w(1.99)p 1919 2206 V 148 w(99.67)p 2290 2206 V 148 w(103.2)p 2660 2206 V 147 w(1.97)p 2982 2206 V 148 w(98.58)p 3353 2206 V 3357 2206 V 1031 2209 2327 4 v 780 2327 4 121 v 784 2327 V 835 2290 a(256)p 1030 2327 V 124 w(4)p 1227 2327 V 148 w(52.76)p 1597 2327 V 147 w(3.96)p 1919 2327 V 148 w(98.95)p 2290 2327 V 148 w(52.25)p 2660 2327 V 147 w(3.89)p 2982 2327 V 148 w(97.35)p 3353 2327 V 3357 2327 V 1031 2330 2327 4 v 780 2447 4 121 v 784 2447 V 1030 2447 V 1106 2411 a(8)p 1227 2447 V 148 w(26.39)p 1597 2447 V 147 w(7.91)p 1919 2447 V 148 w(98.92)p 2290 2447 V 148 w(26.14)p 2660 2447 V 147 w(7.78)p 2982 2447 V 148 w(97.29)p 3353 2447 V 3357 2447 V 1031 2450 2327 4 v 780 2567 4 121 v 784 2567 V 1030 2567 V 1081 2531 a(16)p 1227 2567 V 148 w(13.3)p 1597 2567 V 148 w(15.70)p 1919 2567 V 123 w(98.13)p 2290 2567 V 148 w(13.13)p 2660 2567 V 123 w(15.50)p 2982 2567 V 123 w(96.85)p 3353 2567 V 3357 2567 V 1031 2571 2327 4 v 780 2688 4 121 v 784 2688 V 1030 2688 V 1081 2652 a(32)p 1227 2688 V 148 w(6.89)p 1597 2688 V 148 w(30.31)p 1919 2688 V 123 w(94.71)p 2290 2688 V 172 w(7.37)p 2660 2688 V 148 w(27.61)p 2982 2688 V 123 w(86.27)p 3353 2688 V 3357 2688 V 782 2691 2576 4 v 780 2811 4 121 v 784 2811 V 1030 2811 V 1106 2775 a(1)p 1227 2811 V 123 w(835.16)p 1597 2811 V 123 w(1.00)p 1919 2811 V 124 w(100.00)p 2290 2811 V 123 w(831.2)p 2660 2811 V 147 w(1.00)p 2982 2811 V 124 w(100.00)p 3353 2811 V 3357 2811 V 1031 2815 2327 4 v 780 2932 4 121 v 784 2932 V 1030 2932 V 1106 2896 a(2)p 1227 2932 V 123 w(419.44)p 1597 2932 V 123 w(1.99)p 1919 2932 V 148 w(99.56)p 2290 2932 V 148 w(416.1)p 2660 2932 V 147 w(2.00)p 2982 2932 V 148 w(99.88)p 3353 2932 V 3357 2932 V 1031 2935 2327 4 v 780 3052 4 121 v 784 3052 V 835 3016 a(512)p 1030 3052 V 124 w(4)p 1227 3052 V 123 w(211.58)p 1597 3052 V 123 w(3.95)p 1919 3052 V 148 w(98.68)p 2290 3052 V 148 w(208.8)p 2660 3052 V 147 w(3.98)p 2982 3052 V 148 w(99.52)p 3353 3052 V 3357 3052 V 1031 3055 2327 4 v 780 3173 4 121 v 784 3173 V 1030 3173 V 1106 3136 a(8)p 1227 3173 V 123 w(105.86)p 1597 3173 V 123 w(7.89)p 1919 3173 V 148 w(98.62)p 2290 3173 V 148 w(104.4)p 2660 3173 V 147 w(7.96)p 2982 3173 V 148 w(99.52)p 3353 3173 V 3357 3173 V 1031 3176 2327 4 v 780 3293 4 121 v 784 3293 V 1030 3293 V 1081 3257 a(16)p 1227 3293 V 124 w(53.52)p 1597 3293 V 123 w(15.60)p 1919 3293 V 123 w(97.53)p 2290 3293 V 148 w(52.43)p 2660 3293 V 123 w(15.85)p 2982 3293 V 123 w(99.08)p 3353 3293 V 3357 3293 V 1031 3296 2327 4 v 780 3413 4 121 v 784 3413 V 1030 3413 V 1081 3377 a(32)p 1227 3413 V 124 w(27.59)p 1597 3413 V 123 w(30.27)p 1919 3413 V 123 w(94.60)p 2290 3413 V 148 w(27.08)p 2660 3413 V 123 w(30.69)p 2982 3413 V 123 w(95.92)p 3353 3413 V 3357 3413 V 782 3417 2576 4 v Black 678 3577 a(T)-8 b(able)32 b(7.8:)43 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)34 b(and)f(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Wiglaf)p Black Black 446 3941 a(F)-8 b(rom)25 b(the)h(results)g(w)m(e)h(see)g (that)f(when)h(the)f(pro)s(cessor)h(n)m(um)m(b)s(er)f Fr(p)g Fu(increases,)i(the)e(sp)s(eedup)300 4061 y(of)e(b)s(oth)g(the)h (UMP)-8 b(A)25 b(and)f(the)h(CP)-8 b(A)25 b(will)d(increase)i(and)h (the)g(e\016ciency)g(of)f(b)s(oth)g(will)e(decrease.)300 4182 y(When)34 b(the)g(problem)e(size)i Fr(n)g Fu(increases,)g(the)g (CP)-8 b(A)35 b(tak)m(es)f(less)g(computation)e(time)g(than)i(the)300 4302 y(UMP)-8 b(A.)37 b(This)f(is)g(b)s(ecause)h(when)g(the)f(problem)f (size)h Fr(n)h Fu(increases,)g(the)g(single)e(pro)s(cessor)i(in)300 4423 y(whic)m(h)e(the)h(\014xed)g(densit)m(y)g(is)e(calculated)g(has)h (to)g(tak)m(e)g(more)f(time)g(to)g(do)h(the)g(computation)300 4543 y(while)j(other)h(pro)s(cessors)h(are)e(just)h(set)h(idle.)60 b(Therefore)40 b(the)f(total)e(computation)g(time)g(for)300 4663 y(the)f(UMP)-8 b(A)37 b(will)c(increase.)53 b(Th)m(us,)38 b(the)e(CP)-8 b(A)37 b(is)e(faster)h(than)g(that)f(of)g(the)h(UMP)-8 b(A)37 b(when)g Fr(n)300 4784 y Fu(is)32 b(large,)g(as)g(is)h(the)g (case)g(for)f Fr(S)1465 4799 y Fp(3)1504 4784 y Fu(.)446 4904 y(T)-8 b(o)35 b(get)g(more)f(information)d(ab)s(out)j(the)h(p)s (erformance)f(of)g(the)i(t)m(w)m(o)f(algorithms,)d(w)m(e)k(giv)m(e)300 5024 y(Figure)d(7.8)h(and)h(Figure)e(7.9)h(to)g(sho)m(w)i(the)f (e\016ciency)h(comparison)d(of)h(the)h(UMP)-8 b(A)35 b(and)g(the)300 5145 y(CP)-8 b(A)31 b(with)e(the)h(c)m(hange)h(of)f Fr(p)f Fu(and)h Fr(n)p Fu(.)43 b(Comparing)29 b(the)h(t)m(w)m(o)g (pictures,)h(w)m(e)g(see)g(that)f(with)g(the)300 5265 y(increase)j(of)g Fr(n)p Fu(,)g(the)g(e\016ciency)h Fr(E)39 b Fu(of)32 b(the)i(UMP)-8 b(A)33 b(will)e(b)s(e)i(decreasing)g(but)g (the)g(e\016ciency)h(of)300 5386 y(the)h(CP)-8 b(A)35 b(will)c(b)s(e)k(increasing.)47 b(Therefore)35 b(the)g(CP)-8 b(A)35 b(de\014nitely)f(outp)s(erforms)f(the)i(UMP)-8 b(A,)300 5506 y(the)29 b(same)f(conclusion)g(as)g(w)m(e)i(made)e (earlier.)40 b(Moreo)m(v)m(er,)31 b(comparing)c(the)h(t)m(w)m(o)h (pictures)g(with)p Black Black eop %%Page: 49 58 49 57 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(49)p Black 300 274 a(Figure)32 b(7.2)h(and)h(Figure)e(7.3)h(for)g Fr(S)1633 289 y Fp(3)1673 274 y Fu(,)g(w)m(e)i(see)f(that)g(the)f(p)s(erformance)g(of)g(the)h (UMP)-8 b(A)34 b(or)g(the)300 395 y(CP)-8 b(A)38 b(do)s(es)f(not)g(v)-5 b(ary)38 b(m)m(uc)m(h)f(with)g(the)g(di\013eren)m(t)h(mappings,)f(and)g (this)g(sho)m(ws)h(a)f(relativ)m(ely)300 515 y(stable)22 b(c)m(haracteristics.)41 b(Therefore)24 b(all)c(the)j(other)g (conclusions)g(for)f(DPLL)g(should)g(b)s(e)h(similar)300 635 y(to)32 b(those)h(for)g Fr(S)884 650 y Fp(3)923 635 y Fu(.)p Black Black Black 720 2646 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/wdu.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Wed Jul 5 17:15:56 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (90) Rshow 540 629 M 63 0 V 2793 0 R -63 0 V 468 629 M (92) Rshow 540 898 M 63 0 V 2793 0 R -63 0 V 468 898 M (94) Rshow 540 1166 M 63 0 V 2793 0 R -63 0 V -2865 0 R (96) Rshow 540 1435 M 63 0 V 2793 0 R -63 0 V -2865 0 R (98) Rshow 540 1704 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 1973 M 63 0 V 2793 0 R -63 0 V -2865 0 R (102) Rshow 540 2242 M 63 0 V 2793 0 R -63 0 V -2865 0 R (104) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 1111 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 2825 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (5) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 1704 M 571 -31 V 571 -61 V 572 -30 V 571 -101 V 571 -461 V 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 1704 M 571 -44 V 571 -97 V 572 -5 V 571 -105 V 3396 994 L 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 1704 M 571 -60 V 571 -117 V 572 -9 V 571 -146 V 3396 978 L stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 948 2849 a(Figure)e(7.8:)43 b(E\016ciency)34 b(of)e(UMP)-8 b(A)34 b(for)e(DPLL)g(on)h(Wiglaf)p Black Black Black Black Black 720 5078 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/wdc.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Wed Jul 5 15:36:50 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (75) Rshow 540 648 M 63 0 V 2793 0 R -63 0 V 468 648 M (80) Rshow 540 936 M 63 0 V 2793 0 R -63 0 V 468 936 M (85) Rshow 540 1224 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 1512 M 63 0 V 2793 0 R -63 0 V -2865 0 R (95) Rshow 540 1800 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 2088 M 63 0 V 2793 0 R -63 0 V -2865 0 R (105) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (110) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 1111 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 2825 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (5) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 1800 M 571 -93 V 571 -67 V 572 -42 V 571 -174 V 3396 463 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 1800 M 571 -82 V 571 -71 V 572 -3 V 571 -26 V 571 -609 V 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 1800 M 571 -7 V 571 -21 V 572 0 V 571 -25 V 571 -182 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 910 5282 a(Figure)e(7.9:)43 b(E\016ciency)34 b(of)e(the)h(CP)-8 b(A)34 b(for)e(DPLL)g(on)h(Wiglaf)p Black Black Black Black eop %%Page: 50 59 50 58 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(50)p Black Black Black 847 274 a Fm(7.3.2)113 b(Numerical)35 b(Results)h(for)i(DPLL)f(on)h(Sw)m (eetgum)470 459 y Fu(T)-8 b(able)37 b(7.9)g(sho)m(ws)h(the)g (computation)e(time)f Fr(T)14 b Fu(\()p Fr(s)p Fu(\),)38 b(the)g(sp)s(eedup)g Fr(s)p Fu(,)h(and)e(the)h(e\016ciency)300 579 y Fr(E)h Fu(of)32 b(the)h(UMP)-8 b(A)34 b(and)f(the)g(CP)-8 b(A)34 b(for)e(the)i(DPLL)e(on)h(Sw)m(eetgum.)45 b(Figure)32 b(7.10)g(and)h(Figure)300 700 y(7.11)26 b(sho)m(w)j(the)e(e\016ciency)i (of)e(the)g(UMP)-8 b(A)28 b(and)f(the)h(CP)-8 b(A)28 b(on)f(Sw)m(eetgum)h(with)e(the)i(pro)s(cessor)300 820 y(n)m(um)m(b)s(er)33 b Fr(p)f Fu(and)h(the)g(problem)e(size)i Fr(n)p Fu(.)p Black Black Black 855 959 2430 4 v 853 1079 4 121 v 857 1079 V 908 1043 a Fm(n)p 1103 1079 V 1103 1079 V 568 w(UMP)-9 b(A)p 2314 1079 V 2314 1079 V 799 w(CP)g(A)p 3280 1079 V 3284 1079 V 855 1083 2430 4 v 853 1203 4 121 v 857 1203 V 1103 1203 V 1179 1167 a Fr(p)p 1300 1203 V 163 w(T)14 b Fu(\()p Fr(s)p Fu(\))p 1671 1203 V 202 w Fr(s)p 1944 1203 V 181 w(E)6 b Fu(\(\045\))p 2314 1203 V 133 w Fr(T)14 b Fu(\()p Fr(s)p Fu(\))p 2636 1203 V 177 w Fr(s)p 2909 1203 V 182 w(E)6 b Fu(\(\045\))p 3280 1203 V 3284 1203 V 1105 1206 2181 4 v 853 1324 4 121 v 857 1324 V 1103 1324 V 1179 1287 a(1)p 1300 1324 V 172 w(8.23)p 1671 1324 V 148 w(1.00)p 1944 1324 V 99 w(100.00)p 2314 1324 V 123 w(7.81)p 2636 1324 V 124 w(1.00)p 2909 1324 V 99 w(100.00)p 3280 1324 V 3284 1324 V 1105 1327 2181 4 v 853 1444 4 121 v 857 1444 V 1103 1444 V 1179 1408 a(2)p 1300 1444 V 172 w(4.81)p 1671 1444 V 148 w(1.71)p 1944 1444 V 124 w(85.55)p 2314 1444 V 147 w(4.28)p 2636 1444 V 124 w(1.82)p 2909 1444 V 123 w(91.24)p 3280 1444 V 3284 1444 V 1105 1447 2181 4 v 853 1564 4 121 v 857 1564 V 908 1528 a(128)p 1103 1564 V 124 w(4)p 1300 1564 V 172 w(2.73)p 1671 1564 V 148 w(3.01)p 1944 1564 V 124 w(75.37)p 2314 1564 V 147 w(2.97)p 2636 1564 V 124 w(2.63)p 2909 1564 V 123 w(65.74)p 3280 1564 V 3284 1564 V 1105 1568 2181 4 v 853 1685 4 121 v 857 1685 V 1103 1685 V 1179 1649 a(8)p 1300 1685 V 172 w(2.63)p 1671 1685 V 148 w(3.13)p 1944 1685 V 124 w(39.12)p 2314 1685 V 147 w(3.56)p 2636 1685 V 124 w(2.19)p 2909 1685 V 123 w(27.42)p 3280 1685 V 3284 1685 V 1105 1688 2181 4 v 853 1805 4 121 v 857 1805 V 1103 1805 V 1154 1769 a(16)p 1300 1805 V 124 w(10.58)p 1671 1805 V 123 w(0.78)p 1944 1805 V 148 w(4.86)p 2314 1805 V 148 w(14.61)p 2636 1805 V 99 w(0.54)p 2909 1805 V 147 w(3.34)p 3280 1805 V 3284 1805 V 855 1808 2430 4 v 853 1929 4 121 v 857 1929 V 1103 1929 V 1179 1893 a(1)p 1300 1929 V 148 w(33.18)p 1671 1929 V 123 w(1.00)p 1944 1929 V 99 w(100.00)p 2314 1929 V 99 w(32.97)p 2636 1929 V 99 w(1.00)p 2909 1929 V 99 w(100.00)p 3280 1929 V 3284 1929 V 1105 1932 2181 4 v 853 2049 4 121 v 857 2049 V 1103 2049 V 1179 2013 a(2)p 1300 2049 V 148 w(17.46)p 1671 2049 V 123 w(1.90)p 1944 2049 V 124 w(95.02)p 2314 2049 V 123 w(17.12)p 2636 2049 V 99 w(1.93)p 2909 2049 V 123 w(96.29)p 3280 2049 V 3284 2049 V 1105 2052 2181 4 v 853 2170 4 121 v 857 2170 V 908 2133 a(256)p 1103 2170 V 124 w(4)p 1300 2170 V 148 w(10.11)p 1671 2170 V 123 w(3.28)p 1944 2170 V 124 w(82.05)p 2314 2170 V 172 w(9.3)p 2636 2170 V 148 w(3.55)p 2909 2170 V 123 w(88.63)p 3280 2170 V 3284 2170 V 1105 2173 2181 4 v 853 2290 4 121 v 857 2290 V 1103 2290 V 1179 2254 a(8)p 1300 2290 V 172 w(6.36)p 1671 2290 V 148 w(5.22)p 1944 2290 V 124 w(65.21)p 2314 2290 V 147 w(7.87)p 2636 2290 V 124 w(4.19)p 2909 2290 V 123 w(52.37)p 3280 2290 V 3284 2290 V 1105 2293 2181 4 v 853 2410 4 121 v 857 2410 V 1103 2410 V 1154 2374 a(16)p 1300 2410 V 124 w(12.47)p 1671 2410 V 123 w(2.66)p 1944 2410 V 124 w(16.63)p 2314 2410 V 123 w(15.12)p 2636 2410 V 99 w(2.18)p 2909 2410 V 123 w(13.63)p 3280 2410 V 3284 2410 V 855 2414 2430 4 v 853 2534 4 121 v 857 2534 V 1103 2534 V 1179 2498 a(1)p 1300 2534 V 124 w(136.81)p 1671 2534 V 98 w(1.00)p 1944 2534 V 99 w(100.00)p 2314 2534 V 99 w(135.4)p 2636 2534 V 99 w(1.00)p 2909 2534 V 99 w(100.00)p 3280 2534 V 3284 2534 V 1105 2537 2181 4 v 853 2654 4 121 v 857 2654 V 1103 2654 V 1179 2618 a(2)p 1300 2654 V 148 w(69.51)p 1671 2654 V 123 w(1.97)p 1944 2654 V 124 w(98.41)p 2314 2654 V 123 w(68.12)p 2636 2654 V 99 w(1.99)p 2909 2654 V 123 w(99.38)p 3280 2654 V 3284 2654 V 1105 2658 2181 4 v 853 2775 4 121 v 857 2775 V 908 2739 a(512)p 1103 2775 V 124 w(4)p 1300 2775 V 148 w(36.59)p 1671 2775 V 123 w(3.74)p 1944 2775 V 124 w(93.48)p 2314 2775 V 123 w(37.40)p 2636 2775 V 99 w(3.62)p 2909 2775 V 123 w(90.51)p 3280 2775 V 3284 2775 V 1105 2778 2181 4 v 853 2895 4 121 v 857 2895 V 1103 2895 V 1179 2859 a(8)p 1300 2895 V 148 w(23.07)p 1671 2895 V 123 w(5.93)p 1944 2895 V 124 w(74.13)p 2314 2895 V 123 w(22.10)p 2636 2895 V 99 w(6.13)p 2909 2895 V 123 w(76.58)p 3280 2895 V 3284 2895 V 1105 2898 2181 4 v 853 3015 4 121 v 857 3015 V 1103 3015 V 1154 2979 a(16)p 1300 3015 V 124 w(26.93)p 1671 3015 V 123 w(5.08)p 1944 3015 V 124 w(31.75)p 2314 3015 V 123 w(25.47)p 2636 3015 V 99 w(5.32)p 2909 3015 V 123 w(33.23)p 3280 3015 V 3284 3015 V 855 3019 2430 4 v Black 603 3179 a(T)-8 b(able)33 b(7.9:)43 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f(DPLL)h(on)f(Sw)m(eetgum)p Black Black 446 3524 a(F)-8 b(rom)22 b(the)i(results,)i(when)f Fr(p)f Fu(increases,)i(the)e(e\016ciency)h(of)e(b)s(oth)h(the)g(UMP)-8 b(A)24 b(and)g(the)g(CP)-8 b(A)300 3644 y(will)37 b(decrease.)64 b(When)40 b Fr(n)f Fu(increases,)j(the)e(e\016ciency)g(of)f(b)s(oth)f (will)f(increase,)k(whic)m(h)f(is)f(the)300 3765 y(same)26 b(conclusion)f(as)h(in)f(the)h(case)h(of)e(the)i(test)f(mapping)e Fr(S)2487 3780 y Fp(3)2553 3765 y Fu(on)h(Sw)m(eetgum.)42 b(This)26 b(is)g(di\013eren)m(t)300 3885 y(from)33 b(the)j(situation)d (of)h(the)h(UMP)-8 b(A)36 b(on)e(Wiglaf)f(where)j(the)f(e\016ciency)h (decreases)h(with)e(the)300 4005 y(increase)g(of)f Fr(n)p Fu(.)50 b(Because)37 b(Sw)m(eetgum)e(is)f(a)h(h)m(uge)g(memory)f(and)h (fast)f(CPU)i(sup)s(ercomputer,)300 4126 y(when)g Fr(n)g Fu(is)e(not)i(to)s(o)e(large,)h(the)g(sequen)m(tial)h(part)f(of)g(the)g (UMP)-8 b(A)36 b(do)s(es)g(not)f(tak)m(e)h(to)s(o)e(m)m(uc)m(h)300 4246 y(computation)d(time.)446 4367 y(Comparing)42 b(these)i(results)f (for)g(DPLL)g(on)f(Sw)m(eetgum)i(and)f(the)h(e\016ciency)g(for)f Fr(S)3655 4382 y Fp(3)3737 4367 y Fu(on)300 4487 y(Sw)m(eetgum\(Figure) 30 b(7.4)g(and)g(Figure)f(7.5\),)h(w)m(e)h(can)g(conclude)f(that)g(the) h(CP)-8 b(A)31 b(or)f(the)g(UMP)-8 b(A)300 4607 y(p)s(erform)32 b(similarly)d(with)j(di\013eren)m(t)h(mappings)f(in)g(Sw)m(eetgum.)45 b(Th)m(us)34 b(all)c(the)k(other)f(conclu-)300 4728 y(sions)g(for)f (DPLL)g(on)g(Sw)m(eetgum)i(are)e(the)h(similar)d(to)i(that)g(for)g Fr(S)2773 4743 y Fp(3)2845 4728 y Fu(on)h(Sw)m(eetgum.)446 4848 y(If)28 b(w)m(e)i(compare)d(T)-8 b(able)28 b(7.9)g(on)g(Sw)m (eetgum)h(with)f(T)-8 b(able)28 b(7.8)f(on)h(Wiglaf,)f(w)m(e)i(deduce)h (that,)300 4968 y(when)i Fr(p)27 b Fu(=)h(1,)j(the)g(computation)e (time)g(on)i(Sw)m(eetgum)h(is)e(ab)s(out)g(six)h(times)e(faster)i(than) g(that)300 5089 y(on)43 b(Wiglaf,)g(the)h(same)e(conclusion)h(as)g (that)g(made)f(for)g Fr(S)2557 5104 y Fp(3)2597 5089 y Fu(.)74 b(When)44 b Fr(p)f Fu(is)f(large,)j(with)e(the)300 5209 y(increase)32 b(of)g Fr(n)p Fu(,)g(the)g(p)s(erformance)g(on)g(Sw) m(eetgum)g(will)e(impro)m(v)m(e)i(m)m(uc)m(h)g(b)s(etter.)44 b(Figure)31 b(7.12)300 5330 y(sho)m(ws)j(that)d(the)i(e\016ciency)g(c)m (hange)g(of)f(the)g(UMP)-8 b(A)33 b(for)e(the)i(DPLL)f(with)f(the)i (increase)f(of)g Fr(n)300 5450 y Fu(on)26 b(Sw)m(eetgum)g(and)g (Wiglaf,)f(when)i Fr(p)g Fu(=)h(8.)41 b(The)26 b(picture)g(sho)m(ws)h (that)f(when)h Fr(n)e Fu(increases,)k(the)p Black Black eop %%Page: 51 60 51 59 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(51)p Black Black Black Black 720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/sdu.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu Jul 6 17:13:40 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (0) Rshow 540 763 M 63 0 V 2793 0 R -63 0 V 468 763 M (20) Rshow 540 1166 M 63 0 V 2793 0 R -63 0 V -2865 0 R (40) Rshow 540 1570 M 63 0 V 2793 0 R -63 0 V -2865 0 R (60) Rshow 540 1973 M 63 0 V 2793 0 R -63 0 V -2865 0 R (80) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 897 360 M 0 63 V 0 1953 R 0 -63 V 897 240 M (0.5) Cshow 1254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1611 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1.5) Cshow 1968 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2325 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2.5) Cshow 2682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 3039 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3.5) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 2376 M 714 -291 V 714 -206 V 714 -730 V 3396 458 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 2376 M 714 -100 V 714 -262 V 714 -339 V 3396 695 L 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 2376 M 714 -32 V 714 -100 V 714 -390 V 714 -854 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 849 2268 a(Figure)31 b(7.10:)43 b(E\016ciency)34 b(of)e(UMP)-8 b(A)34 b(for)e(DPLL)g(on)g(Sw)m(eetgum)p Black Black Black Black Black 720 4385 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/sdc.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: q.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Wed Jul 5 23:28:31 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (0) Rshow 540 763 M 63 0 V 2793 0 R -63 0 V 468 763 M (20) Rshow 540 1166 M 63 0 V 2793 0 R -63 0 V -2865 0 R (40) Rshow 540 1570 M 63 0 V 2793 0 R -63 0 V -2865 0 R (60) Rshow 540 1973 M 63 0 V 2793 0 R -63 0 V -2865 0 R (80) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (0) Cshow 897 360 M 0 63 V 0 1953 R 0 -63 V 897 240 M (0.5) Cshow 1254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1) Cshow 1611 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (1.5) Cshow 1968 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2) Cshow 2325 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (2.5) Cshow 2682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3) Cshow 3039 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (3.5) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (4) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (L \(p=2^L\) ) Cshow 1.000 UL LT0 2829 2253 M (n=128) Rshow 2901 2253 M 351 0 V 540 2376 M 714 -177 V 714 -514 V 2682 913 L 3396 427 L 1.000 UL LT1 2829 2133 M (n=256) Rshow 2901 2133 M 351 0 V 540 2376 M 714 -75 V 714 -154 V 714 -731 V 3396 635 L 1.000 UL LT2 2829 2013 M (n=512) Rshow 2901 2013 M 351 0 V 540 2376 M 714 -12 V 714 -179 V 714 -281 V 714 -874 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 895 4588 a(Figure)f(7.11:)43 b(E\016ciency)34 b(of)e(CP)-8 b(A)34 b(for)e(DPLL)g(on)g(Sw)m(eetgum)p Black Black 300 4981 a(e\016ciency)j(on)e(Sw)m(eetgum)h(will)d(approac) m(h)j(that)f(on)g(Wiglaf)e(while)i(the)g(Sw)m(eetgum)h(is)f(nearly)300 5102 y(six)i(times)g(faster)g(than)h(Wiglaf)d(for)h(the)i(sequen)m (tial)f(computation.)51 b(The)36 b(same)f(results)h(can)300 5222 y(b)s(e)30 b(obtained)g(for)f(the)i(CP)-8 b(A.)31 b(Therefore,)g(when)h Fr(n)e Fu(is)f(large,)h(the)h(p)s(erformance)e (impro)m(v)m(emen)m(t)300 5342 y(on)k(Sw)m(eetgum)i(is)d(m)m(uc)m(h)i (b)s(etter)g(and)g(Sw)m(eetgum)g(will)d(b)s(e)j(v)m(ery)h(faster)e (than)h(Wiglaf.)44 b(So)33 b(w)m(e)300 5463 y(will)d(prefer)j(to)g(use) g(the)g(Sw)m(eetgum)g(if)f(the)h(problem)e(size)i Fr(n)g Fu(is)f(v)m(ery)i(large.)p Black Black eop %%Page: 52 61 52 60 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34 b(RESUL)-8 b(TS)1678 b Fu(52)p Black Black Black Black 720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/sw2.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: sw2.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Thu Jul 6 18:35:49 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 540 360 M 63 0 V 2793 0 R -63 0 V 468 360 M (30) Rshow 540 648 M 63 0 V 2793 0 R -63 0 V 468 648 M (40) Rshow 540 936 M 63 0 V 2793 0 R -63 0 V 468 936 M (50) Rshow 540 1224 M 63 0 V 2793 0 R -63 0 V -2865 0 R (60) Rshow 540 1512 M 63 0 V 2793 0 R -63 0 V -2865 0 R (70) Rshow 540 1800 M 63 0 V 2793 0 R -63 0 V -2865 0 R (80) Rshow 540 2088 M 63 0 V 2793 0 R -63 0 V -2865 0 R (90) Rshow 540 2376 M 63 0 V 2793 0 R -63 0 V -2865 0 R (100) Rshow 540 360 M 0 63 V 0 1953 R 0 -63 V 540 240 M (7) Cshow 1254 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (7.5) Cshow 1968 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (8) Cshow 2682 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (8.5) Cshow 3396 360 M 0 63 V 0 1953 R 0 -63 V 0 -2073 R (9) Cshow 1.000 UL LTb 540 360 M 2856 0 V 0 2016 V -2856 0 V 540 360 L 120 1368 M currentpoint gsave translate 90 rotate 0 0 M (E) Cshow grestore 1968 60 M (k \(n=2^k\) ) Cshow 1.000 UL LT0 2829 2253 M (Sweetgum ) Rshow 2901 2253 M 351 0 V 540 623 M 1428 751 V 1428 257 V 1.000 UL LT1 2829 2133 M (Wiglaf) Rshow 2901 2133 M 351 0 V 540 2350 M 1428 -5 V 1428 -9 V stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 325 2268 a(Figure)32 b(7.12:)43 b(E\016ciency)34 b(Comparison)d(of)h(UMP)-8 b(A)34 b(for)e(DPLL)g(on)h(Sw)m(eetgum)g (and)g(Wiglaf)p Black Black 446 2661 a(Finally)-8 b(,)38 b(Figure)g(7.13)g(giv)m(es)h(the)g(graph)g(of)f(the)h(probabilit)m(y)e (densit)m(y)i(function)g(\(PDF\))300 2781 y(of)f(the)h(\014rst)g(order) g(DPLL)f(obtained)g(from)f(the)i(completely)e(parallel)f(algorithm)f (with)k(the)300 2902 y(partition)c(n)m(um)m(b)s(er)i Fr(n)e Fu(=)g(4096)g(of)i([0)p Fr(;)17 b Fu(1].)55 b(Comparing)35 b(with)i(the)g(results)g(in)f([49],)i(it)e(can)h(b)s(e)300 3022 y(seen)d(that)e(the)g(parallel)e(quasi-Mon)m(te)j(Carlo)e (algorithm)e(is)j(v)m(ery)i(con)m(v)m(enien)m(t)g(and)e(e\016cien)m(t.) p Black Black Black 720 5048 a @beginspecial 50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial %%BeginDocument: pic/dpllden.ps %!PS-Adobe-2.0 EPSF-2.0 %%Title: dpllden.ps %%Creator: gnuplot 3.7 patchlevel 0 %%CreationDate: Sat May 13 19:12:17 2000 %%DocumentFonts: (atend) %%BoundingBox: 50 50 230 176 %%Orientation: Portrait %%EndComments /gnudict 256 dict def gnudict begin /Color false def /Solid false def /gnulinewidth 5.000 def /userlinewidth gnulinewidth def /vshift -40 def /dl {10 mul} def /hpt_ 31.5 def /vpt_ 31.5 def /hpt hpt_ def /vpt vpt_ def /M {moveto} bind def /L {lineto} bind def /R {rmoveto} bind def /V {rlineto} bind def /vpt2 vpt 2 mul def /hpt2 hpt 2 mul def /Lshow { currentpoint stroke M 0 vshift R show } def /Rshow { currentpoint stroke M dup stringwidth pop neg vshift R show } def /Cshow { currentpoint stroke M dup stringwidth pop -2 div vshift R show } def /UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def /DL { Color {setrgbcolor Solid {pop []} if 0 setdash } {pop pop pop Solid {pop []} if 0 setdash} ifelse } def /BL { stroke gnulinewidth 2 mul setlinewidth } def /AL { stroke gnulinewidth 2 div setlinewidth } def /UL { gnulinewidth mul /userlinewidth exch def } def /PL { stroke userlinewidth setlinewidth } def /LTb { BL [] 0 0 0 DL } def /LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def /LT0 { PL [] 1 0 0 DL } def /LT1 { PL [4 dl 2 dl] 0 1 0 DL } def /LT2 { PL [2 dl 3 dl] 0 0 1 DL } def /LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def /LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def /LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def /LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def /LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def /LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def /Pnt { stroke [] 0 setdash gsave 1 setlinecap M 0 0 V stroke grestore } def /Dia { stroke [] 0 setdash 2 copy vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke Pnt } def /Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V currentpoint stroke M hpt neg vpt neg R hpt2 0 V stroke } def /Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke Pnt } def /Crs { stroke [] 0 setdash exch hpt sub exch vpt add M hpt2 vpt2 neg V currentpoint stroke M hpt2 neg 0 R hpt2 vpt2 V stroke } def /TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke Pnt } def /Star { 2 copy Pls Crs } def /BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath fill } def /TriUF { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath fill } def /TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke Pnt } def /TriDF { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath fill} def /DiaF { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath fill } def /Pent { stroke [] 0 setdash 2 copy gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore Pnt } def /PentF { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath fill grestore } def /Circle { stroke [] 0 setdash 2 copy hpt 0 360 arc stroke Pnt } def /CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def /C0 { BL [] 0 setdash 2 copy moveto vpt 90 450 arc } bind def /C1 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill vpt 0 360 arc closepath } bind def /C2 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C3 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill vpt 0 360 arc closepath } bind def /C4 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc closepath } bind def /C5 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc 2 copy moveto 2 copy vpt 180 270 arc closepath fill vpt 0 360 arc } bind def /C6 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 270 arc closepath fill vpt 0 360 arc closepath } bind def /C7 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 270 arc closepath fill vpt 0 360 arc closepath } bind def /C8 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C9 { BL [] 0 setdash 2 copy moveto 2 copy vpt 270 450 arc closepath fill vpt 0 360 arc closepath } bind def /C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill 2 copy moveto 2 copy vpt 90 180 arc closepath fill vpt 0 360 arc closepath } bind def /C11 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 180 arc closepath fill 2 copy moveto 2 copy vpt 270 360 arc closepath fill vpt 0 360 arc closepath } bind def /C12 { BL [] 0 setdash 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C13 { BL [] 0 setdash 2 copy moveto 2 copy vpt 0 90 arc closepath fill 2 copy moveto 2 copy vpt 180 360 arc closepath fill vpt 0 360 arc closepath } bind def /C14 { BL [] 0 setdash 2 copy moveto 2 copy vpt 90 360 arc closepath fill vpt 0 360 arc } bind def /C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill vpt 0 360 arc closepath } bind def /Rec { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto neg 0 rlineto closepath } bind def /Square { dup Rec } bind def /Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def /S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def /S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def /S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def /S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def /S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill 2 copy vpt Square fill Bsquare } bind def /S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def /S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def /S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def /S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def /S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy vpt Square fill Bsquare } bind def /S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def /S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def /D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def /D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def /D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def /D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def /D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def /D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def /D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def /D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def /D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def /D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def /D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def /D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def /D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def /D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def /D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def /D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def /DiaE { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V closepath stroke } def /BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V closepath stroke } def /TriUE { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V closepath stroke } def /TriDE { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V closepath stroke } def /PentE { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat closepath stroke grestore } def /CircE { stroke [] 0 setdash hpt 0 360 arc stroke } def /Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def /DiaW { stroke [] 0 setdash vpt add M hpt neg vpt neg V hpt vpt neg V hpt vpt V hpt neg vpt V Opaque stroke } def /BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M 0 vpt2 neg V hpt2 0 V 0 vpt2 V hpt2 neg 0 V Opaque stroke } def /TriUW { stroke [] 0 setdash vpt 1.12 mul add M hpt neg vpt -1.62 mul V hpt 2 mul 0 V hpt neg vpt 1.62 mul V Opaque stroke } def /TriDW { stroke [] 0 setdash vpt 1.12 mul sub M hpt neg vpt 1.62 mul V hpt 2 mul 0 V hpt neg vpt -1.62 mul V Opaque stroke } def /PentW { stroke [] 0 setdash gsave translate 0 hpt M 4 {72 rotate 0 hpt L} repeat Opaque stroke grestore } def /CircW { stroke [] 0 setdash hpt 0 360 arc Opaque stroke } def /BoxFill { gsave Rec 1 setgray fill grestore } def end %%EndProlog gnudict begin gsave 50 50 translate 0.050 0.050 scale 0 setgray newpath (Helvetica) findfont 120 scalefont setfont 1.000 UL LTb 420 240 M 63 0 V 2913 0 R -63 0 V 348 240 M (0) Rshow 420 507 M 63 0 V 2913 0 R -63 0 V 348 507 M (0.5) Rshow 420 774 M 63 0 V 2913 0 R -63 0 V 348 774 M (1) Rshow 420 1041 M 63 0 V 2913 0 R -63 0 V -2985 0 R (1.5) Rshow 420 1308 M 63 0 V 2913 0 R -63 0 V -2985 0 R (2) Rshow 420 1575 M 63 0 V 2913 0 R -63 0 V -2985 0 R (2.5) Rshow 420 1842 M 63 0 V 2913 0 R -63 0 V -2985 0 R (3) Rshow 420 2109 M 63 0 V 2913 0 R -63 0 V -2985 0 R (3.5) Rshow 420 2376 M 63 0 V 2913 0 R -63 0 V -2985 0 R (4) Rshow 420 240 M 0 63 V 0 2073 R 0 -63 V 420 120 M (0) Cshow 894 240 M 0 63 V 0 2073 R 0 -63 V 894 120 M (1) Cshow 1367 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (2) Cshow 1841 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (3) Cshow 2315 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (4) Cshow 2788 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (5) Cshow 3262 240 M 0 63 V 0 2073 R 0 -63 V 0 -2193 R (6) Cshow 1.000 UL LTb 420 240 M 2976 0 V 0 2136 V -2976 0 V 420 240 L 1.000 UL LT0 2829 2253 M (PDF for DPLL with n=4096) Rshow 3076 2253 Pnt 421 551 Pnt 421 551 Pnt 422 550 Pnt 423 551 Pnt 424 551 Pnt 424 550 Pnt 425 552 Pnt 426 551 Pnt 427 552 Pnt 427 551 Pnt 428 552 Pnt 429 551 Pnt 429 552 Pnt 430 552 Pnt 431 553 Pnt 432 552 Pnt 432 552 Pnt 433 553 Pnt 434 552 Pnt 435 553 Pnt 435 554 Pnt 436 553 Pnt 437 553 Pnt 437 554 Pnt 438 555 Pnt 439 554 Pnt 440 555 Pnt 440 555 Pnt 441 555 Pnt 442 555 Pnt 443 556 Pnt 443 555 Pnt 444 555 Pnt 445 556 Pnt 445 556 Pnt 446 556 Pnt 447 556 Pnt 448 556 Pnt 448 556 Pnt 449 555 Pnt 450 557 Pnt 451 557 Pnt 451 557 Pnt 452 558 Pnt 453 558 Pnt 453 558 Pnt 454 557 Pnt 455 559 Pnt 456 559 Pnt 456 559 Pnt 457 559 Pnt 458 560 Pnt 459 560 Pnt 459 559 Pnt 460 560 Pnt 461 560 Pnt 461 559 Pnt 462 561 Pnt 463 560 Pnt 464 561 Pnt 464 561 Pnt 465 562 Pnt 466 561 Pnt 467 562 Pnt 467 561 Pnt 468 562 Pnt 469 562 Pnt 469 563 Pnt 470 564 Pnt 471 563 Pnt 472 565 Pnt 472 564 Pnt 473 564 Pnt 474 564 Pnt 474 566 Pnt 475 565 Pnt 476 565 Pnt 477 565 Pnt 477 567 Pnt 478 565 Pnt 479 567 Pnt 480 567 Pnt 480 567 Pnt 481 568 Pnt 482 568 Pnt 482 568 Pnt 483 570 Pnt 484 570 Pnt 485 570 Pnt 485 570 Pnt 486 571 Pnt 487 571 Pnt 488 571 Pnt 488 571 Pnt 489 571 Pnt 490 572 Pnt 490 572 Pnt 491 574 Pnt 492 574 Pnt 493 574 Pnt 493 575 Pnt 494 574 Pnt 495 575 Pnt 496 576 Pnt 496 577 Pnt 497 577 Pnt 498 576 Pnt 498 579 Pnt 499 579 Pnt 500 577 Pnt 501 579 Pnt 501 580 Pnt 502 579 Pnt 503 580 Pnt 504 582 Pnt 504 581 Pnt 505 582 Pnt 506 583 Pnt 506 585 Pnt 507 584 Pnt 508 585 Pnt 509 585 Pnt 509 587 Pnt 510 585 Pnt 511 589 Pnt 512 588 Pnt 512 589 Pnt 513 591 Pnt 514 593 Pnt 514 594 Pnt 515 594 Pnt 516 595 Pnt 517 596 Pnt 517 595 Pnt 518 598 Pnt 519 600 Pnt 520 599 Pnt 520 599 Pnt 521 600 Pnt 522 602 Pnt 522 601 Pnt 523 603 Pnt 524 603 Pnt 525 605 Pnt 525 605 Pnt 526 606 Pnt 527 606 Pnt 528 607 Pnt 528 609 Pnt 529 609 Pnt 530 609 Pnt 530 613 Pnt 531 614 Pnt 532 614 Pnt 533 615 Pnt 533 615 Pnt 534 615 Pnt 535 614 Pnt 536 620 Pnt 536 620 Pnt 537 620 Pnt 538 621 Pnt 538 621 Pnt 539 621 Pnt 540 626 Pnt 541 634 Pnt 541 634 Pnt 542 634 Pnt 543 638 Pnt 544 639 Pnt 544 639 Pnt 545 645 Pnt 546 649 Pnt 546 648 Pnt 547 652 Pnt 548 661 Pnt 549 661 Pnt 549 659 Pnt 550 668 Pnt 551 669 Pnt 552 669 Pnt 552 674 Pnt 553 684 Pnt 554 684 Pnt 554 682 Pnt 555 687 Pnt 556 686 Pnt 557 687 Pnt 557 690 Pnt 558 690 Pnt 559 691 Pnt 559 691 Pnt 560 699 Pnt 561 697 Pnt 562 699 Pnt 562 700 Pnt 563 702 Pnt 564 700 Pnt 565 705 Pnt 565 706 Pnt 566 708 Pnt 567 706 Pnt 567 711 Pnt 568 710 Pnt 569 711 Pnt 570 718 Pnt 570 723 Pnt 571 725 Pnt 572 725 Pnt 573 731 Pnt 573 733 Pnt 574 731 Pnt 575 737 Pnt 575 740 Pnt 576 738 Pnt 577 741 Pnt 578 746 Pnt 578 745 Pnt 579 746 Pnt 580 765 Pnt 581 766 Pnt 581 765 Pnt 582 800 Pnt 583 819 Pnt 583 821 Pnt 584 821 Pnt 585 825 Pnt 586 825 Pnt 586 825 Pnt 587 847 Pnt 588 853 Pnt 589 850 Pnt 589 855 Pnt 590 860 Pnt 591 860 Pnt 591 864 Pnt 592 927 Pnt 593 927 Pnt 594 927 Pnt 594 936 Pnt 595 938 Pnt 596 938 Pnt 597 944 Pnt 597 961 Pnt 598 961 Pnt 599 961 Pnt 599 967 Pnt 600 968 Pnt 601 968 Pnt 602 843 Pnt 602 691 Pnt 603 691 Pnt 604 689 Pnt 605 660 Pnt 605 661 Pnt 606 661 Pnt 607 626 Pnt 607 606 Pnt 608 606 Pnt 609 605 Pnt 610 602 Pnt 610 602 Pnt 611 602 Pnt 612 600 Pnt 613 601 Pnt 613 601 Pnt 614 601 Pnt 615 602 Pnt 615 602 Pnt 616 601 Pnt 617 602 Pnt 618 602 Pnt 618 602 Pnt 619 603 Pnt 620 602 Pnt 621 603 Pnt 621 604 Pnt 622 605 Pnt 623 604 Pnt 623 605 Pnt 624 605 Pnt 625 605 Pnt 626 603 Pnt 626 606 Pnt 627 607 Pnt 628 607 Pnt 629 606 Pnt 629 609 Pnt 630 609 Pnt 631 608 Pnt 631 610 Pnt 632 611 Pnt 633 610 Pnt 634 612 Pnt 634 614 Pnt 635 613 Pnt 636 614 Pnt 637 616 Pnt 637 616 Pnt 638 617 Pnt 639 617 Pnt 639 619 Pnt 640 619 Pnt 641 618 Pnt 642 622 Pnt 642 621 Pnt 643 622 Pnt 644 624 Pnt 645 624 Pnt 645 625 Pnt 646 625 Pnt 647 628 Pnt 647 627 Pnt 648 628 Pnt 649 630 Pnt 650 632 Pnt 650 631 Pnt 651 633 Pnt 652 633 Pnt 653 635 Pnt 653 635 Pnt 654 638 Pnt 655 639 Pnt 655 638 Pnt 656 640 Pnt 657 642 Pnt 658 641 Pnt 658 643 Pnt 659 645 Pnt 660 647 Pnt 660 645 Pnt 661 650 Pnt 662 650 Pnt 663 651 Pnt 663 651 Pnt 664 656 Pnt 665 654 Pnt 666 654 Pnt 666 661 Pnt 667 660 Pnt 668 661 Pnt 668 663 Pnt 669 667 Pnt 670 666 Pnt 671 667 Pnt 671 674 Pnt 672 673 Pnt 673 674 Pnt 674 677 Pnt 674 679 Pnt 675 681 Pnt 676 682 Pnt 676 689 Pnt 677 687 Pnt 678 687 Pnt 679 695 Pnt 679 695 Pnt 680 696 Pnt 681 699 Pnt 682 704 Pnt 682 706 Pnt 683 705 Pnt 684 713 Pnt 684 715 Pnt 685 713 Pnt 686 720 Pnt 687 725 Pnt 687 723 Pnt 688 728 Pnt 689 735 Pnt 690 735 Pnt 690 737 Pnt 691 745 Pnt 692 747 Pnt 692 748 Pnt 693 753 Pnt 694 762 Pnt 695 764 Pnt 695 762 Pnt 696 777 Pnt 697 779 Pnt 698 777 Pnt 698 789 Pnt 699 798 Pnt 700 796 Pnt 700 801 Pnt 701 822 Pnt 702 820 Pnt 703 820 Pnt 703 844 Pnt 704 848 Pnt 705 848 Pnt 706 861 Pnt 706 885 Pnt 707 883 Pnt 708 883 Pnt 708 926 Pnt 709 926 Pnt 710 926 Pnt 711 960 Pnt 711 983 Pnt 712 983 Pnt 713 998 Pnt 714 1063 Pnt 714 1063 Pnt 715 1065 Pnt 716 1156 Pnt 716 1188 Pnt 717 1191 Pnt 718 1267 Pnt 719 1426 Pnt 719 1430 Pnt 720 1426 Pnt 721 2316 Pnt 723 1696 Pnt 724 1032 Pnt 724 1035 Pnt 725 964 Pnt 726 368 Pnt 727 369 Pnt 727 368 Pnt 728 368 Pnt 729 369 Pnt 730 368 Pnt 730 368 Pnt 731 369 Pnt 732 368 Pnt 732 368 Pnt 733 369 Pnt 734 368 Pnt 735 368 Pnt 735 368 Pnt 736 368 Pnt 737 368 Pnt 737 368 Pnt 738 367 Pnt 739 368 Pnt 740 367 Pnt 740 367 Pnt 741 368 Pnt 742 367 Pnt 743 367 Pnt 743 367 Pnt 744 367 Pnt 745 367 Pnt 745 367 Pnt 746 367 Pnt 747 367 Pnt 748 367 Pnt 748 366 Pnt 749 367 Pnt 750 366 Pnt 751 367 Pnt 751 367 Pnt 752 367 Pnt 753 366 Pnt 753 366 Pnt 754 366 Pnt 755 366 Pnt 756 365 Pnt 756 366 Pnt 757 365 Pnt 758 366 Pnt 759 365 Pnt 759 366 Pnt 760 365 Pnt 761 365 Pnt 761 366 Pnt 762 365 Pnt 763 366 Pnt 764 365 Pnt 764 366 Pnt 765 365 Pnt 766 365 Pnt 767 365 Pnt 767 365 Pnt 768 365 Pnt 769 365 Pnt 769 365 Pnt 770 364 Pnt 771 364 Pnt 772 364 Pnt 772 364 Pnt 773 364 Pnt 774 364 Pnt 775 364 Pnt 775 364 Pnt 776 364 Pnt 777 364 Pnt 777 364 Pnt 778 363 Pnt 779 364 Pnt 780 364 Pnt 780 363 Pnt 781 364 Pnt 782 363 Pnt 783 363 Pnt 783 363 Pnt 784 363 Pnt 785 363 Pnt 785 363 Pnt 786 363 Pnt 787 363 Pnt 788 362 Pnt 788 362 Pnt 789 362 Pnt 790 362 Pnt 791 362 Pnt 791 362 Pnt 792 362 Pnt 793 362 Pnt 793 361 Pnt 794 362 Pnt 795 361 Pnt 796 361 Pnt 796 361 Pnt 797 361 Pnt 798 361 Pnt 799 361 Pnt 799 361 Pnt 800 361 Pnt 801 361 Pnt 801 360 Pnt 802 361 Pnt 803 361 Pnt 804 361 Pnt 804 361 Pnt 805 360 Pnt 806 360 Pnt 807 360 Pnt 807 360 Pnt 808 360 Pnt 809 360 Pnt 809 360 Pnt 810 360 Pnt 811 360 Pnt 812 360 Pnt 812 360 Pnt 813 360 Pnt 814 359 Pnt 815 360 Pnt 815 359 Pnt 816 359 Pnt 817 359 Pnt 817 359 Pnt 818 359 Pnt 819 359 Pnt 820 359 Pnt 820 359 Pnt 821 359 Pnt 822 359 Pnt 823 358 Pnt 823 358 Pnt 824 358 Pnt 825 358 Pnt 825 358 Pnt 826 358 Pnt 827 358 Pnt 828 358 Pnt 828 358 Pnt 829 358 Pnt 830 358 Pnt 831 359 Pnt 831 358 Pnt 832 358 Pnt 833 358 Pnt 833 358 Pnt 834 358 Pnt 835 358 Pnt 836 358 Pnt 836 358 Pnt 837 358 Pnt 838 358 Pnt 839 358 Pnt 839 358 Pnt 840 357 Pnt 841 357 Pnt 841 357 Pnt 842 357 Pnt 843 357 Pnt 844 357 Pnt 844 357 Pnt 845 357 Pnt 846 357 Pnt 846 357 Pnt 847 357 Pnt 848 357 Pnt 849 357 Pnt 849 356 Pnt 850 356 Pnt 851 357 Pnt 852 356 Pnt 852 357 Pnt 853 356 Pnt 854 356 Pnt 854 356 Pnt 855 356 Pnt 856 356 Pnt 857 356 Pnt 857 356 Pnt 858 356 Pnt 859 356 Pnt 860 356 Pnt 860 356 Pnt 861 356 Pnt 862 356 Pnt 862 356 Pnt 863 356 Pnt 864 356 Pnt 865 356 Pnt 865 355 Pnt 866 356 Pnt 867 356 Pnt 868 356 Pnt 868 355 Pnt 869 355 Pnt 870 355 Pnt 870 355 Pnt 871 356 Pnt 872 356 Pnt 873 356 Pnt 873 356 Pnt 874 355 Pnt 875 355 Pnt 876 355 Pnt 876 355 Pnt 877 355 Pnt 878 355 Pnt 878 355 Pnt 879 355 Pnt 880 355 Pnt 881 355 Pnt 881 355 Pnt 882 355 Pnt 883 355 Pnt 884 355 Pnt 884 355 Pnt 885 355 Pnt 886 355 Pnt 886 356 Pnt 887 355 Pnt 888 355 Pnt 889 355 Pnt 889 355 Pnt 890 355 Pnt 891 355 Pnt 892 355 Pnt 892 355 Pnt 893 355 Pnt 894 355 Pnt 894 355 Pnt 895 355 Pnt 896 355 Pnt 897 355 Pnt 897 355 Pnt 898 355 Pnt 899 354 Pnt 900 354 Pnt 900 355 Pnt 901 355 Pnt 902 355 Pnt 902 355 Pnt 903 355 Pnt 904 356 Pnt 905 356 Pnt 905 356 Pnt 906 356 Pnt 907 356 Pnt 908 356 Pnt 908 357 Pnt 909 357 Pnt 910 357 Pnt 910 357 Pnt 911 356 Pnt 912 357 Pnt 913 357 Pnt 913 356 Pnt 914 357 Pnt 915 357 Pnt 916 356 Pnt 916 357 Pnt 917 357 Pnt 918 357 Pnt 918 356 Pnt 919 357 Pnt 920 357 Pnt 921 357 Pnt 921 356 Pnt 922 356 Pnt 923 356 Pnt 923 357 Pnt 924 357 Pnt 925 357 Pnt 926 356 Pnt 926 356 Pnt 927 356 Pnt 928 356 Pnt 929 356 Pnt 929 356 Pnt 930 356 Pnt 931 356 Pnt 931 356 Pnt 932 356 Pnt 933 356 Pnt 934 356 Pnt 934 356 Pnt 935 356 Pnt 936 356 Pnt 937 356 Pnt 937 356 Pnt 938 356 Pnt 939 356 Pnt 939 356 Pnt 940 355 Pnt 941 356 Pnt 942 355 Pnt 942 356 Pnt 943 355 Pnt 944 356 Pnt 945 355 Pnt 945 356 Pnt 946 355 Pnt 947 356 Pnt 947 355 Pnt 948 355 Pnt 949 355 Pnt 950 355 Pnt 950 354 Pnt 951 354 Pnt 952 354 Pnt 953 354 Pnt 953 354 Pnt 954 354 Pnt 955 354 Pnt 955 354 Pnt 956 354 Pnt 957 354 Pnt 958 354 Pnt 958 354 Pnt 959 354 Pnt 960 353 Pnt 961 353 Pnt 961 353 Pnt 962 353 Pnt 963 353 Pnt 963 353 Pnt 964 353 Pnt 965 353 Pnt 966 353 Pnt 966 353 Pnt 967 353 Pnt 968 353 Pnt 969 353 Pnt 969 353 Pnt 970 353 Pnt 971 353 Pnt 971 353 Pnt 972 353 Pnt 973 352 Pnt 974 352 Pnt 974 353 Pnt 975 353 Pnt 976 353 Pnt 977 352 Pnt 977 352 Pnt 978 352 Pnt 979 352 Pnt 979 352 Pnt 980 351 Pnt 981 352 Pnt 982 352 Pnt 982 351 Pnt 983 352 Pnt 984 352 Pnt 985 352 Pnt 985 352 Pnt 986 352 Pnt 987 352 Pnt 987 352 Pnt 988 352 Pnt 989 352 Pnt 990 352 Pnt 990 352 Pnt 991 352 Pnt 992 352 Pnt 993 352 Pnt 993 352 Pnt 994 351 Pnt 995 351 Pnt 995 351 Pnt 996 351 Pnt 997 351 Pnt 998 351 Pnt 998 351 Pnt 999 351 Pnt 1000 351 Pnt 1001 351 Pnt 1001 351 Pnt 1002 350 Pnt 1003 350 Pnt 1003 351 Pnt 1004 350 Pnt 1005 351 Pnt 1006 350 Pnt 1006 350 Pnt 1007 350 Pnt 1008 350 Pnt 1009 350 Pnt 1009 350 Pnt 1010 350 Pnt 1011 350 Pnt 1011 350 Pnt 1012 350 Pnt 1013 350 Pnt 1014 350 Pnt 1014 350 Pnt 1015 350 Pnt 1016 350 Pnt 1017 350 Pnt 1017 350 Pnt 1018 350 Pnt 1019 350 Pnt 1019 350 Pnt 1020 350 Pnt 1021 349 Pnt 1022 350 Pnt 1022 349 Pnt 1023 349 Pnt 1024 349 Pnt 1025 349 Pnt 1025 349 Pnt 1026 349 Pnt 1027 349 Pnt 1027 349 Pnt 1028 349 Pnt 1029 349 Pnt 1030 349 Pnt 1030 349 Pnt 1031 349 Pnt 1032 348 Pnt 1032 349 Pnt 1033 348 Pnt 1034 348 Pnt 1035 348 Pnt 1035 348 Pnt 1036 348 Pnt 1037 348 Pnt 1038 348 Pnt 1038 348 Pnt 1039 348 Pnt 1040 348 Pnt 1040 348 Pnt 1041 348 Pnt 1042 348 Pnt 1043 348 Pnt 1043 348 Pnt 1044 348 Pnt 1045 348 Pnt 1046 348 Pnt 1046 348 Pnt 1047 348 Pnt 1048 348 Pnt 1048 348 Pnt 1049 348 Pnt 1050 347 Pnt 1051 348 Pnt 1051 347 Pnt 1052 348 Pnt 1053 347 Pnt 1054 348 Pnt 1054 347 Pnt 1055 347 Pnt 1056 347 Pnt 1056 347 Pnt 1057 347 Pnt 1058 347 Pnt 1059 347 Pnt 1059 347 Pnt 1060 348 Pnt 1061 348 Pnt 1062 348 Pnt 1062 348 Pnt 1063 348 Pnt 1064 348 Pnt 1064 349 Pnt 1065 349 Pnt 1066 349 Pnt 1067 349 Pnt 1067 349 Pnt 1068 349 Pnt 1069 349 Pnt 1070 349 Pnt 1070 349 Pnt 1071 349 Pnt 1072 349 Pnt 1072 349 Pnt 1073 349 Pnt 1074 349 Pnt 1075 349 Pnt 1075 349 Pnt 1076 349 Pnt 1077 348 Pnt 1078 348 Pnt 1078 348 Pnt 1079 348 Pnt 1080 348 Pnt 1080 348 Pnt 1081 348 Pnt 1082 348 Pnt 1083 348 Pnt 1083 348 Pnt 1084 349 Pnt 1085 349 Pnt 1086 349 Pnt 1086 348 Pnt 1087 348 Pnt 1088 349 Pnt 1088 349 Pnt 1089 349 Pnt 1090 349 Pnt 1091 350 Pnt 1091 349 Pnt 1092 350 Pnt 1093 349 Pnt 1094 350 Pnt 1094 349 Pnt 1095 350 Pnt 1096 350 Pnt 1096 350 Pnt 1097 350 Pnt 1098 350 Pnt 1099 350 Pnt 1099 350 Pnt 1100 350 Pnt 1101 350 Pnt 1102 350 Pnt 1102 350 Pnt 1103 350 Pnt 1104 350 Pnt 1104 350 Pnt 1105 350 Pnt 1106 350 Pnt 1107 350 Pnt 1107 350 Pnt 1108 349 Pnt 1109 349 Pnt 1109 350 Pnt 1110 350 Pnt 1111 350 Pnt 1112 350 Pnt 1112 350 Pnt 1113 350 Pnt 1114 350 Pnt 1115 350 Pnt 1115 349 Pnt 1116 350 Pnt 1117 350 Pnt 1117 350 Pnt 1118 350 Pnt 1119 350 Pnt 1120 350 Pnt 1120 350 Pnt 1121 350 Pnt 1122 350 Pnt 1123 350 Pnt 1123 350 Pnt 1124 350 Pnt 1125 350 Pnt 1125 350 Pnt 1126 350 Pnt 1127 350 Pnt 1128 350 Pnt 1128 350 Pnt 1129 350 Pnt 1130 349 Pnt 1131 350 Pnt 1131 350 Pnt 1132 349 Pnt 1133 349 Pnt 1133 349 Pnt 1134 350 Pnt 1135 350 Pnt 1136 350 Pnt 1136 350 Pnt 1137 349 Pnt 1138 349 Pnt 1139 349 Pnt 1139 349 Pnt 1140 349 Pnt 1141 350 Pnt 1141 349 Pnt 1142 349 Pnt 1143 349 Pnt 1144 349 Pnt 1144 350 Pnt 1145 349 Pnt 1146 349 Pnt 1147 349 Pnt 1147 349 Pnt 1148 349 Pnt 1149 349 Pnt 1149 349 Pnt 1150 349 Pnt 1151 349 Pnt 1152 349 Pnt 1152 349 Pnt 1153 349 Pnt 1154 349 Pnt 1155 349 Pnt 1155 349 Pnt 1156 349 Pnt 1157 349 Pnt 1157 349 Pnt 1158 349 Pnt 1159 349 Pnt 1160 349 Pnt 1160 349 Pnt 1161 349 Pnt 1162 349 Pnt 1163 349 Pnt 1163 349 Pnt 1164 349 Pnt 1165 349 Pnt 1165 349 Pnt 1166 349 Pnt 1167 349 Pnt 1168 349 Pnt 1168 349 Pnt 1169 349 Pnt 1170 349 Pnt 1171 349 Pnt 1171 349 Pnt 1172 349 Pnt 1173 349 Pnt 1173 349 Pnt 1174 349 Pnt 1175 349 Pnt 1176 348 Pnt 1176 349 Pnt 1177 349 Pnt 1178 349 Pnt 1179 349 Pnt 1179 349 Pnt 1180 349 Pnt 1181 349 Pnt 1181 349 Pnt 1182 349 Pnt 1183 349 Pnt 1184 349 Pnt 1184 348 Pnt 1185 349 Pnt 1186 348 Pnt 1186 348 Pnt 1187 349 Pnt 1188 348 Pnt 1189 349 Pnt 1189 348 Pnt 1190 349 Pnt 1191 348 Pnt 1192 348 Pnt 1192 348 Pnt 1193 348 Pnt 1194 348 Pnt 1195 348 Pnt 1195 348 Pnt 1196 348 Pnt 1197 348 Pnt 1197 348 Pnt 1198 348 Pnt 1199 349 Pnt 1200 348 Pnt 1200 348 Pnt 1201 349 Pnt 1202 348 Pnt 1203 349 Pnt 1203 348 Pnt 1204 349 Pnt 1205 348 Pnt 1205 348 Pnt 1206 348 Pnt 1207 348 Pnt 1208 348 Pnt 1208 348 Pnt 1209 348 Pnt 1210 348 Pnt 1211 348 Pnt 1211 349 Pnt 1212 348 Pnt 1213 348 Pnt 1213 348 Pnt 1214 348 Pnt 1215 348 Pnt 1216 348 Pnt 1216 348 Pnt 1217 348 Pnt 1218 348 Pnt 1218 348 Pnt 1219 348 Pnt 1220 348 Pnt 1221 348 Pnt 1221 348 Pnt 1222 348 Pnt 1223 348 Pnt 1224 348 Pnt 1224 348 Pnt 1225 347 Pnt 1226 347 Pnt 1226 348 Pnt 1227 348 Pnt 1228 348 Pnt 1229 347 Pnt 1229 348 Pnt 1230 348 Pnt 1231 348 Pnt 1232 348 Pnt 1232 348 Pnt 1233 348 Pnt 1234 348 Pnt 1234 348 Pnt 1235 348 Pnt 1236 347 Pnt 1239 2320 Pnt 1240 2082 Pnt 1240 1916 Pnt 1241 1791 Pnt 1242 1693 Pnt 1242 1612 Pnt 1243 1544 Pnt 1244 1487 Pnt 1245 1437 Pnt 1245 1392 Pnt 1246 1356 Pnt 1247 1326 Pnt 1248 1299 Pnt 1248 1271 Pnt 1249 1243 Pnt 1250 1771 Pnt 1258 2283 Pnt 1258 2199 Pnt 1259 2125 Pnt 1260 2063 Pnt 1261 2007 Pnt 1261 1955 Pnt 1262 1908 Pnt 1263 1862 Pnt 1264 1824 Pnt 1264 1789 Pnt 1265 1751 Pnt 1266 1718 Pnt 1266 1690 Pnt 1267 1659 Pnt 1268 1631 Pnt 1269 1607 Pnt 1269 1585 Pnt 1270 1558 Pnt 1271 1539 Pnt 1272 1518 Pnt 1272 1496 Pnt 1273 1479 Pnt 1274 1461 Pnt 1274 1444 Pnt 1275 1429 Pnt 1276 1412 Pnt 1277 1400 Pnt 1277 1386 Pnt 1278 1372 Pnt 1279 1358 Pnt 1280 1346 Pnt 1280 1337 Pnt 1281 1322 Pnt 1282 1312 Pnt 1282 1301 Pnt 1283 1291 Pnt 1284 1280 Pnt 1285 1268 Pnt 1285 1260 Pnt 1286 1249 Pnt 1287 1241 Pnt 1288 1231 Pnt 1288 1224 Pnt 1289 1213 Pnt 1290 1207 Pnt 1290 1198 Pnt 1291 1191 Pnt 1292 1184 Pnt 1293 1177 Pnt 1293 1168 Pnt 1294 1164 Pnt 1295 1158 Pnt 1295 1153 Pnt 1296 1146 Pnt 1297 1140 Pnt 1298 1135 Pnt 1298 1130 Pnt 1299 1125 Pnt 1300 1121 Pnt 1301 1115 Pnt 1301 1109 Pnt 1302 1107 Pnt 1303 1104 Pnt 1303 1105 Pnt 1304 1112 Pnt 1305 1167 Pnt 1306 1179 Pnt 1306 1210 Pnt 1307 1218 Pnt 1308 1450 Pnt 1309 1634 Pnt 1309 1624 Pnt 1310 1611 Pnt 1311 1598 Pnt 1311 1567 Pnt 1312 1556 Pnt 1313 1542 Pnt 1314 1530 Pnt 1314 1472 Pnt 1315 1423 Pnt 1316 1413 Pnt 1317 1399 Pnt 1317 1392 Pnt 1318 1357 Pnt 1319 1347 Pnt 1319 1338 Pnt 1320 1334 Pnt 1321 1312 Pnt 1322 1252 Pnt 1322 1244 Pnt 1323 1219 Pnt 1324 1209 Pnt 1325 1203 Pnt 1325 1193 Pnt 1326 1190 Pnt 1327 1179 Pnt 1327 1176 Pnt 1328 1166 Pnt 1329 1159 Pnt 1330 1151 Pnt 1330 1138 Pnt 1331 1130 Pnt 1332 1126 Pnt 1333 1120 Pnt 1333 1115 Pnt 1334 1108 Pnt 1335 1103 Pnt 1335 1099 Pnt 1336 1094 Pnt 1337 1091 Pnt 1338 1081 Pnt 1338 1077 Pnt 1339 1073 Pnt 1340 1068 Pnt 1341 1063 Pnt 1341 1060 Pnt 1342 1055 Pnt 1343 1054 Pnt 1343 1038 Pnt 1344 1032 Pnt 1345 1029 Pnt 1346 1017 Pnt 1346 1015 Pnt 1347 1008 Pnt 1348 997 Pnt 1349 996 Pnt 1349 986 Pnt 1350 979 Pnt 1351 975 Pnt 1351 970 Pnt 1352 966 Pnt 1353 962 Pnt 1354 950 Pnt 1354 945 Pnt 1355 943 Pnt 1356 939 Pnt 1357 938 Pnt 1357 933 Pnt 1358 928 Pnt 1359 927 Pnt 1359 926 Pnt 1360 923 Pnt 1361 921 Pnt 1362 917 Pnt 1362 913 Pnt 1363 911 Pnt 1364 907 Pnt 1365 904 Pnt 1365 903 Pnt 1366 900 Pnt 1367 897 Pnt 1367 896 Pnt 1368 891 Pnt 1369 890 Pnt 1370 887 Pnt 1370 885 Pnt 1371 884 Pnt 1372 881 Pnt 1373 877 Pnt 1373 876 Pnt 1374 873 Pnt 1375 871 Pnt 1375 869 Pnt 1376 866 Pnt 1377 862 Pnt 1378 859 Pnt 1378 858 Pnt 1379 854 Pnt 1380 853 Pnt 1381 851 Pnt 1381 850 Pnt 1382 848 Pnt 1383 846 Pnt 1383 843 Pnt 1384 841 Pnt 1385 840 Pnt 1386 838 Pnt 1386 835 Pnt 1387 835 Pnt 1388 832 Pnt 1389 831 Pnt 1389 830 Pnt 1390 829 Pnt 1391 826 Pnt 1391 826 Pnt 1392 824 Pnt 1393 822 Pnt 1394 820 Pnt 1394 819 Pnt 1395 817 Pnt 1396 816 Pnt 1397 816 Pnt 1397 812 Pnt 1398 811 Pnt 1399 809 Pnt 1399 808 Pnt 1400 807 Pnt 1401 806 Pnt 1402 804 Pnt 1402 803 Pnt 1403 802 Pnt 1404 801 Pnt 1404 800 Pnt 1405 798 Pnt 1406 797 Pnt 1407 796 Pnt 1407 794 Pnt 1408 793 Pnt 1409 792 Pnt 1410 790 Pnt 1410 790 Pnt 1411 787 Pnt 1412 786 Pnt 1412 786 Pnt 1413 785 Pnt 1414 783 Pnt 1415 782 Pnt 1415 782 Pnt 1416 781 Pnt 1417 780 Pnt 1418 778 Pnt 1418 777 Pnt 1419 776 Pnt 1420 775 Pnt 1420 774 Pnt 1421 773 Pnt 1422 773 Pnt 1423 772 Pnt 1423 770 Pnt 1424 769 Pnt 1425 768 Pnt 1426 767 Pnt 1426 766 Pnt 1427 765 Pnt 1428 763 Pnt 1428 762 Pnt 1429 762 Pnt 1430 761 Pnt 1431 760 Pnt 1431 759 Pnt 1432 758 Pnt 1433 757 Pnt 1434 755 Pnt 1434 755 Pnt 1435 754 Pnt 1436 755 Pnt 1436 753 Pnt 1437 752 Pnt 1438 750 Pnt 1439 749 Pnt 1439 748 Pnt 1440 747 Pnt 1441 747 Pnt 1442 746 Pnt 1442 745 Pnt 1443 745 Pnt 1444 744 Pnt 1444 743 Pnt 1445 743 Pnt 1446 743 Pnt 1447 741 Pnt 1447 741 Pnt 1448 740 Pnt 1449 738 Pnt 1450 737 Pnt 1450 737 Pnt 1451 735 Pnt 1452 734 Pnt 1452 733 Pnt 1453 732 Pnt 1454 732 Pnt 1455 731 Pnt 1455 727 Pnt 1456 728 Pnt 1457 727 Pnt 1458 726 Pnt 1458 726 Pnt 1459 726 Pnt 1460 724 Pnt 1460 723 Pnt 1461 722 Pnt 1462 722 Pnt 1463 720 Pnt 1463 720 Pnt 1464 719 Pnt 1465 720 Pnt 1466 718 Pnt 1466 717 Pnt 1467 717 Pnt 1468 717 Pnt 1468 715 Pnt 1469 716 Pnt 1470 715 Pnt 1471 714 Pnt 1471 712 Pnt 1472 712 Pnt 1473 711 Pnt 1474 711 Pnt 1474 710 Pnt 1475 710 Pnt 1476 709 Pnt 1476 709 Pnt 1477 708 Pnt 1478 708 Pnt 1479 707 Pnt 1479 706 Pnt 1480 706 Pnt 1481 705 Pnt 1481 705 Pnt 1482 704 Pnt 1483 703 Pnt 1484 703 Pnt 1484 702 Pnt 1485 701 Pnt 1486 700 Pnt 1487 701 Pnt 1487 699 Pnt 1488 698 Pnt 1492 2318 Pnt 1492 2121 Pnt 1493 2011 Pnt 1494 1921 Pnt 1495 1847 Pnt 1495 1785 Pnt 1496 1726 Pnt 1497 1673 Pnt 1497 1637 Pnt 1498 1600 Pnt 1499 1568 Pnt 1500 1539 Pnt 1500 1508 Pnt 1501 1488 Pnt 1502 1468 Pnt 1503 1451 Pnt 1503 1431 Pnt 1504 1410 Pnt 1505 1749 Pnt 1513 2353 Pnt 1514 2284 Pnt 1515 2211 Pnt 1516 2158 Pnt 1516 2113 Pnt 1517 2069 Pnt 1518 2029 Pnt 1519 1985 Pnt 1519 1953 Pnt 1520 1925 Pnt 1521 1895 Pnt 1521 1862 Pnt 1522 1835 Pnt 1523 1814 Pnt 1524 1791 Pnt 1524 1768 Pnt 1525 1741 Pnt 1526 1724 Pnt 1527 1705 Pnt 1527 1689 Pnt 1528 1666 Pnt 1529 1649 Pnt 1529 1637 Pnt 1530 1623 Pnt 1531 1603 Pnt 1532 1589 Pnt 1532 1578 Pnt 1533 1565 Pnt 1534 1550 Pnt 1535 1537 Pnt 1535 1525 Pnt 1536 1516 Pnt 1537 1505 Pnt 1537 1492 Pnt 1538 1484 Pnt 1539 1475 Pnt 1540 1466 Pnt 1540 1456 Pnt 1541 1447 Pnt 1542 1438 Pnt 1543 1430 Pnt 1543 1421 Pnt 1544 1414 Pnt 1545 1407 Pnt 1545 1398 Pnt 1546 1390 Pnt 1547 1384 Pnt 1548 1377 Pnt 1548 1370 Pnt 1549 1361 Pnt 1550 1355 Pnt 1551 1348 Pnt 1551 1343 Pnt 1552 1335 Pnt 1553 1330 Pnt 1553 1324 Pnt 1554 1317 Pnt 1555 1312 Pnt 1556 1306 Pnt 1556 1300 Pnt 1557 1297 Pnt 1558 1289 Pnt 1559 1285 Pnt 1559 1281 Pnt 1560 1275 Pnt 1561 1271 Pnt 1561 1265 Pnt 1562 1260 Pnt 1563 1257 Pnt 1564 1253 Pnt 1564 1249 Pnt 1565 1246 Pnt 1566 1240 Pnt 1567 1238 Pnt 1567 1232 Pnt 1568 1231 Pnt 1569 1227 Pnt 1569 1223 Pnt 1570 1220 Pnt 1571 1216 Pnt 1572 1213 Pnt 1572 1209 Pnt 1573 1204 Pnt 1574 1203 Pnt 1575 1201 Pnt 1575 1199 Pnt 1576 1199 Pnt 1577 1202 Pnt 1577 1210 Pnt 1578 1241 Pnt 1579 1247 Pnt 1580 1256 Pnt 1580 1270 Pnt 1581 1273 Pnt 1582 1362 Pnt 1583 1453 Pnt 1583 1566 Pnt 1584 1558 Pnt 1585 1555 Pnt 1585 1545 Pnt 1586 1536 Pnt 1587 1524 Pnt 1588 1510 Pnt 1588 1502 Pnt 1589 1495 Pnt 1590 1489 Pnt 1590 1481 Pnt 1591 1450 Pnt 1592 1428 Pnt 1593 1403 Pnt 1593 1396 Pnt 1594 1390 Pnt 1595 1384 Pnt 1596 1378 Pnt 1596 1364 Pnt 1597 1352 Pnt 1598 1344 Pnt 1598 1339 Pnt 1599 1336 Pnt 1600 1333 Pnt 1601 1320 Pnt 1601 1302 Pnt 1602 1275 Pnt 1603 1272 Pnt 1604 1263 Pnt 1604 1253 Pnt 1605 1247 Pnt 1606 1245 Pnt 1606 1245 Pnt 1607 1239 Pnt 1608 1235 Pnt 1609 1234 Pnt 1609 1227 Pnt 1610 1226 Pnt 1611 1222 Pnt 1612 1216 Pnt 1612 1213 Pnt 1613 1209 Pnt 1614 1203 Pnt 1614 1197 Pnt 1615 1192 Pnt 1616 1188 Pnt 1617 1186 Pnt 1617 1183 Pnt 1618 1179 Pnt 1619 1177 Pnt 1620 1174 Pnt 1620 1170 Pnt 1621 1167 Pnt 1622 1165 Pnt 1622 1164 Pnt 1623 1160 Pnt 1624 1159 Pnt 1625 1157 Pnt 1625 1159 Pnt 1626 1159 Pnt 1627 1157 Pnt 1628 1154 Pnt 1628 1167 Pnt 1629 1172 Pnt 1630 1173 Pnt 1630 1171 Pnt 1631 1170 Pnt 1632 1166 Pnt 1633 1165 Pnt 1633 1164 Pnt 1634 1155 Pnt 1635 1151 Pnt 1636 1147 Pnt 1636 1145 Pnt 1637 1142 Pnt 1638 1136 Pnt 1638 1137 Pnt 1639 1136 Pnt 1640 1132 Pnt 1641 1126 Pnt 1641 1123 Pnt 1642 1122 Pnt 1643 1118 Pnt 1644 1115 Pnt 1644 1109 Pnt 1645 1108 Pnt 1646 1107 Pnt 1646 1104 Pnt 1647 1101 Pnt 1648 1110 Pnt 1649 1117 Pnt 1649 1113 Pnt 1650 1107 Pnt 1651 1111 Pnt 1652 1119 Pnt 1652 1125 Pnt 1653 1122 Pnt 1654 1121 Pnt 1654 1121 Pnt 1655 1122 Pnt 1656 1121 Pnt 1657 1117 Pnt 1657 1118 Pnt 1658 1116 Pnt 1659 1115 Pnt 1660 1113 Pnt 1660 1111 Pnt 1661 1111 Pnt 1662 1110 Pnt 1662 1109 Pnt 1663 1106 Pnt 1664 1106 Pnt 1665 1104 Pnt 1665 1104 Pnt 1666 1103 Pnt 1667 1100 Pnt 1667 1099 Pnt 1668 1097 Pnt 1669 1096 Pnt 1670 1095 Pnt 1670 1092 Pnt 1671 1104 Pnt 1672 1104 Pnt 1673 1102 Pnt 1673 1103 Pnt 1674 1108 Pnt 1675 1111 Pnt 1675 1113 Pnt 1676 1113 Pnt 1677 1113 Pnt 1678 1115 Pnt 1678 1116 Pnt 1679 1114 Pnt 1680 1111 Pnt 1681 1111 Pnt 1681 1112 Pnt 1682 1110 Pnt 1683 1108 Pnt 1683 1107 Pnt 1684 1107 Pnt 1685 1104 Pnt 1686 1104 Pnt 1686 1100 Pnt 1687 1100 Pnt 1688 1099 Pnt 1689 1099 Pnt 1689 1098 Pnt 1690 1096 Pnt 1691 1097 Pnt 1692 1094 Pnt 1692 1093 Pnt 1693 1092 Pnt 1694 1091 Pnt 1694 1083 Pnt 1695 1080 Pnt 1696 1077 Pnt 1697 1077 Pnt 1697 1059 Pnt 1698 1047 Pnt 1699 1037 Pnt 1699 1037 Pnt 1700 1033 Pnt 1701 1030 Pnt 1702 1023 Pnt 1702 1023 Pnt 1703 1022 Pnt 1704 1020 Pnt 1705 1019 Pnt 1705 1019 Pnt 1706 1018 Pnt 1707 1017 Pnt 1707 1016 Pnt 1708 1015 Pnt 1709 1014 Pnt 1710 1013 Pnt 1710 1011 Pnt 1711 1010 Pnt 1712 1008 Pnt 1713 1006 Pnt 1713 1005 Pnt 1714 1004 Pnt 1715 1004 Pnt 1715 1004 Pnt 1716 1003 Pnt 1717 1002 Pnt 1718 1001 Pnt 1718 1001 Pnt 1719 1000 Pnt 1720 998 Pnt 1721 994 Pnt 1721 991 Pnt 1722 988 Pnt 1723 986 Pnt 1723 985 Pnt 1724 984 Pnt 1725 981 Pnt 1726 981 Pnt 1726 979 Pnt 1727 979 Pnt 1728 978 Pnt 1729 979 Pnt 1729 977 Pnt 1730 977 Pnt 1731 977 Pnt 1731 976 Pnt 1732 975 Pnt 1733 975 Pnt 1734 974 Pnt 1734 973 Pnt 1735 972 Pnt 1736 972 Pnt 1737 971 Pnt 1737 971 Pnt 1738 969 Pnt 1739 969 Pnt 1739 968 Pnt 1740 969 Pnt 1741 967 Pnt 1742 967 Pnt 1742 967 Pnt 1743 965 Pnt 1744 964 Pnt 1745 962 Pnt 1745 961 Pnt 1746 960 Pnt 1747 959 Pnt 1747 958 Pnt 1748 956 Pnt 1749 956 Pnt 1750 954 Pnt 1750 954 Pnt 1751 953 Pnt 1752 953 Pnt 1753 952 Pnt 1753 952 Pnt 1754 951 Pnt 1755 950 Pnt 1755 951 Pnt 1756 950 Pnt 1757 948 Pnt 1758 949 Pnt 1758 948 Pnt 1759 948 Pnt 1760 948 Pnt 1761 947 Pnt 1761 947 Pnt 1762 946 Pnt 1763 947 Pnt 1763 946 Pnt 1764 945 Pnt 1765 945 Pnt 1766 945 Pnt 1766 944 Pnt 1767 944 Pnt 1768 943 Pnt 1769 943 Pnt 1769 943 Pnt 1770 941 Pnt 1771 940 Pnt 1771 939 Pnt 1772 937 Pnt 1773 938 Pnt 1774 937 Pnt 1774 936 Pnt 1775 934 Pnt 1776 934 Pnt 1776 934 Pnt 1777 933 Pnt 1778 933 Pnt 1779 932 Pnt 1779 932 Pnt 1780 931 Pnt 1781 932 Pnt 1782 932 Pnt 1782 931 Pnt 1783 930 Pnt 1784 930 Pnt 1784 930 Pnt 1785 930 Pnt 1786 930 Pnt 1787 930 Pnt 1787 930 Pnt 1788 929 Pnt 1789 929 Pnt 1790 929 Pnt 1790 929 Pnt 1791 929 Pnt 1792 928 Pnt 1792 928 Pnt 1793 928 Pnt 1794 928 Pnt 1795 927 Pnt 1795 927 Pnt 1796 926 Pnt 1797 925 Pnt 1798 925 Pnt 1798 923 Pnt 1799 923 Pnt 1800 923 Pnt 1800 922 Pnt 1801 922 Pnt 1802 921 Pnt 1803 921 Pnt 1803 922 Pnt 1804 922 Pnt 1805 921 Pnt 1806 921 Pnt 1806 921 Pnt 1807 922 Pnt 1808 920 Pnt 1808 920 Pnt 1809 920 Pnt 1810 919 Pnt 1811 920 Pnt 1811 920 Pnt 1812 921 Pnt 1813 919 Pnt 1814 920 Pnt 1814 919 Pnt 1815 919 Pnt 1816 918 Pnt 1816 917 Pnt 1817 918 Pnt 1818 920 Pnt 1819 919 Pnt 1819 919 Pnt 1820 918 Pnt 1821 917 Pnt 1822 916 Pnt 1822 915 Pnt 1823 914 Pnt 1824 915 Pnt 1824 914 Pnt 1825 915 Pnt 1826 913 Pnt 1827 915 Pnt 1827 914 Pnt 1828 914 Pnt 1829 914 Pnt 1830 914 Pnt 1830 913 Pnt 1831 915 Pnt 1832 914 Pnt 1832 913 Pnt 1833 913 Pnt 1834 914 Pnt 1835 914 Pnt 1835 912 Pnt 1836 914 Pnt 1837 913 Pnt 1838 913 Pnt 1838 914 Pnt 1839 913 Pnt 1840 914 Pnt 1840 915 Pnt 1841 915 Pnt 1842 914 Pnt 1843 913 Pnt 1843 914 Pnt 1844 915 Pnt 1845 915 Pnt 1846 915 Pnt 1846 915 Pnt 1847 914 Pnt 1848 914 Pnt 1848 915 Pnt 1849 914 Pnt 1850 915 Pnt 1851 914 Pnt 1851 915 Pnt 1852 913 Pnt 1853 914 Pnt 1853 914 Pnt 1854 915 Pnt 1855 914 Pnt 1856 914 Pnt 1856 915 Pnt 1857 917 Pnt 1858 916 Pnt 1859 916 Pnt 1859 915 Pnt 1860 917 Pnt 1861 917 Pnt 1861 916 Pnt 1862 917 Pnt 1863 918 Pnt 1864 917 Pnt 1864 917 Pnt 1865 918 Pnt 1866 919 Pnt 1867 919 Pnt 1867 919 Pnt 1868 918 Pnt 1869 920 Pnt 1869 920 Pnt 1870 920 Pnt 1871 920 Pnt 1872 921 Pnt 1872 921 Pnt 1873 920 Pnt 1874 920 Pnt 1875 920 Pnt 1875 921 Pnt 1876 922 Pnt 1877 921 Pnt 1878 921 Pnt 1878 922 Pnt 1879 923 Pnt 1880 924 Pnt 1880 923 Pnt 1881 923 Pnt 1882 925 Pnt 1883 925 Pnt 1883 924 Pnt 1884 926 Pnt 1885 1343 Pnt 1888 2099 Pnt 1889 2027 Pnt 1890 1885 Pnt 1891 1836 Pnt 1891 1761 Pnt 1892 1719 Pnt 1893 1661 Pnt 1893 1633 Pnt 1894 1607 Pnt 1895 1580 Pnt 1896 1560 Pnt 1896 1538 Pnt 1897 1522 Pnt 1898 1504 Pnt 1899 1491 Pnt 1899 1472 Pnt 1900 1462 Pnt 1901 1444 Pnt 1901 1434 Pnt 1902 1423 Pnt 1903 1417 Pnt 1904 1404 Pnt 1904 1402 Pnt 1905 1390 Pnt 1906 1387 Pnt 1907 1374 Pnt 1907 1372 Pnt 1908 1360 Pnt 1909 1357 Pnt 1909 1350 Pnt 1910 1349 Pnt 1911 1343 Pnt 1912 1340 Pnt 1912 1334 Pnt 1913 1334 Pnt 1914 1325 Pnt 1915 1322 Pnt 1915 1315 Pnt 1916 1316 Pnt 1917 1472 Pnt 1917 1489 Pnt 1918 2119 Pnt 1919 2177 Pnt 1924 2376 Pnt 1925 2360 Pnt 1925 2215 Pnt 1926 2205 Pnt 1927 2100 Pnt 1928 2097 Pnt 1928 2020 Pnt 1929 2015 Pnt 1930 1940 Pnt 1931 1934 Pnt 1931 1886 Pnt 1932 1882 Pnt 1933 1845 Pnt 1933 1841 Pnt 1934 1813 Pnt 1935 1810 Pnt 1936 1779 Pnt 1936 1775 Pnt 1937 1747 Pnt 1938 1741 Pnt 1939 1718 Pnt 1939 1716 Pnt 1940 1704 Pnt 1941 1701 Pnt 1941 1684 Pnt 1942 1680 Pnt 1943 1665 Pnt 1944 1661 Pnt 1944 1645 Pnt 1945 1642 Pnt 1946 1635 Pnt 1947 1630 Pnt 1947 1623 Pnt 1948 1619 Pnt 1949 1610 Pnt 1949 1603 Pnt 1950 1596 Pnt 1951 1591 Pnt 1952 1592 Pnt 1952 1587 Pnt 1953 1581 Pnt 1954 1576 Pnt 1955 1574 Pnt 1955 1567 Pnt 1956 1563 Pnt 1957 1562 Pnt 1957 1563 Pnt 1958 1559 Pnt 1959 1555 Pnt 1960 1551 Pnt 1960 1548 Pnt 1961 1544 Pnt 1962 1544 Pnt 1962 1544 Pnt 1963 1554 Pnt 1964 1546 Pnt 1965 1547 Pnt 1965 1539 Pnt 1966 1539 Pnt 1967 1536 Pnt 1968 1538 Pnt 1968 1545 Pnt 1969 1552 Pnt 1970 1544 Pnt 1970 1541 Pnt 1971 1538 Pnt 1972 1539 Pnt 1973 1534 Pnt 1973 1546 Pnt 1974 1554 Pnt 1975 1556 Pnt 1976 1554 Pnt 1976 1553 Pnt 1977 1553 Pnt 1978 1551 Pnt 1978 1555 Pnt 1979 1566 Pnt 1980 1584 Pnt 1981 1584 Pnt 1981 1583 Pnt 1982 1583 Pnt 1983 1584 Pnt 1984 1581 Pnt 1984 1597 Pnt 1985 1639 Pnt 1986 1641 Pnt 1986 1639 Pnt 1987 1654 Pnt 1988 1658 Pnt 1989 1658 Pnt 1989 1703 Pnt 1990 1870 Pnt 1991 1919 Pnt 1992 1918 Pnt 1992 1911 Pnt 1993 1910 Pnt 1994 1907 Pnt 1994 1878 Pnt 1995 1808 Pnt 1996 1739 Pnt 1997 1743 Pnt 1997 1735 Pnt 1998 1726 Pnt 1999 1724 Pnt 2000 1701 Pnt 2000 1602 Pnt 2001 1509 Pnt 2002 1506 Pnt 2002 1504 Pnt 2003 1489 Pnt 2004 1492 Pnt 2005 1488 Pnt 2005 1366 Pnt 2006 1314 Pnt 2007 1306 Pnt 2008 1303 Pnt 2008 1300 Pnt 2009 1300 Pnt 2010 1295 Pnt 2010 1270 Pnt 2011 1252 Pnt 2012 1254 Pnt 2013 1252 Pnt 2013 1253 Pnt 2014 1250 Pnt 2015 1252 Pnt 2016 1251 Pnt 2016 1252 Pnt 2017 1253 Pnt 2018 1252 Pnt 2018 1253 Pnt 2019 1251 Pnt 2020 1252 Pnt 2021 1254 Pnt 2021 1254 Pnt 2022 1254 Pnt 2023 1254 Pnt 2024 1255 Pnt 2024 1255 Pnt 2025 1257 Pnt 2026 1258 Pnt 2026 1255 Pnt 2027 1257 Pnt 2028 1258 Pnt 2029 1258 Pnt 2029 1260 Pnt 2030 1260 Pnt 2031 1262 Pnt 2032 1262 Pnt 2032 1261 Pnt 2033 1262 Pnt 2034 1264 Pnt 2034 1264 Pnt 2035 1266 Pnt 2036 1266 Pnt 2037 1267 Pnt 2037 1269 Pnt 2038 1269 Pnt 2039 1271 Pnt 2039 1276 Pnt 2040 1276 Pnt 2041 1277 Pnt 2042 1279 Pnt 2042 1278 Pnt 2043 1283 Pnt 2044 1283 Pnt 2045 1287 Pnt 2045 1287 Pnt 2046 1290 Pnt 2047 1290 Pnt 2047 1295 Pnt 2048 1297 Pnt 2049 1299 Pnt 2050 1300 Pnt 2050 1303 Pnt 2051 1304 Pnt 2052 1307 Pnt 2053 1312 Pnt 2053 1312 Pnt 2054 1316 Pnt 2055 1317 Pnt 2055 1320 Pnt 2056 1325 Pnt 2057 1326 Pnt 2058 1330 Pnt 2058 1335 Pnt 2059 1337 Pnt 2060 1340 Pnt 2061 1346 Pnt 2061 1350 Pnt 2062 1354 Pnt 2063 1357 Pnt 2064 1361 Pnt 2064 1370 Pnt 2065 1372 Pnt 2066 1379 Pnt 2066 1384 Pnt 2067 1389 Pnt 2068 1395 Pnt 2069 1404 Pnt 2069 1411 Pnt 2070 1419 Pnt 2071 1437 Pnt 2071 1444 Pnt 2072 1455 Pnt 2073 1461 Pnt 2074 1472 Pnt 2074 1481 Pnt 2075 1491 Pnt 2076 1506 Pnt 2077 1510 Pnt 2077 1527 Pnt 2078 1533 Pnt 2079 1576 Pnt 2079 1593 Pnt 2080 1628 Pnt 2081 1667 Pnt 2082 1695 Pnt 2082 1744 Pnt 2083 1756 Pnt 2084 1769 Pnt 2085 1795 Pnt 2085 1806 Pnt 2086 1826 Pnt 2087 1838 Pnt 2087 1883 Pnt 2088 1911 Pnt 2089 1933 Pnt 2090 1956 Pnt 2090 2024 Pnt 2091 2211 Pnt 2092 2229 Pnt 2093 2317 Pnt 2093 2350 Pnt 2097 1773 Pnt 2098 1672 Pnt 2098 1486 Pnt 2099 1471 Pnt 2100 1467 Pnt 2101 1472 Pnt 2101 1472 Pnt 2102 1476 Pnt 2103 1482 Pnt 2103 1480 Pnt 2104 1489 Pnt 2105 1495 Pnt 2106 1503 Pnt 2106 1513 Pnt 2107 1522 Pnt 2108 1530 Pnt 2109 1541 Pnt 2109 1551 Pnt 2110 1561 Pnt 2111 1574 Pnt 2111 1582 Pnt 2112 1598 Pnt 2113 1609 Pnt 2114 1624 Pnt 2114 1639 Pnt 2115 1654 Pnt 2116 1674 Pnt 2117 1694 Pnt 2117 1717 Pnt 2118 1740 Pnt 2119 1766 Pnt 2119 1792 Pnt 2120 1824 Pnt 2121 1855 Pnt 2122 1890 Pnt 2122 1930 Pnt 2123 1969 Pnt 2124 2022 Pnt 2125 2072 Pnt 2125 2139 Pnt 2126 2219 Pnt 2127 2315 Pnt 2133 678 Pnt 2134 678 Pnt 2135 678 Pnt 2135 678 Pnt 2136 676 Pnt 2137 674 Pnt 2138 675 Pnt 2138 673 Pnt 2139 673 Pnt 2140 671 Pnt 2141 672 Pnt 2141 668 Pnt 2142 668 Pnt 2143 668 Pnt 2143 668 Pnt 2144 667 Pnt 2145 666 Pnt 2146 665 Pnt 2146 663 Pnt 2147 663 Pnt 2148 662 Pnt 2148 660 Pnt 2149 661 Pnt 2150 659 Pnt 2151 658 Pnt 2151 656 Pnt 2152 656 Pnt 2153 654 Pnt 2154 652 Pnt 2154 652 Pnt 2155 650 Pnt 2156 650 Pnt 2156 649 Pnt 2157 648 Pnt 2158 648 Pnt 2159 647 Pnt 2159 646 Pnt 2160 645 Pnt 2161 645 Pnt 2162 643 Pnt 2162 643 Pnt 2163 643 Pnt 2164 642 Pnt 2164 641 Pnt 2165 641 Pnt 2166 641 Pnt 2167 638 Pnt 2167 638 Pnt 2168 637 Pnt 2169 637 Pnt 2170 635 Pnt 2170 636 Pnt 2171 635 Pnt 2172 634 Pnt 2172 634 Pnt 2173 633 Pnt 2174 633 Pnt 2175 632 Pnt 2175 631 Pnt 2176 632 Pnt 2177 631 Pnt 2178 630 Pnt 2178 631 Pnt 2179 630 Pnt 2180 631 Pnt 2180 630 Pnt 2181 630 Pnt 2182 630 Pnt 2183 629 Pnt 2183 629 Pnt 2184 628 Pnt 2185 630 Pnt 2186 633 Pnt 2186 633 Pnt 2187 635 Pnt 2188 634 Pnt 2188 634 Pnt 2189 635 Pnt 2190 634 Pnt 2191 633 Pnt 2191 634 Pnt 2192 632 Pnt 2193 633 Pnt 2194 631 Pnt 2194 631 Pnt 2195 631 Pnt 2196 630 Pnt 2196 629 Pnt 2197 629 Pnt 2198 630 Pnt 2199 628 Pnt 2199 625 Pnt 2200 624 Pnt 2201 624 Pnt 2202 623 Pnt 2202 621 Pnt 2203 622 Pnt 2204 620 Pnt 2204 620 Pnt 2205 620 Pnt 2206 618 Pnt 2207 619 Pnt 2207 617 Pnt 2208 615 Pnt 2209 614 Pnt 2210 616 Pnt 2210 616 Pnt 2211 615 Pnt 2212 614 Pnt 2212 614 Pnt 2213 613 Pnt 2214 613 Pnt 2215 610 Pnt 2215 610 Pnt 2216 609 Pnt 2217 608 Pnt 2218 608 Pnt 2218 608 Pnt 2219 607 Pnt 2220 607 Pnt 2220 605 Pnt 2221 605 Pnt 2222 604 Pnt 2223 604 Pnt 2223 602 Pnt 2224 601 Pnt 2225 601 Pnt 2225 601 Pnt 2226 600 Pnt 2227 600 Pnt 2228 599 Pnt 2228 599 Pnt 2229 598 Pnt 2230 598 Pnt 2231 597 Pnt 2231 597 Pnt 2232 600 Pnt 2233 599 Pnt 2233 602 Pnt 2234 602 Pnt 2235 602 Pnt 2236 601 Pnt 2236 601 Pnt 2237 599 Pnt 2238 598 Pnt 2239 598 Pnt 2239 600 Pnt 2240 599 Pnt 2241 602 Pnt 2241 602 Pnt 2242 602 Pnt 2243 604 Pnt 2244 604 Pnt 2244 603 Pnt 2245 602 Pnt 2246 602 Pnt 2247 601 Pnt 2247 602 Pnt 2248 602 Pnt 2249 601 Pnt 2250 602 Pnt 2250 602 Pnt 2251 602 Pnt 2252 601 Pnt 2252 601 Pnt 2253 599 Pnt 2254 599 Pnt 2255 600 Pnt 2255 599 Pnt 2256 599 Pnt 2257 597 Pnt 2257 598 Pnt 2258 597 Pnt 2259 598 Pnt 2260 597 Pnt 2260 596 Pnt 2261 596 Pnt 2262 595 Pnt 2263 596 Pnt 2263 595 Pnt 2264 595 Pnt 2265 595 Pnt 2265 594 Pnt 2266 594 Pnt 2267 593 Pnt 2268 594 Pnt 2268 593 Pnt 2269 593 Pnt 2270 592 Pnt 2271 592 Pnt 2271 591 Pnt 2272 591 Pnt 2273 591 Pnt 2273 590 Pnt 2274 591 Pnt 2275 590 Pnt 2276 590 Pnt 2276 590 Pnt 2277 589 Pnt 2278 589 Pnt 2279 587 Pnt 2279 588 Pnt 2280 587 Pnt 2281 587 Pnt 2281 587 Pnt 2282 585 Pnt 2283 586 Pnt 2284 585 Pnt 2284 586 Pnt 2285 585 Pnt 2286 585 Pnt 2287 585 Pnt 2287 582 Pnt 2288 583 Pnt 2289 585 Pnt 2289 588 Pnt 2290 588 Pnt 2291 587 Pnt 2292 587 Pnt 2292 586 Pnt 2293 587 Pnt 2294 587 Pnt 2295 586 Pnt 2295 586 Pnt 2296 587 Pnt 2297 588 Pnt 2297 588 Pnt 2298 589 Pnt 2299 588 Pnt 2300 589 Pnt 2300 590 Pnt 2301 589 Pnt 2302 589 Pnt 2303 589 Pnt 2303 588 Pnt 2304 589 Pnt 2305 588 Pnt 2305 590 Pnt 2306 589 Pnt 2307 589 Pnt 2308 590 Pnt 2308 589 Pnt 2309 589 Pnt 2310 588 Pnt 2311 588 Pnt 2311 587 Pnt 2312 587 Pnt 2313 587 Pnt 2313 587 Pnt 2314 586 Pnt 2315 587 Pnt 2316 586 Pnt 2316 586 Pnt 2317 585 Pnt 2318 585 Pnt 2319 584 Pnt 2319 584 Pnt 2320 584 Pnt 2321 583 Pnt 2321 584 Pnt 2322 583 Pnt 2323 583 Pnt 2324 582 Pnt 2324 582 Pnt 2325 581 Pnt 2326 582 Pnt 2327 581 Pnt 2327 580 Pnt 2328 581 Pnt 2329 580 Pnt 2329 580 Pnt 2330 579 Pnt 2331 580 Pnt 2332 579 Pnt 2332 579 Pnt 2333 578 Pnt 2334 578 Pnt 2334 578 Pnt 2335 578 Pnt 2336 578 Pnt 2337 576 Pnt 2337 577 Pnt 2338 576 Pnt 2339 577 Pnt 2340 577 Pnt 2340 576 Pnt 2341 576 Pnt 2342 575 Pnt 2342 575 Pnt 2343 574 Pnt 2344 575 Pnt 2345 574 Pnt 2345 574 Pnt 2346 574 Pnt 2347 574 Pnt 2348 570 Pnt 2348 570 Pnt 2349 569 Pnt 2350 568 Pnt 2350 569 Pnt 2351 568 Pnt 2352 566 Pnt 2353 567 Pnt 2353 567 Pnt 2354 567 Pnt 2355 563 Pnt 2356 559 Pnt 2356 559 Pnt 2357 555 Pnt 2358 555 Pnt 2358 553 Pnt 2359 550 Pnt 2360 551 Pnt 2361 550 Pnt 2361 550 Pnt 2362 549 Pnt 2363 549 Pnt 2364 549 Pnt 2364 547 Pnt 2365 547 Pnt 2366 546 Pnt 2366 545 Pnt 2367 544 Pnt 2368 544 Pnt 2369 544 Pnt 2369 544 Pnt 2370 544 Pnt 2371 543 Pnt 2372 543 Pnt 2372 542 Pnt 2373 542 Pnt 2374 542 Pnt 2374 542 Pnt 2375 541 Pnt 2376 541 Pnt 2377 541 Pnt 2377 540 Pnt 2378 541 Pnt 2379 540 Pnt 2380 540 Pnt 2380 540 Pnt 2381 540 Pnt 2382 540 Pnt 2382 540 Pnt 2383 538 Pnt 2384 539 Pnt 2385 538 Pnt 2385 538 Pnt 2386 538 Pnt 2387 538 Pnt 2388 538 Pnt 2388 538 Pnt 2389 536 Pnt 2390 537 Pnt 2390 536 Pnt 2391 536 Pnt 2392 536 Pnt 2393 535 Pnt 2393 535 Pnt 2394 535 Pnt 2395 534 Pnt 2396 533 Pnt 2396 534 Pnt 2397 533 Pnt 2398 533 Pnt 2398 533 Pnt 2399 533 Pnt 2400 533 Pnt 2401 533 Pnt 2401 532 Pnt 2402 533 Pnt 2403 532 Pnt 2404 532 Pnt 2404 532 Pnt 2405 532 Pnt 2406 531 Pnt 2406 531 Pnt 2407 530 Pnt 2408 531 Pnt 2409 530 Pnt 2409 531 Pnt 2410 530 Pnt 2411 530 Pnt 2411 530 Pnt 2412 530 Pnt 2413 529 Pnt 2414 529 Pnt 2414 528 Pnt 2415 528 Pnt 2416 526 Pnt 2417 526 Pnt 2417 525 Pnt 2418 525 Pnt 2419 525 Pnt 2419 523 Pnt 2420 524 Pnt 2421 523 Pnt 2422 524 Pnt 2422 523 Pnt 2423 522 Pnt 2424 522 Pnt 2425 522 Pnt 2425 521 Pnt 2426 522 Pnt 2427 521 Pnt 2427 520 Pnt 2428 520 Pnt 2429 521 Pnt 2430 520 Pnt 2430 520 Pnt 2431 519 Pnt 2432 519 Pnt 2433 519 Pnt 2433 518 Pnt 2434 519 Pnt 2435 518 Pnt 2436 518 Pnt 2436 519 Pnt 2437 519 Pnt 2438 519 Pnt 2438 518 Pnt 2439 517 Pnt 2440 518 Pnt 2441 517 Pnt 2441 517 Pnt 2442 518 Pnt 2443 517 Pnt 2443 517 Pnt 2444 516 Pnt 2445 517 Pnt 2446 517 Pnt 2446 516 Pnt 2447 516 Pnt 2448 516 Pnt 2449 515 Pnt 2449 515 Pnt 2450 515 Pnt 2451 515 Pnt 2451 515 Pnt 2452 514 Pnt 2453 515 Pnt 2454 514 Pnt 2454 514 Pnt 2455 515 Pnt 2456 514 Pnt 2457 514 Pnt 2457 513 Pnt 2458 514 Pnt 2459 514 Pnt 2459 513 Pnt 2460 513 Pnt 2461 513 Pnt 2462 512 Pnt 2462 512 Pnt 2463 512 Pnt 2464 512 Pnt 2465 512 Pnt 2465 512 Pnt 2466 511 Pnt 2467 512 Pnt 2467 511 Pnt 2468 511 Pnt 2469 511 Pnt 2470 510 Pnt 2470 510 Pnt 2471 510 Pnt 2472 510 Pnt 2473 510 Pnt 2473 510 Pnt 2474 510 Pnt 2475 510 Pnt 2475 509 Pnt 2476 509 Pnt 2477 509 Pnt 2478 509 Pnt 2478 508 Pnt 2479 508 Pnt 2480 507 Pnt 2481 508 Pnt 2481 507 Pnt 2482 507 Pnt 2483 507 Pnt 2483 506 Pnt 2484 506 Pnt 2485 506 Pnt 2486 506 Pnt 2486 506 Pnt 2487 505 Pnt 2488 505 Pnt 2489 506 Pnt 2489 504 Pnt 2490 504 Pnt 2491 504 Pnt 2491 504 Pnt 2492 504 Pnt 2493 503 Pnt 2494 503 Pnt 2494 503 Pnt 2495 504 Pnt 2496 503 Pnt 2497 503 Pnt 2497 502 Pnt 2498 502 Pnt 2499 502 Pnt 2499 502 Pnt 2500 502 Pnt 2501 502 Pnt 2502 501 Pnt 2502 501 Pnt 2503 502 Pnt 2504 501 Pnt 2505 501 Pnt 2505 501 Pnt 2506 501 Pnt 2507 500 Pnt 2507 501 Pnt 2508 500 Pnt 2509 501 Pnt 2510 500 Pnt 2510 500 Pnt 2511 500 Pnt 2512 500 Pnt 2513 500 Pnt 2513 499 Pnt 2514 499 Pnt 2515 499 Pnt 2515 500 Pnt 2516 499 Pnt 2517 499 Pnt 2518 498 Pnt 2518 498 Pnt 2519 498 Pnt 2520 498 Pnt 2520 498 Pnt 2521 498 Pnt 2522 498 Pnt 2523 498 Pnt 2523 497 Pnt 2524 497 Pnt 2525 497 Pnt 2526 498 Pnt 2526 497 Pnt 2527 496 Pnt 2528 497 Pnt 2528 497 Pnt 2529 497 Pnt 2530 496 Pnt 2531 497 Pnt 2531 496 Pnt 2532 496 Pnt 2533 496 Pnt 2534 496 Pnt 2534 496 Pnt 2535 496 Pnt 2536 496 Pnt 2536 495 Pnt 2537 496 Pnt 2538 495 Pnt 2539 496 Pnt 2539 495 Pnt 2540 495 Pnt 2541 495 Pnt 2542 495 Pnt 2542 495 Pnt 2543 495 Pnt 2544 495 Pnt 2544 494 Pnt 2545 494 Pnt 2546 494 Pnt 2547 494 Pnt 2547 494 Pnt 2548 494 Pnt 2549 493 Pnt 2550 493 Pnt 2550 492 Pnt 2551 493 Pnt 2552 493 Pnt 2552 492 Pnt 2553 492 Pnt 2554 492 Pnt 2555 491 Pnt 2555 491 Pnt 2556 491 Pnt 2557 491 Pnt 2558 491 Pnt 2558 491 Pnt 2559 491 Pnt 2560 490 Pnt 2560 491 Pnt 2561 490 Pnt 2562 490 Pnt 2563 489 Pnt 2563 489 Pnt 2564 489 Pnt 2565 489 Pnt 2566 489 Pnt 2566 488 Pnt 2567 489 Pnt 2568 489 Pnt 2568 488 Pnt 2569 488 Pnt 2570 489 Pnt 2571 488 Pnt 2571 488 Pnt 2572 488 Pnt 2573 488 Pnt 2574 488 Pnt 2574 487 Pnt 2575 488 Pnt 2576 488 Pnt 2576 487 Pnt 2577 487 Pnt 2578 487 Pnt 2579 487 Pnt 2579 487 Pnt 2580 487 Pnt 2581 487 Pnt 2582 487 Pnt 2582 486 Pnt 2583 487 Pnt 2584 486 Pnt 2584 487 Pnt 2585 486 Pnt 2586 486 Pnt 2587 486 Pnt 2587 486 Pnt 2588 486 Pnt 2589 486 Pnt 2590 485 Pnt 2590 486 Pnt 2591 486 Pnt 2592 485 Pnt 2592 486 Pnt 2593 485 Pnt 2594 485 Pnt 2595 485 Pnt 2595 486 Pnt 2596 485 Pnt 2597 484 Pnt 2597 485 Pnt 2598 485 Pnt 2599 485 Pnt 2600 484 Pnt 2600 485 Pnt 2601 484 Pnt 2602 484 Pnt 2603 484 Pnt 2603 484 Pnt 2604 484 Pnt 2605 484 Pnt 2605 483 Pnt 2606 484 Pnt 2607 484 Pnt 2608 483 Pnt 2608 484 Pnt 2609 483 Pnt 2610 484 Pnt 2611 483 Pnt 2611 483 Pnt 2612 483 Pnt 2613 483 Pnt 2613 483 Pnt 2614 483 Pnt 2615 482 Pnt 2616 483 Pnt 2616 482 Pnt 2617 483 Pnt 2618 482 Pnt 2619 482 Pnt 2619 482 Pnt 2620 482 Pnt 2621 482 Pnt 2622 482 Pnt 2622 481 Pnt 2623 481 Pnt 2624 481 Pnt 2624 481 Pnt 2625 480 Pnt 2626 480 Pnt 2627 481 Pnt 2627 480 Pnt 2628 480 Pnt 2629 480 Pnt 2629 480 Pnt 2630 480 Pnt 2631 480 Pnt 2632 480 Pnt 2632 479 Pnt 2633 480 Pnt 2634 479 Pnt 2635 480 Pnt 2635 479 Pnt 2636 479 Pnt 2637 479 Pnt 2637 479 Pnt 2638 479 Pnt 2639 478 Pnt 2640 478 Pnt 2640 478 Pnt 2641 478 Pnt 2642 478 Pnt 2643 478 Pnt 2643 479 Pnt 2644 478 Pnt 2645 478 Pnt 2645 478 Pnt 2646 478 Pnt 2647 478 Pnt 2648 478 Pnt 2648 478 Pnt 2649 477 Pnt 2650 478 Pnt 2651 478 Pnt 2651 477 Pnt 2652 477 Pnt 2653 478 Pnt 2653 477 Pnt 2654 477 Pnt 2655 477 Pnt 2656 477 Pnt 2656 477 Pnt 2657 477 Pnt 2658 476 Pnt 2659 477 Pnt 2659 477 Pnt 2660 476 Pnt 2661 476 Pnt 2661 476 Pnt 2662 476 Pnt 2663 476 Pnt 2664 476 Pnt 2664 476 Pnt 2665 476 Pnt 2666 476 Pnt 2667 475 Pnt 2667 476 Pnt 2668 476 Pnt 2669 476 Pnt 2669 476 Pnt 2670 475 Pnt 2671 475 Pnt 2672 475 Pnt 2672 475 Pnt 2673 475 Pnt 2674 475 Pnt 2675 475 Pnt 2675 475 Pnt 2676 475 Pnt 2677 474 Pnt 2677 475 Pnt 2678 474 Pnt 2679 475 Pnt 2680 474 Pnt 2680 474 Pnt 2681 474 Pnt 2682 474 Pnt 2683 474 Pnt 2683 474 Pnt 2684 474 Pnt 2685 474 Pnt 2685 474 Pnt 2686 474 Pnt 2687 474 Pnt 2688 474 Pnt 2688 474 Pnt 2689 474 Pnt 2690 474 Pnt 2691 474 Pnt 2691 473 Pnt 2692 473 Pnt 2693 473 Pnt 2693 473 Pnt 2694 473 Pnt 2695 472 Pnt 2696 472 Pnt 2696 472 Pnt 2697 472 Pnt 2698 472 Pnt 2699 472 Pnt 2699 472 Pnt 2700 471 Pnt 2701 471 Pnt 2701 471 Pnt 2702 471 Pnt 2703 471 Pnt 2704 471 Pnt 2704 471 Pnt 2705 471 Pnt 2706 471 Pnt 2706 471 Pnt 2707 471 Pnt 2708 470 Pnt 2709 471 Pnt 2709 470 Pnt 2710 471 Pnt 2711 471 Pnt 2712 470 Pnt 2712 471 Pnt 2713 471 Pnt 2714 470 Pnt 2714 471 Pnt 2715 470 Pnt 2716 471 Pnt 2717 470 Pnt 2717 470 Pnt 2718 470 Pnt 2719 470 Pnt 2720 470 Pnt 2720 470 Pnt 2721 469 Pnt 2722 469 Pnt 2722 470 Pnt 2723 470 Pnt 2724 469 Pnt 2725 470 Pnt 2725 469 Pnt 2726 469 Pnt 2727 470 Pnt 2728 469 Pnt 2728 469 Pnt 2729 469 Pnt 2730 469 Pnt 2730 469 Pnt 2731 469 Pnt 2732 469 Pnt 2733 468 Pnt 2733 469 Pnt 2734 469 Pnt 2735 469 Pnt 2736 468 Pnt 2736 468 Pnt 2737 469 Pnt 2738 468 Pnt 2738 468 Pnt 2739 468 Pnt 2740 468 Pnt 2741 468 Pnt 2741 468 Pnt 2742 468 Pnt 2743 468 Pnt 2744 468 Pnt 2744 469 Pnt 2745 468 Pnt 2746 469 Pnt 2746 468 Pnt 2747 468 Pnt 2748 468 Pnt 2749 468 Pnt 2749 468 Pnt 2750 468 Pnt 2751 468 Pnt 2752 468 Pnt 2752 468 Pnt 2753 467 Pnt 2754 468 Pnt 2754 467 Pnt 2755 468 Pnt 2756 467 Pnt 2757 467 Pnt 2757 467 Pnt 2758 468 Pnt 2759 467 Pnt 2760 467 Pnt 2760 467 Pnt 2761 467 Pnt 2762 468 Pnt 2762 468 Pnt 2763 467 Pnt 2764 468 Pnt 2765 468 Pnt 2765 467 Pnt 2766 467 Pnt 2767 467 Pnt 2768 467 Pnt 2768 467 Pnt 2769 467 Pnt 2770 467 Pnt 2770 467 Pnt 2771 467 Pnt 2772 466 Pnt 2773 466 Pnt 2773 466 Pnt 2774 466 Pnt 2775 467 Pnt 2776 466 Pnt 2776 467 Pnt 2777 466 Pnt 2778 466 Pnt 2778 466 Pnt 2779 466 Pnt 2780 466 Pnt 2781 466 Pnt 2781 466 Pnt 2782 466 Pnt 2783 466 Pnt 2783 465 Pnt 2784 466 Pnt 2785 466 Pnt 2786 465 Pnt 2786 465 Pnt 2787 466 Pnt 2788 465 Pnt 2789 465 Pnt 2789 465 Pnt 2790 465 Pnt 2791 465 Pnt 2791 465 Pnt 2792 466 Pnt 2793 466 Pnt 2794 465 Pnt 2794 465 Pnt 2795 465 Pnt 2796 465 Pnt 2797 465 Pnt 2797 465 Pnt 2798 465 Pnt 2799 466 Pnt 2799 465 Pnt 2800 465 Pnt 2801 465 Pnt 2802 465 Pnt 2802 465 Pnt 2803 465 Pnt 2804 465 Pnt 2805 465 Pnt 2805 465 Pnt 2806 464 Pnt 2807 465 Pnt 2808 464 Pnt 2808 465 Pnt 2809 464 Pnt 2810 465 Pnt 2810 465 Pnt 2811 465 Pnt 2812 465 Pnt 2813 464 Pnt 2813 465 Pnt 2814 464 Pnt 2815 464 Pnt 2815 465 Pnt 2816 464 Pnt 2817 465 Pnt 2818 464 Pnt 2818 465 Pnt 2819 464 Pnt 2820 465 Pnt 2821 464 Pnt 2821 464 Pnt 2822 464 Pnt 2823 464 Pnt 2823 464 Pnt 2824 464 Pnt 2825 464 Pnt 2826 464 Pnt 2826 464 Pnt 2827 465 Pnt 2828 465 Pnt 2829 464 Pnt 2829 465 Pnt 2830 464 Pnt 2831 464 Pnt 2831 465 Pnt 2832 464 Pnt 2833 464 Pnt 2834 464 Pnt 2834 464 Pnt 2835 464 Pnt 2836 464 Pnt 2837 464 Pnt 2837 464 Pnt 2838 464 Pnt 2839 464 Pnt 2839 464 Pnt 2840 465 Pnt 2841 464 Pnt 2842 465 Pnt 2842 464 Pnt 2843 464 Pnt 2844 464 Pnt 2845 464 Pnt 2845 465 Pnt 2846 464 Pnt 2847 463 Pnt 2847 464 Pnt 2848 464 Pnt 2849 464 Pnt 2850 464 Pnt 2850 463 Pnt 2851 464 Pnt 2852 463 Pnt 2853 464 Pnt 2853 463 Pnt 2854 463 Pnt 2855 464 Pnt 2855 463 Pnt 2856 463 Pnt 2857 463 Pnt 2858 464 Pnt 2858 464 Pnt 2859 464 Pnt 2860 463 Pnt 2861 463 Pnt 2861 463 Pnt 2862 463 Pnt 2863 463 Pnt 2863 463 Pnt 2864 463 Pnt 2865 463 Pnt 2866 464 Pnt 2866 463 Pnt 2867 463 Pnt 2868 463 Pnt 2869 463 Pnt 2869 464 Pnt 2870 464 Pnt 2871 464 Pnt 2871 463 Pnt 2872 463 Pnt 2873 463 Pnt 2874 463 Pnt 2874 463 Pnt 2875 463 Pnt 2876 464 Pnt 2877 463 Pnt 2877 463 Pnt 2878 464 Pnt 2879 463 Pnt 2879 463 Pnt 2880 463 Pnt 2881 463 Pnt 2882 463 Pnt 2882 464 Pnt 2883 464 Pnt 2884 475 Pnt 2885 600 Pnt 2885 599 Pnt 2886 608 Pnt 2887 1298 Pnt 2887 1301 Pnt 2888 1298 Pnt 2889 1254 Pnt 2890 1248 Pnt 2890 1248 Pnt 2891 1101 Pnt 2892 1075 Pnt 2892 1075 Pnt 2893 1025 Pnt 2894 1012 Pnt 2895 1012 Pnt 2895 892 Pnt 2896 842 Pnt 2897 844 Pnt 2898 829 Pnt 2898 819 Pnt 2899 821 Pnt 2900 795 Pnt 2900 773 Pnt 2901 773 Pnt 2902 767 Pnt 2903 757 Pnt 2903 757 Pnt 2904 748 Pnt 2905 733 Pnt 2906 733 Pnt 2906 729 Pnt 2907 719 Pnt 2908 719 Pnt 2908 715 Pnt 2909 700 Pnt 2910 699 Pnt 2911 699 Pnt 2911 691 Pnt 2912 690 Pnt 2913 691 Pnt 2914 681 Pnt 2914 681 Pnt 2915 683 Pnt 2916 673 Pnt 2916 673 Pnt 2917 673 Pnt 2918 667 Pnt 2919 666 Pnt 2919 666 Pnt 2920 661 Pnt 2921 659 Pnt 2922 659 Pnt 2922 656 Pnt 2923 653 Pnt 2924 654 Pnt 2924 650 Pnt 2925 648 Pnt 2926 647 Pnt 2927 646 Pnt 2927 643 Pnt 2928 643 Pnt 2929 642 Pnt 2930 637 Pnt 2930 637 Pnt 2931 636 Pnt 2932 633 Pnt 2932 633 Pnt 2933 633 Pnt 2934 626 Pnt 2935 628 Pnt 2935 628 Pnt 2936 625 Pnt 2937 623 Pnt 2938 625 Pnt 2938 620 Pnt 2939 621 Pnt 2940 620 Pnt 2940 618 Pnt 2941 619 Pnt 2942 618 Pnt 2943 615 Pnt 2943 614 Pnt 2944 614 Pnt 2945 613 Pnt 2946 613 Pnt 2946 613 Pnt 2947 611 Pnt 2948 609 Pnt 2948 609 Pnt 2949 608 Pnt 2950 608 Pnt 2951 607 Pnt 2951 607 Pnt 2952 603 Pnt 2953 604 Pnt 2954 603 Pnt 2954 602 Pnt 2955 603 Pnt 2956 602 Pnt 2956 599 Pnt 2957 598 Pnt 2958 598 Pnt 2959 598 Pnt 2959 597 Pnt 2960 597 Pnt 2961 596 Pnt 2962 595 Pnt 2962 594 Pnt 2963 595 Pnt 2964 595 Pnt 2964 594 Pnt 2965 594 Pnt 2966 592 Pnt 2967 592 Pnt 2967 593 Pnt 2968 591 Pnt 2969 591 Pnt 2969 592 Pnt 2970 589 Pnt 2971 589 Pnt 2972 589 Pnt 2972 589 Pnt 2973 589 Pnt 2974 589 Pnt 2975 585 Pnt 2975 586 Pnt 2976 586 Pnt 2977 584 Pnt 2977 585 Pnt 2978 585 Pnt 2979 583 Pnt 2980 583 Pnt 2980 582 Pnt 2981 582 Pnt 2982 583 Pnt 2983 582 Pnt 2983 602 Pnt 2984 632 Pnt 2985 632 Pnt 2985 633 Pnt 2986 637 Pnt 2987 637 Pnt 2988 657 Pnt 2988 838 Pnt 2989 838 Pnt 2990 838 Pnt 2991 853 Pnt 2991 856 Pnt 2992 856 Pnt 2993 1049 Pnt 2994 1098 Pnt 2994 1095 Pnt 2995 1109 Pnt 2996 1118 Pnt 2996 1116 Pnt 2997 1210 Pnt 2998 1303 Pnt 2999 1306 Pnt 2999 1308 Pnt 3000 1316 Pnt 3001 1316 Pnt 3001 1256 Pnt 3002 1012 Pnt 3003 1014 Pnt 3004 1013 Pnt 3004 989 Pnt 3005 989 Pnt 3006 987 Pnt 3007 925 Pnt 3007 915 Pnt 3008 917 Pnt 3009 911 Pnt 3009 912 Pnt 3010 910 Pnt 3011 884 Pnt 3012 864 Pnt 3012 866 Pnt 3013 863 Pnt 3014 861 Pnt 3015 861 Pnt 3015 853 Pnt 3016 828 Pnt 3017 828 Pnt 3017 828 Pnt 3018 825 Pnt 3019 827 Pnt 3020 827 Pnt 3020 805 Pnt 3021 801 Pnt 3022 802 Pnt 3023 800 Pnt 3023 801 Pnt 3024 799 Pnt 3025 786 Pnt 3025 777 Pnt 3026 775 Pnt 3027 775 Pnt 3028 774 Pnt 3028 775 Pnt 3029 770 Pnt 3030 759 Pnt 3031 759 Pnt 3031 758 Pnt 3032 756 Pnt 3033 757 Pnt 3033 757 Pnt 3034 747 Pnt 3035 746 Pnt 3036 744 Pnt 3036 745 Pnt 3037 743 Pnt 3038 744 Pnt 3039 738 Pnt 3039 736 Pnt 3040 734 Pnt 3041 734 Pnt 3041 735 Pnt 3042 733 Pnt 3043 731 Pnt 3044 723 Pnt 3044 723 Pnt 3045 723 Pnt 3046 722 Pnt 3047 722 Pnt 3047 722 Pnt 3048 715 Pnt 3049 713 Pnt 3049 713 Pnt 3050 711 Pnt 3051 711 Pnt 3052 711 Pnt 3052 707 Pnt 3053 704 Pnt 3054 703 Pnt 3055 704 Pnt 3055 702 Pnt 3056 702 Pnt 3057 703 Pnt 3057 698 Pnt 3058 698 Pnt 3059 698 Pnt 3060 697 Pnt 3060 699 Pnt 3061 697 Pnt 3062 694 Pnt 3063 690 Pnt 3063 692 Pnt 3064 691 Pnt 3065 691 Pnt 3065 691 Pnt 3066 688 Pnt 3067 686 Pnt 3068 686 Pnt 3068 685 Pnt 3069 685 Pnt 3070 683 Pnt 3071 685 Pnt 3071 679 Pnt 3072 680 Pnt 3073 678 Pnt 3073 678 Pnt 3074 677 Pnt 3075 679 Pnt 3076 676 Pnt 3076 675 Pnt 3077 675 Pnt 3078 675 Pnt 3078 674 Pnt 3079 674 Pnt 3080 674 Pnt 3081 670 Pnt 3081 671 Pnt 3082 671 Pnt 3083 670 Pnt 3084 669 Pnt 3084 670 Pnt 3085 667 Pnt 3086 667 Pnt 3086 666 Pnt 3087 667 Pnt 3088 664 Pnt 3089 665 Pnt 3089 664 Pnt 3090 662 Pnt 3091 662 Pnt 3092 663 Pnt 3092 660 Pnt 3093 660 Pnt 3094 660 Pnt 3094 660 Pnt 3095 661 Pnt 3096 661 Pnt 3097 660 Pnt 3097 657 Pnt 3098 659 Pnt 3099 658 Pnt 3100 657 Pnt 3100 656 Pnt 3101 657 Pnt 3102 656 Pnt 3102 654 Pnt 3103 656 Pnt 3104 654 Pnt 3105 654 Pnt 3105 655 Pnt 3106 652 Pnt 3107 651 Pnt 3108 653 Pnt 3108 651 Pnt 3109 650 Pnt 3110 650 Pnt 3110 650 Pnt 3111 650 Pnt 3112 650 Pnt 3113 650 Pnt 3113 650 Pnt 3114 650 Pnt 3115 650 Pnt 3116 649 Pnt 3116 647 Pnt 3117 649 Pnt 3118 648 Pnt 3118 646 Pnt 3119 648 Pnt 3120 646 Pnt 3121 646 Pnt 3121 645 Pnt 3122 646 Pnt 3123 644 Pnt 3124 644 Pnt 3124 645 Pnt 3125 643 Pnt 3126 643 Pnt 3126 643 Pnt 3127 644 Pnt 3128 643 Pnt 3129 643 Pnt 3129 643 Pnt 3130 643 Pnt 3131 643 Pnt 3132 643 Pnt 3132 645 Pnt 3133 646 Pnt 3134 646 Pnt 3134 644 Pnt 3135 642 Pnt 3136 643 Pnt 3137 644 Pnt 3137 643 Pnt 3138 644 Pnt 3139 642 Pnt 3140 641 Pnt 3140 640 Pnt 3141 640 Pnt 3142 642 Pnt 3142 640 Pnt 3143 640 Pnt 3144 640 Pnt 3145 639 Pnt 3145 639 Pnt 3146 640 Pnt 3147 640 Pnt 3148 640 Pnt 3148 641 Pnt 3149 642 Pnt 3150 642 Pnt 3150 642 Pnt 3151 644 Pnt 3152 643 Pnt 3153 644 Pnt 3153 642 Pnt 3154 642 Pnt 3155 640 Pnt 3155 641 Pnt 3156 639 Pnt 3157 641 Pnt 3158 639 Pnt 3158 640 Pnt 3159 639 Pnt 3160 640 Pnt 3161 639 Pnt 3161 639 Pnt 3162 639 Pnt 3163 639 Pnt 3163 637 Pnt 3164 637 Pnt 3165 640 Pnt 3166 641 Pnt 3166 641 Pnt 3167 642 Pnt 3168 643 Pnt 3169 643 Pnt 3169 643 Pnt 3170 644 Pnt 3171 644 Pnt 3171 643 Pnt 3172 644 Pnt 3173 644 Pnt 3174 642 Pnt 3174 643 Pnt 3175 643 Pnt 3176 642 Pnt 3177 643 Pnt 3177 642 Pnt 3178 643 Pnt 3179 642 Pnt 3180 641 Pnt 3180 643 Pnt 3181 641 Pnt 3182 642 Pnt 3182 642 Pnt 3183 644 Pnt 3184 645 Pnt 3185 646 Pnt 3185 646 Pnt 3186 648 Pnt 3187 651 Pnt 3187 651 Pnt 3188 651 Pnt 3189 651 Pnt 3190 651 Pnt 3190 650 Pnt 3191 651 Pnt 3192 651 Pnt 3193 651 Pnt 3193 650 Pnt 3194 651 Pnt 3195 651 Pnt 3195 650 Pnt 3196 651 Pnt 3197 650 Pnt 3198 651 Pnt 3198 649 Pnt 3199 649 Pnt 3200 650 Pnt 3201 652 Pnt 3201 654 Pnt 3202 655 Pnt 3203 659 Pnt 3203 667 Pnt 3204 667 Pnt 3205 667 Pnt 3206 667 Pnt 3206 669 Pnt 3207 667 Pnt 3208 665 Pnt 3209 667 Pnt 3209 667 Pnt 3210 669 Pnt 3211 671 Pnt 3211 671 Pnt 3212 672 Pnt 3213 671 Pnt 3214 672 Pnt 3214 672 Pnt 3215 671 Pnt 3216 673 Pnt 3217 673 Pnt 3217 681 Pnt 3218 686 Pnt 3219 685 Pnt 3219 708 Pnt 3220 737 Pnt 3221 735 Pnt 3222 740 Pnt 3222 750 Pnt 3223 750 Pnt 3224 750 Pnt 3225 752 Pnt 3225 750 Pnt 3226 750 Pnt 3227 749 Pnt 3227 748 Pnt 3228 748 Pnt 3229 748 Pnt 3230 748 Pnt 3230 748 Pnt 3231 748 Pnt 3232 747 Pnt 3233 745 Pnt 3233 747 Pnt 3234 740 Pnt 3235 738 Pnt 3235 736 Pnt 3236 729 Pnt 3237 717 Pnt 3238 715 Pnt 3238 714 Pnt 3239 694 Pnt 3240 696 Pnt 3241 694 Pnt 3241 697 Pnt 3242 695 Pnt 3243 697 Pnt 3243 694 Pnt 3244 693 Pnt 3245 694 Pnt 3246 692 Pnt 3246 690 Pnt 3247 690 Pnt 3248 690 Pnt 3249 691 Pnt 3249 690 Pnt 3250 690 Pnt 3251 685 Pnt 3251 683 Pnt 3252 683 Pnt 3253 672 Pnt 3254 651 Pnt 3254 653 Pnt 3255 651 Pnt 3256 625 Pnt 3257 625 Pnt 3257 625 Pnt 3258 623 Pnt 3259 624 Pnt 3259 624 Pnt 3260 622 Pnt 3261 623 Pnt 3262 622 Pnt 3262 622 Pnt 3263 617 Pnt 3264 618 Pnt 3264 617 Pnt 3265 619 Pnt 3266 618 Pnt 3267 618 Pnt 3267 619 Pnt 3268 617 Pnt 3269 617 Pnt 3270 609 Pnt 3270 581 Pnt 3271 580 Pnt 3272 580 Pnt 3272 566 Pnt 3273 564 Pnt 3274 564 Pnt 3275 563 Pnt 3275 562 Pnt 3276 562 Pnt 3277 562 Pnt 3278 561 Pnt 3278 561 Pnt 3279 561 Pnt 3280 559 Pnt 3280 560 Pnt 3281 560 Pnt 3282 560 Pnt 3283 559 Pnt 3283 560 Pnt 3284 560 Pnt 3285 558 Pnt 3286 559 Pnt 3286 557 Pnt 3287 551 Pnt 3288 550 Pnt 3288 551 Pnt 3289 546 Pnt 3290 546 Pnt 3291 545 Pnt 3291 545 Pnt 3292 546 Pnt 3293 545 Pnt 3294 545 Pnt 3294 545 Pnt 3295 546 Pnt 3296 545 Pnt 3296 545 Pnt 3297 545 Pnt 3298 545 Pnt 3299 544 Pnt 3299 544 Pnt 3300 544 Pnt 3301 544 Pnt 3302 544 Pnt 3302 544 Pnt 3303 544 Pnt 3304 544 Pnt 3304 544 Pnt 3305 543 Pnt 3306 544 Pnt 3307 545 Pnt 3307 545 Pnt 3308 544 Pnt 3309 545 Pnt 3310 545 Pnt 3310 544 Pnt 3311 545 Pnt 3312 544 Pnt 3312 545 Pnt 3313 544 Pnt 3314 545 Pnt 3315 544 Pnt 3315 545 Pnt 3316 543 Pnt 3317 544 Pnt 3318 543 Pnt 3318 544 Pnt 3319 544 Pnt 3320 545 Pnt 3320 544 Pnt 3321 544 Pnt 3322 544 Pnt 3323 545 Pnt 3323 544 Pnt 3324 544 Pnt 3325 544 Pnt 3326 544 Pnt 3326 544 Pnt 3327 544 Pnt 3328 544 Pnt 3328 544 Pnt 3329 544 Pnt 3330 544 Pnt 3331 543 Pnt 3331 544 Pnt 3332 544 Pnt 3333 544 Pnt 3334 544 Pnt 3334 543 Pnt 3335 545 Pnt 3336 545 Pnt 3336 544 Pnt 3337 545 Pnt 3338 545 Pnt 3339 544 Pnt 3339 545 Pnt 3340 544 Pnt 3341 545 Pnt 3341 544 Pnt 3342 545 Pnt 3343 544 Pnt 3344 545 Pnt 3344 544 Pnt 3345 544 Pnt 3346 545 Pnt 3347 544 Pnt 3347 544 Pnt 3348 545 Pnt 3349 544 Pnt 3349 545 Pnt 3350 545 Pnt 3351 545 Pnt 3352 545 Pnt 3352 546 Pnt 3353 545 Pnt 3354 545 Pnt 3355 545 Pnt 3355 546 Pnt 3356 546 Pnt 3357 546 Pnt 3357 546 Pnt 3358 546 Pnt 3359 544 Pnt 3360 545 Pnt 3360 545 Pnt 3361 545 Pnt 3362 546 Pnt 3363 546 Pnt 3363 545 Pnt 3364 546 Pnt 3365 546 Pnt 3366 545 Pnt 3366 546 Pnt 3367 546 Pnt 3368 545 Pnt 3368 546 Pnt 3369 546 Pnt 3370 547 Pnt 3371 546 Pnt 3371 547 Pnt 3372 546 Pnt 3373 547 Pnt 3373 546 Pnt 3374 547 Pnt 3375 546 Pnt 3376 546 Pnt 3376 548 Pnt 3377 547 Pnt 3378 547 Pnt 3379 548 Pnt 3379 547 Pnt 3380 547 Pnt 3381 547 Pnt 3381 547 Pnt 3382 548 Pnt 3383 547 Pnt 3384 548 Pnt 3384 549 Pnt 3385 549 Pnt 3386 549 Pnt 3387 549 Pnt 3387 549 Pnt 3388 549 Pnt 3389 549 Pnt 3389 549 Pnt 3390 549 Pnt 3391 549 Pnt 3392 548 Pnt 3392 550 Pnt 3393 550 Pnt 3394 549 Pnt 3395 549 Pnt 3395 548 Pnt stroke grestore end showpage %%Trailer %%DocumentFonts: Helvetica %%EndDocument @endspecial Black 699 5251 a(Figure)f(7.13:)43 b(The)34 b(stationary)e(PDF)g(graph)g(of)g(DPLL)g(with)h Fr(n)28 b Fu(=)f(4096)p Black Black Black Black eop %%Page: 53 62 53 61 bop Black Black Black Black 1714 150 a Fn(Chapter)53 b(8)p Black Black 1055 581 a(CONCLUDING)g(REMARKS)464 1283 y Fu(In)36 b(this)e(dissertation)g(w)m(e)i(ha)m(v)m(e)h(dev)m (elop)s(ed)f(a)e(fast)h(and)g(e\016cien)m(t)h(parallel)d(quasi-Mon)m (te)300 1403 y(Carlo)38 b(algorithm)e(for)i(the)h(n)m(umerical)f (computation)f(of)i(absolutely)f(con)m(tin)m(uous)h(in)m(v)-5 b(arian)m(t)300 1524 y(measures.)44 b(The)33 b(algorithm)d(is)h(based)j (on)e(the)g(piecewise)h(constan)m(t)h(appro)m(ximation)c(sc)m(heme)300 1644 y(prop)s(osed)48 b(b)m(y)h(Ulam,)h(and)e(the)g(tec)m(hniques)h(w)m (e)g(emplo)m(y)m(ed)f(are)g(the)g(quasi-Mon)m(te)g(Carlo)300 1764 y(approac)m(h)c(and)g(the)g(parallel)d(pro)s(cessing.)78 b(The)44 b(\014rst)g(tec)m(hnique)i(is)d(motiv)-5 b(ated)42 b(from)h(the)300 1885 y(consideration)30 b(of)h(e\016cien)m(t)g(ev)-5 b(aluation)30 b(of)g(the)i(Ulam)d(matrix)g(for)i(the)g(practical)f (purp)s(ose)h(of)300 2005 y(the)37 b(algorithm,)d(and)j(the)g(second)h (tec)m(hnique)g(is)e(for)g(the)h(reduction)g(of)f(the)h(computational) 300 2126 y(time)29 b(b)m(y)i(taking)e(adv)-5 b(an)m(tage)30 b(of)f(the)i(natural)e(structure)i(of)e(the)i(Ulam)d(matrix.)41 b(T)-8 b(o)30 b(calculate)300 2246 y(the)e(\014xed)h(left)e(eigen)m(v)m (ector)i(of)e(the)h(computed)g(Ulam)e(matrix)g(for)h(the)h(appro)m (ximation)d(of)j(the)300 2366 y(exact)34 b(densit)m(y)g(function)f(of)g (the)g(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erator,)g(w)m(e)h(simply) e(used)i(the)g(direct)300 2487 y(iteration)c(sc)m(heme,)k(and)f(so)f (the)h(resulting)f(iteration)e(algorithm)g(is)h(m)m(uc)m(h)i(more)f (faster)h(than)300 2607 y(the)i(traditional)c(Gaussian)i(elimination.) 45 b(Suc)m(h)35 b(n)m(umerical)e(issues)j(lead)d(to)h(the)h(creation)e (of)300 2728 y(t)m(w)m(o)f(reliable)d(algorithms,)g(the)i(Ulam)f (matrix)g(parallel)e(quasi-Mon)m(te)k(Carlo)e(algorithm)e(and)300 2848 y(the)42 b(completely)f(parallel)f(quasi-Mon)m(te)i(Carlo)f (algorithm.)69 b(In)43 b(the)f(\014rst)h(algorithm)38 b(only)300 2968 y(the)31 b(ev)-5 b(aluation)29 b(of)h(the)g(Ulam)f (matrix)g(is)h(parallelized,)e(while)i(in)g(the)g(second)i(algorithm)c (the)300 3089 y(complete)41 b(n)m(umerical)g(w)m(ork)i(is)e (parallelized.)69 b(In)43 b(other)f(w)m(ords,)j(the)e(computation)d(of) i(the)300 3209 y(appro)m(ximate)32 b(\014xed)h(densit)m(y)h(is)e(also)g (parallelized)d(with)k(the)g(direct)f(iteration)f(metho)s(d.)446 3329 y(W)-8 b(e)38 b(ha)m(v)m(e)g(presen)m(ted)i(extensiv)m(e)f(n)m (umerical)d(exp)s(erimen)m(ts)i(for)e(sev)m(eral)i(one)g(dimension-)300 3450 y(al)g(mappings)g(and)h(w)m(e)i(ha)m(v)m(e)f(also)e(applied)g(our) h(new)h(metho)s(ds)f(to)g(an)g(in)m(teresting)g(applied)300 3570 y(problem.)i(The)29 b(n)m(umerical)e(results)h(ha)m(v)m(e)h (demonstrated)g(that)f(the)g(new)h(quasi-Mon)m(te)g(Carlo)300 3691 y(approac)m(h,)j(whic)m(h)g(is)e(based)i(on)f(the)h(idea)f(of)f (quasi-random)g(n)m(um)m(b)s(er)i(generators,)g(p)s(erforms)300 3811 y(outstandingly)25 b(as)i(compared)f(with)f(the)i(standard)g(Mon)m (te)g(Carlo)e(approac)m(h,)j(whic)m(h)e(is)g(based)300 3931 y(on)32 b(the)g(usual)f(random)g(n)m(um)m(b)s(er)h(generation.)43 b(Moreo)m(v)m(er,)33 b(our)f(parallel)d(computation)h(prac-)300 4052 y(tice)36 b(suggests)h(that)f(the)h(Ulam)d(metho)s(d)h(can)i(b)s (e)f(com)m(bined)g(with)f(some)h(mo)s(dern)g(scien)m(ti\014c)300 4172 y(computing)29 b(tec)m(hniques)j(to)e(compute)g(complicated,)g (high)f(dimensional)f(ph)m(ysical)i(measures)300 4293 y(in)i(man)m(y)g(applied)g(\014elds.)446 4413 y(Besides)48 b(the)f(computational)d(w)m(ork)k(in)e(the)h(thesis,)j(w)m(e)e(ha)m(v)m (e)g(also)e(giv)m(en)h(a)f(rigorous)300 4533 y(appro)m(ximation)23 b(order)i(analysis)f(for)g(the)i(higher)e(order)h(metho)s(d)f(of)h (piecewise)g(linear)f(Mark)m(o)m(v)300 4654 y(appro)m(ximations,)43 b(using)e(the)i(functional)d(analysis)h(to)s(ol.)70 b(The)43 b(theoretical)e(result)h(on)g(the)300 4774 y(error)j(b)s(ound)h(is)f (compatible)e(with)i(the)h(previous)g(published)f(computational)e (results)j(b)m(y)300 4894 y(other)33 b(researc)m(hers.)446 5015 y(A)28 b(con)m(tin)m(uation)f(of)h(the)g(w)m(ork)h(in)e(the)i (thesis)f(ma)m(y)g(b)s(e)g(n)m(umerical)e(exp)s(erimen)m(ts)j(to)f(m)m (ulti-)300 5135 y(dimensional)40 b(transformations)h(with)h(the)h (parallel)d(quasi-Mon)m(te)j(Carlo)e(algorithm.)70 b(An-)300 5256 y(other)31 b(p)s(ossible)g(researc)m(h)h(topic)f(is)f(the)i(dev)m (elopmen)m(t)f(of)g(parallel)d(algorithms)h(based)j(on)f(the)300 5376 y(piecewise)37 b(linear)e(Mark)m(o)m(v)j(appro)m(ximation)c(since) j(this)f(metho)s(d)g(has)g(a)h(higher)e(order)i(error)300 5496 y(b)s(ound)c(than)f(Ulam's)g(metho)s(d)g(but)h(without)f(m)m(uc)m (h)h(more)f(n)m(umerical)f(w)m(ork)i(in)m(v)m(olv)m(ed.)p Black 2021 5764 a(53)p Black eop %%Page: 54 63 54 62 bop Black Black Black Black 1638 150 a Fn(App)t(endix)53 b(A)p Black Black 1174 581 a(BRIEF)i(MA)-13 b(TH)54 b(REVIEW)461 1283 y Fu(In)35 b(order)f(to)f(de\014ne)i(F)-8 b(rob)s(enius-P)m(erron) 34 b(op)s(erators)g(and)g(study)h(their)e(basic)h(prop)s(erties,)300 1403 y(as)39 b(a)g(preliminary)e(step,)k(w)m(e)f(in)m(tro)s(duce)f (some)g(essen)m(tial)g(concepts)i(from)d(measure)h(theory)-8 b(,)300 1524 y(the)33 b(theory)g(of)f(Leb)s(esgue)i(in)m(tegration,)d (and)i(the)g(theory)g(of)f(linear)f(functional)g(analysis.)446 1644 y(W)-8 b(e)33 b(start)g(with)f(the)h(de\014nition)f(of)g(a)g Fr(\033)t Fu(-algebra.)42 b(Let)33 b Fr(X)40 b Fu(b)s(e)33 b(a)f(set.)p Black 300 1806 a Fj(De\014nition)i(A.1.)p Black 48 w Fu([36])f(A)f(class)h(\006)g(of)f(subsets)j(of)d Fr(X)40 b Fu(is)32 b(called)g(a)g Fr(\033)t Fu(-algebra)f(if)446 1926 y(\(i\))h Fr(A)c Fq(2)g Fu(\006)33 b(implies)d Fr(A)1284 1890 y Fo(c)1346 1926 y Fq(2)e Fu(\006)33 b(where)h Fr(A)1898 1890 y Fo(c)1961 1926 y Fu(=)27 b Fq(f)p Fr(x)h Fq(2)g Fr(X)36 b Fq(j)27 b Fr(x)h Fq(62)g Fr(A)p Fq(g)p Fu(;)446 2047 y(\(ii\))p Fr(A)651 2062 y Fo(n)724 2047 y Fq(2)g Fu(\006)p Fr(;)45 b(n)28 b Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)47 b Fu(implies)30 b(the)j(union)f Fq([)2334 2062 y Fo(n)2382 2047 y Fr(A)2455 2062 y Fo(n)2529 2047 y Fq(2)c Fu(\006;)34 b(and)446 2167 y(\(iii\))c Fr(X)35 b Fq(2)29 b Fu(\006.)p Black 300 2329 a Fj(De\014nition)34 b(A.2.)p Black 48 w Fu(A)g(real-v)-5 b(alued)32 b(\(including)g Fq(1)p Fu(\))h(nonnegativ)m(e)i(set)f(function)f Fr(\026)h Fu(de\014ned)h(on)300 2449 y(a)h Fr(\033)t Fu(-algebra)f(\006)h(is)g(a) g(p)s(ositiv)m(e)g(measure)h(if)e Fr(\026)p Fu(\()p Fq(;)p Fu(\))e(=)h(0)i(and)h Fr(\026)p Fu(\()p Fq([)2727 2464 y Fo(n)2774 2449 y Fr(A)2847 2464 y Fo(n)2894 2449 y Fu(\))d(=)3076 2375 y Fi(P)3181 2478 y Fo(n)3245 2449 y Fr(\026)p Fu(\()p Fr(A)3415 2464 y Fo(n)3461 2449 y Fu(\))i(for)g(an)m(y)300 2570 y(\014nite)31 b(or)g(in\014nite)g (sequence)j Fq(f)p Fr(A)1522 2585 y Fo(n)1569 2570 y Fq(g)e Fu(of)f(pairwise)f(disjoin)m(t)h(sets)i(from)d(\006,)i(that)f (is)h Fr(A)3415 2585 y Fo(i)3463 2570 y Fq(\\)20 b Fr(A)3622 2585 y Fo(j)3687 2570 y Fu(=)27 b Fq(;)300 2690 y Fu(for)32 b Fr(i)c Fq(6)p Fu(=)g Fr(j)6 b Fu(.)43 b(In)33 b(other)g(w)m(ords,)g Fr(\026)g Fu(is)f(a)g(coun)m(tably)h(additiv)m(e)f(nonnegativ)m(e)h (set)g(function.)p Black 300 2852 a Fj(De\014nition)h(A.3.)p Black 48 w Fu(The)43 b(ordered)g(triple)e(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))42 b(is)f(called)g(a)h(measure)g(space) h(giv)m(en)g(a)e Fr(\033)t Fu(-)300 2972 y(algebra)34 b(\006)h(and)g(a)g(p)s(ositiv)m(e)f(measure)i Fr(\026)e Fu(de\014ned)j(on)e(\006.)51 b(If)35 b(the)g(p)s(ositiv)m(e)g(measure)g Fr(\026)g Fu(is)f(not)300 3093 y(sp)s(eci\014cally)c(indicated,)g(the)g (ordered)i(pair)d(\()p Fr(X)r(;)17 b Fu(\006\))31 b(is)f(called)f(a)h (measurable)g(space,)i(and)e(an)m(y)300 3213 y Fr(A)e Fq(2)g Fu(\006)33 b(is)f(called)f(a)i(measurable)f(set.)446 3375 y(Let)i Fr(X)40 b Fu(b)s(e)33 b(a)g(lo)s(cally)e(compact)h(metric) g(space,)i(let)f Fe(B)g Fu(b)s(e)g(the)g(Borel)f Fr(\033)t Fu(-algebra)g(whic)m(h)h(is)300 3496 y(the)h(smallest)d Fr(\033)t Fu(-algebra)h(con)m(taining)f(op)s(en)j(subsets)h(of)d Fr(X)8 b Fu(,)33 b(and)h(let)e Fr(\026)h Fu(b)s(e)g(a)g(measure)g(on)g (\006.)300 3616 y(Then)d(\()p Fr(X)r(;)17 b Fe(B)p Fr(;)g(\026)p Fu(\))28 b(is)h(called)e(a)i(Borel)f(measure)h(space.)44 b(In)29 b(particular,)f(if)g Fr(X)35 b Fu(=)28 b([0)p Fr(;)17 b Fu(1])28 b(or)h Fr(R)q Fu(,)h(the)300 3736 y(real)38 b(line,)h(then)g(there)h(exists)f(a)f(unique)i(Borel)d (measure)i Fr(\026)g Fu(on)f(the)i(Borel)d Fr(\033)t Fu(-algebra)g(suc)m(h)300 3857 y(that)31 b Fr(\026)p Fu(\([)p Fr(a;)17 b(b)p Fu(]\))28 b(=)f Fr(b)20 b Fq(\000)g Fr(a)p Fu(.)43 b(This)32 b(measure)f Fr(\026)g Fu(will)e(b)s(e)i (denoted)i(b)m(y)f Fr(m)p Fu(.)43 b(Whenev)m(er)34 b(considering)300 3977 y(spaces)k Fr(X)k Fu(=)35 b([0)p Fr(;)17 b Fu(1])36 b(\(or)g Fr(R)q Fu(\),)i(or)e Fr(X)42 b Fu(=)35 b([0)p Fr(;)17 b Fu(1])1961 3941 y Fo(d)2035 3977 y Fq(\021)35 b Fu([0)p Fr(;)17 b Fu(1])24 b Fq(\002)i(\001)17 b(\001)g(\001)23 b(\002)i Fu([0)p Fr(;)17 b Fu(1])36 b(\(or)g Fr(R)3181 3941 y Fo(d)3222 3977 y Fu(\))h(or)f(subsets)i(of)300 4097 y(these,)c(w)m(e)g(alw)m(a)m(ys)f(assume)g(this)f(Borel)g(measure) h(unless)g(indicated)f(otherwise.)p Black 300 4259 a Fj(De\014nition)i(A.4.)p Black 48 w Fu(A)f(measure)g(space)h(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(is)g(called)f Fr(\033)t Fu(-\014nite)h(if)1126 4479 y Fr(X)k Fu(=)27 b Fq([)1412 4438 y Fl(1)1412 4504 y Fo(n)p Fp(=1)1550 4479 y Fr(A)1623 4494 y Fo(n)1670 4479 y Fr(;)44 b(\026)p Fu(\()p Fr(A)1911 4494 y Fo(n)1958 4479 y Fu(\))28 b Fr(<)f Fq(1)p Fr(;)44 b(n)28 b Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)31 b(:)p Black 768 w Fu(\(A.1\))p Black Black 300 4699 a Fj(R)-5 b(emark)34 b(A.1.)p Black 49 w Fu(The)d(Borel)f(measure)h(space)g(\()p Fr(R)2096 4663 y Fo(d)2137 4699 y Fr(;)17 b Fe(B)p Fr(;)g(m)p Fu(\))29 b(is)h(ob)m(viously)g Fr(\033)t Fu(-\014nite;)h(the)g Fr(A)3584 4714 y Fo(n)3661 4699 y Fu(ma)m(y)300 4820 y(b)s(e)i(c)m(hosen)h(as)f(balls)e(of)h(radius)g Fr(n)p Fu(.)p Black 300 4982 a Fj(De\014nition)i(A.5.)p Black 48 w Fu(A)45 b(measure)f(space)i(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))44 b(is)f(said)h(to)g(b)s(e)g(\014nite)g(if)f Fr(\026)p Fu(\()p Fr(X)8 b Fu(\))47 b Fr(<)h Fq(1)p Fu(.)78 b(In)300 5102 y(particular,)38 b(if)f Fr(\026)p Fu(\()p Fr(X)8 b Fu(\))37 b(=)g(1,)j(then)f(the)g(measure)f(space)i(is)d (called)h(a)g(probabilit)m(y)e(space)j(or)f(a)300 5222 y(normalized)31 b(measure)h(space.)446 5384 y(If)37 b(a)f(certain)g (prop)s(ert)m(y)h(in)m(v)m(olving)e(the)i(p)s(oin)m(ts)f(of)g(a)g (measure)g(space)i(is)e(true)g(except)i(for)300 5505 y(a)45 b(set)g(of)g(measure)g(zero,)k(then)d(w)m(e)g(sa)m(y)g(that)e (the)i(prop)s(ert)m(y)g(is)e(true)h(almost)f(ev)m(erywhere)p Black 2021 5764 a(54)p Black eop %%Page: 55 64 55 63 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33 b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(55)p Black 300 274 a(\(abbreviated)48 b(as)f(a.e.\).)89 b(The)48 b(notation)f Fr(\026)p Fu(-a.e.)87 b(\(or)47 b(simply)g(a.e.)88 b(if)46 b Fr(\026)i Fu(is)f(understo)s(o)s(d\))300 395 y(is)d(sometimes)f(used) j(if)d(the)i(prop)s(ert)m(y)g(is)f(true)h(almost)e(ev)m(erywhere)48 b(with)c(resp)s(ect)h(to)g(the)300 515 y(measure)33 b Fr(\026)p Fu(.)p Black 300 677 a Fj(De\014nition)h(A.6.)p Black 48 w Fu(Let)25 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))24 b(b)s(e)g(a)g(measure)h(space.)41 b(A)25 b(real-v)-5 b(alued)22 b(function)i Fr(f)38 b Fu(:)28 b Fr(X)36 b Fq(!)27 b Fr(R)300 797 y Fu(is)32 b(called)f(measurable)h(if)g Fr(f)1333 761 y Fl(\000)p Fp(1)1427 797 y Fu(\()p Fr(O)s Fu(\))27 b Fq(2)h Fu(\006)33 b(for)f(ev)m(ery)i(op)s(en)f(set)g Fr(O)d Fq(\032)e Fr(R)q Fu(.)446 959 y(More)k(generally)-8 b(,)31 b(a)h(transformation)d Fr(f)39 b Fu(:)28 b Fr(X)35 b Fq(!)27 b Fr(Y)53 b Fu(from)31 b(a)g(measurable)g(space)i(\()p Fr(X)r(;)17 b Fu(\006\))32 b(to)300 1080 y(a)g(measurable)g(space)i(\() p Fr(Y)5 b(;)17 b Fe(A)p Fu(\))32 b(is)g(said)g(to)g(b)s(e)h (measurable)f(if)f Fr(f)2652 1043 y Fl(\000)p Fp(1)2746 1080 y Fu(\()p Fr(A)p Fu(\))d Fq(2)g Fu(\006)33 b(for)f(an)m(y)h Fr(A)28 b Fq(2)g Fe(A)p Fu(.)p Black 300 1241 a Fj(De\014nition)34 b(A.7.)p Black 48 w Fu(A)23 b(measurable)e(function)h Fr(f)38 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fu([0)p Fr(;)17 b Fq(1)p Fu(\))k(on)h(a)g(measurable)f(space)j(\()p Fr(X)r(;)17 b Fu(\006\))300 1362 y(is)29 b(called)f(a)h(simple)f(function)h(if)f (its)h(range)g(consists)h(of)f(only)g(\014nitely)g(man)m(y)g(p)s(oin)m (ts.)42 b(In)30 b(other)300 1482 y(w)m(ords,)k Fr(f)43 b Fu(is)32 b(a)g(simple)f(function)h(if)1498 1773 y Fr(f)39 b Fu(=)1739 1648 y Fo(n)1688 1678 y Fi(X)1703 1888 y Fo(i)p Fp(=1)1849 1773 y Fr(\013)1911 1788 y Fo(i)1939 1773 y Fr(\037)2000 1788 y Fo(A)2053 1798 y Ff(i)2084 1773 y Fr(;)44 b(A)2228 1788 y Fo(i)2284 1773 y Fq(2)28 b Fu(\006)p Fr(;)p Black 1140 w Fu(\(A.2\))p Black 300 2081 a(where)k Fr(\037)641 2096 y Fo(A)694 2106 y Ff(i)755 2081 y Fu(is)e(the)h(c)m(haracteristic)f(function)g(of)g Fr(A)2176 2096 y Fo(i)2232 2081 y Fu(:)55 b Fr(\037)2375 2096 y Fo(A)2428 2106 y Ff(i)2459 2081 y Fu(\()p Fr(x)p Fu(\))28 b(=)f(1)j(if)g Fr(x)e Fq(2)g Fr(A)3138 2096 y Fo(i)3197 2081 y Fu(and)i Fr(\037)3445 2096 y Fo(A)3498 2106 y Ff(i)3529 2081 y Fu(\()p Fr(x)p Fu(\))e(=)f(0)300 2201 y(if)k Fr(x)e Fq(62)f Fr(A)640 2216 y Fo(i)668 2201 y Fu(.)p Black 300 2363 a Fj(De\014nition)34 b(A.8.)p Black 48 w Fu(Let)41 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))41 b(b)s(e)f(a)h(measure)g(space.)68 b(If)41 b Fr(f)52 b Fu(:)41 b Fr(X)49 b Fq(!)41 b Fu([0)p Fr(;)17 b Fq(1)p Fu(\))40 b(is)g(a)g(simple)300 2483 y(function)32 b(of)g(the)h(form)1681 2754 y Fr(f)38 b Fu(=)1921 2630 y Fo(n)1871 2660 y Fi(X)1886 2870 y Fo(i)p Fp(=1)2031 2754 y Fr(\013)2093 2769 y Fo(i)2122 2754 y Fr(\037)2183 2769 y Fo(A)2236 2779 y Ff(i)2266 2754 y Fr(;)p Black 1322 w Fu(\(A.3\))p Black 300 3062 a(where)33 b Fq(f)p Fr(\013)693 3077 y Fo(i)721 3062 y Fq(g)e Fu(are)g(the)h(distinct)f(v) -5 b(alues)31 b(of)g Fr(f)11 b Fu(,)31 b(and)h(if)e Fr(A)e Fq(2)g Fu(\006,)k(then)g(the)g(Leb)s(esgue)h(in)m(tegral)c(of)300 3183 y Fr(f)43 b Fu(o)m(v)m(er)34 b Fr(A)f Fu(is)f(de\014ned)i(b)m(y) 1424 3337 y Fi(Z)1479 3563 y Fo(A)1553 3473 y Fr(f)11 b(d\026)27 b Fu(=)1903 3348 y Fo(n)1852 3378 y Fi(X)1867 3588 y Fo(i)p Fp(=1)2013 3473 y Fr(\013)2075 3488 y Fo(i)2103 3473 y Fr(\026)p Fu(\()p Fr(A)2273 3488 y Fo(i)2323 3473 y Fq(\\)c Fr(A)p Fu(\))p Fr(;)p Black 1065 w Fu(\(A.4\))p Black 300 3775 a(where)34 b(the)f(con)m(v)m(en)m(tion)h(0)21 b Fq(\001)h(1)28 b Fu(=)f(0)32 b(is)h(used.)p Black 300 3937 a Fj(De\014nition)h(A.9.)p Black 48 w Fu(Let)g(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(b)s(e)h(a)g(measure)g (space,)i Fr(f)k Fu(:)28 b Fr(X)36 b Fq(!)28 b Fr(R)34 b Fu(an)f(arbitrary)f(nonneg-)300 4058 y(ativ)m(e)k(measurable)g (function,)i(and)e Fr(A)f Fq(2)g Fu(\006.)56 b(Then)38 b(the)f(Leb)s(esgue)h(in)m(tegral)d(of)h Fr(f)47 b Fu(o)m(v)m(er)38 b Fr(A)e Fu(is)300 4178 y(de\014ned)e(as)746 4286 y Fi(Z)801 4511 y Fo(A)875 4421 y Fr(f)11 b(d\026)26 b Fu(=)i(sup)q Fq(f)1371 4286 y Fi(Z)1426 4511 y Fo(A)1500 4421 y Fr(sd\026)f Fq(j)g Fu(0)g Fq(\024)i Fr(s)e Fq(\024)h Fr(f)5 b(;)45 b(s)28 b Fu(are)k(simple)f(functions)p Fq(g)p Fr(:)p Black 387 w Fu(\(A.5\))p Black 300 4700 a(If)i Fr(A)27 b Fu(=)h Fr(X)8 b Fu(,)32 b(then)972 4619 y Fi(R)1020 4734 y Fo(X)1103 4700 y Fr(f)11 b(d\026)32 b Fu(is)g(simply)f(called)h (the)h(Leb)s(esgue)h(in)m(tegral)d(of)h Fr(f)11 b Fu(.)446 4861 y(Giv)m(en)33 b(a)f(real)g(function)g Fr(f)11 b Fu(,)32 b(let)1152 5082 y Fr(f)1211 5040 y Fp(+)1298 5082 y Fu(=)27 b(max)p Fq(f)p Fr(f)5 b(;)17 b Fu(0)p Fq(g)27 b Fu(and)h Fr(f)2100 5040 y Fl(\000)2186 5082 y Fu(=)g(max)o Fq(f\000)p Fr(f)5 b(;)17 b Fu(0)p Fq(g)p Fr(:)p Black 794 w Fu(\(A.6\))p Black 300 5302 a Fr(f)359 5265 y Fp(+)457 5302 y Fu(and)39 b Fr(f)712 5265 y Fl(\000)810 5302 y Fu(are)g(called)f(the)h(p)s(ositiv)m(e)g(and)g(negativ)m(e)g (parts)h(of)f Fr(f)11 b Fu(,)40 b(resp)s(ectiv)m(ely)-8 b(.)64 b(W)-8 b(e)40 b(ha)m(v)m(e)300 5422 y Fq(j)p Fr(f)11 b Fq(j)27 b Fu(=)g Fr(f)604 5386 y Fp(+)685 5422 y Fu(+)22 b Fr(f)842 5386 y Fl(\000)933 5422 y Fu(and)33 b Fr(f)39 b Fu(=)27 b Fr(f)1372 5386 y Fp(+)1453 5422 y Fq(\000)c Fr(f)1612 5386 y Fl(\000)1670 5422 y Fu(.)p Black Black eop %%Page: 56 65 56 64 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33 b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(56)p Black Black 300 274 a Fj(De\014nition)34 b(A.10.)p Black 48 w Fu(Let)39 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))38 b(b)s(e)h(a)f(measure)h(space,)i Fr(f)48 b Fu(:)38 b Fr(X)45 b Fq(!)37 b Fr(R)j Fu(a)e(real)g(measurable)300 395 y(function,)32 b(and)h Fr(A)28 b Fq(2)g Fu(\006.)44 b(Then)33 b(the)g(Leb)s(esgue)h(in)m(tegral)d(of)h Fr(f)44 b Fu(o)m(v)m(er)33 b Fr(A)g Fu(is)f(de\014ned)i(b)m(y)1356 503 y Fi(Z)1411 728 y Fo(A)1485 638 y Fr(f)11 b(d\026)27 b Fu(=)1784 503 y Fi(Z)1839 728 y Fo(A)1913 638 y Fr(f)1972 597 y Fp(+)2031 638 y Fr(d\026)21 b Fq(\000)2262 503 y Fi(Z)2317 728 y Fo(A)2391 638 y Fr(f)2450 597 y Fl(\000)2509 638 y Fr(d\026)p Black 996 w Fu(\(A.7\))p Black 300 897 a(if)31 b(at)i(least)f(one)h(of)f(the)h(terms)1466 817 y Fi(R)1513 932 y Fo(A)1587 897 y Fr(f)1646 861 y Fp(+)1705 897 y Fr(d\026)f Fu(and)2036 817 y Fi(R)2083 932 y Fo(A)2157 897 y Fr(f)2216 861 y Fl(\000)2275 897 y Fr(d\026)g Fu(is)g(\014nite.)p Black 300 1051 a Fj(Pr)-5 b(op)g(osition)34 b(A.1.)p Black 49 w Fu(Supp)s(ose)e(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))31 b(is)g(a)g(measure)h(space)h(and)e Fr(f)42 b Fu(and)32 b Fr(g)i Fu(are)e(measurable)300 1171 y(functions)h(on)f Fr(X)8 b Fu(.)446 1291 y(\(i\))32 b(If)g Fr(g)k Fu(is)c(in)m(tegrable,)g(and)h Fq(j)p Fr(f)11 b Fq(j)26 b(\024)i Fr(g)t Fu(,)k(then)i Fr(f)43 b Fu(is)32 b(in)m(tegrable)f(and)1568 1540 y Fq(j)1613 1405 y Fi(Z)1667 1630 y Fo(X)1751 1540 y Fr(f)11 b(d\026)p Fq(j)27 b(\024)2080 1405 y Fi(Z)2135 1630 y Fo(X)2219 1540 y Fr(g)t(d\026:)p Black 1208 w Fu(\(A.8\))p Black 446 1799 a(\(ii\))609 1719 y Fi(R)656 1834 y Fo(X)740 1799 y Fq(j)p Fr(f)11 b Fq(j)p Fr(d\026)26 b Fu(=)i(0)k(if)f(and)i(only)f(if)f Fr(f)39 b Fu(=)27 b(0)33 b(a.e..)446 1920 y(\(iii\))23 b(If)i Fr(f)35 b Fu(and)26 b Fr(g)i Fu(are)d(in)m(tegrable)f(and)h Fr(\013)h Fu(and)f Fr(\014)31 b Fu(are)25 b(n)m(um)m(b)s(ers,)j(then)d Fr(\013)q(f)18 b Fu(+)7 b Fr(\014)f(g)27 b Fu(is)e(in)m(tegrable)300 2040 y(and)1136 2128 y Fi(Z)1191 2354 y Fo(X)1259 2264 y Fu(\()p Fr(\013)q(f)32 b Fu(+)22 b Fr(\014)6 b(g)t Fu(\))p Fr(d\026)26 b Fu(=)i Fr(\013)2007 2128 y Fi(Z)2062 2354 y Fo(X)2146 2264 y Fr(f)11 b(d\026)22 b Fu(+)g Fr(\014)2512 2128 y Fi(Z)2567 2354 y Fo(X)2651 2264 y Fr(g)t(d\026:)p Black 776 w Fu(\(A.9\))p Black 446 2517 a(\(iv\))32 b(Supp)s(ose)i Fr(f)43 b Fu(is)32 b(in)m(tegrable)g(and)g Fq(f)p Fr(A)1970 2532 y Fo(n)2017 2517 y Fq(g)h Fu(are)f(disjoin)m(t)g(measurable)g (sets.)44 b(Then)1443 2672 y Fi(X)1494 2881 y Fo(n)1604 2631 y Fi(Z)1659 2856 y Fo(A)1712 2864 y Ff(n)1775 2766 y Fr(f)11 b(d\026)27 b Fu(=)2075 2631 y Fi(Z)2130 2856 y Fl([)2177 2864 y Ff(n)2219 2856 y Fo(A)2272 2864 y Ff(n)2336 2766 y Fr(f)11 b(d\026:)p Black 1034 w Fu(\(A.10\))p Black 446 3049 a(Measurable)39 b(functions)f(can)g(b)s(e)g(used)h(to)f (construct)h(new)g(measures)g(on)f(a)g(measurable)300 3169 y(space,)c(as)f(the)g(follo)m(wing)c(theorem)k(indicates.)p Black 300 3323 a Fj(The)-5 b(or)g(em)34 b(A.1.)p Black 49 w Fu(Supp)s(ose)f Fr(f)39 b Fu(:)27 b Fr(X)36 b Fq(!)27 b Fu([0)p Fr(;)17 b Fq(1)p Fu(\))32 b(is)g(measurable,)g(and)1464 3572 y Fr(\026)1523 3587 y Fo(f)1568 3572 y Fu(\()p Fr(A)p Fu(\))c(=)1849 3436 y Fi(Z)1904 3662 y Fo(A)1978 3572 y Fr(f)11 b(d\026;)43 b(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 1057 w Fu(\(A.11\))p Black 300 3819 a(Then)34 b Fr(\026)614 3834 y Fo(f)691 3819 y Fu(is)e(a)h(measure)g(on)f(\006,)h (and)1570 3936 y Fi(Z)1626 4161 y Fo(X)1710 4071 y Fr(g)t(d\026)1871 4086 y Fo(f)1942 4071 y Fu(=)2046 3936 y Fi(Z)2101 4161 y Fo(X)2185 4071 y Fr(g)t(f)11 b(d\026)p Black 1161 w Fu(\(A.12\))p Black 300 4325 a(for)32 b(ev)m(ery)i(measurable)e Fr(g)f Fu(:)d Fr(X)36 b Fq(!)27 b Fu([0)p Fr(;)17 b Fq(1)p Fu(\).)446 4478 y(The)45 b(measure)e Fr(\026)1107 4493 y Fo(f)1196 4478 y Fu(satis\014es)h(that)f Fr(\026)1847 4493 y Fo(f)1892 4478 y Fu(\()p Fr(A)p Fu(\))j(=)g(0)d(whenev)m(er)j Fr(\026)p Fu(\()p Fr(A)p Fu(\))g(=)g(0.)75 b(Moreo)m(v)m(er,)48 b Fr(\026)3795 4493 y Fo(f)300 4599 y Fu(is)39 b(a)f(\014nite)h (measure)g(if)f(and)h(only)g(if)f Fr(f)50 b Fu(is)38 b(in)m(tegrable.)62 b(The)40 b(follo)m(wing)c(theorem)j(is)g(a)f(v)m (ery)300 4719 y(imp)s(ortan)m(t)d(con)m(v)m(erse)k(of)e(the)g(ab)s(o)m (v)m(e)h(theorem,)g(whic)m(h)f(is)g(of)f(fundamen)m(tal)g(imp)s (ortance)f(for)300 4839 y(the)e(dev)m(elopmen)m(t)g(of)f(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erators.)p Black 300 4993 a Fj(De\014nition)h(A.11.)p Black 48 w Fu(Let)h Fr(\026)f Fu(and)g Fr(\027)41 b Fu(b)s(e)35 b(t)m(w)m(o)g(measures)g (on)f(a)g Fr(\033)t Fu(-algebra)f(\006.)49 b(W)-8 b(e)35 b(sa)m(y)g(that)g Fr(\027)40 b Fu(is)300 5113 y(absolutely)32 b(con)m(tin)m(uous)h(with)f(resp)s(ect)i(to)e Fr(\026)p Fu(,)h(and)f(write)1853 5314 y Fr(\027)i Fq(\034)27 b Fr(\026)p Black 1445 w Fu(\(A.13\))p Black 300 5515 a(if)k Fr(\027)6 b Fu(\()p Fr(A)p Fu(\))29 b(=)e(0)32 b(for)g(ev)m(ery)j Fr(A)28 b Fq(2)g Fu(\006)33 b(for)f(whic)m(h)h Fr(\026)p Fu(\()p Fr(A)p Fu(\))27 b(=)h(0.)p Black Black eop %%Page: 57 66 57 65 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33 b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(57)p Black Black 300 274 a Fj(The)-5 b(or)g(em)34 b(A.2.)p Black 49 w Fm(Radon-Nik)m(o)s (dym)54 b(Theorem)47 b Fu(Let)h(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))47 b(b)s(e)h(a)f Fr(\033)t Fu(-\014nite)g(measure) 300 395 y(space)37 b(and)f(let)f Fr(\027)42 b Fu(b)s(e)37 b(a)e(\014nite)h(measure)g(whic)m(h)g(is)g(absolutely)f(con)m(tin)m (uous)i(with)e(resp)s(ect)i(to)300 515 y Fr(\026)p Fu(,)32 b(then)i(there)f(is)f(a)g Fr(\026)p Fu(-in)m(tegrable)f(function)h Fr(f)38 b Fu(:)28 b Fr(X)36 b Fq(!)27 b Fr(R)33 b Fu(suc)m(h)i(that) 1344 778 y Fr(\027)6 b Fu(\()p Fr(A)p Fu(\))28 b(=)1678 642 y Fi(Z)1734 868 y Fo(A)1807 778 y Fr(f)11 b(d\026)55 b Fu(for)32 b(all)53 b Fr(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 936 w Fu(\(A.14\))p Black 300 1045 a Fr(f)46 b Fu(is)35 b(called)f(the)h(Radon-Nik)m(o)s(dym)f(deriv)-5 b(ativ)m(e)35 b(of)f Fr(\027)42 b Fu(with)35 b(resp)s(ect)h(to)f Fr(\026)g Fu(and)g(is)g(sometimes)300 1165 y(written)d(as)h Fr(f)39 b Fu(=)27 b Fr(d\027)6 b(=d\026)p Fu(.)446 1327 y(W)-8 b(e)33 b(no)m(w)h(in)m(tro)s(duce)e(the)h(concept)h(of)e(an)g Fr(L)2089 1291 y Fo(p)2129 1327 y Fu(-space.)p Black 300 1489 a Fj(De\014nition)i(A.12.)p Black 48 w Fu(Let)28 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28 b(b)s(e)g(a)g(measure)g(space)h(and)f Fr(p)g Fu(a)f(real)g(n)m(um)m(b)s (er,)i(1)f Fq(\024)g Fr(p)g(<)f Fq(1)p Fu(.)300 1610 y(The)34 b(family)c(of)i(all)e(measurable)i(functions)h Fr(f)38 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fr(R)33 b Fu(satisfying)1690 1737 y Fi(Z)1746 1962 y Fo(X)1829 1872 y Fq(j)p Fr(f)11 b Fq(j)p Fr(d\026)27 b(<)g Fq(1)p Black 1282 w Fu(\(A.15\))p Black 300 2145 a(is)41 b(denoted)i(b)m(y)g Fr(L)996 2109 y Fo(p)1036 2145 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\).)72 b(The)43 b(space)g Fr(L)2057 2109 y Fl(1)2132 2145 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))42 b(is)f(de\014ned)i(as)g(the)f(family)e(of)h(all)300 2265 y(b)s(ounded)34 b Fr(\026)p Fu(-a.e.)43 b(measurable)32 b(functions.)45 b(Here)33 b Fr(f)2228 2280 y Fp(1)2268 2265 y Fr(;)44 b(f)2387 2280 y Fp(2)2455 2265 y Fq(2)28 b Fr(L)2615 2229 y Fo(p)2655 2265 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))33 b(are)g(considered)h(the)300 2386 y(same)e(if)g Fr(f)682 2401 y Fp(1)721 2386 y Fu(\()p Fr(x)p Fu(\))c(=)g Fr(f)1032 2401 y Fp(2)1071 2386 y Fu(\()p Fr(x)p Fu(\))p Fr(;)45 b(x)28 b Fq(2)g Fr(X)41 b Fu(a.e.)i(for)32 b Fr(p)c Fq(2)g Fu([1)p Fr(;)17 b Fq(1)p Fu(].)446 2566 y(The)31 b(n)m(um)m(b)s(er)f Fq(k)p Fr(f)11 b Fq(k)1155 2581 y Fo(p)1221 2566 y Fu(=)28 b(\()1363 2486 y Fi(R)1410 2601 y Fo(X)1494 2566 y Fq(j)p Fr(f)11 b Fq(j)1609 2530 y Fo(p)1648 2566 y Fr(d\026)p Fu(\))1807 2493 y Fg(1)p 1805 2505 33 3 v 1805 2546 a Ff(p)1880 2566 y Fu(is)29 b(called)g(the)h Fr(L)2480 2530 y Fo(p)2520 2566 y Fu(-norm)e(of)h Fr(f)38 b Fq(2)28 b Fr(L)3158 2530 y Fo(p)3228 2566 y Fu(for)h Fr(p)e(<)h Fq(1)h Fu(and)300 2687 y(the)f(n)m(um)m(b)s(er)g Fq(k)p Fr(g)t Fq(k)964 2702 y Fl(1)1066 2687 y Fu(=)f(ess)18 b(sup)1453 2710 y Fo(x)p Fl(2)p Fo(X)1624 2687 y Fq(j)p Fr(g)t Fu(\()p Fr(x)p Fu(\))p Fq(j)27 b Fu(is)g(referred)i(to)e(as)h(the)g Fr(L)2796 2650 y Fl(1)2871 2687 y Fu(-norm)f(of)g Fr(g)k Fq(2)d Fr(L)3498 2650 y Fl(1)3573 2687 y Fu(.)42 b Fq(k)p Fr(f)11 b Fq(k)3801 2702 y Fp(1)300 2807 y Fu(is)32 b(often)h(written)f (as)h Fq(k)p Fr(f)11 b Fq(k)32 b Fu(or)g Fq(k)p Fr(f)11 b Fq(k)1575 2822 y Fo(\026)1621 2807 y Fu(.)43 b(These)35 b(norms)d(satisfy)g(the)h(three)h(axioms)d(of)h(a)h(norm:)446 2927 y(\(i\))f Fq(k)p Fr(f)11 b Fq(k)741 2942 y Fo(p)808 2927 y Fu(=)27 b(0)32 b(if)g(and)g(only)h(if)e Fr(f)38 b Fu(=)28 b(0,)k(or)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))28 b(=)g(0)k(a.e..)446 3048 y(\(ii\))f Fq(k)p Fr(\013)q(f)11 b Fq(k)831 3063 y Fo(p)897 3048 y Fu(=)28 b Fq(j)p Fr(\013)q Fq(jk)p Fr(f)11 b Fq(k)1279 3063 y Fo(p)1345 3048 y Fu(for)27 b Fr(f)38 b Fq(2)28 b Fr(L)1735 3012 y Fo(p)1775 3048 y Fr(;)45 b(\013)28 b Fq(2)g Fr(C)7 b Fu(.)446 3168 y(\(iii\))30 b Fq(k)p Fr(f)j Fu(+)22 b Fr(g)t Fq(k)966 3183 y Fo(p)1032 3168 y Fq(\024)28 b(k)p Fr(f)11 b Fq(k)1296 3183 y Fo(p)1357 3168 y Fu(+)22 b Fq(k)p Fr(g)t Fq(k)1606 3183 y Fo(p)1673 3168 y Fu(for)27 b Fr(f)5 b(;)17 b(g)31 b Fq(2)d Fr(L)2152 3132 y Fo(p)2225 3168 y Fu(\(triangle)i(inequalit)m(y\).)446 3289 y(Under)g(the)f(usual)f(algebraic)g(op)s(erations)f(and)i(the)h (ab)s(o)m(v)m(e)f(norm,)g Fr(L)3000 3252 y Fo(p)3069 3289 y Fu(is)f(a)g(Banac)m(h)i(space,)300 3409 y(that)40 b(is,)j(a)d(complete)g(normed)g(space.)69 b(Moreo)m(v)m(er,)44 b(under)e(the)f(natural)e(ordering)h(relation)300 3529 y(among)31 b(functions,)i Fr(L)1128 3493 y Fo(p)1201 3529 y Fu(b)s(ecomes)g(a)f(Banac)m(h)h(lattice.)446 3650 y(The)44 b(dual)d(of)h(a)g(Banac)m(h)h(space,)j(b)m(y)d(de\014nition,)h (is)e(the)h(space)g(of)f(all)e(b)s(ounded)k(linear)300 3770 y(functionals)31 b(on)i(it.)42 b(The)34 b(follo)m(wing)c(c)m (haracterizes)k(the)f(dual)e(of)h Fr(L)2819 3734 y Fo(p)2859 3770 y Fu(.)p Black 300 3932 a Fj(The)-5 b(or)g(em)34 b(A.3.)p Black 49 w Fu(Let)46 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))45 b(b)s(e)h(a)g(measure)g(space)h(and)f(1)k Fq(\024)g Fr(p)h(<)f Fq(1)p Fu(.)83 b(The)46 b(dual)f(of)300 4052 y Fr(L)366 4016 y Fo(p)406 4052 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(is)g Fr(L)978 4016 y Fo(p)1014 3993 y Fh(0)1041 4052 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\),)32 b(where)i(1)p Fr(=p)22 b Fu(+)g(1)p Fr(=p)2172 4016 y Fl(0)2222 4052 y Fu(=)28 b(1)k(for)g Fr(p)c(>)f Fu(1)33 b(and)f Fr(p)3056 4016 y Fl(0)3107 4052 y Fu(=)c Fq(1)k Fu(if)f Fr(p)d Fu(=)f(1.)446 4214 y(The)34 b(dual)e(relation)e(b)s(et)m(w)m(een)35 b Fr(f)j Fq(2)28 b Fr(L)1844 4178 y Fo(p)1917 4214 y Fu(and)33 b Fr(g)e Fq(2)d Fr(L)2345 4178 y Fo(p)2381 4155 y Fh(0)2440 4214 y Fu(is)k(giv)m(en)g(b)m(y)1579 4477 y Fr(<)c(f)5 b(;)17 b(g)31 b(>)p Fu(=)2037 4342 y Fi(Z)2092 4567 y Fo(X)2176 4477 y Fr(f)11 b(g)t(d\026)p Black 1170 w Fu(\(A.16\))p Black 300 4744 a(whic)m(h)33 b(satis\014es)g(the)g(Cauc)m(h)m(y-H\177)-49 b(older)34 b(inequalit)m(y)1469 4964 y Fq(j)28 b Fr(<)f(f)5 b(;)17 b(g)31 b(>)d Fq(j)f(\024)h(k)p Fr(f)11 b Fq(k)2226 4979 y Fo(p)2265 4964 y Fq(k)p Fr(g)t Fq(k)2416 4979 y Fo(p)2452 4960 y Fh(0)2477 4964 y Fr(:)p Black 1062 w Fu(\(A.17\))p Black 300 5184 a(In)35 b(ergo)s(dic)f(theory)-8 b(,)36 b(w)m(e)g(often)f(use)h(v)-5 b(arious)34 b(notions)h(of)f(the)h(con)m (v)m(ergence)j(for)c(sequences)k(of)300 5305 y(functions.)p Black Black eop %%Page: 58 67 58 66 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33 b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(58)p Black Black 300 274 a Fj(De\014nition)34 b(A.13.)p Black 48 w Fu(A)i(sequence)i(of)d (functions)h Fq(f)p Fr(f)2192 289 y Fo(n)2239 274 y Fq(g)c(\032)h Fr(L)2497 238 y Fo(p)2537 274 y Fr(;)50 b Fu(1)32 b Fq(\024)i Fr(p)e(<)h Fq(1)i Fu(is)g(w)m(eekly)i(Ces\023)-49 b(aro)300 395 y(con)m(v)m(ergen)m(t)35 b(to)d Fr(f)38 b Fq(2)28 b Fr(L)1153 358 y Fo(p)1226 395 y Fu(if)987 691 y(lim)963 751 y Fo(n)p Fl(!1)1178 623 y Fu(1)p 1174 668 59 4 v 1174 759 a Fr(n)1264 566 y Fo(n)p Fl(\000)p Fp(1)1258 596 y Fi(X)1273 806 y Fo(i)p Fp(=0)1430 691 y Fr(<)g(f)1582 706 y Fo(i)1610 691 y Fr(;)17 b(g)30 b(>)e Fu(=)g Fr(<)f(f)5 b(;)17 b(g)31 b(>)83 b Fu(for)32 b(all)53 b Fr(g)31 b Fq(2)d Fr(L)2921 650 y Fo(p)2957 626 y Fh(0)2984 691 y Fr(;)p Black 555 w Fu(\(A.18\))p Black 300 985 a(and)33 b(is)f(strongly)g(Ces\023)-49 b(aro)33 b(con)m(v)m(ergen)m(t)i(to)d Fr(f)39 b Fq(2)28 b Fr(L)2139 949 y Fo(p)2211 985 y Fu(if)1482 1281 y(lim)1457 1341 y Fo(n)p Fl(!1)1658 1281 y Fq(k)1723 1214 y Fu(1)p 1718 1258 V 1718 1350 a Fr(n)1808 1157 y Fo(n)p Fl(\000)p Fp(1)1803 1187 y Fi(X)1817 1396 y Fo(i)p Fp(=0)1963 1281 y Fr(f)2011 1296 y Fo(i)2062 1281 y Fq(\000)22 b Fr(f)11 b Fq(k)2270 1296 y Fo(p)2337 1281 y Fu(=)28 b(0)p Fr(:)p Black 1049 w Fu(\(A.19\))p Black Black 300 1581 a Fj(De\014nition)34 b(A.14.)p Black 48 w Fu(A)h(sequence)i(of)d(functions)h Fq(f)p Fr(f)2188 1596 y Fo(n)2235 1581 y Fq(g)c(\032)g Fr(L)2490 1545 y Fo(p)2530 1581 y Fr(;)48 b Fu(1)31 b Fq(\024)g Fr(p)h(<)e Fq(1)35 b Fu(is)f(w)m(eekly)i(con)m(v)m(er-)300 1701 y(gen)m(t)d(to)f Fr(f)39 b Fq(2)28 b Fr(L)880 1665 y Fo(p)952 1701 y Fu(if)1106 1913 y(lim)1081 1973 y Fo(n)p Fl(!1)1293 1913 y Fr(<)g(f)1445 1928 y Fo(n)1492 1913 y Fr(;)17 b(g)30 b(>)e Fu(=)f Fr(<)h(f)5 b(;)17 b(g)31 b(>)83 b Fu(for)32 b(all)53 b Fr(g)31 b Fq(2)d Fr(L)2803 1872 y Fo(p)2839 1848 y Fh(0)2866 1913 y Fr(;)p Black 673 w Fu(\(A.20\))p Black 300 2151 a(and)33 b(is)f(strongly)g(con)m(v)m (ergen)m(t)j(to)d Fr(f)38 b Fq(2)28 b Fr(L)1818 2115 y Fo(p)1891 2151 y Fu(if)1600 2363 y(lim)1576 2423 y Fo(n)p Fl(!1)1776 2363 y Fq(k)p Fr(f)1874 2378 y Fo(n)1943 2363 y Fq(\000)23 b Fr(f)11 b Fq(k)2152 2378 y Fo(p)2219 2363 y Fu(=)27 b(0)p Fr(:)p Black 1168 w Fu(\(A.21\))p Black Black 300 2601 a Fj(R)-5 b(emark)34 b(A.2.)p Black 49 w Fu(F)-8 b(rom)42 b(the)j(Cauc)m(h)m(y-H\177)-49 b(older)44 b(inequalit)m(y)-8 b(,)46 b(the)e(strong)g(con)m(v)m (ergence)i(implies)300 2722 y(the)35 b(w)m(eek)h(con)m(v)m(ergence.)50 b(The)36 b(con)m(v)m(erse)g(is)e(not)g(true,)h(as)f(giv)m(en)g(b)m(y)h (the)g(classic)f(example)f(of)300 2842 y Fr(f)348 2857 y Fo(n)395 2842 y Fu(\()p Fr(x)p Fu(\))28 b(=)g(sin)o(\()p Fr(nx)p Fu(\))33 b(in)f Fr(L)1179 2806 y Fp(2)1219 2842 y Fu(\(0)p Fr(;)17 b Fu(1\).)446 3001 y(No)m(w)39 b(w)m(e)f(review)h (some)e(concepts)i(and)f(results)g(on)g(the)g(appro)m(ximation)d(order) j(of)f(a)h(se-)300 3121 y(quence)25 b(of)e(p)s(ositiv)m(e)f(linear)g (op)s(erators)g(of)h(\014nite)g(rank)g(to)g(appro)m(ximate)f(the)i (iden)m(tit)m(y)f(op)s(erator)300 3241 y Fr(I)45 b Fu(from)35 b([10].)56 b(Let)38 b Fr(L)d Fu(:)g Fr(X)43 b Fq(!)34 b Fr(X)45 b Fu(b)s(e)37 b(a)g(linear)e(op)s(erator)h(on)h(a)g(Banac)m (h)g(lattice)f Fr(X)8 b Fu(.)56 b(W)-8 b(e)37 b(sa)m(y)300 3362 y Fr(L)g Fu(is)e(p)s(ositiv)m(e)h(if)f Fr(L)h Fu(maps)g(a)g (nonnegativ)m(e)h(elemen)m(t)f Fr(x)g Fu(\(i.e.,)h Fr(x)d Fq(\025)g Fu(0)i(under)h(the)g(ordering)e(of)300 3482 y Fr(X)8 b Fu(\))38 b(to)g(a)g(nonnegativ)m(e)g(elemen)m(t)g Fr(Lx)p Fu(.)61 b(It)39 b(is)e(w)m(ell)h(kno)m(wn)h(that)f(a)g(p)s (ositiv)m(e)g(linear)f(op)s(erator)300 3602 y(is)42 b(con)m(tin)m (uous.)75 b(Let)43 b Fr(C)1227 3566 y Fo(k)1269 3602 y Fu([0)p Fr(;)17 b Fu(1])43 b(b)s(e)g(the)g(Banac)m(h)g(space)h(of)e (real)g(functions)h(on)f([0)p Fr(;)17 b Fu(1])42 b(whic)m(h)300 3723 y(deriv)-5 b(ativ)m(es)35 b(of)f(order)g(up)h(to)f Fr(k)k Fu(are)c(con)m(tin)m(uous.)50 b(The)36 b(norm)d(of)h Fr(f)42 b Fq(2)31 b Fr(C)3042 3687 y Fo(k)3085 3723 y Fu([0)p Fr(;)17 b Fu(1])34 b(is)g(de\014ned)i(as)300 3843 y Fq(k)p Fr(f)11 b Fq(k)459 3858 y Fo(k)r(;)p Fl(1)629 3843 y Fu(=)37 b(max)o Fq(fj)p Fr(f)1060 3807 y Fp(\()p Fo(i)p Fp(\))1143 3843 y Fu(\()p Fr(x)p Fu(\))p Fq(j)g Fu(:)g Fr(x)h Fq(2)g Fu([0)p Fr(;)17 b Fu(1])p Fr(;)53 b(i)38 b Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(k)s Fq(g)p Fu(.)60 b(W)-8 b(e)39 b(write)e Fq(k)h(k)3194 3858 y Fl(1)3306 3843 y Fu(=)f Fq(k)g(k)3556 3858 y Fp(0)p Fo(;)p Fl(1)3723 3843 y Fu(for)300 3964 y Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])27 b Fq(\021)h Fr(C)782 3927 y Fp(0)822 3964 y Fu([0)p Fr(;)17 b Fu(1].)446 4084 y(Let)29 b Fr(L)683 4099 y Fo(n)758 4084 y Fu(:)f Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])27 b Fq(!)g Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])28 b(b)s(e)h(a)g(sequence)i(of)e(p)s(ositiv)m(e)f(linear)f(op)s(erators)h (that)h(appro)m(x-)300 4204 y(imate)34 b(the)i(iden)m(tit)m(y)g(op)s (erator)f Fr(I)41 b Fu(:)33 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])33 b Fq(!)f Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1].)53 b(The)36 b(follo)m(wing)d(Bohman-Koro)m(vkin)300 4325 y(Theorem)43 b(is)f(a)h(classical)e(result)i(on)f(the)i(con)m(v)m (ergence)h(of)d(the)i(sequence)h Fr(L)3242 4340 y Fo(n)3332 4325 y Fu(to)e Fr(I)8 b Fu(,)45 b(whose)300 4445 y(pro)s(of)32 b(is)g(referred)h(to)f([10].)p Black 300 4603 a Fj(The)-5 b(or)g(em)34 b(A.4.)p Black 49 w Fu(A)e(necessary)j(and)e(su\016cien)m (t)g(condition)f(that)1351 4815 y(lim)1326 4875 y Fo(n)p Fl(!1)1527 4815 y Fq(k)p Fr(L)1643 4830 y Fo(n)1690 4815 y Fr(f)h Fq(\000)23 b Fr(f)11 b Fq(k)1980 4830 y Fl(1)2082 4815 y Fu(=)27 b(0)p Fr(;)44 b Fq(8)p Fr(f)39 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])300 5054 y(is)32 b(that)1377 5265 y(lim)1353 5325 y Fo(n)p Fl(!1)1554 5265 y Fq(k)p Fr(L)1670 5280 y Fo(n)1717 5265 y Fr(e)1762 5280 y Fo(i)1812 5265 y Fq(\000)23 b Fr(e)1957 5280 y Fo(i)1986 5265 y Fq(k)2036 5280 y Fl(1)2138 5265 y Fu(=)k(0)p Fr(;)44 b(i)28 b Fu(=)g(0)p Fr(;)17 b Fu(1)p Fr(;)g Fu(2)p Fr(;)300 5515 y Fu(where)34 b Fr(e)627 5530 y Fo(i)655 5515 y Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(x)973 5478 y Fo(i)1001 5515 y Fu(.)p Black Black eop %%Page: 59 68 59 67 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33 b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(59)p Black 446 274 a(It)40 b(follo)m(ws)f(from)f(this)i(theorem)f(that)h(to)f(c)m(hec)m(k) k(the)d(uniform)e(con)m(v)m(ergence)k(of)e Fr(L)3603 289 y Fo(n)3650 274 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))300 395 y(to)43 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))44 b(on)f([0)p Fr(;)17 b Fu(1])43 b(for)h(all)d Fr(f)57 b Fq(2)47 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1],)46 b(it)d(is)g(enough)h(to)f(do)h(so) g(for)f(the)h(three)g(simplest)300 515 y(monomials)36 b(1)p Fr(;)17 b(x)p Fu(,)42 b(and)d Fr(x)1263 479 y Fp(2)1303 515 y Fu(.)65 b(The)40 b(next)h(lemmas)d(giv)m(e)h(more)g(quan)m (titativ)m(e)h(information)c(on)300 635 y(the)24 b(con)m(v)m(ergence)i (of)d Fr(L)1157 650 y Fo(n)1204 635 y Fr(f)34 b Fu(to)24 b Fr(f)11 b Fu(.)40 b(F)-8 b(or)22 b(this)h(purp)s(ose)i(let)d Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fq(\001)p Fu(\))22 b(b)s(e)i(the)g Fj(mo)-5 b(dulus)23 b Fu(of)g(con)m(tin)m(uit)m(y)300 756 y(of)32 b Fr(f)43 b Fu(de\014ned)34 b(b)m(y)869 976 y Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))26 b(=)i(max)o Fq(fj)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(y)t Fu(\))p Fq(j)27 b Fu(:)g Fr(x;)45 b(y)31 b Fq(2)d Fu([0)p Fr(;)17 b Fu(1])p Fr(;)44 b Fq(j)p Fr(x)22 b Fq(\000)h Fr(y)t Fq(j)j(\024)i Fr(r)s Fq(g)p Fr(:)446 1196 y Fu(W)-8 b(e)33 b(will)e(use)i(the)g (follo)m(wing)d(fundamen)m(tal)i(prop)s(erties)g(\(see)i([10)o(]\))f (of)f Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\):)446 1316 y(\(i\))32 b Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))31 b(is)h(non-decreasing)h(and)f(con)m(tin)m(uous)h(with)g (resp)s(ect)h(to)e Fr(r)e Fq(\025)e Fu(0.)446 1437 y(\(ii\))j Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(\025r)s Fu(\))26 b Fq(\024)i Fu(\()p Fr(\025)22 b Fu(+)g(1\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))31 b(for)h Fr(\025;)17 b(r)30 b(>)d Fu(0.)446 1557 y(In)34 b(the)g(remainder)f(of)g(the)i(pap) s(er)e(w)m(e)i(often)f(write)f Fr(L)2465 1572 y Fo(n)2513 1557 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))33 b(as)h Fr(L)2923 1572 y Fo(n)2970 1557 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\).)48 b(Although)33 b(the)300 1677 y(pro)s(of)f(of)g(the)i(next)g(lemma)c(is) j(standard)g(and)g(can)g(b)s(e)g(found)g(in)f([10],)h(w)m(e)h(include)e (it)g(for)h(the)300 1798 y(completeness)g(purp)s(ose.)p Black 300 1960 a Fj(L)-5 b(emma)34 b(A.1.)p Black 49 w Fu(Let)29 b Fr(f)38 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])28 b(and)h(let)e Fr(x)i Fq(2)f Fu([0)p Fr(;)17 b Fu(1])28 b(b)s(e)g(\014xed.)44 b(Denote)28 b(b)m(y)i Fr(\013)3177 1975 y Fo(n)3224 1960 y Fu(\()p Fr(x)p Fu(\))e(=)f(\()p Fr(L)3590 1975 y Fo(n)3638 1960 y Fu(\(\()p Fr(t)14 b Fq(\000)300 2080 y Fr(x)p Fu(\))393 2044 y Fp(2)433 2080 y Fr(;)j(x)p Fu(\)\))608 2044 y Fp(1)p Fo(=)p Fp(2)718 2080 y Fu(.)43 b(Then)771 2300 y Fq(j)p Fr(L)865 2315 y Fo(n)912 2300 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(e)2042 2315 y Fp(0)2081 2300 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(L)2400 2315 y Fo(n)2447 2300 y Fu(\()p Fr(e)2530 2315 y Fp(0)2570 2300 y Fr(;)17 b(x)p Fu(\))p Fq(j)1563 2445 y Fu(+)84 b(\()p Fr(L)1827 2460 y Fo(n)1874 2445 y Fu(\()p Fr(e)1957 2460 y Fp(0)1997 2445 y Fr(;)17 b(x)p Fu(\))22 b(+)g(\()p Fr(L)2358 2460 y Fo(n)2406 2445 y Fu(\()p Fr(e)2489 2460 y Fp(0)2528 2445 y Fr(;)17 b(x)p Fu(\)\))2703 2404 y Fp(1)p Fo(=)p Fp(2)2813 2445 y Fu(\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(\013)3127 2460 y Fo(n)3173 2445 y Fu(\()p Fr(x)p Fu(\)\))p Fr(:)p Black 197 w Fu(\(A.22\))p Black 300 2665 a(Moreo)m(v)m(er,)34 b(if)e(in)f(addition)g Fr(f)39 b Fq(2)28 b Fr(C)1601 2629 y Fp(1)1640 2665 y Fu([0)p Fr(;)17 b Fu(1],)32 b(then)578 2885 y Fq(j)p Fr(L)672 2900 y Fo(n)719 2885 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(e)1849 2900 y Fp(0)1888 2885 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(L)2207 2900 y Fo(n)2254 2885 y Fu(\()p Fr(e)2337 2900 y Fp(0)2377 2885 y Fr(;)17 b(x)p Fu(\))p Fq(j)22 b Fu(+)g Fq(j)p Fr(f)2749 2844 y Fl(0)2771 2885 y Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)3024 2900 y Fo(n)3071 2885 y Fu(\(\()p Fr(t)h Fq(\000)f Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))p Fq(j)1370 3031 y Fu(+)84 b(\(1)22 b(+)g(\()p Fr(L)1841 3046 y Fo(n)1888 3031 y Fu(\()p Fr(e)1971 3046 y Fp(0)2011 3031 y Fr(;)17 b(x)p Fu(\)\))2186 2989 y Fp(1)p Fo(=)p Fp(2)2296 3031 y Fu(\))p Fr(\013)2396 3046 y Fo(n)2443 3031 y Fu(\()p Fr(x)p Fu(\))p Fr(w)s Fu(\()p Fr(f)2744 2989 y Fl(0)2766 3031 y Fu(;)g Fr(\013)2872 3046 y Fo(n)2919 3031 y Fu(\()p Fr(x)p Fu(\)\))p Fr(:)p Black 451 w Fu(\(A.23\))p Black 446 3251 a Fm(Pro)s(of.)44 b Fu(Let)32 b Fr(t)c Fq(2)g Fu([0)p Fr(;)17 b Fu(1])32 b(and)h Fr(r)d(>)e(\013)1782 3266 y Fo(n)1829 3251 y Fu(\()p Fr(x)p Fu(\).)44 b(Prop)s(ert)m(y)33 b(\(ii\))e(of)h Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))31 b(ab)s(o)m(v)m(e)i(giv)m(es)920 3471 y Fq(j)p Fr(f)11 b Fu(\()p Fr(t)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)27 b(\024)h Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fq(j)p Fr(t)k Fq(\000)i Fr(x)p Fq(j)p Fu(\))k Fq(\024)i Fu(\(1)21 b(+)h Fr(r)2495 3429 y Fl(\000)p Fp(1)2589 3471 y Fq(j)p Fr(t)g Fq(\000)h Fr(x)p Fq(j)p Fu(\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))p Fr(:)300 3691 y Fu(Since)32 b Fr(L)620 3706 y Fo(n)667 3691 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))k Fq(\000)f Fr(f)11 b Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(L)1401 3706 y Fo(n)1448 3691 y Fu(\()p Fr(f)j Fq(\000)21 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))j(+)g Fr(L)2172 3706 y Fo(n)2219 3691 y Fu(\()p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))k Fq(\000)f Fr(f)11 b Fu(\()p Fr(x)p Fu(\),)32 b(since)g Fr(L)3255 3706 y Fo(n)3334 3691 y Fu(is)f(a)h(p)s(ositiv)m(e)300 3811 y(linear)f(op)s(erator,)h (and)h(since)g Fr(w)s Fu(\()p Fr(af)11 b Fu(;)17 b Fr(r)s Fu(\))26 b(=)h Fq(j)p Fr(a)p Fq(j)p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))31 b(for)h(an)m(y)h(constan)m(t)h Fr(a)p Fu(,)754 4031 y Fq(j)p Fr(L)848 4046 y Fo(n)895 4031 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)g(j)p Fr(L)1800 4046 y Fo(n)1847 4031 y Fu(\()p Fr(f)33 b Fq(\000)23 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))p Fq(j)22 b Fu(+)g Fq(j)p Fr(L)2635 4046 y Fo(n)2682 4031 y Fu(\()p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)1546 4176 y(\024)83 b Fr(L)1772 4191 y Fo(n)1820 4176 y Fu(\()p Fq(j)p Fr(f)32 b Fq(\000)23 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)p Fr(;)17 b(x)p Fu(\))22 b(+)g Fq(j)p Fr(L)2635 4191 y Fo(n)2682 4176 y Fu(\()p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)1546 4322 y(\024)83 b Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\)\()p Fr(L)2109 4337 y Fo(n)2155 4322 y Fu(\()p Fr(e)2238 4337 y Fp(0)2277 4322 y Fr(;)g(x)p Fu(\))23 b(+)f Fr(r)2582 4280 y Fl(\000)p Fp(1)2676 4322 y Fr(L)2742 4337 y Fo(n)2789 4322 y Fu(\()p Fq(j)p Fr(t)g Fq(\000)h Fr(x)p Fq(j)p Fr(;)17 b(x)p Fu(\)\))1762 4467 y(+)27 b Fq(j)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)2205 4482 y Fo(n)2252 4467 y Fu(\()p Fr(e)2335 4482 y Fp(0)2374 4467 y Fr(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(e)2678 4482 y Fp(0)2718 4467 y Fu(\()p Fr(x)p Fu(\))p Fq(j)p Fr(:)300 4687 y Fu(In)k(the)g(ab)s(o)m(v)m(e)g Fr(f)21 b Fq(\000)10 b Fr(f)h Fu(\()p Fr(x)p Fu(\))27 b(means)g(the)g(function)f Fr(t)i Fq(!)f Fr(f)11 b Fu(\()p Fr(t)p Fu(\))f Fq(\000)g Fr(f)h Fu(\()p Fr(x)p Fu(\).)42 b(No)m(w)27 b(the)g(Cauc)m(h)m(y-Sc)m (h)m(w)m(arz)300 4807 y(inequalit)m(y)32 b(for)g(p)s(ositiv)m(e)f (functionals)h(implies)e(that)650 5027 y Fr(L)716 5042 y Fo(n)763 5027 y Fu(\()p Fq(j)p Fr(t)22 b Fq(\000)h Fr(x)p Fq(j)p Fr(;)17 b(x)p Fu(\))27 b Fq(\024)i Fu(\()p Fr(L)1443 5042 y Fo(n)1490 5027 y Fu(\(\()p Fr(t)22 b Fq(\000)h Fr(x)p Fu(\))1816 4986 y Fp(2)1855 5027 y Fr(;)17 b(x)p Fu(\)\))2040 4959 y Fg(1)p 2040 4971 31 3 v 2040 5012 a(2)2085 5027 y Fu(\()p Fr(L)2189 5042 y Fo(n)2236 5027 y Fu(\()p Fr(e)2319 5042 y Fp(0)2359 5027 y Fr(;)g(x)p Fu(\)\))2544 4959 y Fg(1)p 2544 4971 V 2544 5012 a(2)2616 5027 y Fu(=)28 b(\()p Fr(L)2824 5042 y Fo(n)2871 5027 y Fu(\()p Fr(e)2954 5042 y Fp(0)2993 5027 y Fr(;)17 b(x)p Fu(\)\))3178 4959 y Fg(1)p 3178 4971 V 3178 5012 a(2)3223 5027 y Fr(\013)3285 5042 y Fo(n)3332 5027 y Fu(\()p Fr(x)p Fu(\))p Fr(:)300 5247 y Fu(Therefore,)34 b(since)f Fr(r)d(>)e(\013)1248 5262 y Fo(n)1295 5247 y Fu(\()p Fr(x)p Fu(\))33 b(and)f(b)s(ecause)i (of)e(prop)s(ert)m(y)i(\(i\))d(of)h Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))31 b(ab)s(o)m(v)m(e,)357 5467 y Fq(j)p Fr(L)451 5482 y Fo(n)498 5467 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))23 b Fq(\000)f Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)28 b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)1539 5482 y Fo(n)1585 5467 y Fu(\()p Fr(e)1668 5482 y Fp(0)1708 5467 y Fr(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(e)2012 5482 y Fp(0)2051 5467 y Fu(\()p Fr(x)p Fu(\))p Fq(j)f Fu(+)g(\()p Fr(L)2434 5482 y Fo(n)2482 5467 y Fu(\()p Fr(e)2565 5482 y Fp(0)2604 5467 y Fr(;)17 b(x)p Fu(\))22 b(+)h(\()p Fr(L)2966 5482 y Fo(n)3013 5467 y Fu(\()p Fr(e)3096 5482 y Fp(0)3135 5467 y Fr(;)17 b(x)p Fu(\)\))3310 5426 y Fp(1)p Fo(=)p Fp(2)3420 5467 y Fu(\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))p Fr(:)p Black Black eop %%Page: 60 69 60 68 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33 b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(60)p Black 300 274 a(Since)33 b Fr(r)d(>)e(\013)795 289 y Fo(n)842 274 y Fu(\()p Fr(x)p Fu(\))k(is)h(arbitrary)-8 b(,)31 b(w)m(e)j(get)e (\(A.22\).)446 395 y(If)h(in)f(addition)e Fr(f)39 b Fq(2)28 b Fr(C)1300 358 y Fp(1)1339 395 y Fu([0)p Fr(;)17 b Fu(1],)32 b(then)i(from)850 615 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))27 b(=)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b(+)g Fr(f)1520 574 y Fl(0)1543 615 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)g Fq(\000)h Fr(x)p Fu(\))f(+)h(\()p Fr(f)11 b Fu(\()p Fr(t)p Fu(\))21 b Fq(\000)i Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(f)2783 574 y Fl(0)2806 615 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)f Fq(\000)h Fr(x)p Fu(\)\))p Fr(;)578 934 y Fq(j)p Fr(L)672 949 y Fo(n)719 934 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)1870 949 y Fo(n)1916 934 y Fu(\()p Fr(e)1999 949 y Fp(0)2039 934 y Fr(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(e)2343 949 y Fp(0)2382 934 y Fu(\()p Fr(x)p Fu(\))p Fq(j)g Fu(+)f Fq(j)p Fr(f)2749 893 y Fl(0)2771 934 y Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)3024 949 y Fo(n)3071 934 y Fu(\(\()p Fr(t)h Fq(\000)f Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))p Fq(j)1370 1080 y Fu(+)84 b Fr(L)1596 1095 y Fo(n)1643 1080 y Fu(\()p Fq(j)p Fr(f)11 b Fu(\()p Fr(t)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)g Fr(f)2371 1038 y Fl(0)2394 1080 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)h Fq(\000)g Fr(x)p Fu(\))p Fq(j)p Fr(;)17 b(x)p Fu(\))p Fr(:)300 1300 y Fu(Let)33 b Fr(r)d(>)e(\013)715 1315 y Fo(n)762 1300 y Fu(\()p Fr(x)p Fu(\).)43 b(Since)33 b Fq(j)p Fr(f)11 b Fu(\()p Fr(t)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)f Fr(f)1908 1263 y Fl(0)1931 1300 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)h Fq(\000)f Fr(x)p Fu(\))p Fq(j)28 b(\024)g(j)p Fr(t)22 b Fq(\000)h Fr(x)p Fq(j)p Fu(\(1)f(+)g Fr(r)3033 1263 y Fl(\000)p Fp(1)3127 1300 y Fq(j)p Fr(t)g Fq(\000)h Fr(x)p Fq(j)p Fu(\))p Fr(w)s Fu(\()p Fr(f)3603 1263 y Fl(0)3625 1300 y Fu(;)17 b Fr(r)s Fu(\),)373 1520 y Fr(L)439 1535 y Fo(n)486 1520 y Fu(\()p Fq(j)p Fr(f)11 b Fu(\()p Fr(t)p Fu(\))21 b Fq(\000)i Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(f)1214 1478 y Fl(0)1237 1520 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)g Fq(\000)f Fr(x)p Fu(\))p Fq(j)p Fr(;)17 b(x)p Fu(\))83 b Fq(\024)h Fu([)p Fr(L)2158 1535 y Fo(n)2205 1520 y Fu(\()p Fq(j)p Fr(t)22 b Fq(\000)h Fr(x)p Fq(j)p Fr(;)17 b(x)p Fu(\))22 b(+)g Fr(r)2815 1478 y Fl(\000)p Fp(1)2909 1520 y Fr(\013)2972 1478 y Fp(2)2971 1544 y Fo(n)3018 1520 y Fu(\()p Fr(x)p Fu(\)])p Fr(w)s Fu(\()p Fr(f)3346 1478 y Fl(0)3369 1520 y Fu(;)17 b Fr(r)s Fu(\))1904 1665 y Fq(\024)84 b Fu([\()p Fr(L)2196 1680 y Fo(n)2243 1665 y Fu(\()p Fr(e)2326 1680 y Fp(0)2366 1665 y Fr(;)17 b(x)p Fu(\)\))2541 1624 y Fp(1)p Fo(=)p Fp(2)2651 1665 y Fr(\013)2713 1680 y Fo(n)2760 1665 y Fu(\()p Fr(x)p Fu(\))22 b(+)g Fr(\013)3074 1624 y Fp(2)3073 1690 y Fo(n)3120 1665 y Fu(\()p Fr(x)p Fu(\))p Fr(r)3298 1624 y Fl(\000)p Fp(1)3393 1665 y Fu(])p Fr(w)s Fu(\()p Fr(f)3590 1624 y Fl(0)3612 1665 y Fu(;)17 b Fr(r)s Fu(\))p Fr(:)300 1885 y Fu(Since)33 b Fr(r)d(>)e(\013)795 1900 y Fo(n)842 1885 y Fu(\()p Fr(x)p Fu(\))k(is)h(arbitrary)-8 b(,)31 b(w)m(e)j(get)e(\(A.23\).)p 2314 1860 89 4 v 2314 1910 4 50 v 2399 1910 V 2314 1913 89 4 v Black Black eop %%Page: 61 70 61 69 bop Black Black Black Black 1641 118 a Fn(App)t(endix)54 b(B)p Black Black 1180 550 a(A)f(SOUR)l(CE)g(CODE)h(IN)g(C)p Black Black 300 1314 a Fd(/*)40 b(File)g(name:)g(CpaDpll.c)339 1405 y(*)g(Updated)h(by:)e(June)i(28,)79 b(2000)339 1496 y(*)339 1588 y(*)40 b(This)g(program)h(computes)g(invarient)g(density)g (of)e(DPLL)i(using)339 1679 y(*)f(completely)h(parallel)g(algorithm)h (\(CPA\))339 1770 y(*)339 1862 y(*)339 1953 y(*)e(Usage:)g(\(wiglaf\)) 339 2044 y(*)g(Compiling:)h(hcc)f(-O3)g(-ffloat-store)i(CpaDpll.c)f (-lmpi)g(-lm)339 2136 y(*)f(Run:)g(\(1\))g(Check)g(host)g(file:)h(h4) 339 2227 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339 2318 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339 2410 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h(Proc\))g(a.out) h([--)f(arg])339 2501 y(*)g(\(5\))g(Clear)g(lam:)g(wipe)g(-v)g(h4)339 2592 y(*)300 2684 y(*/)300 2958 y(#include<stdio.h>)300 3049 y(#include)h(<stdlib.h>)300 3140 y(#include<math.h>)300 3232 y(#include<time.h>)300 3323 y(#include)g("mpi.h")300 3505 y(double)g(p[5000][5000];)h(/*)e(entries)h(of)e(Ulam's)i(matrix)f (P_n)589 b(*/)300 3597 y(int)40 b(M=1000;)433 b(/*)40 b(#)f(of)h(quasi-random)i(numbers)f(in)e(a)h(subinterval)h(*/)300 3688 y(int)f(L=3,N;)472 b(/*)40 b(N=2^L;)g(N)g(is)f(number)i(of)f (subintervals)355 b(*/)300 3779 y(int)40 b(P,)g(id;)471 b(/*)40 b(P,)f(#)h(of)g(processors.)h(id,)f(each)g(processor)i(ID)78 b(*/)300 3871 y(MPI_Status)42 b(status;)300 4053 y(/*)e(sub_routines)i (*/)300 4145 y(double)f(S\(double)g(t\);)510 b(/*)40 b(system)h(of)e(DPLL)590 b(*/)300 4236 y(double)41 b(mod\(double)g(x,)f (double)g(y\);)g(/*)g(modulus)h(function)512 b(*/)300 4327 y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)197 b(/*)40 b(check)g(belong)h(to)f(?)471 b(*/)300 4419 y(void)40 b(matrix\(\);)708 b(/*)40 b(Ulam's)h(matrix)f(computing)238 b(*/)300 4510 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)119 b(/*)40 b(iteration)h(method)512 b(*/)300 4601 y(void)40 b(density\(\);)669 b(/*)40 b(density)h(computation)h(function)f(*/)300 4784 y(/*)f(The)g(main)g(routine)h(*/)300 4875 y(int)f(main\(int)h (argc,)f(char)g(*argv[]\))300 4967 y({)614 5058 y (MPI_Init\(&argc,&argv\);)614 5149 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q (P\);)614 5241 y(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614 5423 y(if)g(\()f(argc)h(>)g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614 5515 y(if)h(\()f(argc)h(>)g(2)f(\))g(M)h(=)f(atoi\(argv[2]\);)p Black 2021 5764 a Fu(61)p Black eop %%Page: 62 71 62 70 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(62)p Black 614 274 a Fd(N)39 b(=)h(pow\(2.0,)h(\(double\)L\);)614 366 y(density\(\);)614 457 y(MPI_Finalize\(\);)614 640 y(return)f(0;)300 731 y(})300 914 y(/*)g(dynamic)h(system)f(DPLL)g(*/)300 1005 y(double)h(S\(double)g(t\))300 1096 y({)614 1187 y(double)f(y,)g(t0,)g(twoPI;)614 1279 y(double)g(k)g(=)f(8.5,)h(A)g(=)f (0.25;)614 1461 y(twoPI)h(=)g(4.0*asin\(1.0\);)614 1553 y(t0)g(=)f(t)g(+)h(k/\(1.0+A*sin\(t\)\);)614 1644 y(y)f(=)79 b(mod\(t0)41 b(,)e(twoPI\);)614 1735 y(return)h(y;)300 1827 y(})300 2009 y(double)h(mod\(double)g(x,)f(double)g(y\))300 2101 y({)614 2192 y(double)g(remain,)h(temp;)614 2283 y(int)f(temp2;)614 2466 y(temp=x/y;)614 2557 y(temp2=\(int\)temp;)614 2649 y(remain=x-y*temp2;)614 2740 y(return)g(remain;)300 2831 y(})300 3105 y(/*)g(check)g(if)g(a)f(point)i(belong)f(to)g([ah,)g (ah+h])g(*/)300 3197 y(int)g(be_to\(double)i(t,)e(int)f(a\))300 3288 y({)614 3379 y(double)h(twoPI,)h(h;)614 3471 y(twoPI)f(=)g (4.0*asin\(1.0\);)614 3562 y(h=twoPI/\(double\)N;)614 3745 y(if\(\(t<=a*h+h\))i(&&)e(\(t>=a*h\)\))928 3836 y(return)g(1;)614 3927 y(else)928 4019 y(return)g(0;)300 4110 y(})300 4384 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/) 300 4475 y(void)f(matrix\(\))300 4566 y({)614 4658 y(int)g(i,)f(j,)h (k,)g(count;)614 4749 y(double)g(h,)g(temp,)g(i_left;)614 4840 y(double)g(R[M];)h(/*)e(Array)i(of)f(random)g(numbers)h(*/)614 5023 y(h=4.0*asin\(1.0\)/\(double\)N;)614 5206 y(for\(i=0;)g(i<N;)f (i++\))614 5297 y({)928 5388 y(i_left=i*h;)928 5480 y(for\(j=N*id/P;)i (j<N*\(id+1\)/P;)g(j++\))p Black Black eop %%Page: 63 72 63 71 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(63)p Black 928 274 a Fd({)1241 366 y(count)41 b(=)e(0;)967 457 y(/*)h(produce)g(M)g (uniform)h(sampling)g(number)f(in)g([i_left,)h(i_right])967 548 y(*/)1241 640 y(for\(k=0;)h(k<M;)e(k++\))1241 731 y({)1241 822 y(R[k]=i_left+k*h/M;)1241 914 y(/*)g(MC)g(method:)1241 1005 y(R[k]=i_left+h*rand\(\)/\(doubl)q(e\)RA)q(ND_MA)q(X;)1241 1096 y(*/)1241 1187 y(temp=S\(R[k]\);)1555 1279 y(if)g(\(be_to\(temp,)i (j\)\))1869 1370 y(count)e(+=)g(1;)1241 1461 y(})1241 1553 y(p[i][j]=\(double\)count/M;)888 1644 y(})614 1735 y(})614 1827 y(/*)g(check!)614 1918 y(for\(i=0;)h(i<10;)f(i++\))g({)928 2009 y(for\(j=0;)h(j<10;)f(j++\))g({)1241 2101 y(printf\("\0455.4f)j (",)c(p[i][j]\);)928 2192 y(})928 2283 y(printf\("\\n"\);)614 2375 y(})614 2466 y(printf\("\\n"\);)614 2557 y(*/)300 2649 y(})300 2831 y(/*)h(Direct)g(iteration)i(with)e(parallel)h (commmunication)h(*/)300 2923 y(void)e(iter\(int)h(n,)f(double)g(z[]\)) 300 3014 y({)614 3105 y(double)g(temp;)614 3197 y(int)g(i,j,)g(r,)g (dim,)g(s,)f(part,)i(len;)614 3288 y(long)f(start,end;)614 3379 y(double)g(h,)g(e=0.1,)h(time=0;)614 3471 y(double)f(err,)h(err1,) f(y[N];)614 3562 y(double)g(trad[N],)h(tsad[N];)614 3653 y(int)f(sad,)g(rad;)614 3836 y(h)f(=)h(4.0*asin\(1.0\)/\(double\)n;)k (/*)c(step)g(length)h(*/)614 3927 y(r)e(=)h(n/P;)79 b(/*)40 b(each)g(processor)h(compute)g(r)e(column)i(of)f(matrix)g(*/)614 4019 y(temp)g(=)f(log\(\(double\)P\)/log\(2.0\);)614 4110 y(dim)h(=)f(\(int\)temp;)81 b(/*)40 b(communication)i(times)e(*/) 614 4384 y(/*)g(initial)g(*/)614 4475 y(for\(i=0;)h(i<n;)f(i++\))614 4566 y({)928 4658 y(z[i])g(=)f(1.0;)928 4749 y(y[i])h(=)f(0.0;)614 4840 y(})614 4932 y(/*)h(Timing)g(the)g(iteration)h(computing)h(*/)614 5023 y(do)614 5114 y({)928 5206 y(time++;)928 5297 y(err=0.0;)928 5480 y(for\(j=n*id/P;j<n*\(id+1\)/P;j++\))p Black Black eop %%Page: 64 73 64 72 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(64)p Black 928 274 a Fd({)1241 366 y(y[j]=0;)1241 457 y(for\(i=0;i<n;i++\))1555 548 y(y[j])40 b(+=)g(p[i][j]*z[i];)1869 640 y(/*)g(P^*c=c)80 b(*/)928 731 y(})614 822 y(/*)40 b(Start)g(commu)g(using)h(hypercube)g (structure)g(*/)928 914 y(sad)f(=)f(r)g(*)h(id;)g(/*)g(sender)g (address)h(*/)928 1005 y(i)e(=)h(0;)928 1096 y(while\()g(i<dim\))928 1187 y({)1241 1279 y(temp)h(=)e(pow\(2.0,)i(\(double\)i\);)1241 1370 y(s=\(int\)temp;)1241 1461 y(part)g(=)e(id)h(^)f(s;)h(/*)g (partner)g(ID)g(*/)1241 1553 y(len)g(=)g(s)f(*)h(r;)118 b(/*)40 b(the)f(length)i(of)f(the)g(transferring)i(data)e(*/)1241 1644 y(tsad[0])h(=)f(sad;)g(/*)g(tell)g(partner)h(the)e(sender)i (address)g(*/)1241 1735 y(for\(j=1;)h(j<=len;)e(j++\))1555 1827 y(tsad[j])h(=)f(y[sad)g(+)f(j)h(-)f(1];)1555 1918 y(/*)h(temporary)h(sender)g(address)g(*/)1241 2009 y(MPI_Send\(tsad,)i (len+1,)d(MPI_DOUBLE,)i(part,)1555 2101 y(id+part,MPI_COMM_WORLD\);) 1241 2192 y(MPI_Recv\(trad,)h(len+1,)d(MPI_DOUBLE,)i(part,)1555 2283 y(id+part,MPI_COMM_WORLD,)j(&status\);)1241 2375 y(rad)40 b(=)g(trad[0];)h(/*)f(receive)g(the)g(sender)h(address)g(*/) 1241 2466 y(for\(j=1;)h(j<=len;)e(j++\))1555 2557 y(y[rad)h(+)e(j)h(-)f (1])h(=)f(trad[j];)1241 2649 y(if\(sad)i(>)f(rad\))1555 2740 y(sad)g(=)g(rad;)1241 2831 y(i)g(+=)g(1;)928 2923 y(})614 3014 y(/*)g(End)f(commu)i(*/)928 3105 y(for\(i=0;i<n;i++\))928 3197 y({)1241 3288 y(err1=fabs\(y[i]-z[i]\);)1241 3379 y(err+=err1;)1241 3471 y(z[i]=y[i];)928 3562 y(})614 3653 y(})614 3745 y(while\(err>=e\);)300 3836 y(})300 4110 y(/*)f(Density)h(function)g(vector)f(x[i])g(*/)300 4201 y(void)g(density\(\))300 4293 y({)614 4384 y(int)g(i;)614 4475 y(double)g(start,end;)614 4566 y(double)g(h,)g(Timei,)h(Tim;)614 4658 y(double)f(x[N];)158 b(/*)40 b(PDF)g(values)h(*/)614 4840 y(h)e(=)h(4.0*asin\(1.0\)/\(double\)N;)614 4932 y(/*)g(count)g(the)g(parallel)h(matrix)f(computing)i(time)e(*/)614 5023 y(start=MPI_Wtime\(\);)614 5114 y(matrix\(\);)614 5206 y(end=MPI_Wtime\(\);)614 5297 y(Tim=end-start;)614 5480 y(/*)g(Timing)g(the)g(iteration)h(computing)h(*/)p Black Black eop %%Page: 65 74 65 73 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(65)p Black 614 274 a Fd(start=MPI_Wtime\(\);)614 366 y(iter\(N,)41 b(x\);)614 457 y(end=MPI_Wtime\(\);)614 548 y(Timei=end-start;)614 731 y(if\(id==0\))614 822 y({)928 914 y(/*)e(printing)i(the)f(results)h (*/)928 1005 y(printf\("\0457.0f\\n",)i(Tim+Timei\);)928 1096 y(/*)928 1187 y(for\(i=0;)e(i<N;)f(i++\))928 1279 y(printf\("\0455.4f)i(\\t)e(\0455.4f\\n",)h(\(i+1\)*h,)g(x[i]\);)928 1370 y(*/)614 1461 y(})300 1644 y(})p Black Black eop %%Page: 66 75 66 74 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(66)p Black Black Black 300 366 a Fd(/*)40 b(File)g(name:)g(UmpaDpll.c)339 457 y(*)g(Updated)h(by:)e(June)i(28,)e(2000)339 548 y(*)339 640 y(*)h(This)g(program)h(computes)g(invarient)g(density)g(\(DPLL\)) 339 731 y(*)118 b(using)41 b(Ulam's)f(matrix)h(parallel)g(algorithm)g (\(UMPA\))339 822 y(*)339 914 y(*)f(Usage:)g(\(wiglaf\))339 1005 y(*)g(Compiling:)h(hcc)f(-O3)g(-ffloat-store)81 b(1mpi.c)41 b(-lmpi)f(-lm)339 1096 y(*)g(Run:)g(\(1\))g(Check)g(host)g (file:)h(h4)339 1187 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339 1279 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339 1370 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h (Proc\))g(a.out)h([--)f(arg])339 1461 y(*)g(\(5\))g(Clear)g(lam:)g (wipe)g(-v)g(h4)339 1553 y(*)300 1644 y(*/)300 1918 y (#include<stdio.h>)300 2009 y(#include)h(<stdlib.h>)300 2101 y(#include<math.h>)300 2192 y(#include<time.h>)300 2283 y(#include)g("mpi.h")300 2466 y(double)g(p[5000][5000];)81 b(/*)40 b(Ulam's)h(matrix)1178 b(*/)300 2557 y(int)40 b(M=1000;)472 b(/*)40 b(#)f(of)h(quasi-random)i(numbers)f(in)f(a)f (subinterval)j(*/)300 2649 y(int)e(L=3,N;)511 b(/*)40 b(N=2^L;)h(N)e(is)h(number)g(of)g(subintervals)356 b(*/)300 2740 y(int)40 b(P,)g(id;)510 b(/*)40 b(P)f(#)h(of)g(processors,)h(id)f (the)g(processor's)i(ID)118 b(*/)300 2831 y(MPI_Status)42 b(status;)300 3014 y(/*)e(sub_routines)i(*/)300 3105 y(double)f(S\(double)g(t\);)550 b(/*)39 b(system)i(DPLL)785 b(*/)300 3197 y(double)41 b(mod\(double)g(x,)f(double)g(y\);)80 b(/*)39 b(modulus)i(function)590 b(*/)300 3288 y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)237 b(/*)39 b(check)i(belong)f(to)g (?)549 b(*/)300 3379 y(void)40 b(matrix\(\);)748 b(/*)39 b(Ulam's)i(matrix)f(computing)316 b(*/)300 3471 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)159 b(/*)39 b(iteration)i(method)590 b(*/)300 3562 y(void)40 b(density\(\);)709 b(/*)39 b(density)i (computation)h(function)119 b(*/)300 3745 y(/*)40 b(The)g(main)g (routine)h(*/)300 3836 y(int)f(main\(int)h(argc,)f(char)g(*argv[]\))300 3927 y({)614 4019 y(MPI_Init\(&argc,&argv\);)614 4110 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q(P\);)614 4201 y (MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614 4384 y(if)g(\()f(argc)h(>) g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614 4475 y(if)h(\()f(argc)h(>)g(2)f (\))g(M)h(=)f(atoi\(argv[2]\);)614 4566 y(N)g(=)h(pow\(2.0,)h (\(double\)L\);)614 4658 y(density\(\);)614 4749 y(MPI_Finalize\(\);) 614 4932 y(return)f(0;)300 5023 y(})300 5206 y(/*)g(dynamic)h(system)f (DPLL)g(*/)300 5297 y(double)h(S\(double)g(t\))300 5388 y({)614 5480 y(double)f(y,)g(t0,)g(twoPI;)p Black Black eop %%Page: 67 76 67 75 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(67)p Black 614 274 a Fd(double)40 b(k)g(=)f(8.5,)h(A)g(=)f(0.25;)614 457 y(twoPI)h(=)g(4.0*asin\(1.0\);)614 548 y(t0)g(=)f(t)g(+)h (k/\(1.0+A*sin\(t\)\);)614 640 y(y)f(=)79 b(mod\(t0)41 b(,)e(twoPI\);)614 731 y(return)h(y;)300 822 y(})300 1005 y(/*)g(modulus)h(function)g(*/)300 1096 y(double)g(mod\(double)g (x,)f(double)g(y\))300 1187 y({)614 1279 y(double)g(remain,)h(temp;)614 1370 y(int)f(temp2;)614 1553 y(temp=x/y;)614 1644 y(temp2=\(int\)temp;) 614 1735 y(remain=x-y*temp2;)614 1827 y(return)g(remain;)300 1918 y(})300 2192 y(/*)g(check)g(if)g(a)f(point)i(belong)f(to)g([ah,)g (ah+h])g(*/)300 2283 y(int)g(be_to\(double)i(t,)e(int)f(a\))300 2375 y({)614 2466 y(double)h(h;)614 2649 y(h)f(=)h (4.0*asin\(1.0\)/\(double\)N;)614 2740 y(if\(\(t<=a*h+h\))i(&&)e (\(t>=a*h\)\))928 2831 y(return)g(1;)614 2923 y(else)928 3014 y(return)g(0;)300 3105 y(})300 3379 y(/*)g(Companion)h(matrix)g (of)e(Ulam)h(method)h(*/)300 3471 y(void)f(matrix\(\))300 3562 y({)614 3653 y(int)g(i,)f(j,)h(k,)g(count;)614 3745 y(double)g(h,)g(temp,)g(i_left;)614 3836 y(int)g(part,)g(dim,)g(r,)g (s,)g(len,)g(sad,)g(rad,)g(mask)g(=)g(0;)614 3927 y(double)g (trad[N][N],)i(tsad[N][N];)614 4019 y(double)e(R[M];)158 b(/*)40 b(Array)h(of)e(random)i(numbers)g(*/)614 4201 y(h=4.0*asin\(1.0\)/\(double\)N;)614 4293 y(r)e(=)h(N/P;)g(/*)g(each)g (processor)h(compute)g(r)e(rows)h(of)g(matrix)h(*/)614 4384 y(for\(i=0;)g(i<N;)f(i++\))928 4475 y(for\(j=0;)h(j<N;)f(j++\)) 1241 4566 y(p[i][j])h(=)f(0.0;)614 4749 y (for\(i=r*id;i<r*\(id+1\);i++\))614 4840 y({)928 4932 y(i_left=i*h;)928 5023 y(for\(j=0;j<N;j++\))j({)1241 5114 y(count)e(=)e(0;)614 5206 y(/*)h(produce)g(M)g(quasi)g(random)h (numbers)g(in)e([i_left,)i(i_right])g(*/)1241 5297 y(for\(k=0;)h(k<M;)e (k++\))1241 5388 y({)1555 5480 y(R[k]=i_left+k*h/M;)p Black Black eop %%Page: 68 77 68 76 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(68)p Black 1555 274 a Fd(temp=S\(R[k]\);)1555 366 y(if)40 b(\(be_to\(temp,)i(j\)\))1869 457 y(count)e(+=)g(1;)1241 548 y(})1241 640 y (p[i][j]=\(double\)count/M;)45 b(/*)40 b(entries)h(of)e(matrix)i(*/)888 731 y(})614 822 y(})614 914 y(/*)f(commu)g(start)g(by)g(using)g (hypercube)i(structure)80 b(*/)614 1005 y(temp)40 b(=)f (log\(\(double\)P\)/log\(2.0\);)614 1096 y(dim)h(=)f(\(int\)temp;)81 b(/*)40 b(hypercube)h(dimension)g(*/)614 1187 y(sad)f(=)f(r)h(*)f(id;) 118 b(/*)40 b(sender)h(address)g(*/)614 1370 y(for\(i=0;)g(i<dim;)f (i++\))614 1461 y({)928 1553 y(if\(\(id)g(&)g(mask\))g(==)g(0\))928 1644 y({)1241 1735 y(temp)h(=)e(pow\(2.0,)i(\(double\)i\);)1241 1827 y(s=\(int\)temp;)1241 1918 y(part)g(=)e(id)h(^)f(s;)h(/*)g (partner)g(ID)g(*/)1241 2009 y(len)g(=)g(r)f(*)h(s;)118 b(/*)40 b(the)f(length)i(of)f(the)g(transferring)i(data)e(*/)1241 2101 y(if\(\(id)h(&)f(s\))f(!=)h(0\))1241 2192 y({)1555 2283 y(tsad[0][0])i(=)d(sad;)h(/*)g(tell)g(partner)h(the)f(sender)h (address)f(*/)1555 2375 y(for\(j=1;)h(j<=len;)g(j++\))1869 2466 y(for\(k=0;)g(k<N;)f(k++\))2183 2557 y(tsad[j][k]=p[sad+j-1][k];) 1869 2649 y(MPI_Send\(tsad[0],N*\(len+1\),MP)q(I_DO)q(UBLE)q(,part)q(,) 2183 2740 y(id+part,)h(MPI_COMM_WORLD\);)1241 2831 y(})1241 2923 y(else)1241 3014 y({)1555 3105 y(MPI_Recv\(trad[0],N*\(len+1\),M)q (PI_D)q(OUBLE)q(,par)q(t,)1869 3197 y(id+part,)g(MPI_COMM_WORLD,)i (&status\);)1555 3288 y(rad)d(=)g(trad[0][0];)h(/*)f(receive)h(the)f (sender's)h(address)g(*/)1555 3379 y(for\(j=1;)g(j<=len;)g(j++\))1869 3471 y(for\(k=0;)g(k<N;)f(k++\))2222 3562 y(p[rad+j-1][k]=trad[j][k];) 1555 3653 y(if\(sad)h(>)e(rad\))1869 3745 y(sad)h(=)f(rad;)1241 3836 y(})928 3927 y(})928 4019 y(mask)h(^=)f(s;)614 4110 y(})614 4201 y(/*)h(commu)g(end)g(*/)614 4293 y(/*)g(check)g(!)614 4384 y(for\(i=0;)h(i<10;)f(i++\))g({)928 4475 y(for\(j=0;)h(j<10;)f (j++\))g({)1241 4566 y(printf\("\0455.4f)j(",)c(p[i][j]\);)928 4658 y(})928 4749 y(printf\("\\n"\);)614 4840 y(})614 4932 y(printf\("\\n"\);)614 5023 y(*/)300 5206 y(})300 5388 y(/*)h(iteration)h(method)g(*/)300 5480 y(void)f(iter\(int)h(n,)f (double)g(z[]\))p Black Black eop %%Page: 69 78 69 77 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(69)p Black 300 274 a Fd({)614 366 y(int)40 b(i,j;)614 457 y(double)g(e=0.1,)h(time=0;) 614 548 y(double)f(err,)h(err1,)f(TotalErri,)h(y[N];)614 731 y(/*)f(initial)g(*/)614 822 y(for\(i=0;)h(i<n;)f(i++\))928 914 y(z[i])g(=)f(1;)614 1096 y(do)h({)928 1187 y(time++;)928 1279 y(err=0;)928 1461 y(for\(i=0;i<n;i++\))j({)1359 1553 y(y[i]=0;)1359 1644 y(for\(j=0;j<n;j++\))1673 1735 y(y[i])d(+=)g(p[j][i]*z[j];)81 b(/*)40 b(P^*c=c)80 b(*/)928 1827 y(})1006 2009 y(for\(i=0;i<n;i++\))43 b({)1359 2101 y(err1=fabs\(y[i]-z[i]\);)1359 2192 y(err+=err1;)1359 2283 y(z[i]=y[i];)1045 2375 y(})653 2466 y(})653 2557 y(while\(err>=e\);)300 2649 y(})300 2923 y(/*)d(Density)h(function)g (vector)f(x[i])g(*/)300 3014 y(void)g(density\(\))300 3105 y({)614 3197 y(int)g(i;)614 3288 y(double)g(start,end;)614 3379 y(double)g(h,)g(Timei,)h(Tim;)614 3471 y(double)f(x[N];)80 b(/*)40 b(PDF)g(value)g(*/)614 3653 y(h=4.0*asin\(1.0\)/\(double\)N;) 614 3745 y(/*)g(timing)g(the)g(Ulam's)h(matrix)f(computation)i(*/)614 3836 y(start=MPI_Wtime\(\);)614 3927 y(matrix\(\);)614 4019 y(end=MPI_Wtime\(\);)614 4110 y(Tim=end-start;)614 4201 y(/*)e(set)f(other)i(processors)g(idle)f(*/)614 4293 y(if\(id>0\))614 4384 y({)888 4475 y(MPI_Finalize\(\);)888 4566 y(exit\(1\);)614 4658 y(})614 4840 y(/*)g(Timing)g(the)g (iteration)h(computing)h(*/)614 4932 y(start=MPI_Wtime\(\);)614 5023 y(iter\(N,)f(x\);)614 5114 y(end=MPI_Wtime\(\);)614 5206 y(Timei=end-start;)614 5388 y(/*)f(printing)h(the)e(results)i(*/) 614 5480 y(printf\("p#\\t)h(N\\t)e(matrixT\(s\)\\t)i(iterT\(s\)\\t)f (Total)g(Time\\n"\);)p Black Black eop %%Page: 70 79 70 78 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(70)p Black 614 274 a Fd(printf\("\\n\045d\\t)42 b(\045d\\t)e(\0457.0f\\t)h (\0457.0f\\t)g(\0457.0f\\n",)928 366 y(P,)e(N,)h(Tim,)g(Timei,)h (Tim+Timei\);)614 457 y(/*)614 548 y(printf\("\\n"\);)614 640 y(for\(i=0;i<N;i++\))928 731 y(printf\("\0455.4f)h(\\t)e (\0455.4f\\n",)h(\(i+1\)*h,)g(x[i]\);)614 822 y(*/)300 914 y(})p Black Black eop %%Page: 71 80 71 79 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(71)p Black Black Black 300 366 a Fd(/*)40 b(File)g(name:)g(cpa.c)339 457 y(*)g(Updated)h(by:)e(June)i(25,)e(2000)339 548 y(*)339 640 y(*)236 b(This)40 b(program)h(computes)g(invarient)g(density)g (\(1-D)f(on)g([0,)g(1]\))339 731 y(*)236 b(using)40 b(CPA)339 822 y(*)339 914 y(*)g(Usage:)g(\(wiglaf\))339 1005 y(*)g(Compiling:)h (hcc)79 b(-O3)40 b(-ffloat-store)i(cpa.c)f(-lmpi)f(-lm)339 1096 y(*)g(Run:)g(\(1\))g(Check)g(host)g(file:)h(h4)339 1187 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339 1279 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339 1370 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h(Proc\))g(a.out) h([--)f(arg])339 1461 y(*)g(\(5\))g(Clear)g(lam:)g(wipe)g(-v)g(h4)339 1553 y(*)339 1644 y(*)236 b(PLEASE)40 b(see)g(former)h(code)f(for)g (MORE)g(comments)300 1735 y(*/)300 2009 y(#include<stdio.h>)300 2101 y(#include)h(<stdlib.h>)300 2192 y(#include<math.h>)300 2283 y(#include<time.h>)300 2375 y(#include)g("mpi.h")300 2557 y(double)g(p[5000][5000],x[5000];)j(/*)c(Ulam's)g(matrix)h(and)f (density)g(function)120 b(*/)300 2649 y(int)40 b(M=1000;)198 b(/*)39 b(number)i(of)f(quasi-random)i(numbers)e(in)g(a)g(subinterval) 159 b(*/)300 2740 y(int)40 b(MAX=1000;)120 b(/*)39 b(#)h(of)f (rand-number)j(in)e(MC)g(L1-error,)747 b(*/)300 2831 y(int)40 b(L=3,N;)237 b(/*)39 b(N=2^L;)i(N)e(is)h(number)h(of)e (subintervals)j(of)e([0,)g(1])275 b(*/)300 2923 y(int)40 b(P,)g(id;)236 b(/*)39 b(P,)h(#)f(of)h(processors.)i(id,)e(each)g (processor)h(ID)393 b(*/)300 3014 y(MPI_Status)42 b(status;)300 3197 y(/*)e(sub_routines)i(*/)300 3288 y(double)f(S\(double)g(t\);)471 b(/*)40 b(system)g(models)433 b(*/)300 3379 y(double)41 b(function\(double)h(v\);)197 b(/*)40 b(real)g(density)472 b(*/)300 3471 y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)158 b(/*)40 b(check)g(belong)h(to)e(?)275 b(*/)300 3562 y(void)40 b(matrix\(\);)669 b(/*)40 b(Ulam's)g(matrix)h(computing)g(*/)300 3653 y(double)g(TE\(\);)746 b(/*)40 b(L1)f(error)629 b(*/)300 3745 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)80 b(/*)40 b(iteration)h(function)237 b(*/)300 3836 y(void)40 b(density\(\);)630 b(/*)40 b(density)h(function)315 b(*/)300 4019 y(/*)40 b(The)g(main)g(routine)h(*/)300 4110 y(int)f(main\(int)h (argc,)f(char)g(*argv[]\))300 4201 y({)614 4293 y (MPI_Init\(&argc,&argv\);)614 4384 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q (P\);)614 4475 y(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614 4658 y(if)g(\()f(argc)h(>)g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614 4749 y(if)h(\()f(argc)h(>)g(2)f(\))g(M)h(=)f(atoi\(argv[2]\);)614 4840 y(N)g(=)h(pow\(2.0,)h(\(double\)L\);)614 4932 y(density\(\);)614 5023 y(MPI_Finalize\(\);)614 5206 y(return)f(0;)300 5297 y(})300 5480 y(/*)g(dynamic)h(systems)f(and)g(their)h(densities)g(*/)p Black Black eop %%Page: 72 81 72 80 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(72)p Black 300 274 a Fd(/*)300 366 y(\(S2\))300 457 y(double)41 b(S\(double)g(t\))300 548 y({)614 640 y(double)f(y,)g(t1,)g(t2,)g(t3;)614 731 y(t1=fabs\(t-0.5\);)614 822 y(t2=2.0*t1*t1*t1;)614 914 y(t1=1.0/8.0-t2;)614 1005 y(t2=1.0/3.0;)614 1096 y(if\(t1>=0\))928 1187 y(t3=pow\(t1,)h(t2\);)614 1279 y(else)928 1370 y (t3=-pow\(\(-t1\),)h(t2\);)614 1461 y(y=0.5+t3;)614 1553 y(return)e(y;)300 1644 y(})300 1735 y(double)h(function\(double)h(v\)) 300 1827 y({)614 1918 y(double)e(temp,w;)614 2009 y(temp=v-0.5;)575 2101 y(w=12.0*temp*temp;)614 2192 y(return)g(w;)300 2283 y(})300 2466 y(\(S4)g(--)g(logistic)h(modal\))300 2649 y(double)g(S\(double)g(t\))300 2740 y({)614 2831 y(double)f(y;)614 2923 y(y=4*t*\(1-t\);)614 3105 y(return)g(y;)300 3197 y(})300 3288 y(double)h(function\(double)h(v\))300 3379 y({)275 b(double)40 b(temp,w;)614 3471 y(temp=v*\(1-v\);)614 3562 y(if\(temp<=0\))614 3653 y({)275 b(printf\("Wrong!)42 b(Retry!\\n"\);)928 3745 y(exit\(1\);)614 3836 y(})614 3927 y(else)e(w=1/\(3.1415926535*sqrt\(temp\)\))q(;)614 4019 y(return)g(w;)300 4110 y(})300 4293 y(\(S1\))300 4475 y(double)h(S\(double)g(t\))300 4566 y({)275 b(double)40 b(y,)g(temp;)614 4658 y(if\(t==0\))928 4749 y(y=0;)614 4840 y(else)614 4932 y({)275 b(temp=1/t;)928 5023 y(y=temp)40 b(-)g(floor\(temp\);)614 5114 y(})614 5206 y(return)g(y;)300 5297 y(})300 5388 y(double)h(function\(double)h(v\))300 5480 y({)275 b(double)40 b(w;)p Black Black eop %%Page: 73 82 73 81 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(73)p Black 614 274 a Fd(w=1.0/\(log\(2.0\)*\(1.0+v\)\);)614 366 y(return)40 b(w;)300 457 y(})300 640 y(\(S3\))300 731 y(*/)300 822 y(double)h(S\(double)g(t\))300 914 y({)275 b(double)40 b(y,)g(t0,)g(t1,)g(temp;)614 1096 y(t0=1.0/sqrt\(8.0\);)614 1187 y(t1=fabs\(1.0-2*t\);)614 1279 y(if\()g(\(t>t0\))g(&&)g(\()f (t<\(1-t0\))j(\))d(\))614 1370 y({)275 b (temp=1.0-\(1.0-t1\)*\(1.0-t1\);)928 1461 y(y=1.0-sqrt\(temp/2.0\);)614 1553 y(})614 1644 y(else)928 1735 y(y=\(1.0-t1\)/sqrt\(2.0\);)614 1827 y(return)40 b(y;)300 1918 y(})300 2009 y(double)h (function\(double)h(v\))300 2101 y({)275 b(double)40 b(w;)614 2192 y(w=2-fabs\(2-4*v\);)614 2283 y(return)g(w;)300 2375 y(})300 2649 y(/****************************)q(****)q(*****)q (****)q(*****)q(****)q(****)q(*****)q(**/)300 2831 y(/*)g(check)g(if)g (a)f(point)i(belong)f(to)g([ah,)g(ah+h])g(*/)300 2923 y(int)g(be_to\(double)i(t,)e(int)f(a\))300 3014 y({)614 3105 y(double)h(h;)614 3197 y(h=1.0/\(double\)N;)614 3288 y(if\(\(t<=a*h+h\))i(&&)e(\(t>=a*h\)\))928 3379 y(return)g(1;)614 3471 y(else)928 3562 y(return)g(0;)300 3653 y(})300 3927 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/) 300 4019 y(void)f(matrix\(\))300 4110 y({)614 4201 y(int)g(i,)f(j,)h (k,)g(count;)614 4293 y(double)g(h,)g(temp,)g(i_left;)614 4384 y(double)g(R[M];)158 b(/*)40 b(Array)h(of)e(random)i(numbers)g(*/) 614 4566 y(h=1.0/\(double\)N;)614 4658 y(for\(i=0;)g(i<N;)f(i++\))614 4749 y({)928 4840 y(i_left=i*h;)928 4932 y(for\(j=N*id/P;)i (j<N*\(id+1\)/P;)g(j++\))928 5023 y({)1241 5114 y(count)f(=)e(0;)614 5206 y(/*)h(produce)g(M)g(quasi-random)i(number)e(in)g([i_left,)h (i_right])g(*/)1241 5297 y(for\(k=0;)h(k<M;)e(k++\))1241 5388 y({)1555 5480 y(R[k]=i_left+k*h/M;)p Black Black eop %%Page: 74 83 74 82 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(74)p Black 1555 274 a Fd(temp=S\(R[k]\);)1555 366 y(if)40 b(\(be_to\(temp,)i(j\)\))1869 457 y(count)e(+=)g(1;)1241 548 y(})1241 640 y (p[i][j]=\(double\)count/M;)888 731 y(})614 822 y(})614 914 y(/*)614 1005 y(for\(i=0;)h(i<10;)f(i++\))g({)928 1096 y(for\(j=0;)h(j<10;)f(j++\))g({)1241 1187 y(printf\("\0455.4f)j (",)c(p[i][j]\);)928 1279 y(})928 1370 y(printf\("\\n"\);)614 1461 y(})614 1553 y(printf\("\\n"\);)614 1644 y(*/)300 1735 y(})300 1918 y(/*)h(using)g(MC)g(integration)h(to)f(compute)h (L1-error)g(*/)300 2009 y(double)g(TE\(\))300 2101 y({)614 2192 y(double)f(value=0.0;)614 2283 y(int)g(i,)f(temp;)614 2375 y(double)h(var;)614 2557 y(for\(i=0;)h(i<MAX;)f(i++\))614 2649 y({)928 2740 y(var=\(double\)rand\(\)/RAND_MAX;)928 2831 y(temp=var*N;)928 2923 y(value)g(+=)g (fabs\(function\(var\)-x[temp]\);)614 3014 y(})614 3105 y(value)g(/=)g(MAX;)614 3197 y(return)g(value;)300 3288 y(})300 3471 y(/*)g(Direct)g(iteration)i(with)e(parallel)h(commmu)f(*/) 300 3562 y(void)g(iter\(int)h(n,)f(double)g(z[]\))300 3653 y({)614 3745 y(double)g(temp;)614 3836 y(int)g(i,j,)g(r,)g(dim,)g (s,)f(part,)i(len;)614 3927 y(long)f(start,end;)614 4019 y(double)g(h,)g(e=0.1,)h(time=0;)614 4110 y(double)f(err,)h(err1,)f (y[N];)614 4201 y(double)g(trad[N],)h(tsad[N];)614 4293 y(int)f(sad,)g(rad;)614 4475 y(h)f(=)h(4.0*asin\(1.0\)/\(double\)n;)k (/*)c(step)g(length)h(*/)614 4566 y(r)e(=)h(n/P;)g(/*)g(each)g (processor)h(compute)g(r)e(column)i(of)f(matrix)g(*/)614 4658 y(temp)g(=)f(log\(\(double\)P\)/log\(2.0\);)614 4749 y(dim)h(=)f(\(int\)temp;)81 b(/*)40 b(communication)i(times)e(*/) 614 5023 y(/*)g(initial)g(*/)614 5114 y(for\(i=0;)h(i<n;)f(i++\))614 5206 y({)928 5297 y(z[i])g(=)f(1.0;)928 5388 y(y[i])h(=)f(0.0;)614 5480 y(})p Black Black eop %%Page: 75 84 75 83 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(75)p Black 614 274 a Fd(/*)40 b(Timing)g(the)g(iteration)h(computing)h(*/)614 366 y(do)614 457 y({)928 548 y(time++;)928 640 y(err=0.0;)928 822 y(for\(j=n*id/P;j<n*\(id+1\)/P;j++\))928 914 y({)1241 1005 y(y[j]=0;)1241 1096 y(for\(i=0;i<n;i++\))1555 1187 y(y[j])e(+=)g(p[i][j]*z[i];)1869 1279 y(/*)g(P^*c=c)80 b(*/)928 1370 y(})300 1461 y(/*)40 b(Start)g(commu)g(*/)928 1553 y(sad)g(=)f(r)g(*)h(id;)928 1644 y(i)f(=)h(0;)928 1735 y(while\()g(i<dim\))928 1827 y({)1241 1918 y(temp)h(=)e(pow\(2.0,) i(\(double\)i\);)1241 2009 y(s=\(int\)temp;)1241 2101 y(part)g(=)e(id)h(^)f(s;)1241 2192 y(len)h(=)g(s)f(*)h(r;)1241 2283 y(tsad[0])h(=)f(sad;)1241 2375 y(for\(j=1;)i(j<=len;)e(j++\))1555 2466 y(tsad[j])h(=)f(y[sad)g(+)f(j)h(-)f(1];)1241 2649 y(MPI_Send\(tsad,)k(len+1,)d(MPI_DOUBLE,)i(part,)1555 2740 y(id+part,MPI_COMM_WORLD\);)1241 2831 y(MPI_Recv\(trad,)h(len+1,)d (MPI_DOUBLE,)i(part,)1555 2923 y(id+part,MPI_COMM_WORLD,)j(&status\);) 1241 3014 y(rad)40 b(=)g(trad[0];)1241 3105 y(for\(j=1;)i(j<=len;)e (j++\))1555 3197 y(y[rad)h(+)e(j)h(-)f(1])h(=)f(trad[j];)1241 3288 y(if\(sad)i(>)f(rad\))1555 3379 y(sad)g(=)g(rad;)1241 3471 y(i)g(+=)g(1;)928 3562 y(})300 3653 y(/*)g(End)g(commu)g(*/)928 3745 y(for\(i=0;i<n;i++\))928 3836 y({)1241 3927 y (err1=fabs\(y[i]-z[i]\);)1241 4019 y(err+=err1;)1241 4110 y(z[i]=y[i];)928 4201 y(})614 4293 y(})614 4384 y(while\(err>=e\);)300 4475 y(})300 4658 y(/*)g(Density)h(function)g (vector)f(x[i])g(*/)300 4749 y(void)g(density\(\))300 4840 y({)614 4932 y(double)g(TotalErri;)614 5023 y(int)g(i;)614 5114 y(double)g(start,end;)614 5206 y(double)g(h,)g(Timei,)h(Tim;)614 5388 y(/*)f(timing)g(Ulam's)h(matrix)f(computing)i(*/)614 5480 y(start=MPI_Wtime\(\);)p Black Black eop %%Page: 76 85 76 84 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(76)p Black 614 274 a Fd(matrix\(\);)614 366 y(end=MPI_Wtime\(\);)614 457 y(Tim=end-start;)614 640 y(/*)40 b(Timing)g(the)g(iteration)h (computing)h(*/)614 731 y(start=MPI_Wtime\(\);)614 822 y(iter\(N,)f(x\);)614 914 y(end=MPI_Wtime\(\);)614 1005 y(Timei=end-start;)614 1187 y(TotalErri=TE\(\);)121 b(/*)40 b(L^1)g(error)g(*/)614 1370 y(if\(id==0\))614 1461 y({)928 1553 y(/*)f(printing)i(the)f(results)928 1644 y(printf\("p#\\t)i(N\\t)e (matrixT\(s\)\\t)h(iterT\(s\)\\t)1202 1735 y(Total)g(Time)f(\\t)f (L1-Error\\n"\);)928 1827 y(*/)928 1918 y(printf\("\\n\045d\\t)j (\045d\\t)e(\0457.2f\\t)h(\0457.2f\\t)g(\0457.2f)f(\\t)g(\0457.6f)g (\\t)g(\045d\\n",)1241 2009 y(P,)g(N,)g(Tim,)g(Timei,)h(Tim+Timei,)g (TotalErri,)h(M\);)928 2101 y(/*)928 2192 y(for\(i=0;)f(i<N;)f(i++\)) 1241 2283 y(printf\(")159 b(\0455.4f\\n",)41 b(x[i]\);)928 2375 y(*/)614 2466 y(})300 2649 y(})p Black Black eop %%Page: 77 86 77 85 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(77)p Black Black Black 300 548 a Fd(/*)40 b(File)g(name:)g(umpa.c)339 640 y(*)g(Updated)h(by:)e(May)h(6,)g(2000)339 731 y(*)339 822 y(*)g(This)g(program)h(computes)g(invarient)g(density)g(\(1-D)f(on) g([0,)g(1]\))339 914 y(*)79 b(using)40 b(UMPA)339 1005 y(*)339 1096 y(*)g(Usage:)g(\(wiglaf\))339 1187 y(*)g(Compiling:)h(hcc) 79 b(-O3)40 b(-ffloat-store)160 b(umpa.c)41 b(-lmpi)f(-lm)339 1279 y(*)g(Run:)g(\(1\))g(Check)g(host)g(file:)h(h4)339 1370 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339 1461 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339 1553 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h(Proc\))g(a.out) h([--)f(arg])339 1644 y(*)g(\(5\))g(Clear)g(lam:)g(wipe)g(-v)g(h4)339 1735 y(*)339 1827 y(*)236 b(PLEASE)40 b(see)g(former)h(code)f(for)g (MORE)g(comments)300 1918 y(*/)300 2192 y(#include<stdio.h>)300 2283 y(#include)h(<stdlib.h>)300 2375 y(#include<math.h>)300 2466 y(#include<time.h>)300 2557 y(#include)g("mpi.h")300 2740 y(double)g(p[5000][5000],x[5000];)j(/*)c(Ulam's)g(matix,)h (density)g(function)786 b(*/)300 2831 y(int)40 b(M=1000;)747 b(/*)40 b(number)g(of)g(quasi-random)i(numbers)f(in)e(a)h(subinterval) 120 b(*/)300 2923 y(int)40 b(MAX=1000;)669 b(/*)40 b(#)f(of)h (rand-number)h(in)f(MC)g(L1-error)747 b(*/)300 3014 y(int)40 b(L=3,N;)786 b(/*)40 b(N=2^L;)g(N)g(is)f(number)i(of)f(subintervals)h (of)f([0,)g(1])236 b(*/)300 3105 y(int)40 b(P,)g(id;)785 b(/*)40 b(P,)f(#)h(of)f(Working)i(processors.)h(id,)e(each)g(processor) h(ID)f(*/)300 3197 y(MPI_Status)i(status;)300 3379 y(/*)e(sub_routines) i(*/)300 3471 y(double)f(S\(double)g(t\);)432 b(/*)40 b(system)g(models)433 b(*/)300 3562 y(double)41 b(function\(double)h (v\);)158 b(/*)40 b(real)g(density)472 b(*/)300 3653 y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)119 b(/*)40 b(check)g(belong)g(to)g(?)275 b(*/)300 3745 y(void)40 b(matrix\(\);)630 b(/*)40 b(Ulam's)g(matrix)h(computing)g(*/)300 3836 y(double)g(TE\(\);)707 b(/*)40 b(L1)f(error)629 b(*/)300 3927 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)h(/*)f (iteration)h(function)237 b(*/)300 4019 y(void)40 b(density\(\);)591 b(/*)40 b(density)g(function)316 b(*/)300 4201 y(/*)40 b(The)g(main)g(routine)h(*/)300 4293 y(int)f(main\(int)h(argc,)f(char)g (*argv[]\))300 4384 y({)614 4475 y(MPI_Init\(&argc,&argv\);)614 4566 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q(P\);)614 4658 y(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614 4840 y(if)g(\()f(argc)h (>)g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614 4932 y(if)h(\()f(argc)h(>)g (2)f(\))g(M)h(=)f(atoi\(argv[2]\);)614 5023 y(N)g(=)h(pow\(2.0,)h (\(double\)L\);)614 5114 y(density\(\);)614 5206 y(MPI_Finalize\(\);) 614 5388 y(return)f(0;)300 5480 y(})p Black Black eop %%Page: 78 87 78 86 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(78)p Black 300 366 a Fd(/*)40 b(dynamic)h(systems)f(and)g(their)h(densities)g(*/)300 457 y(/*)300 548 y(\(S2\))300 640 y(double)g(S\(double)g(t\))300 731 y({)614 822 y(double)f(y,)g(t1,)g(t2,)g(t3;)614 914 y(t1=fabs\(t-0.5\);)614 1005 y(t2=2.0*t1*t1*t1;)614 1096 y(t1=1.0/8.0-t2;)614 1187 y(t2=1.0/3.0;)614 1279 y(if\(t1>=0\))928 1370 y(t3=pow\(t1,)h(t2\);)614 1461 y(else)928 1553 y (t3=-pow\(\(-t1\),)h(t2\);)614 1644 y(y=0.5+t3;)614 1735 y(return)e(y;)300 1827 y(})300 1918 y(double)h(function\(double)h(v\)) 300 2009 y({)614 2101 y(double)e(temp,w;)614 2192 y(temp=v-0.5;)575 2283 y(w=12.0*temp*temp;)614 2375 y(return)g(w;)300 2466 y(})300 2649 y(\(S4)g(--)g(logistic)h(model\))300 2831 y(double)g(S\(double)g(t\))300 2923 y({)614 3014 y(double)f(y;)614 3105 y(y=4*t*\(1-t\);)614 3288 y(return)g(y;)300 3379 y(})300 3471 y(double)h(function\(double)h(v\))300 3562 y({)275 b(double)40 b(temp,w;)614 3653 y(temp=v*\(1-v\);)614 3745 y(if\(temp<=0\))614 3836 y({)275 b(printf\("Wrong!)42 b(Retry!\\n"\);)928 3927 y(exit\(1\);)614 4019 y(})614 4110 y(else)e(w=1/\(3.1415926535*sqrt\(temp\)\))q(;)614 4201 y(return)g(w;)300 4293 y(})300 4475 y(\(S1\))300 4658 y(double)h(S\(double)g(t\))300 4749 y({)275 b(double)40 b(y,)g(temp;)614 4840 y(if\(t==0\))928 4932 y(y=0;)614 5023 y(else)614 5114 y({)275 b(temp=1/t;)928 5206 y(y=temp)40 b(-)g(floor\(temp\);)614 5297 y(})614 5388 y(return)g(y;)300 5480 y(})p Black Black eop %%Page: 79 88 79 87 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(79)p Black 300 274 a Fd(double)41 b(function\(double)h(v\))300 366 y({)275 b(double)40 b(w;)614 457 y(w=1.0/\(log\(2.0\)*\(1.0+v\)\);)614 548 y(return)g(w;)300 640 y(})300 822 y(\(S2\))300 914 y(*/)300 1005 y(double)h(S\(double)g(t\))300 1096 y({)275 b(double)40 b(y,)g(t0,)g(t1,)g(temp;)614 1279 y(t0=1.0/sqrt\(8.0\);)614 1370 y(t1=fabs\(1.0-2*t\);)614 1461 y(if\()g(\(t>t0\))g(&&)g(\()f (t<\(1-t0\))j(\))d(\))614 1553 y({)275 b (temp=1.0-\(1.0-t1\)*\(1.0-t1\);)928 1644 y(y=1.0-sqrt\(temp/2.0\);)614 1735 y(})614 1827 y(else)928 1918 y(y=\(1.0-t1\)/sqrt\(2.0\);)614 2009 y(return)40 b(y;)300 2101 y(})300 2192 y(double)h (function\(double)h(v\))300 2283 y({)275 b(double)40 b(w;)614 2375 y(w=2-fabs\(2-4*v\);)614 2466 y(return)g(w;)300 2557 y(})300 2831 y(/****************************)q(****)q(*****)q (****)q(*****)q(****)q(****)q(*****)q(**/)300 3014 y(/*)g(check)g(if)g (a)f(point)i(belong)f(to)g([ah,)g(ah+h])g(*/)300 3105 y(int)g(be_to\(double)i(t,)e(int)f(a\))300 3197 y({)300 3288 y(double)i(h;)300 3379 y(h=1.0/\(double\)N;)614 3471 y(if\(\(t<=a*h+h\))h(&&)e(\(t>=a*h\)\))928 3562 y(return)g(1;)614 3653 y(else)928 3745 y(return)g(0;)300 3836 y(})300 4110 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/) 300 4201 y(void)f(matrix\(\))300 4293 y({)614 4384 y(int)g(i,)f(j,)h (k,)g(count;)614 4475 y(double)g(h,)g(temp,)g(i_left;)614 4566 y(int)g(part,)g(dim,)g(r,)g(s,)g(len,)g(sad,)g(rad,)g(mask)g(=)g (0;)614 4658 y(double)g(trad[N][N],)i(tsad[N][N];)614 4749 y(double)e(R[M];)158 b(/*)40 b(Array)h(of)e(random)i(numbers)g(*/) 614 4932 y(h=1.0/\(double\)N;)614 5023 y(r)e(=)h(N/P;)614 5114 y(for\(i=0;)h(i<N;)f(i++\))614 5206 y(for\(j=0;)h(j<N;)f(j++\))614 5297 y(p[i][j])h(=)e(0.0;)614 5480 y(for\(i=r*id;i<r*\(id+1\);i++\))p Black Black eop %%Page: 80 89 80 88 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(80)p Black 614 274 a Fd({)928 366 y(i_left=i*h;)928 457 y(for\(j=0;j<N;j++\))43 b({)1241 548 y(count)e(=)e(0;)1241 640 y(/*)h(produce)h(M)e(random)i (number)g(in)e([i_left,)i(i_right])g(*/)1241 731 y(for\(k=0;)h(k<M;)e (k++\))1241 822 y({)1555 914 y(R[k]=i_left+k*h/M;)1555 1005 y(temp=S\(R[k]\);)1555 1096 y(if)g(\(be_to\(temp,)i(j\)\))1869 1187 y(count)e(+=)g(1;)1241 1279 y(})1241 1370 y (p[i][j]=\(double\)count/M;)888 1461 y(})614 1553 y(})300 1644 y(/*)g(commu)g(start)g(*/)614 1735 y(temp)g(=)f (log\(\(double\)P\)/log\(2.0\);)614 1827 y(dim)h(=)f(\(int\)temp;)614 1918 y(sad)h(=)f(r)h(*)f(id;)614 2101 y(for\(i=0;)i(i<dim;)f(i++\))614 2192 y({)928 2283 y(if\(\(id)g(&)g(mask\))g(==)g(0\))928 2375 y({)1241 2466 y(temp)h(=)e(pow\(2.0,)i(\(double\)i\);)1241 2557 y(s=\(int\)temp;)1241 2649 y(part)g(=)e(id)h(^)f(s;)1241 2740 y(len)h(=)g(r)f(*)h(s;)1241 2831 y(if\(\(id)h(&)f(s\))f(!=)h(0\)) 1241 2923 y({)1555 3014 y(tsad[0][0])i(=)d(sad;)1555 3105 y(for\(j=1;)i(j<=len;)g(j++\))1869 3197 y(for\(k=0;)g(k<N;)f (k++\))2104 3288 y(tsad[j][k]=p[sad+j-1][k];)2104 3379 y(MPI_Send\(tsad[0],N*\(len+1\),)q(MPI_)q(DOUBL)q(E,pa)q(rt,)2418 3471 y(id+part,)h(MPI_COMM_WORLD\);)1241 3562 y(})1241 3653 y(else)1241 3745 y({)1555 3836 y(MPI_Recv\(trad[0],N*\(len+1\),M)q (PI_D)q(OUBLE)q(,par)q(t,)1869 3927 y(id+part,)g(MPI_COMM_WORLD,)i (&status\);)1555 4019 y(rad)d(=)g(trad[0][0];)1555 4110 y(for\(j=1;)h(j<=len;)g(j++\))1869 4201 y(for\(k=0;)g(k<N;)f(k++\))1555 4293 y(p[rad+j-1][k]=trad[j][k];)1555 4384 y(if\(sad)h(>)e(rad\))1555 4475 y(sad)h(=)g(rad;)1281 4566 y(})928 4658 y(})928 4749 y(mask)g(^=)f(s;)535 4840 y(})300 4932 y(/*)h(commu)g(end)g(*/)535 5023 y(/*)g(print)g(part)h(of)e(Ulam's)i(matrix)535 5114 y(for\(i=0;)g(i<10;)g(i++\))f({)928 5206 y(for\(j=0;)h(j<10;)f(j++\))g ({)1241 5297 y(printf\("\0455.4f)j(",)c(p[i][j]\);)928 5388 y(})928 5480 y(printf\("\\n"\);)p Black Black eop %%Page: 81 90 81 89 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(81)p Black 535 274 a Fd(})535 366 y(printf\("\\n"\);)535 457 y(*/)300 640 y(})300 822 y(/*)40 b(using)g(MC)g(integration)h(to)f(compute)h (L1-error)g(*/)300 914 y(double)g(TE\(\))300 1005 y({)614 1096 y(double)f(value=0.0;)614 1187 y(int)g(i,)f(temp;)614 1279 y(double)h(var;)614 1461 y(for\(i=0;)h(i<MAX;)f(i++\))614 1553 y({)928 1644 y(var=\(double\)rand\(\)/RAND_MAX;)928 1735 y(temp=var*N;)928 1827 y(value)g(+=)g (fabs\(function\(var\)-x[temp]\);)614 1918 y(})614 2009 y(value)g(/=)g(MAX;)614 2101 y(return)g(value;)300 2192 y(})300 2375 y(/*)g(iteration)h(function)g(*/)300 2466 y(void)f(iter\(int)h(n,)f(double)g(z[]\))300 2557 y({)614 2649 y(int)g(i,j;)614 2740 y(double)g(e=0.1,)h(time=0;)614 2831 y(double)f(err,)h(err1,)f(TotalErri,)h(y[N];)614 3014 y(/*)f(initial)g(*/)614 3105 y(for\(i=0;)h(i<n;)f(i++\))928 3197 y(z[i])g(=)f(1;)614 3379 y(do)h({)1006 3471 y(time++;)1006 3562 y(err=0;)1006 3745 y(for\(i=0;i<n;i++\))j({)1320 3836 y(y[i]=0;)1320 3927 y(for\(j=0;j<n;j++\))1320 4019 y(y[i])d(+=)g(p[j][i]*z[j];)81 b(/*)40 b(P^*c=c)80 b(*/)1006 4110 y(})1006 4293 y(for\(i=0;i<n;i++\))43 b({)1320 4384 y(err1=fabs\(y[i]-z[i]\);)1320 4475 y(err+=err1;)1320 4566 y(z[i]=y[i];)1006 4658 y(})614 4749 y(})614 4840 y(while\(err>=e\);)300 4932 y(})300 5114 y(/*)d(Density)h(function)g (vector)f(x[i])g(*/)300 5206 y(void)g(density\(\))300 5297 y({)614 5388 y(double)g(TotalErri;)614 5480 y(int)g(i;)p Black Black eop %%Page: 82 91 82 90 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(82)p Black 614 274 a Fd(double)40 b(start,end;)614 366 y(double)g(h,)g(Timei,)h(Tim;) 300 548 y(/*)f(timing)g(Ulam's)h(matrix)f(computing)i(*/)614 640 y(start=MPI_Wtime\(\);)614 731 y(matrix\(\);)614 822 y(end=MPI_Wtime\(\);)614 914 y(Tim=end-start;)614 1096 y(if\(id>0\))80 b(/*)40 b(set)g(other)g(processors)i(idle)e(*/)614 1187 y({)928 1279 y(MPI_Finalize\(\);)928 1370 y(exit\(1\);)614 1461 y(})614 1735 y(/*)g(Timing)g(the)g(iteration)h(computing)h(*/)614 1827 y(start=MPI_Wtime\(\);)614 1918 y(iter\(N,)f(x\);)614 2009 y(end=MPI_Wtime\(\);)614 2101 y(Timei=end-start;)614 2283 y(TotalErri=TE\(\);)h(/*)e(L^1)g(error)g(*/)614 2466 y(/*)g(printing)h(the)e(results)614 2557 y(printf\("p#\\t)j(N\\t)e (matrixT\(s\)\\t)i(iterT\(s\)\\t)f(Total)g(Time)f(\\t)f (L1-Error\\n"\);)614 2649 y(*/)614 2740 y(printf\("\\n\045d\\t)j (\045d\\t)e(\0457.2f\\t)h(\0457.2f\\t)g(\0457.2f)f(\\t)g(\0457.6f)g (\\t)g(\045d\\n",)928 2831 y(P,)f(N,)h(Tim,)g(Timei,)h(Tim+Timei,)g (TotalErri,)h(M\);)614 2923 y(/*)614 3014 y(for\(i=0;)f(i<N;)f(i++\)) 928 3105 y(printf\(")158 b(\0455.4f\\n",)42 b(x[i]\);)614 3197 y(*/)300 3288 y(})p Black Black eop %%Page: 83 92 83 91 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(83)p Black Black Black 300 366 a Fd(/*)236 b(File)40 b(name:)119 b(qmc.c)339 457 y(*)236 b(Updated)41 b(by)e(Oct.)h(29,)g(1999)339 548 y(*)339 640 y(*)236 b(This)40 b(program)h(computes)g(density)g (function)g(with)f(MC/QMC)339 731 y(*)236 b(and)40 b(IA/GA)g (\(sequential\))339 822 y(*)339 914 y(*)236 b(PLEASE)40 b(see)g(former)h(code)f(for)g(MORE)g(comments)300 1005 y(*/)300 1187 y(#include<stdio.h>)300 1279 y(#include)h(<stdlib.h>)300 1370 y(#include<math.h>)300 1461 y(#include<time.h>)300 1644 y(double)g(p[2000][2000],x[2000];)83 b(/*)40 b(Ulam)g(matrix)g (and)g(density)h(function)355 b(*/)300 1735 y(double)41 b(R[2000];)629 b(/*)40 b(store)g(the)g(random)h(number)707 b(*/)300 1827 y(int)40 b(M=1000;)786 b(/*)40 b(number)g(of)g(random)h (numbers)f(in)g(a)g(interval)119 b(*/)300 1918 y(int)40 b(L=3,N;)825 b(/*)40 b(N=2^L;)g(N)g(is)f(number)i(of)f(sub-intervals) 238 b(*/)300 2101 y(/*)40 b(sub_routines)i(*/)300 2192 y(double)f(S\(double)g(t\);)942 b(/*)39 b(systems)865 b(*/)300 2283 y(double)41 b(function\(double)h(v\);)668 b(/*)39 b(real)i(density)f(function)316 b(*/)300 2375 y(int)40 b(be_to\(double)i(t,)e(double)g(a,)g(double)g(b\);)119 b(/*)39 b(check)i(if)f(t)f(belongs)i(to)e([a,)h(b])g(*/)300 2466 y(void)g(matrix\(\);)1140 b(/*)39 b(Ulam's)i(matrix)g(evaluation) 198 b(*/)300 2557 y(double)41 b(Err\(double)g(a,)f(double)g(b,)g (double)h(ex\);)f(/*)f(error)i(function)g(in)f(TE\(\))275 b(*/)300 2649 y(double)41 b(TE\(\);)1217 b(/*)39 b(L^1)h(error)h (computation)316 b(*/)300 2740 y(void)40 b(iter\(int)h(n,)f(double)g (z[]\);)551 b(/*)39 b(iteration)j(method)511 b(*/)300 2831 y(void)40 b(gauss\(int)h(n,)f(double)h(z[]\);)511 b(/*)39 b(Gaussian)j(elimination)355 b(*/)300 2923 y(void)40 b(density\(\);)300 3105 y(/*)g(The)g(main)g(routine)h(*/)300 3197 y(int)f(main\(int)h(argc,)f(char)g(*argv[]\))300 3288 y({)614 3379 y(if)g(\()f(argc)h(>)g(1)f(\))g(L)h(=)f (atoi\(argv[1]\);)614 3471 y(if)h(\()f(argc)h(>)g(2)f(\))g(M)h(=)f (atoi\(argv[2]\);)614 3562 y(N)g(=)h(pow\(2.0,)h(\(double\)L\);)614 3653 y(density\(\);)614 3836 y(return)f(0;)300 3927 y(})300 4110 y(/*)g(dynamic)h(systems)f(and)g(their)h(unique)f(density)h (functions)81 b(*/)300 4201 y(/*)300 4293 y(\(S2\))300 4475 y(double)41 b(S\(double)g(t\))300 4566 y({)614 4658 y(double)f(y,)g(t1,)g(t2,)g(t3;)614 4749 y(t1=fabs\(t-0.5\);)614 4840 y(t2=2.0*t1*t1*t1;)614 4932 y(t1=1.0/8.0-t2;)614 5023 y(t2=1.0/3.0;)614 5114 y(if\(t1>=0\))928 5206 y(t3=pow\(t1,)h (t2\);)614 5297 y(else)928 5388 y(t3=-pow\(\(-t1\),)h(t2\);)614 5480 y(y=0.5+t3;)p Black Black eop %%Page: 84 93 84 92 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(84)p Black 614 274 a Fd(return)40 b(y;)300 366 y(})300 457 y(double)h (function\(double)h(v\))300 548 y({)614 640 y(double)e(temp,w;)614 731 y(temp=v-0.5;)575 822 y(w=12.0*temp*temp;)614 914 y(return)g(w;)300 1005 y(})300 1187 y(\(S4)g(--)g(logistic)h(model\)) 300 1279 y(*/)300 1370 y(double)g(S\(double)g(t\))300 1461 y({)614 1553 y(double)f(y;)614 1644 y(y=4*t*\(1-t\);)614 1827 y(return)g(y;)300 1918 y(})300 2009 y(double)h(function\(double)h (v\))300 2101 y({)275 b(double)40 b(temp,w;)614 2192 y(temp=v*\(1-v\);)614 2283 y(if\(temp<=0\))614 2375 y({)275 b(printf\("Wrong!)42 b(Retry!\\n"\);)928 2466 y(exit\(1\);)614 2557 y(})614 2649 y(else)e(w=1/\(3.1415926535*sqrt\(temp\)\))q(;)614 2740 y(return)g(w;)300 2831 y(})300 2923 y(/*)300 3014 y(\(S1\))300 3197 y(double)h(S\(double)g(t\))300 3288 y({)275 b(double)40 b(y,)g(temp;)614 3379 y(if\(t==0\))928 3471 y(y=0;)614 3562 y(else)614 3653 y({)275 b(temp=1/t;)928 3745 y(y=temp)40 b(-)g(floor\(temp\);)614 3836 y(})614 3927 y(return)g(y;)300 4019 y(})300 4110 y(double)h(function\(double)h (v\))300 4201 y({)275 b(double)40 b(w;)614 4293 y (w=1.0/\(log\(2.0\)*\(1.0+v\)\);)614 4384 y(return)g(w;)300 4475 y(})300 4658 y(\(S3\))300 4840 y(double)h(S\(double)g(t\))300 4932 y({)275 b(double)40 b(y,)g(t0,)g(t1,)g(temp;)614 5023 y(t0=1.0/sqrt\(8.0\);)614 5114 y(t1=fabs\(1.0-2*t\);)614 5206 y(if\()g(\(t>t0\))g(&&)g(\()f(t<\(1-t0\))j(\))d(\))614 5297 y({)g(temp=1.0-\(1.0-t1\)*\(1.0-t1\);)928 5388 y (y=1.0-sqrt\(temp/2.0\);)614 5480 y(})p Black Black eop %%Page: 85 94 85 93 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(85)p Black 614 274 a Fd(else)928 366 y(y=\(1.0-t1\)/sqrt\(2.0\);)614 457 y(return)40 b(y;)300 548 y(})300 640 y(double)h(function\(double)h (v\))300 731 y({)275 b(double)40 b(w;)614 822 y(w=2-fabs\(2-4*v\);)614 914 y(return)g(w;)300 1005 y(})300 1096 y(*/)300 1279 y(/****************************)q(****)q(*****)q(****)q(*****)q(****)q (****)q(*****)q(**/)300 1461 y(/*)g(check)g(if)g(a)f(point)i(belong)f (to)g([a,)g(b])f(*/)300 1553 y(int)h(be_to\(double)i(t,)e(double)g(a,)g (double)g(b\))300 1644 y({)614 1735 y(if\(\(t<=b\))h(&&)f(\(t>=a\)\)) 928 1827 y(return)g(1;)614 1918 y(else)928 2009 y(return)g(0;)300 2101 y(})300 2375 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/) 300 2466 y(void)f(matrix\(\))300 2557 y({)614 2649 y(int)g(i,)f(j,)h (k,)g(count;)614 2740 y(double)g(h,)g(temp,)g(i_left,)h(i_right;)614 2831 y(double)f(j_left,)h(j_right;)614 3014 y(h=1.0/\(double\)N;)614 3105 y(for\(i=1;i<=N;i++\))i({)928 3197 y(i_left=\(i-1\)*h;)928 3288 y(i_right=i*h;)888 3379 y(/*)d(produce)h(M)e(random)i(number)g(in) e([i_left,)i(i_right])g(*/)928 3471 y(for\(k=0;)g(k<M;)f(k++\))g({)888 3562 y(/*)g(QMC)g(*/)1241 3653 y(R[k]=i_left)i(+)e(k*h/M;)888 3745 y(/*)g(MC)1241 3836 y(temp)h(=)e(rand\(\)/\(double\)RAND_MAX;)1241 3927 y(R[k]=i_left=\(i-1\)*h+)44 b(h)c(*)f(temp;)928 4019 y(*/)928 4110 y(})928 4201 y(for\(j=1;j<=N;j++\))k({)1241 4293 y(j_left=\(j-1\)*h;)1241 4384 y(j_right=j*h;)1241 4475 y(count)e(=)e(0;)1241 4566 y(for\(k=0;)j(k<M;)e(k++\))1241 4658 y({)275 b(temp=S\(R[k]\);)1555 4749 y(if)40 b(\(be_to\(temp,)i (j_left,)f(j_right\)\))1830 4840 y(count)f(+=)g(1;)1241 4932 y(})1281 5023 y(p[i][j]=\(double\)count/M;)928 5114 y(})614 5206 y(})300 5297 y(/*)236 b(for\(i=1;)41 b(i<10;)f(i++\))g({) 928 5388 y(for\(j=1;)h(j<10;)f(j++\))g({)1241 5480 y(printf\("\0455.4f) j(",)c(p[i][j]\);)p Black Black eop %%Page: 86 95 86 94 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(86)p Black 928 274 a Fd(})928 366 y(printf\("\\n"\);)614 457 y(})300 548 y(*/)300 640 y(})300 822 y(/*)79 b(function)41 b(used)f(in)g (TE\(\))g(*/)300 914 y(double)h(Err\(double)g(a,)f(double)g(b,)g (double)h(ex\))300 1005 y({)275 b(double)40 b(tem1,tem2;)614 1096 y(double)g(err1,err2,err3,err;)614 1279 y (err1=0.888888889*fabs\(function)q(\(\(a+)q(b\)/2\))q(-ex\))q(;)614 1370 y(tem1=\(b+a\)/2+0.7745966692*\(b-a)q(\)/2;)614 1461 y(tem2=\(b+a\)/2-0.7745966692*\(b-a)q(\)/2;)614 1553 y(err2=0.555555556*fabs\(function)q(\(tem)q(1\)-ex)q(\);)614 1644 y(err3=0.555555556*fabs\(function)q(\(tem)q(2\)-ex)q(\);)614 1735 y(err=\(err1+err2+err3\)*\(b-a\)/2;)614 1827 y(return\(err\);)300 1918 y(})300 2101 y(/*)g(Gaussian)h(integration)g(method)g(to)f (compute)h(the)e(L1-eror)300 2192 y(/*)h(in)f(function)i(Err)f(and)g (TE)g(*/)300 2283 y(double)h(TE\(\))300 2375 y({)275 b(int)40 b(i;)614 2466 y(double)g(h,a,b,err,Totalerr=0;)614 2649 y(h=1/\(double\)N;)614 2740 y(for\(i=1;i<=N;i++\))614 2831 y({)275 b(a=\(i-1\)*h;)888 2923 y(b=i*h;)888 3014 y(err=Err\(a,b,x[i]\);)888 3105 y(Totalerr+=err;)614 3197 y(})614 3288 y(return\(Totalerr\);)300 3379 y(})300 3562 y(/*)40 b(Iteration)h(method)g(*/)300 3653 y(void)f(iter\(int)h (n,)f(double)g(z[]\))300 3745 y({)614 3836 y(int)g(i,)f(j;)614 3927 y(double)h(e=0.1,)h(time=0,)g(err,)f(err1,)80 b(y[2000];)614 4110 y(/*)40 b(initial)g(*/)614 4201 y(for\(i=1;)h(i<=n;)f(i++\))928 4293 y(z[i])g(=)f(1;)614 4475 y(do)h({)1045 4566 y(time++;)1045 4658 y(err=0;)1045 4840 y(for\(i=1;i<=n;i++\))j({)1359 4932 y(y[i]=0;)1359 5023 y(for\(j=1;j<=n;j++\))1359 5114 y(y[i])d(+=)g(p[j][i]*z[j];)81 b(/*)40 b(P^*c=c)80 b(*/)1045 5206 y(})1006 5388 y(for\(i=1;i<=n;i++\))43 b({)1359 5480 y(err1=fabs\(y[i]-z[i]\);)p Black Black eop %%Page: 87 96 87 95 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(87)p Black 1359 274 a Fd(err+=err1;)1359 366 y(z[i]=y[i];)1045 457 y(})614 548 y(})614 640 y(while\(err>=e\);)300 731 y(})300 914 y(/*)40 b(Gaussian)h(Elimination)g(*/)300 1005 y(void)f(gauss\(int)h (n,)f(double)h(z[]\))300 1096 y({)614 1187 y(double)f(b[2000],)h (t[2000];)614 1279 y(double)f(temp,)h(sum=0;)614 1370 y(int)f(s,i,j,point;)614 1553 y(for\(s=1;s<=n;s++\))928 1644 y(p[s][s]-=1;)928 1735 y(for\(s=1;s<=n;s++\))1241 1827 y(b[s]=0;)614 2009 y(for\(s=1;s<=n-1;s++\))j({)928 2101 y(t[s]=p[s][s];)928 2192 y(point=s;)928 2283 y (for\(i=s+1;i<=n;i++\))g({)118 b(/*)40 b(Pivotting)h(*/)1241 2375 y(t[i]=p[s][i];)1241 2466 y(if\(fabs\(t[s]\)<fabs\(t[i]\)\))k({) 1555 2557 y(t[s]=t[i];)1555 2649 y(point=i;)1241 2740 y(})928 2831 y(})928 2923 y(for\(j=s;j<=n;j++\))e({)1241 3014 y(t[j]=p[j][s];)1241 3105 y(p[j][s]=p[j][point];)1241 3197 y(p[j][point]=t[j];)928 3288 y(})928 3471 y (if\(fabs\(p[s][s]\)<=5e-20\))h({)1241 3562 y(printf\("No)e (solution!\\n"\);)1241 3653 y(exit\(1\);)928 3745 y(})928 3927 y(for\(j=s+1;j<=n;j++\))h({)1241 4019 y(for\(i=s+1;i<=n;i++\))1555 4110 y(p[j][i]-=p[j][s]*p[s][i]/p[s)q(][s])q(;)928 4201 y(})614 4293 y(})614 4384 y(if\(fabs\(p[n][n]\)>0.05\))614 4475 y({)275 b(printf\("No)41 b(solution!\\n"\);)928 4566 y(exit\(1\);)614 4658 y(})614 4840 y(z[n]=1;)614 4932 y(for\(j=1;j<=n-1;j++\))83 b(/*)39 b(backward)i(solving)g(*/)575 5023 y({)314 b(for\(i=1;i<=n-j;i++\))1241 5114 y (b[i]-=p[n+1-j][i]*z[n+1-j];)928 5206 y(z[n-j]=b[n-j]/p[n-j][n-j];)614 5297 y(})614 5480 y(for\(i=1;i<=n;i++\))82 b(/*)40 b(Nomorlizing)i(*/)p Black Black eop %%Page: 88 97 88 96 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33 b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(88)p Black 928 274 a Fd(sum+=z[i];)614 366 y(temp=\(float\)n/sum;)614 457 y(for\(i=1;i<=n;i++\))928 548 y(z[i]*=temp;)300 640 y(})300 822 y(/*)40 b(Density)h(function)g(vector)f(x[i])g(*/)300 914 y(void)g(density\(\))300 1005 y({)614 1096 y(double)g (Err,TotalErr,)j(TotalErri;)614 1187 y(int)d(i,j;)614 1279 y(long)g(start,end;)614 1370 y(double)g(Timei,)h(Time,)f(Tim;)300 1553 y(/*)g(timing)g(Ulam's)h(matrix)f(computation)i(*/)614 1644 y(start=clock\(\);)614 1735 y(matrix\(\);)614 1827 y(end=clock\(\);)614 1918 y(Tim=\(\(double\)end-start\)/\(10000)q(.0*C) q(LK_TC)q(K\);)614 2101 y(/*)e(Timing)g(the)g(Iteration)h(Algorithm)h (*/)614 2192 y(start=clock\(\);)614 2283 y(iter\(N,)f(x\);)614 2375 y(TotalErri=TE\(\);)82 b(/*)d(/*)39 b(L^1)h(error)h(for)e(IA)h(*/) 614 2466 y(end=clock\(\);)614 2557 y (Timei=\(\(double\)end-start\)/\(100)q(00.0)q(*CLK_)q(TCK\))q(;)614 2740 y(/*)g(Timing)g(Gaussian)h(Algorithm)g(*/)614 2831 y(start=clock\(\);)614 2923 y(gauss\(N,)g(x\);)614 3014 y(TotalErr=TE\(\);)81 b(/*)e(L^1)40 b(error)h(for)f(GA)f(*/)614 3105 y(end=clock\(\);)614 3197 y(Time=\(\(double\)end-start\)/\(1000)q (0*CL)q(K_TCK)q(\);)614 3471 y(/*)614 3562 y(for\(i=1;i<=N;i++\))928 3653 y(printf\("\0455.4f\\n",)k(x[i]\);)614 3836 y(*/)614 3927 y(printf\("L)e(\\t)f(N)f(\\t)h(L^1_Err_i)h(\\t)f(L^1_Err_g)h(\\t)f (matrixT\(s\)\\t)928 4019 y(iterT\(s\))h(\\t)e(GuauT\(s\))81 b(rand_num\\n"\);)614 4110 y(printf\("\\n\045d)42 b(\\t)79 b(\045d)39 b(\\t)h(\0457.6f)g(\\t)g(\0457.6f)g(\\t)g(\0455.2f)h(\\t)e (\0455.2f)i(\\t)928 4201 y(\0455.2f)f(\\t)g(\045d\\n",)g(L,)g(N,)g (TotalErri,TotalErr,)j(Tim,)d(Timei,Time,)i(M\);)300 4384 y(})p Black Black eop %%Page: 89 98 89 97 bop Black Black Black Black 1422 136 a Fn(BIBLIOGRAPHY)p Black 345 831 a Fc([1])p Black 50 w(C.)27 b(Bec)m(k)i(and)e(F.)g(Sc)m (hl\177)-45 b(ogl.)35 b Fb(Thermo)-5 b(dynamics)33 b(of)d(Chaotic)h (Systems)p Fc(.)36 b(Cam)m(bridge)27 b(Univ)m(ersit)m(y)490 943 y(Press,)j(1993.)p Black 345 1128 a([2])p Black 50 w(C.)c(Bose)g(and)g(R.)f(Murra)m(y)-8 b(.)34 b(The)25 b(exact)i(rate)g(of)f(appro)m(ximation)e(in)h(ulam's)f(metho)s(d.)33 b Fb(pr)-5 b(eprint)p Fc(,)490 1241 y(1999.)p Black 345 1425 a([3])p Black 50 w(A.)23 b(Bo)m(y)m(arsky)g(and)f(P)-8 b(.)22 b(G\023)-45 b(ora.)28 b Fb(L)-5 b(aws)26 b(of)f(Chaos:)40 b(Invariant)26 b(Me)-5 b(asur)g(es)26 b(and)f(Chaotic)i(Dynamic)-5 b(al)490 1538 y(Systems)34 b(in)e(One)g(Dimension)p Fc(.)41 b(Birkh\177)-45 b(auser,)29 b(1997.)p Black 345 1722 a([4])p Black 50 w(A.)53 b(Bo)m(y)m(arsky)i(and)d(Y.)h(S.)g(Lou.)107 b(Appro)m(ximating)51 b(measures)i(in)m(v)-5 b(arian)m(t)52 b(under)f(higher-)490 1835 y(dimensional)28 b(c)m(haotic)j (transformations.)40 b Fb(J.)32 b(Appr)-5 b(ox.)34 b(The)-5 b(ory)p Fc(,)33 b(65:231{244,)i(1991.)p Black 345 2019 a([5])p Black 50 w(A.)29 b(Bo)m(y)m(arsky)h(and)d(Y.)i(S.)f(Lou.)37 b(A)28 b(compactness)h(theorem)g(for)f(appro)m(ximating)f(the)i(in)m(v) -5 b(arian)m(t)490 2132 y(densities)30 b(of)i(higher)f(dimensional)e (transformations.)44 b Fb(J.)34 b(Math.)g(A)n(naly.)g(Appl.)p Fc(,)f(65:231{244,)490 2245 y(1993.)p Black 345 2430 a([6])p Black 50 w(A.)i(Bo)m(y)m(arsky)-8 b(,)38 b(P)-8 b(.Gora,)37 b(and)d(Y.)h(S.)g(Lou.)53 b(Constructiv)m(e)34 b(appro)m(ximations)g(to)h(the)g(in)m(v)-5 b(arian)m(t)490 2542 y(densities)21 b(of)j(higher-dimensional)19 b(transformations.)28 b Fb(Constructive)e(Appr)-5 b(ox.)p Fc(,)26 b(10:1{13,)i(1994.)p Black 345 2727 a([7])p Black 50 w(C.)g(Chiu,)f(Q.)i(Du,)g(and)e(T.)i (Y.)f(Li.)37 b(Error)27 b(estimates)i(of)g(the)g(mark)m(o)m(v)g (\014nite)e(appro)m(ximation)h(of)490 2840 y(the)j(frob)s(enius-p)s (erron)26 b(op)s(erator.)41 b Fb(Nonline)-5 b(ar)34 b(A)n(nalysis)p Fc(,)d(19\(4\):291{308,)36 b(1992.)p Black 345 3024 a([8])p Black 50 w(I.)29 b(P)-8 b(.)29 b(Cornfeld,)e(S.)h(V.)h(F)-8 b(omin,)29 b(and)f(Y)-8 b(a.)30 b(G.)f(Sinai.)35 b Fb(Er)-5 b(go)g(dic)33 b(The)-5 b(ory)p Fc(.)39 b(Springer-V)-8 b(erlag,)28 b(New)490 3137 y(Y)-8 b(ork,)31 b(1982.)p Black 345 3321 a([9])p Black 50 w(D.)k(Daems)g(and)e(G.)i(Nicolis.)50 b(Cluster)33 b(expansion)g(for)h(the)g(p)s(erron-frob)s(enius)c(op)s (erator)35 b(in)e(a)490 3434 y(system)e(of)f(coupled)g(map)g(lattices.) 40 b Fb(R)-5 b(ese)g(ar)g(ch)35 b(R)-5 b(ep)g(ort,)35 b(1050)f(Bruxel)5 b(les,)33 b(Belgium)p Fc(,)d(1995.)p Black 300 3618 a([10])p Black 50 w(R.)21 b(A.)g(DeV)-8 b(ore.)27 b(The)21 b(appro)m(ximation)f(of)h(con)m(tin)m(uous)f (functions)g(b)m(y)g(p)s(ositiv)m(e)g(linear)g(op)s(erators.)490 3731 y(In)30 b(Springer-V)-8 b(erlag,)29 b(editor,)h Fb(L)-5 b(e)g(ctur)g(e)34 b(Notes)f(in)f(Math,)h(293)p Fc(,)f(1972.)p Black 300 3916 a([11])p Black 50 w(J.)24 b(Ding.)30 b(Computing)22 b(in)m(v)-5 b(arian)m(t)23 b(measures)h(for)g(piecewise)f(con)m(v)m(ex)j(transformations.)j Fb(J.)d(Stat.)490 4029 y(Phys.)p Fc(,)31 b(83\(3/4\):623{635,)37 b(1996.)p Black 300 4213 a([12])p Black 50 w(J.)22 b(Ding.)k(A)21 b(maxim)m(um)g(en)m(trop)m(y)h(metho)s(d)f(for)h(solving)e(frob)s (enius-p)s(erron)e(op)s(erator)k(equations.)490 4326 y Fb(Applie)-5 b(d)34 b(Math.)f(Comp.)p Fc(,)f(93:155{168,)j(1998.)p Black 300 4510 a([13])p Black 50 w(J.)42 b(Ding.)77 b(The)41 b(p)s(oin)m(t)h(sp)s(ectrum)f(of)i(frob)s(enius-p)s(erron)38 b(and)k(k)m(o)s(opman)h(op)s(erators.)76 b Fb(Pr)-5 b(o)g(c.)490 4623 y(A)n(mer.)32 b(Math.)h(So)-5 b(c.)p Fc(,)32 b (126\(5\):1355{1361,)37 b(1998.)p Black 300 4807 a([14])p Black 50 w(J.)21 b(Ding,)i(Q.)e(Du,)j(and)c(T.)i(Y.)f(Li.)k(High)c (order)f(appro)m(ximation)h(of)g(frob)s(enius-p)s(erron)d(op)s (erators.)490 4920 y Fb(Appl.)33 b(Math.)g(Comp.)p Fc(,)f(53:151{171,)j (1993.)p Black 300 5104 a([15])p Black 50 w(J.)28 b(Ding,)f(Q.)h(Du,)g (and)f(T.)g(Y.)h(Li.)35 b(The)27 b(sp)s(ectral)g(analysis)f(of)i(frob)s (enius-p)s(erron)23 b(op)s(erators.)36 b Fb(J.)490 5217 y(Math.)d(A)n(nal.)g(Appl.)p Fc(,)e(184\(2\):285{301,)36 b(1994.)p Black 300 5402 a([16])p Black 50 w(J.)j(Ding)g(and)f(T.)h(Y.) g(Li.)65 b(Mark)m(o)m(v)41 b(\014nite)d(appro)m(ximation)g(of)h(frob)s (enius-p)s(erron)c(op)s(erator,.)490 5515 y Fb(Nonlin.)e(A)n(nal.)f (Th.)h(Meth.)g(Appl.)p Fc(,)e(17\(8\):759{772,)36 b(1991.)p Black 2021 5764 a Fu(89)p Black eop %%Page: 90 99 90 98 bop Black 300 10 a Fk(BIBLIOGRAPHY)2663 b Fu(90)p Black Black 300 274 a Fc([17])p Black 50 w(J.)32 b(Ding)g(and)f(T.)h (Y.)g(Li.)44 b(Pro)5 b(jection)32 b(solutions)e(of)i(frob)s(enius-)e(p) s(erron)g(op)s(erators.)46 b Fb(Internat.)490 387 y(J.)32 b(Math.)h(&)g(Math.)g(Sci.)p Fc(,)d(16\(3\):465{484,)36 b(1993.)p Black 300 575 a([18])p Black 50 w(J.)c(Ding)f(and)g(T.)h(Y.)g (Li.)43 b(A)32 b(con)m(v)m(ergence)i(rate)f(analysis)d(for)i(mark)m(o)m (v)g(\014nite)f(appro)m(ximations)490 688 y(to)26 b(a)g(class)f(of)h (frob)s(enius-p)s(erron)21 b(op)s(erators.)33 b Fb(Nonlin.)28 b(A)n(nal.)g(Th.)g(Meth.)g(Appl.)p Fc(,)f(31\(5/6\):765{)490 801 y(777,)32 b(1998.)p Black 300 988 a([19])p Black 50 w(J.)g(Ding,)h(M.)f(P)m(aprzyc)m(ki,)h(and)f(Z.)g(W)-8 b(ang.)47 b(E\016cien)m(t)32 b(computation)g(of)g(un)m(b)s(ounded)e(in) m(v)-5 b(arian)m(t)490 1101 y(densities.)34 b(In)27 b Fb(Pr)-5 b(o)g(c)g(e)g(e)g(dings)32 b(of)e(the)g(14th)i(Confer)-5 b(enc)g(e)30 b(on)h(Applie)-5 b(d)31 b(Mathematics)p Fc(,)e(pages)f(126{)490 1214 y(131,)k(1998.)p Black 300 1402 a([20])p Black 50 w(J.)40 b(Ding)f(and)g(Z.)h(W)-8 b(ang.)69 b(A)40 b(mo)s(di\014ed)d(mon)m(te)k(carlo)f(approac)m(h)g(to) g(the)g(appro)m(ximation)f(of)490 1515 y(in)m(v)-5 b(arian)m(t)39 b(measures.)66 b(In)39 b Fb(R)-5 b(ese)g(ar)g(ch)43 b(Notes)e(in)g (Math,)i(418)p Fc(,)g(pages)d(125{130.)i(Chapman)c(&)490 1628 y(Hall/CPC,)30 b(2000.)p Black 300 1815 a([21])p Black 50 w(J.)h(Ding)f(and)f(Z.)i(W)-8 b(ang.)42 b(Appro)m(ximation)29 b(order)h(analysis)f(for)h(the)g(piecewise)g(linear)f(mark)m(o)m(v)490 1928 y(metho)s(d.)40 b Fb(Sto)-5 b(chastic)35 b(A)n(nalysis)e(and)g (Applic)-5 b(ations)p Fc(,)33 b(submitted.)p Black 300 2116 a([22])p Black 50 w(J.)d(Ding)f(and)g(Z.)g(W)-8 b(ang.)40 b(P)m(arallel)29 b(computation)g(of)h(in)m(v)-5 b(arian)m(t)28 b(measures.)39 b Fb(A)n(nnals)32 b(in)g(Op)-5 b(er)g(a-)490 2229 y(tions)34 b(R)-5 b(ese)g(ar)g(ch)p Fc(,)32 b(to)f(app)s(ear,)f(2000.)p Black 300 2416 a([23])p Black 50 w(J.)e(Ding)g(and)f(A.)h(Zhou.)36 b(The)27 b(pro)5 b(jection)28 b(metho)s(d)g(for)f(computing)g(m)m(ulti-dimensional)d (abso-)490 2529 y(lutely)29 b(con)m(tin)m(uous)h(in)m(v)-5 b(arian)m(t)30 b(measures.)40 b Fb(J.)32 b(Stat.)i(Phys.)p Fc(,)d(77\(3/4\):899{908,)37 b(1994.)p Black 300 2717 a([24])p Black 50 w(J.)g(Ding)f(and)g(A.)h(Zhou.)58 b(Piecewise)37 b(linear)e(mark)m(o)m(v)i(appro)m(ximations)f(of)h(frob)s(enius-p)s (erron)490 2830 y(op)s(erators)23 b(asso)s(ciated)f(with)f(m)m (ulti-dimensional)d(transformations.)27 b Fb(Nonline)-5 b(ar)26 b(A)n(nal.,)h(TMA)p Fc(,)490 2943 y(25\(4\):399{408,)36 b(1995.)p Black 300 3130 a([25])p Black 50 w(J.)29 b(Ding)f(and)g(A.)h (Zhou.)37 b(Finite)27 b(appro)m(ximation)h(of)h(frob)s(enius-p)s(erron) 24 b(op)s(erators.)29 b(a)g(solution)490 3243 y(of)22 b(ulam's)e(conjecture)i(to)g(m)m(ulti-dimensional)17 b(transformations.)25 b Fb(Physic)-5 b(a)25 b(D)p Fc(,)c(92:61{68,)27 b(1996.)p Black 300 3431 a([26])p Black 50 w(J.)f(Ding)g(and)f(A.)i (Zhou.)32 b(On)25 b(the)i(sp)s(ectrum)e(of)h(frob)s(enius-p)s(erron)c (op)s(erators.)34 b Fb(J.)28 b(Math.)h(A)n(nal.)490 3544 y(Appl.)p Fc(,)i(to)g(app)s(ear.)p Black 300 3731 a([27])p Black 50 w(P)-8 b(.)40 b(G\023)-45 b(ora)39 b(and)g(A.)g(Bo)m(y)m (arsky)-8 b(.)68 b(Absolutely)38 b(con)m(tin)m(uous)g(in)m(v)-5 b(arian)m(t)38 b(measures)h(for)g(piecewise)490 3844 y(expanding)29 b Fa(c)966 3811 y Fp(2)1036 3844 y Fc(transformations)h (in)f Fa(r)1842 3811 y Fo(n)1888 3844 y Fc(.)41 b Fb(Isr)-5 b(ael)34 b(J.)e(Math.)p Fc(,)f(67\(3\):272{286,)36 b(1989.)p Black 300 4032 a([28])p Black 50 w(P)-8 b(.)30 b(G\023)-45 b(ora)29 b(and)g(A.)g(Bo)m(y)m(arsky)-8 b(.)40 b(Higher)28 b(dimensional)e(p)s(oin)m(t)i(transformations)g(and)h(asymptotic)490 4145 y(measures)h(for)g(cellular)f(automata.)42 b Fb(Comput.)34 b(Math.)f(Appl.)p Fc(,)e(19:13{31,)j(1990.)p Black 300 4332 a([29])p Black 50 w(F.)c(Hun)m(t)f(and)f(W.)i(Miller.)37 b(On)28 b(the)h(appro)m(ximation)f(of)i(in)m(v)-5 b(arian)m(t)28 b(measures.)38 b Fb(J.)31 b(Stat.)h(Phys.)p Fc(,)490 4445 y(66:535{548,)j(1992.)p Black 300 4633 a([30])p Black 50 w(F.)k(Y.)g(Hun)m(t.)64 b(A)39 b(mon)m(te)g(carlo)f(approac)m (h)h(to)g(the)g(appro)m(ximation)e(of)h(in)m(v)-5 b(arian)m(t)38 b(measures.)490 4746 y Fb(R)-5 b(andom)35 b(&)d(Comput)i(Dynamics)p Fc(,)d(2\(1\):111{133,)36 b(1994.)p Black 300 4933 a([31])p Black 50 w(F.)j(Y.)g(Hun)m(t.)64 b(Erratum:)55 b(`a)39 b(mon)m(te)h(carlo)e(approac)m(h)h(to)g(the)f(appro)m(ximation)f(of)i (in)m(v)-5 b(arian)m(t)490 5046 y(measures'.)41 b Fb(R)-5 b(andom)35 b(&)d(Comput.)i(Dynam.)p Fc(,)d(5\(4\):361{362,)36 b(1998.)p Black 300 5234 a([32])p Black 50 w(D.)d(L.)g(Isaacson)g(and)f (R.)g(W.)i(Madsen.)46 b Fb(Markov)35 b(Chains,)h(The)-5 b(ory)36 b(and)g(Applic)-5 b(ations)p Fc(.)49 b(John)490 5347 y(Wiley)30 b(&)g(Sons,)g(New)g(Y)-8 b(ork,)31 b(1976.)p Black Black eop %%Page: 91 100 91 99 bop Black 300 10 a Fk(BIBLIOGRAPHY)2663 b Fu(91)p Black Black 300 274 a Fc([33])p Black 50 w(M.)48 b(Jablonski.)90 b(On)47 b(in)m(v)-5 b(arian)m(t)47 b(measures)g(for)g(piecewise)g Fa(c)2718 241 y Fp(2)2758 274 y Fc(-transformations)g(of)g(the)h Fa(n)p Fc(-)490 387 y(dimensional)28 b(cub)s(e.)40 b Fb(A)n(nn.)31 b(Polon.)j(Math.)p Fc(,)d(XLI)s(I)s(I:185{195,)h(1983.)p Black 300 575 a([34])p Black 50 w(G.)24 b(Keller.)k(Sto)s(c)m(hastic)c (p)s(erturbation)e(of)h(some)h(strange)g(attractors.)32 b Fb(L)-5 b(e)g(ctur)g(e)27 b(Notes)f(in)g(Phys.)p Fc(,)490 688 y(179:192{193,)36 b(1983.)p Black 300 875 a([35])p Black 50 w(V.)23 b(Kumar,)g(A.)g(Grama,)i(A.)d(Gupta,)j(and)d(G.)g (Karypis.)k Fb(Intr)-5 b(o)g(duction)28 b(to)e(Par)-5 b(al)5 b(lel)27 b(Computing)p Fc(.)490 988 y(Benjamin/Cummings,)h(San)i (F)-8 b(rancisco,)31 b(1994.)p Black 300 1176 a([36])p Black 50 w(A.)i(Lasota)g(and)f(M.)h(Mac)m(k)m(ey)-8 b(.)49 b Fb(Chaos,)36 b(F)-7 b(r)i(actals,)37 b(and)e(Noise)p Fc(.)46 b(Springer-V)-8 b(erlag,)32 b(New)g(Y)-8 b(ork,)490 1289 y(1994.)p Black 300 1476 a([37])p Black 50 w(A.)42 b(Lasota)g(and)f(J.)g(A.)g(Y)-8 b(ork)m(e.)75 b(On)40 b(the)i(existence)f(of)h(in)m(v)-5 b(arian)m(t)40 b(measures)h(for)g (piecewise)490 1589 y(monotonic)31 b(transformations.)39 b Fb(T)-7 b(r)i(ans.)34 b(A)n(mer.)f(Math.)g(So)-5 b(c.)p Fc(,)31 b(186:481{488,)k(1973.)p Black 300 1777 a([38])p Black 50 w(T.)24 b(Y.)h(Li.)k(Finite)23 b(appro)m(ximation)g(for)h(the) h(frob)s(enius-p)s(erron)20 b(op)s(erator,)26 b(a)e(solution)f(to)i (ulam's)490 1890 y(conjecture.)42 b Fb(J.)32 b(Appr)-5 b(ox.)34 b(The)-5 b(ory)p Fc(,)32 b(17:177{186,)j(1976.)p Black 300 2077 a([39])p Black 50 w(T.)45 b(Y.)g(Li.)82 b Fb(Er)-5 b(go)g(dic)47 b(the)-5 b(ory)47 b(on)f Fc([0)p Fa(;)15 b Fc(1].)85 b(Lecture)45 b(Notes)h(at)f(the)g(Dept.)h(of)f (Math,)k(Ky)m(oto)490 2190 y(Univ)m(ersit)m(y)-8 b(,)30 b(1988.)p Black 300 2378 a([40])p Black 50 w(T.)48 b(Y.)g(Li)f(and)g (J.)g(A.)h(Y)-8 b(ork)m(e.)94 b(P)m(erio)s(d)47 b(three)h(implies)d(c)m (haos.)93 b Fb(A)n(mer.)49 b(Math.)g(Monthly)p Fc(,)490 2491 y(82\(10\):985{992,)37 b(1975.)p Black 300 2679 a([41])p Black 50 w(G.)31 b(G.)g(Loren)m(tz.)42 b Fb(Appr)-5 b(oximations)35 b(of)e(F)-7 b(unctions)p Fc(.)42 b(Holt,)31 b(Rinehart)e(and)h(Winston,)g(1966.)p Black 300 2866 a([42])p Black 50 w(E.)42 b(N.)h(Lorenz.)75 b(Deterministic)41 b(nonp)s(erio)s(dic)e(\015o)m(ws.)75 b Fb(J.)43 b(A)n(tmospheric)i (Sci.)p Fc(,)f(20:130{141,)490 2979 y(1963.)p Black 300 3167 a([43])p Black 50 w(R.)35 b(M.)h(Ma)m(y)-8 b(.)56 b(Biological)35 b(p)s(opulations)e(with)h(nono)m(v)m(erlapping)g (generations:)50 b(stable)35 b(p)s(oin)m(ts,)490 3280 y(stable)30 b(cycles,)h(and)f(c)m(haos.)42 b Fb(Scienc)-5 b(e)p Fc(,)30 b(186:645{647,)35 b(1974.)p Black 300 3467 a([44])p Black 50 w(W.)44 b(J.)f(Morok)m(o\013.)82 b(Generating)43 b(quasi-random)f(paths)h(for)g(sto)s(c)m(hastic)i(pro)s(cesses.)79 b Fb(SIAM)490 3580 y(R)-5 b(eview)p Fc(,)31 b(40\(4\):765{788,)36 b(1998.)p Black 300 3768 a([45])p Black 50 w(R.)k(Murra)m(y)-8 b(.)67 b(Appro)m(ximation)38 b(error)h(for)g(in)m(v)-5 b(arian)m(t)38 b(densit)m(y)h(calculations.)66 b Fb(J.)41 b(Discr)-5 b(ete)40 b(&)490 3881 y(Continuous)34 b(Dyn.)e(Sys.)p Fc(,)f(4:535{558,)j(1998.)p Black 300 4068 a([46])p Black 50 w(P)-8 b(.)41 b(P)m(ac)m(heco.)74 b Fb(Par)-5 b(al)5 b(lel)44 b(Pr)-5 b(o)g(gr)g(amming)45 b(with)e(MPI)p Fc(.)70 b(Morgan)42 b(Kaufmann,)g(San)e(F)-8 b(rancisco,)490 4181 y(1996.)p Black 300 4369 a([47])p Black 50 w(S.)29 b(M.)h(Ulam.)39 b Fb(A)31 b(Col)5 b(le)-5 b(ction)33 b(of)f(Mathematic)-5 b(al)34 b(Pr)-5 b(oblems)p Fc(.)40 b(In)m(ter-science,)31 b(New)e(Y)-8 b(ork,)31 b(1960.)p Black 300 4557 a([48])p Black 50 w(M.)37 b(A.)g(v)-5 b(an)36 b(Wyk)h(and)f(T.)g(S.)h(Durrani.)57 b(Classi\014cation)34 b(of)j(system)g(resp)s(onse)e(using)g(proba-)490 4669 y(bilistic)28 b(mo)s(delling.)38 b Fb(R)-5 b(ese)g(ar)g(ch)34 b(R)-5 b(ep)g(ort,)35 b(Kentr)-5 b(on,)34 b(South)f(Afric)-5 b(a)p Fc(,)31 b(1999.)p Black 300 4857 a([49])p Black 50 w(M.)h(A.)g(v)-5 b(an)31 b(Wyk)h(and)e(W.)i(H.)g(Steeb.)44 b(Chaos)31 b(in)f(electronics.)43 b(In)31 b Fb(Mathematic)-5 b(al)36 b(Mo)-5 b(del)5 b(ling:)490 4970 y(The)-5 b(ory)34 b(and)g(Applic)-5 b(ations,)34 b(No.2)p Fc(,)d(South)f(Africa,)g(1997.) j(Klu)m(w)m(er)c(Academic)i(Publishers.)p Black 300 5158 a([50])p Black 50 w(P)-8 b(.)31 b(W)-8 b(alters.)41 b Fb(A)n(n)32 b(Intr)-5 b(o)g(duction)35 b(to)f(Er)-5 b(go)g(dic)33 b(The)-5 b(ory)p Fc(.)42 b(Springer-V)-8 b(erlag,)30 b(New)g(Y)-8 b(ork,)32 b(1982.)p Black Black eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF