Kanjut SHELL
Server IP : 172.16.15.8  /  Your IP : 18.119.125.61
Web Server : Apache
System : Linux zeus.vwu.edu 4.18.0-553.27.1.el8_10.x86_64 #1 SMP Wed Nov 6 14:29:02 UTC 2024 x86_64
User : apache ( 48)
PHP Version : 7.2.24
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON
Directory (0705) :  /home/ctames/../zwang/

[  Home  ][  C0mmand  ][  Upload File  ]

Current File : /home/ctames/../zwang/DISSc.dps
%!PS-Adobe-2.0
%%Creator: dvips(k) 5.85 Copyright 1999 Radical Eye Software
%%Title: DISSc.dvi
%%Pages: 100
%%PageOrder: Ascend
%%BoundingBox: 0 0 612 792
%%DocumentFonts: Helvetica
%%EndComments
%DVIPSWebPage: (www.radicaleye.com)
%DVIPSCommandLine: dvips DISSc -o DISSc.dps
%DVIPSParameters: dpi=600, compressed
%DVIPSSource:  TeX output 2000.07.26:1842
%%BeginProcSet: texc.pro
%!
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72
mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0
0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{
landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize
mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[
matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round
exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{
statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0]
N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin
/FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array
/BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2
array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N
df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A
definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get
}B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub}
B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr
1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3
1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx
0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx
sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{
rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp
gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B
/chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{
/cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{
A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy
get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse}
ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp
fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17
{2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add
chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{
1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop}
forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn
/BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put
}if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{
bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A
mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{
SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{
userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X
1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4
index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N
/p{show}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{
/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)
(LaserWriter 16/600)]{A length product length le{A length product exch 0
exch getinterval eq{pop true exit}if}{pop}ifelse}forall}{false}ifelse
end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{BDot}imagemask
grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat{BDot}
imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round
exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto
fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B/M{S p
delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M}B/g{0 M}
B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{
p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{0 S
rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end

%%EndProcSet
%%BeginProcSet: texnansi.enc
% @psencodingfile{
%   author = "Y&Y, Inc.",
%   version = "1.1",
%   date = "1 December 1996",
%   filename = "texnansi.enc",
%   email = "help@YandY.com",
%   address = "45 Walden Street // Concord, MA 01742, USA",
%   codetable = "ISO/ASCII",
%   checksum = "xx",
%   docstring = "Encoding for fonts in Adobe Type 1 format for use with TeX."
% }
%
% The idea is to have all 228 characters normally included in Type 1 text
% fonts (plus a few more) available for typesetting.  This is effectively
% the character set in Adobe Standard Encoding, ISO Latin 1, plus a few more.
%
% Character code assignments were made as follows:
%
% (1) The character layout largely matches `ASCII' in the 32 -- 126 range,
% except for `circumflex' in 94 and `tilde' in 126, to match `TeX text'
% (`asciicircumflex' and `asciitilde' appear in 158 and 142 instead).
%
% (2) The character layout matches `Windows ANSI' in almost all places,
% except for `quoteright' in 39 and `quoteleft' in 96 to match ASCII
% (`quotesingle' and `grave' appear in 129 and 18 instead).
%
% (3) The character layout matches `TeX typewriter' used by CM text fonts
% in most places (except for discordant positions such as hungarumlaut
% (instead of braceright), dotaccent (instead of underscore) etc.
%
% (4) Remaining characters are assigned arbitrarily to the `control character'
% range (0 -- 31), avoiding 0, 9, 10 and 13 in case we meet dumb software
% - similarly one should really avoid 127 and 128 if possible.
% In addition, the 8 open slots in Windows ANSI between 128 and 159 are used.
%
% (5) Y&Y Lucida Bright includes some extra ligatures and such; ff, ffi, ffl,
% and `dotlessj,' these are included 11 -- 15, and 17.
%
% (6) Hyphen appears both at 45 and 173 for compatibility with both ASCII
% and Windows ANSI.
%
% (7) It doesn't really matter where ligatures appear (both real, such as ffi,
% and pseudo such as ---) since these should not be accessed directly, only
% via ligature information in the TFM file.
%
% SAMPLE USAGE (in `psfonts.map' file for DVIPS):
% 
% lbr LucidaBright "TeXnANSIEncoding ReEncodeFont" <texnansi.enc <lbr.pfb
%
% This tells DVIPS that the font called `lbr' in TeX has PostScript 
% FontName `LucidaBright.'  It also asks DVIPS to expand the file `lbr.pfb'
% into PFA form, to include the attached `texnansi.enc' encoding vector,
% and to then actually reencode the font based on that encoding vector.
%
% Revised 1996 June 1 by adding second position for `fl' to avoid Acrobat bug.
% Revised 1996 June 1 by adding second position for `fraction' for same reason.
%
/TeXnANSIEncoding [
/.notdef /uni20AC /.notdef /.notdef % 0, 1, 2, 3
/fraction %	4
/dotaccent %	5
/hungarumlaut %	6
/ogonek	%	7
/fl	%	8
/.notdef % /fraction %	9	not used (see 4), backward compatability only
/cwm	%	10	not used, except boundary char internally maybe
/ff    %	11
/fi    %	12
/.notdef % /fl    %	13	not used (see 8), backward compatability only
/ffi   %	14
/ffl   %	15
/dotlessi %	16
/dotlessj %	17
/grave %	18
/acute %	19
/caron %	20
/breve %	21
/macron %	22
/ring  %	23
/cedilla %	24
/germandbls %	25
/ae    %	26
/oe    %	27
/oslash %	28
/AE    %	29
/OE    %	30
/Oslash %	31
/space %	32	% /suppress in TeX text
/exclam %	33
/quotedbl %	34	% /quotedblright in TeX text
/numbersign %	35
/dollar %	36
/percent %	37
/ampersand %	38
/quoteright %	39	% /quotesingle in ANSI
/parenleft %	40
/parenright %	41
/asterisk %	42
/plus  %	43
/comma %	44
/hyphen %	45
/period %	46
/slash %	47
/zero  %	48
/one   %	49
/two   %	50
/three %	51
/four  %	52
/five  %	53
/six   %	54
/seven %	55
/eight %	56
/nine  %	57
/colon %	58
/semicolon %	59
/less  %	60	% /exclamdown in Tex text
/equal %	61
/greater %	62	% /questiondown in TeX text
/question %	63
/at %	64
/A %	65
/B %	66
/C %	67
/D %	68
/E %	69
/F %	70
/G %	71
/H %	72
/I %	73
/J %	74
/K %	75
/L %	76
/M %	77
/N %	78
/O %	79
/P %	80
/Q %	81
/R %	82
/S %	83
/T %	84
/U %	85
/V %	86
/W %	87
/X %	88
/Y %	89
/Z %	90
/bracketleft %	91
/backslash %	92	% /quotedblleft in TeX text
/bracketright %	93
/circumflex %	94	% /asciicircum in ASCII
/underscore %	95	% /dotaccent in TeX text
/quoteleft %	96	% /grave accent in ANSI
/a %	97
/b %	98
/c %	99
/d %	100
/e %	101
/f %	102
/g %	103
/h %	104
/i %	105
/j %	106
/k %	107
/l %	108
/m %	109
/n %	110
/o %	111
/p %	112
/q %	113
/r %	114
/s %	115
/t %	116
/u %	117
/v %	118
/w %	119
/x %	120
/y %	121
/z %	122
/braceleft %	123	% /endash in TeX text
/bar   %	124	% /emdash in TeX test
/braceright %	125	% /hungarumlaut in TeX text
/tilde %	126	% /asciitilde in ASCII
/dieresis %	127	not used (see 168), use higher up instead
/Lslash	%	128	this position is unfortunate, but now too late to fix
/quotesingle %	129
/quotesinglbase %	130
/florin %	131
/quotedblbase %	132
/ellipsis %	133
/dagger %	134
/daggerdbl %	135
/circumflex %	136
/perthousand %	137
/Scaron %	138
/guilsinglleft %	139
/OE    %	140
/Zcaron %	141
/asciicircum %	142
/minus %	143
/lslash %	144
/quoteleft %	145
/quoteright %	146
/quotedblleft %	147
/quotedblright %	148
/bullet %	149
/endash %	150
/emdash %	151
/tilde %	152
/trademark %	153
/scaron %	154
/guilsinglright %	155
/oe    %	156
/zcaron %	157
/asciitilde %	158
/Ydieresis %	159
/nbspace %	160	% /space (no break space)
/exclamdown %	161
/cent  %	162
/sterling %	163
/currency %	164
/yen   %	165
/brokenbar %	166
/section %	167
/dieresis %	168
/copyright %	169
/ordfeminine %	170
/guillemotleft %	171
/logicalnot %	172
/sfthyphen %	173 % /hyphen (hanging hyphen)
/registered %	174
/macron %	175
/degree %	176
/plusminus %	177
/twosuperior %	178
/threesuperior %	179
/acute %	180
/mu    %	181
/paragraph %	182
/periodcentered %	183
/cedilla %	184
/onesuperior %	185
/ordmasculine %	186
/guillemotright %	187
/onequarter %	188
/onehalf %	189
/threequarters %	190
/questiondown %	191
/Agrave %	192
/Aacute %	193
/Acircumflex %	194
/Atilde %	195
/Adieresis %	196
/Aring %	197
/AE    %	198
/Ccedilla %	199
/Egrave %	200
/Eacute %	201
/Ecircumflex %	202
/Edieresis %	203
/Igrave %	204
/Iacute %	205
/Icircumflex %	206
/Idieresis %	207
/Eth   %	208
/Ntilde %	209
/Ograve %	210
/Oacute %	211
/Ocircumflex %	212
/Otilde %	213
/Odieresis %	214
/multiply %	215	% OE in T1
/Oslash %	216
/Ugrave %	217
/Uacute %	218
/Ucircumflex %	219
/Udieresis %	220
/Yacute %	221
/Thorn %	222
/germandbls %	223 % SS in T1
/agrave %	224
/aacute %	225
/acircumflex %	226
/atilde %	227
/adieresis %	228
/aring %	229
/ae    %	230
/ccedilla %	231
/egrave %	232
/eacute %	233
/ecircumflex %	234
/edieresis %	235
/igrave %	236
/iacute %	237
/icircumflex %	238
/idieresis %	239
/eth   %	240
/ntilde %	241
/ograve %	242
/oacute %	243
/ocircumflex %	244
/otilde %	245
/odieresis %	246
/divide %	247	% oe in T1
/oslash %	248
/ugrave %	249
/uacute %	250
/ucircumflex %	251
/udieresis %	252
/yacute %	253
/thorn %	254
/ydieresis %	255	% germandbls in T1
] def

%%EndProcSet
%%BeginProcSet: special.pro
%!
TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N
/vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N
/rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N
/@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{
/hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho
X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B
/@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{
/urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known
{userdict/md get type/dicttype eq{userdict begin md length 10 add md
maxlength ge{/md md dup length 20 add dict copy def}if end md begin
/letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S
atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{
itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll
transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll
curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf
pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack}
if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1
-1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3
get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip
yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub
neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{
noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop
90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get
neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr
1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr
2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4
-1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S
TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{
Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale
}if 0 setgray}N/psfts{S 65781.76 div N}N/startTexFig{/psf$SavedState
save N userdict maxlength dict begin/magscale true def normalscale
currentpoint TR/psf$ury psfts/psf$urx psfts/psf$lly psfts/psf$llx psfts
/psf$y psfts/psf$x psfts currentpoint/psf$cy X/psf$cx X/psf$sx psf$x
psf$urx psf$llx sub div N/psf$sy psf$y psf$ury psf$lly sub div N psf$sx
psf$sy scale psf$cx psf$sx div psf$llx sub psf$cy psf$sy div psf$ury sub
TR/showpage{}N/erasepage{}N/copypage{}N/p 3 def @MacSetUp}N/doclip{
psf$llx psf$lly psf$urx psf$ury currentpoint 6 2 roll newpath 4 copy 4 2
roll moveto 6 -1 roll S lineto S lineto S lineto closepath clip newpath
moveto}N/endTexFig{end psf$SavedState restore}N/@beginspecial{SDict
begin/SpecialSave save N gsave normalscale currentpoint TR
@SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{
CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto
closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx
sub div rhiSeen{rhi ury lly sub div}{dup}ifelse scale llx neg lly neg TR
}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse
CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury
lineto closepath clip}if/showpage{}N/erasepage{}N/copypage{}N newpath}N
/@endspecial{count ocount sub{pop}repeat countdictstack dcount sub{end}
repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N
/@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX
currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY
moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
/yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0
1 startangle endangle arc savematrix setmatrix}N end

%%EndProcSet
%%BeginProcSet: color.pro
%!
TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop
setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll
}repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def
/TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{
setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{
/currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch
known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC
/Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC
/Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0
setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0
setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61
0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC
/Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0
setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87
0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{
0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{
0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC
/Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0
setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0
setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90
0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC
/Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0
setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0
0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{
0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{
0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC
/BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0
setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC
/CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0
0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1
0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11
0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0
setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0
0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC
/Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0
setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0
0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0
1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC
/PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0
setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{
0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor}
DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70
setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0
setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1
setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end

%%EndProcSet
TeXDict begin 40258431 52099146 1000 600 600 (DISSc.dvi)
@start
%DVIPSBitmapFont: Fa cmmi10 10.95 4
/Fa 4 115 df<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A3120113
80120313005A120E5A1218123812300B1C798919>59 D<EC07F0EC7FFE903801FC0F9039
07E0038090390FC001C0D93F8013E090387F000701FE131F485A485A16C0485A000F1580
4990C7FC121F485AA3127F5BA312FF90C9FCA6007E1560007F15E01501ED03C06CEC0780
6DEB0F00001F141E6C6C137C3907E001F03901F01FC06CB5C7FCEB1FF023297DA727>99
D<01F8EB0FF0D803FEEB3FFC3A078F80F03E3A0F0F83C01F3B0E07C7800F80001CEBCF00
02FE80003C5B00385B495A127800705BA200F049131F011F5D00005BA2163F013F92C7FC
91C7FC5E167E5B017E14FE5EA201FE0101EB03804914F8A203031307000103F013005B17
0E16E000035E49153C17385F0007913801F1E0496DB45AD801C0023FC7FC31297EA737>
110 D<D801F0EB3F80D807FCEBFFE03A0F1F03C0F0000E90380F00F8391E0F9E03001C13
BC003CEBF807003813F0A226781FE013F000709038C001C092C7FC5C12F0133F000090C8
FCA35B137EA313FE5BA312015BA312035BA312075BA3120F5BEA038025297EA729>114
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fb cmti10 10.95 53
/Fb 53 122 df<15FCEC07FF91261F038014F091263E01C0EB01F84A6C6C13035C494813
70494816F0010716014948150091268001F014E0011F01071401030F15C0D93F001503F0
0780495C017EEE0F00DB0780131E92C85A01FE5E495EEF03E04D5A021F141FDAFFC0497E
D9FBE1ECF8F0903AFFC0E001F00280903807C0780200EB0F80017E91381E0038D9FC0149
133C0001DAC038131C01FE14783A03FF03807048EB8700D9E3FE13F0260FE0F8EBE38049
C7EAEFC0001FED7FE0A2484815C0163F93380F003C007F92C7123890CAFCA21878187000
FE17F060127E4D5A170360007F16076C4CC7FC171E6C6C151C5F6C6C15F06C6C4A5A6C6C
EC07C06C6C021FC8FCD8007E147C90391FC007F00107B512809026007FF8C9FC3D4375C0
46>38 D<EA01E0EA07F8120FA2EA1FFCA4EA0FF8EA0798EA001813381330A21370136013
E013C01201EA0380EA07001206120E5A5A5A5A5A0E1C7A891C>44
D<387FFFFCA3B5FCA21605799521>I<120FEA3FC0127FA212FFA31380EA7F00123C0A0A
77891C>I<15FE913807FF8091381F07C091387C01F0ECF000494813F849481378010714
7C495A49C7FC167E133E137EA25BA2485AA2000315FEA25B000715FCA2491301120FA348
48EB03F8A44848EB07F0A448C7EA0FE0A316C0007E141F12FE1680153FA2481500A2157E
A25DA25D4813015D6C495A127C4A5A4A5A6C49C7FC143E6C5B380FC1F03803FFC0C648C8
FC273F76BC2E>48 D<15031507150F151F151E153E157EEC01FEEC03FC1407141FEB01FF
90380FFBF8EB1FC3EB0E07130015F0A2140FA215E0A2141FA215C0A2143FA21580A2147F
A21500A25CA25CA21301A25CA21303A25CA21307A25CA2130FA25CA2131FA25CEB7FE0B6
12F0A215E0203D77BC2E>I<15FE913803FFC091380F01F091383C00F84A137C4A7F4948
133F49487F4A148049C7FC5BEB0E0C011E15C0EB1C0EEB3C06133813781370020E133FD9
F00C148013E0141C0218137F00011600EBC0384A13FEEC600102E05B3A00E3C003F89039
FF0007F0013C495A90C7485A5E037FC7FC15FC4A5A4A5AEC0FC04AC8FC147E14F8EB03E0
495A011FC9FC133E49141801F0143C48481438485A1678485A48C85A120E001E4A5AD83F
E0130301FF495A397C3FF01FD8780FB55AD8700391C7FCD8F0015B486C6C5A6E5AEC07C0
2A3F79BC2E>I<ED7F80913803FFE091380F80F891383C007C02F87FD901E07F49481480
4948130F49C7FC010E15C0131EEB1C18EB3C1CEB380C0178141F17801370A2021C133F6D
4814004A5BD91FE0137ED90F805B90C8FC4B5A4B5A4B5AED1F8003FFC7FCECFFFC15F0A2
EC00FC153E153F8182150F82A4151FA2121E127F153F485DA3484AC7FC12F800E014FE5D
14016C495A0070495A0078EB0FC00038495A6C017EC8FC380F01F83803FFE0C690C9FC2A
3F78BC2E>I<1638167E16FE16FCA3150116F8A3150316F0A2150716E0A2ED0FC0A3ED1F
80A216005DA2157EA2157C15FC5D14015D14035D4A5AA24A5AA24AC7FC143EED03809138
7C0FC014F8ECF01F01011480EB03E014C0903807803F010F1400EB1F00133E495B49137E
485A485A484813FE48B46C5A4813F04813FE267C00FF130800F090380FFFFC00601301C7
14E0913803F8005DA314075DA3140F5DA3141F5DA3020EC7FC274F7DBC2E>I<02C0EB01
8002F0130FD901FEEB7F0091B512FE5E5E4914E016804BC7FCECBFF8D90780C8FC91C9FC
A35B130EA3131E131CA3133C9038381FC0ECFFF090383BE07C90387F003E017E133F017C
7F0178805B498090C7FCA6153FA4001F147F486C5C487EA24913FF00FF92C7FC90C7FC48
495A12E04A5A5D6C495A140F00705C0078495A6C495A003E01FEC8FC381F03FC380FFFF0
000313C0C648C9FC293F77BC2E>I<157F913801FFE0913807C0F091381F007C023C133C
4A133E4A131F1301495A5C1307A2495AA2163F011F143EA2167E6E137C16F8ECE00102F0
13F09138F803E09138FC07C090390FFE0F00ECFFBE6D13F86D5B7F6D7F8101037F90380F
9FFFD91F0F1380D97C0713C0497E48486C13E03903E0007F4848133F4848131F001F140F
90C7FC003E1407A2127E127CA200FC15C05AA2ED0F80A2ED1F00153E007C143C157C007E
5C6CEB03F0391F8007C0390FE03F802607FFFEC7FC000113F838003FC0283F78BC2E>56
D<15FF020713C091381F81E091383E00F002FC13F84948137C495A4948137E010F143E49
5A133F4A133F017F147F91C7FC5BA2485AA216FF12035B16FE150112075B1503A216FC49
1307A20003140F16F8151F12016D133F0000EC7FF015EF90387C01CF90393E079FE09038
0FFE1FD903F813C090C7123FA21680157F160015FEA24A5A001C5C007F1303485C4A5A4A
5A4A5A4849C7FC00F8137E00E05B6C485A387C07E0383FFFC06C90C8FCEA03F8283F77BC
2E>I<131EEB3F80137FEBFFC05AA214806C13005B133C90C7FCB3120FEA3FC0127FA212
FFA35B6CC7FC123C122777A61C>I<171C173C177CA217FCA216011603A21607A24C7EA2
161DA216391679167116E1A2ED01C1A2ED038115071601150EA2031C7FA24B7EA25D15F0
5D4A5AA24A5AA24AC7FC5C140E5C021FB6FC4A81A20270C7127FA25C13015C495AA249C8
FCA2130E131E131C133C5B01F882487ED807FEEC01FFB500E0017FEBFF80A25C39417BC0
44>65 D<49B712C018F818FE903B0003FC0001FF9438007F804BEC3FC0A2F01FE014074B
15F0180FA2140F5D181FA2021F16E05D183F19C0023FED7F804B14FF19004D5A027F4A5A
92C7EA07F0EF1FE0EF7F804AD903FEC7FC92B512F017FE4AC7EA3F800101ED1FE04A6E7E
17078401036F7E5CA30107825CA3010F5E4A1407A260011F150F5C4D5A60013F153F4A4A
5A4D5A017F4A90C7FC4C5A91C7EA0FF849EC3FF0B812C094C8FC16F83C3E7BBD40>I<93
39FF8001C0030F13E0033F9038F803809239FF807E07913A03FC001F0FDA0FF0EB071FDA
1FC0ECBF00DA7F806DB4FC4AC77E495AD903F86E5A495A130F4948157E4948157C495A13
FF91C9FC4848167812035B1207491670120FA2485A95C7FC485AA3127F5BA312FF5BA490
CCFCA2170FA2170EA2171E171C173C173817786C16706D15F04C5A003F5E6D1403001F4B
5A6D4AC8FC000F151E6C6C5C6C6C14F86C6C495A6C6CEB07C090397FC03F8090261FFFFE
C9FC010713F0010013803A4272BF41>I<49B712C018F818FE903B0003FE0003FF943800
7F804BEC1FC0F00FE0F007F014074BEC03F8F001FCA2140F4BEC00FEA3141F4B15FFA314
3F5DA3027F5D5DA219FE14FF92C81203A34917FC4A1507A219F813034A150F19F0A20107
EE1FE05CF03FC0A2010FEE7F804A16006060011F4B5A4A4A5A4D5AA2013F4B5A4AEC3FC0
4DC7FC017F15FEEE03FC4AEB0FF001FFEC7FE0B8128004FCC8FC16E0403E7BBD45>I<49
B812F8A390260003FEC7121F18074B14031801F000F014075DA3140F5D19E0A2141F4B13
38A2EF7801023F027013C04B91C7FCA217F0027F5CED80011603160F91B65AA3ED001F49
EC07805CA3010392C8FC5CF003804C13070107020E14005C93C75A180E010F161E4A151C
183CA2011F5E5C60A2013F15014A4A5A1707017F150F4D5A4A147F01FF913807FF80B9FC
A295C7FC3D3E7BBD3E>I<49B812F0A390260003FEC7123F180F4B1403A2F001E014075D
A3140F5D19C0A2141F5D1770EFF003023F02E013804B91C7FCA21601027F5CED8003A216
0702FFEB1F8092B5FCA349D9003FC8FC4A7F82A20103140E5CA2161E0107141C5CA293C9
FC130F5CA3131F5CA3133F5CA2137FA25C497EB612E0A33C3E7BBD3B>I<49B6FC5BA2D9
000313005D5DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C7FCA35B5CA3
13035CA313075CA3130F5CA3131F5CA3133F5CA2137FA25C497EB67EA3283E7BBD23>73
D<4AB61280A2180091C713C0167F5FA216FF94C7FCA35D5EA315035EA315075EA3150F5E
A3151F5EA3153F5EA3157FA25EA215FFA293C8FCA25CA25DA2380F8003EA3FC0D87FE05B
A21407D8FFC05B140F01805B49485A12FC0070495A4A5A6C01FEC9FC383C01FC380F07F0
3807FFC0C648CAFC314079BD30>I<49B6903807FFFE605ED9000390C7000113E04B6E13
004B15FC4E5A19E002074B5A4BEC0F804EC7FC183C020F5D4B5C4D5AEF07C0021F4AC8FC
4B131E5F5F023F5C9238C003E0EE07804CC9FC027F5B4B5AEEFF801581ECFF834B7FED0F
7FED1E3F49017C7FECFEF89138FFE01F03C07F491380ED000F4A805C010714074A80A216
03010F815C160183131F4A6D7FA2177F013F825C173F017F82A24A81496C4A7EB6D8800F
B512C0A261473E7BBD46>I<49B612C0A25FD9000390C8FC5D5DA314075DA3140F5DA314
1F5DA3143F5DA3147F5DA314FF92C9FCA35B5CA313035C18C0EF01E0010716C05C170318
80130F4A140718005F131F4A141EA2173E013F5D4A14FC1601017F4A5A16074A131F01FF
ECFFF0B8FCA25F333E7BBD39>I<49B5933807FFFC496062D90003F0FC00505ADBBF805E
1A771AEF1407033F923801CFE0A2F1039F020FEE071F020E606F6C140E1A3F021E161C02
1C04385BA2F1707F143C023804E090C7FCF001C0629126780FE0495A02705FF00700F00E
0114F002E0031C5BA2F03803010116704A6C6C5D18E019070103ED01C00280DA03805BA2
943807000F13070200020E5C5FDB03F8141F495D010E4B5CA24D133F131E011CDAF9C05C
EEFB80197F013C6DB4C7FC013895C8FC5E01784A5C13F8486C4A5CD807FE4C7EB500F049
48B512FE16E01500563E7BBD52>I<902601FFFE020FB5FC496D5CA2D900016D010013C0
4AEE3F00193E70141C193CEC07BFDB3FE01438151F1978020F7FDA0E0F15708219F0EC1E
07021C6D5CA203031401023C7FDA38015DA2701303EC7800027002805BA2047F130702F0
14C04A013F91C7FCA2715A0101141F4AECF00EA2040F131E010315F84A151C1607EFFC3C
0107140391C7143817FE040113784915FF010E16708218F0131E011C6F5AA2173F133C01
385E171F137813F8486C6F5AEA07FEB500F01407A295C8FC483E7BBD44>I<EEFFC00307
13F892383F80FE9238FC003FDA03F0EB0F804A486D7EDA1F80804AC76C7E027E6E7E4A81
494814004948811307495A4948157F133F5C49C9FC4917805B1201485AA212075B000F17
FFA25B121F190048485DA448484B5AA34D5AA25B4D5A12FF60171F60007F163F604D5AA2
4DC7FC5F003F15014C5A6D5D001F4B5A4C5A6C6C4A5A4C5A6C6C4AC8FC000315FC6C6C49
5A6C6CEB07E0017FEB1F8090261FC07EC9FC903807FFF801001380394273BF46>I<49B7
7E18F018FC903B0003FE0003FEEF00FF4BEC7F80F03FC00207151F19E05DA2020F16F0A2
5DA2141FF03FE05DA2023F16C0187F4B1580A2027FEDFF00604B495A4D5A02FF4A5A4D5A
92C7EA3FC04CB4C7FC4990B512FC17E04ACAFCA21303A25CA21307A25CA2130FA25CA213
1FA25CA2133FA25CA2137FA25C497EB67EA33C3E7BBD3E>I<49B612FCEFFF8018F0903B
0003FE000FF8EF03FE4BEB00FF8419800207ED3FC05DA219E0140F5DA3021FED7FC05DA2
F0FF80143F4B15004D5A60027F4A5A4B495A4D5AEF3F8002FF02FEC7FC92380007F892B5
12E01780499038000FE04A6D7E707E707E0103814A130083A213075CA25E130F5C5F1603
131F5CA3013F020714404A16E05F017F160119C04A01031303496C1680B6D88001130794
38FE0F009338007E1ECAEA3FFCEF07F03B407BBD42>82 D<92391FE00380ED7FFC913A01
FFFE0700913907F01F8F91390FC007DF4AC66CB4FC023E6D5A4A130014FC495A4948147C
A2495AA2010F15785CA3011F1570A46E91C7FCA2808014FE90380FFFE015FC6DEBFF8016
E06D806D806D6C7F141F02037FEC003FED07FF1501A281A282A212075A167E120EA2001E
15FE5EA25E003E14015E003F14034B5A486C5C150F6D495A6D49C8FCD8F9F0137C39F8FE
01F839F03FFFF0D8E00F13C026C001FEC9FC314279BF33>I<48B9FCA25A903AFE001FF0
0101F89138E0007FD807E0163E49013F141E5B48C75BA2001E147FA2001C4B131C123C00
3814FFA2007892C7FC12704A153C00F01738485CC716001403A25DA21407A25DA2140FA2
5DA2141FA25DA2143FA25DA2147FA25DA214FFA292C9FCA25BA25CA21303A25CEB0FFE00
3FB67E5AA2383D71BC41>I<147E49B47E903907C1C38090391F80EFC090383F00FF017E
137F4914804848133F485AA248481400120F5B001F5C157E485AA215FE007F5C90C7FCA2
1401485C5AA21403EDF0385AA21407EDE078020F1370127C021F13F0007E013F13E0003E
137FECF3E1261F01E313C03A0F8781E3803A03FF00FF00D800FC133E252977A72E>97
D<EB1FC0EA0FFF5CA2EA003FA291C7FCA25BA2137EA213FEA25BA21201A25BA21203A25B
147E3907F1FF809038F783E09038EF01F013FE390FF800F8A24913FC49137C485A157E5B
15FE123FA290C7FCA248130115FC127EA2140300FE14F85AA2EC07F0A215E048130F15C0
141F15800078EB3F00127C147E003C5B383E01F8381E03E06C485A6CB4C7FCEA01F81F40
76BE2A>I<EC1FC0ECFFF0903803F03C903807C01E90381F800E90383F000F017E133F49
13FF485A485A000714FE5B000F14FC48481300A2485AA3127F90C8FCA35A5AA648140300
7E1407150F151E003E143C15786C14F0EC03E0390F800F803903E07E003801FFF838003F
C0202977A72A>I<EE3F80ED1FFF1700A2ED007FA2167EA216FEA25EA21501A25EA21503
A25EA21507A25E147E903801FF8F903807C1CF90391F80EFC090383F00FF017E137F5B48
486D5A485AA2485A000F92C7FC5B001F5CA24848137EA215FE127F90C75AA214015A485C
A2140316384814F0A21407167891380FE070127C021F13F0007E013F5B003E137FECF3E1
261F01E35B3A0F8781E3802703FF00FFC7FCD800FC133E294077BE2E>I<EC3F80903801
FFE0903807E0F890381F803CEB3E0001FC131E485A485A12074848133E49133C121F4848
137C15F8EC03F0397F000FE0ECFF809038FFFC00B512C048C8FCA45AA61506150E151E00
7C143C15786C14F0EC01E06CEB07C0390F801F003807C0FC3801FFF038007F801F2976A7
2A>I<167C4BB4FC923807C78092380F83C0ED1F87161FED3F3FA2157EA21780EE0E004B
C7FCA414015DA414035DA30103B512F8A390260007E0C7FCA3140F5DA5141F5DA4143F92
C8FCA45C147EA414FE5CA413015CA4495AA4495AA4495A121E127F5C12FF49C9FCA2EAFE
1EEAF83C1270EA7878EA3FE0EA0F802A5383BF1C>I<EC03F0EC0FFC91383E0E1C9138FC
077E903901F003FE1303903807E001D90FC013FCEB1F80A2EB3F004914F8137E01FE1303
A2484814F0A2150712034914E0A2150F12074914C0A2151FA216805B153F1203ED7F006D
5BA200015B0000495A9038F80F7E90387C1EFEEB1FF8903807E0FC90C7FC1401A25DA214
03A25D001C1307007F5C48130F5D4A5A4AC7FC48137E00F85B387C03F0381FFFC0D803FE
C8FC273B7CA72A>I<EB01FC13FF5CA21303A25CA21307A25CA2130FA25CA2131FA25CA2
133FA291C8FCEC03F890387F0FFE91383E0F80D97E7813C0ECE007D9FFC013E014801400
A2485A5BA25B0003140F16C05BA20007141F16805BA2000F143F16005B5D001F147EEDFE
074913FCA2003F0101130FEDF80E1300161E48ECF01CA2007E1538A200FE1570020013E0
48EC7FC00038EC1F0028407ABE2E>I<1478EB01FCA21303A314F8EB00E01400AD137C48
B4FC38038F80EA0707000E13C0121E121CEA3C0F1238A2EA781F00701380A2EAF03F1400
12005B137E13FE5BA212015BA212035B1438120713E0000F1378EBC070A214F0EB80E0A2
EB81C01383148038078700EA03FEEA00F8163E79BC1C>I<EB01FC13FF5CA21303A25CA2
1307A25CA2130FA25CA2131FA25CA2133FA291C8FCED03E049EB0FF8ED3C3C017EEB707C
EDE1FC9038FE01C1EC03839038FC0703140E0001011C13F891383800E049481300146000
0313E0EBF9C0EBF78001FEC8FC1207EBFFE0EBE7F8EBE0FE000F137F6E7EEBC01F81001F
130F16701380A2003F15F0021F13E001001380A248148116C0007EEB0F83168000FE1487
9138078F0048EB03FE0038EB00F826407ABE2A>107 D<EB07F0EA03FF14E0A2EA000FA2
14C0A2131FA21480A2133FA21400A25BA2137EA213FEA25BA21201A25BA21203A25BA212
07A25BA2120FA25BA2121FA25BA2123FA290C7FCA25A1307127EA2EAFE0F130E12FCA213
1E131CA2EA7C381378EA3C70EA1FE0EA0780144079BE17>I<D801F0D93F80137F3D07FC
01FFE003FFC03D0F3E07C1F80F83F03D0E1F0F00FC1E01F8001E011C90387C3800001C49
D97E707F003C01F05C0038157F4A5C26783FC05C12704A91C7FC91C7127E00F003FE1301
494A5CEA007EA20301140301FE5F495CA203031407000160495C180F03075D0003051F13
E0494A1480A2030FEC3F810007F001C0495CA2031F91383E0380120F494AEC0700A2033F
150E001FEF1E1C4991C7EA0FF80007C7000EEC03E0432979A74A>I<D801F0EB3F803A07
FC01FFE03A0F3E07C1F83A0E1F0F00FC001E011C137C001C49137E003C13F012385C3878
3FC012705C91C7FC00F015FE495CEA007EA2150101FE5C5BA2150300015D5B15075E0003
020F13704914C0A2031F13F00007ED80E05B1681EE01C0120F49EC0380A2EE0700001FEC
0F0E49EB07FC0007C7EA01F02C2979A733>I<EC1FC0ECFFF8903803F07C90380FC01FEB
1F8090393F000F80017E14C0491307484814E0485A12075B000F15F0485AA2485AA2ED0F
E0127F90C7FCA2151F4815C05AA2ED3F80A2ED7F00A248147E007C5C007E13015D4A5A00
3E495A6C495A4A5A260F803EC7FC3807C0FC3801FFF038003F80242977A72E>I<903903
E001F890390FF807FE903A1E7C1E0F80903A1C3E3C07C0013C137801389038E003E0EB78
3F017001C013F0ED80019038F07F0001E015F8147E1603000113FEA2C75AA20101140717
F05CA20103140F17E05CA20107EC1FC0A24A1480163F010F15005E167E5E131F4B5A6E48
5A4B5A90393FB80F80DA9C1FC7FCEC0FFCEC03E049C9FCA2137EA213FEA25BA21201A25B
A21203A2387FFFE0B5FCA22D3A80A72E>I<D801F013FC3A07FC07FF803A0F3E0F03C026
0E1F1C13E0001EEB380F001C1370003CEBE01F123814C0D8783F14C00070903880070092
C7FC91C8FC12F05BEA007EA313FE5BA312015BA312035BA312075BA3120F5BA3121F5B00
07C9FC232979A726>114 D<EC7F80903801FFE0903807C0F890381F003C013E131C013C
131E017C133E49137E15FEA2000114FCA215706D13007FEBFFC014FC6C13FF15806D13C0
6D13E0010F13F01300140F14071403120C123F387F80011403D8FF0013E0A300FCEB07C0
00F0EB0F8012700078EB1F006C133C381F01F83807FFE0C690C7FC1F297AA725>I<EB01
C0EB03F01307A25CA2130FA25CA2131FA25CA2133FA291C7FCA2007FB51280B6FC1500D8
007EC7FC13FEA25BA21201A25BA21203A25BA21207A25BA2120FA25BA2121F141C1380A2
003F133C1438EB0078147014F05C495AEA1F03495A6C48C7FCEA07FCEA01F0193A78B81E
>I<137C48B4141C26038F80137EEA0707000E7F001E15FE121CD83C0F5C12381501EA78
1F007001805BA2D8F03F1303140000005D5B017E1307A201FE5C5B150F1201495CA2151F
0003EDC1C0491481A2153F1683EE0380A2ED7F07000102FF13005C01F8EBDF0F00009038
079F0E90397C0F0F1C90391FFC07F8903907F001F02A2979A731>I<017CEB01C048B4EB
07F038038F80EA0707000E01C013F8121E001C1403EA3C0F0038EC01F0A2D8781F130000
705BA2EAF03F91C712E012005B017E130116C013FE5B1503000115805BA2ED0700120349
5B150EA25DA25D1578000114706D5B0000495A6D485AD97E0FC7FCEB1FFEEB03F0252979
A72A>I<017C167048B491387001FC3A038F8001F8EA0707000E01C015FE001E1403001C
EDF000EA3C0F0038177C1507D8781F4A133C00701380A2D8F03F130F020049133812005B
017E011F14784C137013FE5B033F14F0000192C712E05BA2170100034A14C049137E1703
1880A2EF070015FE170E00010101141E01F86D131C0000D9039F5BD9FC076D5A903A3E0F
07C1E0903A1FFC03FFC0902703F0007FC7FC372979A73C>I<903903F001F890390FFC07
FE90393C1E0E0F9026780F1C138001F0EBB83FD801E013F89039C007F07FEA0380000714
E0D9000F140048151C000E4AC7FCA2001E131FA2C75BA2143F92C8FCA35C147EA314FE4A
131CA30101143C001E1538003F491378D87F811470018314F000FF5D9039077801C039FE
0F7C033A7C0E3C078027783C1E1EC7FC391FF80FFC3907E003F029297CA72A>I<137C48
B4143826038F8013FCEA0707000E7F001E1401001C15F8EA3C0F12381503D8781F14F000
701380A2D8F03F1307020013E012005B017E130F16C013FE5B151F1201491480A2153F00
0315005BA25D157EA315FE5D00011301EBF8030000130790387C1FF8EB3FF9EB07E1EB00
035DA21407000E5CEA3F80007F495AA24A5AD8FF0090C7FC143E007C137E00705B387801
F0383803E0381E0FC06CB4C8FCEA03F8263B79A72C>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fc cmr10 10.95 81
/Fc 81 128 df<4AB4EB0FE0021F9038E03FFC913A7F00F8FC1ED901FC90383FF03FD907
F090397FE07F80494801FF13FF4948485BD93F805C137F0200ED7F00EF003E01FE6D91C7
FC82ADB97EA3C648C76CC8FCB3AE486C4A7E007FD9FC3FEBFF80A339407FBF35>11
D<EC03FE91383FFF809138FE03E0903903F800F0D90FE013384948137C90393F8001FE90
387F00035B5BA2485A6F5AED007093C7FCAA16FEB7FCA33901FC000315011500B3AC486C
497EB5D8F87F13FCA32E407EBF33>I<EC03FF023F13EE9138FE01FEEB03F090380FE003
EB1FC0EB3F80EB7F005B5B150148481300AEB7FCA3D801FCC7FCB3AE486C497EB5D8F87F
13FCA32E407EBF33>I<DA03FE49B4FC91273FFF801F13C0913BFE03E07F01F0903C03F0
00F1FC0078D90FE0D97FF0131C49484948133E4948484913FF494848495A5B491500A248
485C03016E5A0300153896C7FCAA197FBBFCA3D801FCC738FE00018485B3AC486C496CEC
FF80B5D8F87FD9FC3F13FEA347407EBF4C>I<133E133F137F13FFA2EA01FEEA03FCEA07
F813F0EA0FE0EA1FC01380EA3E005A5A1270122010116EBE2D>19
D<EC0F80EC7FE0ECF870903803E0380107133CECC01CEB0F80011F131E150EA2EB3F00A5
5D1480A25D157815705D6D6C5A14C1ECC38002C7CAFC02EE91387FFFFCEB0FEC14FC4A02
0713C06D48913801FE006E5DEF00F06D7E01074B5A496C5D011D1503D939FF4A5A017093
C7FC496D5B0001017F140E496C6C131E00036E131C2607801F143C000F6E5B001F6D6C13
70263F000714F0486E485ADA03FE5B913801FF03486D495A0487C8FCED7FCFED3FFE6F48
14386D5C150F007F6E6C14786D6D6C1470003F4A6C14F06D496C6C13E0001F91393E3FC0
016C6C903AFC1FF003C03D07FC07F007FC1F800001B5D8C001B512006C6C90C7EA7FFCD9
0FF8EC0FF03E437CC047>38 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E0
13C0A312011380120313005A120E5A1218123812300B1C79BE19>I<1430147014E0EB01
C0EB03801307EB0F00131E133E133C5B13F85B12015B1203A2485AA2120F5BA2121F90C7
FCA25AA3123E127EA6127C12FCB2127C127EA6123E123FA37EA27F120FA27F1207A26C7E
A212017F12007F13787F133E131E7FEB07801303EB01C0EB00E014701430145A77C323>
I<12C07E12707E7E121E7E6C7E7F12036C7E7F12007F1378137CA27FA2133F7FA2148013
0FA214C0A3130714E0A6130314F0B214E01307A614C0130FA31480A2131F1400A25B133E
A25BA2137813F85B12015B485A12075B48C7FC121E121C5A5A5A5A145A7BC323>I<121E
EA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A120E5A
1218123812300B1C798919>44 D<B512FEA617067F961E>I<121EEA7F80A2EAFFC0A4EA
7F80A2EA1E000A0A798919>I<ED0180ED03C01507A21680150FA216005DA2151E153EA2
153C157CA2157815F8A25D1401A25D1403A25D1407A25D140FA24AC7FCA2141E143EA214
3C147CA2147814F8A25C1301A25C1303A25C1307A25C130FA291C8FC5BA2131E133EA25B
A2137813F8A25B1201A25B1203A25B1207A25B120FA290C9FC5AA2121E123EA2123C127C
A2127812F8A25A1260225B7BC32D>I<EB01FE90380FFFC090383F03F090387C00F84913
7C48487F48487F4848EB0F80A2000F15C04848EB07E0A3003F15F0A290C712034815F8A6
4815FCB3A26C15F8A56C6CEB07F0A3001F15E0A36C6CEB0FC0A26C6CEB1F80000315006C
6C133E6C6C5B017C5B90383F03F090380FFFC0D901FEC7FC263F7DBC2D>I<EB01C01303
1307131F137FEA07FFB5FC139FEAF81F1200B3B3ACEB7FF0B612F8A31D3D78BC2D>I<EB
07FC90383FFF8090B512E03903F01FF83907C007FC390F0001FE001E6D7E001C1580003C
EC7FC05AED3FE01270B4FC6DEB1FF07FA56C5A6CC7FC120CC813E0153FA216C0157F1680
15FF16004A5A5D4A5A4A5A5D4A5A4A5A4AC7FC147E147C5C495A495A495A495A49C71270
133E133C5B4914E0485A485A485A48C7120148B6FCA25A4815C0B7FCA3243D7CBC2D>I<
EB07FC90383FFF809038F80FE03901E003F839078001FCD80F007F000E6D7E001E1580D8
1F80137F486C14C07FA27F5BA2121F6C5AC8138015FF1600A24A5AA24A5A5DEC07E04A5A
023FC7FCEB1FFCECFF809038000FE0EC07F86E7E6E7E6E7E1680ED7FC0A216E0153FA216
F0A2120C123F487E487EA316E0A249137F6CC713C01278EDFF807E6C4913006C495A3907
C007FC3903F80FF0C6B55A013F1380D907F8C7FC243F7CBC2D>I<150E151E153EA2157E
A215FE1401A21403EC077E1406140E141CA214381470A214E0EB01C0A2EB0380EB0700A2
130E5BA25B5BA25B5B1201485A90C7FC5A120E120C121C5AA25A5AB8FCA3C8EAFE00AC4A
7E49B6FCA3283E7EBD2D>I<00061403D80780131F01F813FE90B5FC5D5D5D15C092C7FC
14FCEB3FE090C9FCACEB01FE90380FFF8090383E03E090387001F8496C7E49137E497F90
C713800006141FC813C0A216E0150FA316F0A3120C127F7F12FFA416E090C7121F12FC00
7015C012780038EC3F80123C6CEC7F00001F14FE6C6C485A6C6C485A3903F80FE0C6B55A
013F90C7FCEB07F8243F7CBC2D>I<EC1FE0ECFFF8903803F03E90380FC00F90391F0007
80133E017EEB1FC049133F4848137F12035B12074848EB3F80ED1F00001F91C7FC5BA212
3FA3485AA214FE903887FF8039FF8F07E090389C01F09038B800FC01B0137E13F0497F16
804914C0A2ED1FE0A34914F0A5127FA6123F6D14E0A2121FED3FC0A26C6C1480A20007EC
7F006C6C137E6C6C5B6C6C485A90387E07F06DB45A010F1380D903FCC7FC243F7CBC2D>
I<1238123C123F90B612FCA316F85A16F016E00078C712010070EC03C0ED078016005D48
141E151C153C5DC8127015F04A5A5D14034A5A92C7FC5C141EA25CA2147C147814F8A213
015C1303A31307A3130F5CA2131FA6133FAA6D5A0107C8FC26407BBD2D>I<EB03FC9038
1FFF8090387C07E09038F001F83901E0007C48487F48487F48C7FCED0F80121E16C0003E
1407A4123FA26DEB0F807F6C6C131F6D140001FC133E6C6C5B9038FF80786C6D5A6CEBF3
E06CEBFF806C91C7FC133F6D13C06D7F013F13F801787F48486C7E3903E01FFF48486C13
80260F800313C048487E489038007FE0003E143F007E141F007CEC0FF01507481403A315
01A46C15E0007C1403A2007E15C06C14076CEC0F806DEB1F006C6C133ED807F05B3901FC
03F86CB512E0011F1380D903FCC7FC243F7CBC2D>I<EB03FCEB1FFF90387E07C09038FC
03F048486C7E48486C7E4848137C000F147E4848137F81003F15805B007F15C0A2151F12
FF16E0A516F0A5127F153FA36C7EA2001F147F120F6C6C13FF6D13DF000313013900F803
9F90387E0F1FD91FFE13E0EB07F090C7FCA2ED3FC0A41680157FD80F801400487E486C13
FEA24A5A5D49485AEB8007391E000FE0001F495A260FC07FC7FC3803FFFE6C13F838003F
C0243F7CBC2D>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3121EEA7F80A2EAFF
C0A4EA7F80A2EA1E000A2779A619>I<15074B7EA34B7EA34B7EA34B7EA34B7E15E7A291
3801C7FC15C3A291380381FEA34AC67EA3020E6D7EA34A6D7EA34A6D7EA34A6D7EA34A6D
7EA349486D7E91B6FCA249819138800001A249C87EA24982010E157FA2011E82011C153F
A2013C820138151FA2017882170F13FC00034C7ED80FFF4B7EB500F0010FB512F8A33D41
7DC044>65 D<B712FCEEFF8017F00001903980000FF86C6CC7EA03FE707E701380EF7FC0
EF3FE0A2EF1FF0A218F8A3170F171FA318F0A2EF3FE0177F18C0EFFF804C1300EE03FCEE
0FF8EE7FE091B6C7FC17E091C7EA07FCEE01FE933800FF80EF7FC0EF3FE0EF1FF018F817
0F18FC1707A218FEA718FC170FA2EF1FF818F0173FEF7FE0EFFFC00403138048486C9038
0FFE00B85A17E094C7FC373E7DBD40>I<DB3FF01306912603FFFE130E020F9038FF801E
913A3FF007E03E9139FF8000F8D903FEC7EA7C7ED907F8EC1EFE4948140FD93FE0140749
481403495A91C812014848150012034848167E5B000F173EA24848161EA2123F5B180E12
7FA349160012FFAC127F7F180EA2123FA27F001F171E181C6C7EA20007173C6D16386C6C
1678000117706C6C16F06EEC01E06D6C15C06D6C1403D90FF0EC07806D6CEC1F00D903FE
143E902600FF8013F891393FF007F0020FB512C0020391C7FC9138003FF037427BBF42>
I<B712FCEEFF8017E000019039C0001FF86C6C48EB03FEEE00FF717E717EEF0FE084717E
717E170184717EA21980187F19C0A3F03FE0A519F0AB19E0A5F07FC0A21980A218FF1900
4D5AA24D5A6017074D5A4D5AEF7FC04DC7FCEE03FE48486CEB1FF8B85A178004FCC8FC3C
3E7DBD45>I<B912E0A300019038C000016C6C48EB001FEF0FF01703A217011700A31870
A418381638A41800A21678A216F81501150791B5FCA3EC8007150115001678A21638A218
0EA3181C93C7FCA4183C1838A21878A318F8EF01F0A21707170F173F48486CEB03FFB912
E0A3373E7DBD3E>I<B91280A300019038C000036C6C48EB007FEF1FC0170F1707A21703
A31701A4EF00E0A21638A31800A31678A216F81501150791B5FCA3EC8007150115001678
A21638A693C8FCAF3801FFE0B612F0A3333E7DBD3B>I<DB3FE0130C912603FFFE131C02
1F9038FF803C913A7FF00FC07C9139FF0001F0D903FC90380078FC4948143DD91FE0141F
4948140F4948140701FF15034890C8FC491501485A000716005B000F177C5B001F173CA2
485AA2181C127FA25B95C7FC12FFAB041FB512F0127FA26D9139000FFE00EF03FC123FA2
7F121FA26C7EA212077F12036C7E7F6C7F6D6C14076D7E6D6C140FD907F8141ED903FEEC
3C7C902600FF80EBF83C913A7FF007F01C021FB5EAC00C020391C8FC9138003FF03C427B
BF47>I<B6D8C01FB512F8A3000101E0C7383FFC0026007F80EC0FF0B3A691B7FCA30280
C7120FB3A92601FFE0EC3FFCB6D8C01FB512F8A33D3E7DBD44>I<B612F0A3C6EBF000EB
3FC0B3B3B2EBFFF0B612F0A31C3E7EBD21>I<011FB512FCA3D9000713006E5A1401B3B3
A6123FEA7F80EAFFC0A44A5A1380D87F005B007C130700385C003C495A6C495A6C495A26
03E07EC7FC3800FFF8EB3FC026407CBD2F>I<B600C090387FFFFCA3000101E0C7000F13
8026007F80913807FE0018F818E0604D5A4DC7FC173E5F5F4C5A4C5A4C5A4C5A4CC8FC16
3E5E5E4B5A4B5AED07804B7E151F4B7E4B7E15FF913881EFF8913883C7FCEC878791388F
03FE91389E01FF14BCDAF8007F4A6D7E5C4A6D7E4A6D7EA2707E707EA2707E707EA2707F
717E84173F717E717EA2717E848419802601FFE04A13C0B600C090B6FCA3403E7DBD47>
I<B612F8A3000101E0C9FC38007F80B3B0EF0380A517071800A45FA35FA25F5F5F4C5A16
0748486C133FB8FCA3313E7DBD39>I<B500C093B512C0A300016D4BEBE000D8007F1880
D977F0ED03BFA3D973F8ED073FA3D971FC150EA2D970FE151CA3027F1538A36E6C1470A3
6E6C14E0A26E6CEB01C0A36E6CEB0380A36E6CEB0700A26E6C130EA36E6C5BA3037F5BA2
6F6C5AA36F6C5AA392380FE1C0A3923807F380A26FB4C7FCA36F5AA213F8486C6D5AD807
FFEFFFE0B500F80178017FEBFFC0A34A3E7CBD53>I<B56C91B512F88080D8007F030713
006EEC01FC6E6E5A1870EB77FCEB73FEA2EB71FF01707FA26E7E6E7EA26E7E6E7EA26E7E
6E7EA26E7E6E7FA26F7E6F7EA26F7E6F7EA26F7E6F7EA26F7E6F1380A2EE7FC0EE3FE0A2
EE1FF0EE0FF8A2EE07FCEE03FEA2EE01FF7013F0A2177F173FA2171F170FA2170701F815
03487ED807FF1501B500F81400A218703D3E7DBD44>I<ED7FE0913807FFFE91391FC03F
8091397E0007E04948EB03F8D907F0EB00FE4948147F49486E7E49486E7E49C86C7E01FE
6F7E00018349150300038348486F7EA248486F7EA2001F188049167F003F18C0A3007F18
E049163FA300FF18F0AC007F18E06D167FA4003F18C0A26C6CEEFF80A36C6C4B1300A26C
6C4B5A00035F6D150700015F6C6C4B5A6D5E6D6C4A5A6D6C4A5A6D6C4AC7FC6D6C14FED9
01FCEB03F8D9007FEB0FE091391FC03F80912607FFFEC8FC9138007FE03C427BBF47>I<
B712F8EEFF8017E000019039C0003FF86C6C48EB07FCEE01FE707EEF7F80EF3FC018E0A2
EF1FF0A218F8A818F0A2EF3FE0A218C0EF7F80EFFF004C5AEE07FCEE3FF091B612C04CC7
FC0280C9FCB3A73801FFE0B612C0A3353E7DBD3E>I<ED7FE0913807FFFE91391FC03F80
91397F000FE0D901FCEB03F8D907F0EB00FE4948147F49486E7E49486E7E49C86C7E4982
48486F7E49150300038348486F7EA2000F834981001F1880A24848EE7FC0A3007F18E0A2
49163FA200FF18F0AC007F18E0A26D167FA3003F18C0A26C6CEEFF80A3000F18006D5D00
07DA0F805B6C6C90393FE003FCED70706C6C496C485A6C6C48486C485A017FD9800E5BD9
3F819038061FC0D91FC19038073F80D90FE14AC7FCD907F1EB03FE902601FDC013F8903A
007EE007E091271FF03FC013180207B5FC9139007FE1E0DB0001143883711378A2706C13
F0EFFF0318FFA27113E0A37113C0711380711300715AEF01F83D527BBF47>I<B712C016
FCEEFF800001D9C00013E06C6C48EB1FF0EE07FCEE01FE707E84717EA2717EA284A76017
7F606017FF95C7FCEE01FCEE07F8EE1FE0EEFF8091B500FCC8FC16F091388001FCED003F
EE1FC0707E707E83160383160183A383A484A4F0C004190EA28218E0057F131E2601FFE0
161CB600C0EB3FF094381FF83805071370CA3801FFE09438003F803F407DBD43>I<D907
FC131890391FFF8038017FEBE0783901FC03F83A03F0007CF8D807C0133F4848130F001F
140748C7FC003E1403007E1401A2007C140012FC1678A46C1538A27EA26C6C14007F7FEA
3FF8EBFF806C13F86CEBFF806C14F06C14FC6C14FF6C15C0013F14E0010714F0EB007F02
0713F89138007FFC150FED07FE15031501ED00FFA200E0157FA3163FA27EA3163E7E167E
6C157C6C15FC6C15F86D13016DEB03F06DEB07E0D8F9FCEB0FC03AF07F803F8090391FFF
FE00D8E00713F839C0007FC028427BBF33>I<003FB91280A3903AF0007FE00101809039
3FC0003F48C7ED1FC0007E1707127C00781703A300701701A548EF00E0A5C81600B3B14B
7E4B7E0107B612FEA33B3D7DBC42>I<B600C090B512F8A3000101E0C70007130026007F
80EC01FC715A1870B3B3A4013F16F06E5DA21701011F5E80010F15036E4A5A010793C7FC
6D6C5C6D6C141E6D6C5C027F14F86E6C485A91390FF00FE00203B51280020049C8FCED1F
F03D407DBD44>I<B691380FFFFEA3000301E0020113E06C01809138007F806CEF3F0001
7F163E181C6E153C013F1638A26E1578011F1670A26D6C5DA26E140101075EA26E140301
035EA26D6C4AC7FCA2806D150EA26F131E027F141CA26F133C023F1438A26E6C5BA26F13
F0020F5CA2EDF80102075CA26E6C485AA2EDFE07020191C8FCA26F5A6E130EA2ED7F9CA2
16DCED3FF8A36F5AA36F5AA26F5AA36F5A3F407EBD44>I<B500FE017FB5D88007B5FCA3
000301C0010101E0C713F86C90C849EC3FE07148EC0F807E7215006E143F017F190E84A2
6D6C60A24D7E6D6C60A2EFE7F86D6C60A2933801C3FC6E18F001076104037F6E02811401
01036104077F17006D6C4D5AA2040EEB7F806D6C4DC7FCA24CEB3FC0DA7F80160EA24CEB
1FE003C0161E023F171C047814F0DBE070010F133C021F173804F014F84C1307DA0FF05E
A2DBF1C0EB03FCDA07F95EA2DBFB80EB01FEDA03FF6F5AA293C8FCA26E5FA24B157F0200
94C8FCA24B81037C153EA20378151E0338151C58407EBD5D>I<007FB5D8C003B512E0A3
C649C7EBFC00D93FF8EC3FE06D48EC1F806D6C92C7FC171E6D6C141C6D6C143C5F6D6C14
706D6D13F04C5ADA7FC05B023F13036F485ADA1FF090C8FC020F5BEDF81E913807FC1C16
3C6E6C5A913801FF7016F06E5B6F5AA26F7E6F7EA28282153FED3BFEED71FF15F103E07F
913801C07F0203804B6C7EEC07004A6D7E020E6D7E5C023C6D7E02386D7E14784A6D7E4A
6D7F130149486E7E4A6E7E130749C86C7E496F7E497ED9FFC04A7E00076DEC7FFFB500FC
0103B512FEA33F3E7EBD44>I<B66C0103B51280A3000101F0C8EBF8006C6C48ED3FC072
5A013F041EC7FC6D7E606D6C15386D6C1578606D6C5D6E14016D5E6D6D1303606E6C49C8
FC6E6C5B170E6E6C131E171C6E6C5B6E6C137817706E6C13F06F5B6E13016EEB83C05FED
7FC7DB3FE7C9FC16EFED1FFE5E150F6F5AB3A4ED1FFC020FB512FCA3413E7FBD44>I<00
3FB712F8A391C7EA1FF013F801E0EC3FE00180EC7FC090C8FC003EEDFF80A2003C4A1300
007C4A5A12784B5A4B5AA200704A5AA24B5A4B5AA2C8485A4A90C7FCA24A5A4A5AA24A5A
A24A5A4A5AA24A5A4A5AA24990C8FCA2495A4948141CA2495A495AA2495A495A173C495A
A24890C8FC485A1778485A484815F8A24848140116034848140F4848143FED01FFB8FCA3
2E3E7BBD38>I<EAFFFCA4EAF000B3B3B3B3ABEAFFFCA40E5B77C319>I<EAFFFCA4EA003C
B3B3B3B3ABEAFFFCA40E5B7FC319>93 D<EA0180120313005A120E5A1218123812301270
1260A312E05AA412CFEAFFC013E0A3127FA2123F13C0EA0F000B1C7ABE19>96
D<EB0FF8EBFFFE3903F01F8039078007E0000F6D7E9038E001F8D81FF07F6E7EA3157F6C
5AEA0380C8FCA4EC1FFF0103B5FC90381FF87FEB7F803801FC00EA07F8EA0FE0485A485A
A248C7FCEE038012FEA315FFA3007F5BEC03BF3B3F80071F8700261FC00E13CF3A07F03C
0FFE3A01FFF807FC3A003FC001F0292A7DA82D>I<EA01FC12FFA3120712031201B1EC03
FC91381FFF8091387C07E09039FDE001F09039FFC000FC4A137E91C77E49158049141F17
C0EE0FE0A217F0A2160717F8AA17F0A2160FA217E0161F17C06D1580EE3F006D5C6E13FE
9039F3C001F89039F1E003F09039E0780FC09026C03FFFC7FCC7EA07F82D407EBE33>I<
49B4FC010F13E090383F00F8017C131E4848131F4848137F0007ECFF80485A5B121FA248
48EB7F00151C007F91C7FCA290C9FC5AAB6C7EA3003FEC01C07F001F140316806C6C1307
6C6C14000003140E6C6C131E6C6C137890383F01F090380FFFC0D901FEC7FC222A7DA828
>I<ED01FC15FFA3150715031501B114FF010713E190381F80F990387E003D49131FD803
F81307485A49130348481301121F123F5B127FA290C7FCA25AAA7E7FA2123FA26C7E000F
14037F000714076C6C497E6C6C497ED8007C017913F890383F01F190380FFFC1903A01FE
01FC002D407DBE33>I<EB01FE90380FFFC090383F03F09038FC01F848486C7E4848137E
48487F000F158049131F001F15C04848130FA2127F16E090C7FCA25AA290B6FCA290C9FC
A67EA27F123F16E06C7E1501000F15C06C6C13036DEB07806C6C1400C66C131E017E5B90
381F80F8903807FFE0010090C7FC232A7EA828>I<EC1FC0EC7FF8903801F83C903807E0
7E90380FC0FFEB1FC1EB3F811401137FEC00FE01FE137C1500AEB6FCA3C648C7FCB3AE48
7E007F13FFA320407EBF1C>I<167C903903F801FF903A1FFF078F8090397E0FDE1F9038
F803F83803F001A23B07E000FC0600000F6EC7FC49137E001F147FA8000F147E6D13FE00
075C6C6C485AA23901F803E03903FE0FC026071FFFC8FCEB03F80006CAFC120EA3120FA2
7F7F6CB512E015FE6C6E7E6C15E06C810003813A0FC0001FFC48C7EA01FE003E14004815
7E825A82A46C5D007C153E007E157E6C5D6C6C495A6C6C495AD803F0EB0FC0D800FE017F
C7FC90383FFFFC010313C0293D7EA82D>I<EA01FC12FFA3120712031201B1EC01FE9138
07FFC091381E07E091387803F09138E001F8D9FDC07F148001FF6D7E91C7FCA25BA25BB3
A6486C497EB5D8F87F13FCA32E3F7DBE33>I<EA01E0EA07F8A2487EA46C5AA2EA01E0C8
FCACEA01FC127FA3120712031201B3AC487EB512F0A3143E7DBD1A>I<1478EB01FEA2EB
03FFA4EB01FEA2EB00781400AC147FEB7FFFA313017F147FB3B3A5123E127F38FF807E14
FEA214FCEB81F8EA7F01387C03F0381E07C0380FFF803801FC00185185BD1C>I<EA01FC
12FFA3120712031201B292B51280A392383FFC0016E0168093C7FC153C5D5D4A5AEC07C0
4A5A4AC8FC143E147F4A7E13FD9038FFDFC0EC9FE0140F496C7E01FC7F496C7E1401816E
7E81826F7E151F826F7EA282486C14FEB539F07FFFE0A32B3F7EBE30>I<EA01FC12FFA3
120712031201B3B3B1487EB512F8A3153F7DBE1A>I<2701F801FE14FF00FF902707FFC0
0313E0913B1E07E00F03F0913B7803F03C01F80007903BE001F87000FC2603F9C06D487F
000101805C01FBD900FF147F91C75B13FF4992C7FCA2495CB3A6486C496CECFF80B5D8F8
7FD9FC3F13FEA347287DA74C>I<3901F801FE00FF903807FFC091381E07E091387803F0
00079038E001F82603F9C07F0001138001FB6D7E91C7FC13FF5BA25BB3A6486C497EB5D8
F87F13FCA32E287DA733>I<14FF010713E090381F81F890387E007E01F8131F4848EB0F
804848EB07C04848EB03E0000F15F04848EB01F8A2003F15FCA248C812FEA44815FFA96C
15FEA36C6CEB01FCA3001F15F86C6CEB03F0A26C6CEB07E06C6CEB0FC06C6CEB1F80D800
7EEB7E0090383F81FC90380FFFF0010090C7FC282A7EA82D>I<3901FC03FC00FF90381F
FF8091387C0FE09039FDE003F03A07FFC001FC6C496C7E6C90C7127F49EC3F805BEE1FC0
17E0A2EE0FF0A3EE07F8AAEE0FF0A4EE1FE0A2EE3FC06D1580EE7F007F6E13FE9138C001
F89039FDE007F09039FC780FC0DA3FFFC7FCEC07F891C9FCAD487EB512F8A32D3A7EA733
>I<02FF131C0107EBC03C90381F80F090397F00387C01FC131CD803F8130E4848EB0FFC
150748481303121F485A1501485AA448C7FCAA6C7EA36C7EA2001F14036C7E15076C6C13
0F6C7E6C6C133DD8007E137990383F81F190380FFFC1903801FE0190C7FCAD4B7E92B512
F8A32D3A7DA730>I<3901F807E000FFEB1FF8EC787CECE1FE3807F9C100031381EA01FB
1401EC00FC01FF1330491300A35BB3A5487EB512FEA31F287EA724>I<90383FC0603901
FFF8E03807C03F381F000F003E1307003C1303127C0078130112F81400A27E7E7E6D1300
EA7FF8EBFFC06C13F86C13FE6C7F6C1480000114C0D8003F13E0010313F0EB001FEC0FF8
00E01303A214017E1400A27E15F07E14016C14E06CEB03C0903880078039F3E01F0038E0
FFFC38C01FE01D2A7DA824>I<131CA6133CA4137CA213FCA2120112031207001FB512C0
B6FCA2D801FCC7FCB3A215E0A912009038FE01C0A2EB7F03013F138090381F8700EB07FE
EB01F81B397EB723>I<D801FC14FE00FF147FA3000714030003140100011400B3A51501
A31503120015076DEB06FF017E010E13806D4913FC90381FC078903807FFE00100903880
FE002E297DA733>I<B539E00FFFE0A32707FE000313006C48EB00FC5E00015D7F00005D
A26D13016D5CA26D6C485AA2ECC007011F91C7FCA290380FE00EA2ECF01E0107131CA26D
6C5AA2ECFC7801011370A2ECFEF001005BA2EC7FC0A36E5AA26EC8FCA3140E2B287EA630
>I<B53BC3FFFE03FFF8A3290FFE003FE00013C06C486D48EB3F806C4817006D010F141E
00016F131C15076D163C00004A6C1338A2017F5E4B7E151DD93F805DED3DFC1538D91FC0
4A5AED78FE9238707E03D90FE0017F5BEDE03F02F0140701070387C7FC9138F1C01F02F9
148F010315CE9138FB800F02FF14DE6D15FCED00076D5DA24A1303027E5CA2027C130102
3C5C023813003D287EA642>I<B539F01FFFE0A30003D9C00F1300C690388007F8D97F00
13E002805BD93FC05B011F49C7FC90380FE00EECF01E6D6C5A01035B6D6C5A6E5AEB00FF
6E5A6E5A81141F814A7E81147BECF1FC903801E1FEECC0FF01037F49486C7ED90F007F01
1E6D7E013E130F496D7E01FC80486C80000F4A7EB539803FFFF8A32D277FA630>I<B539
E00FFFE0A32707FE000313006C48EB01FC6F5A00015D7F00005DA2017F495AA2EC800301
3F5CA26D6C48C7FCA26E5A010F130EA26D6C5AA2ECF83C01031338A26D6C5AA2ECFEF001
005BA2EC7FC0A36E5AA36EC8FCA2140EA2141E141C143C1438A2147800181370127EB45B
A2495AA248485AD87E07C9FCEA780EEA3C3CEA1FF8EA07E02B3A7EA630>I<001FB61280
A2EBE0000180140049485A001E495A121C4A5A003C495A141F00385C4A5A147F5D4AC7FC
C6485AA2495A495A130F5C495A90393FC00380A2EB7F80EBFF005A5B4848130712074914
00485A48485BA248485B4848137F00FF495A90B6FCA221277EA628>I<B812F0A22C0280
982D>I<001C130E007FEB3F8039FF807FC0A5397F003F80001CEB0E001A0977BD2D>127
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fd cmtt9 9 85
/Fd 85 126 df<123C127E12FFAF127EAE123C1200A7123C127E12FFA4127E123C082F71
AE27>33 D<00101320007C13F838FE01FCAAEAFC00007C13F8A900381370161778AE27>
I<90383C03C090387E07E0A7EBFE0F01FC13C0A2007FB512FEB7FCA4003F14FE3901F81F
80AC003FB512FEB7FCA46C14FE3903F03F00A200075BEBE07EA73803C03C202E7DAD27>
I<000F1470486C13F8383FC001EA7FE0140315F038FFF00700F914E0A2140F15C0A2141F
00FF1480387FE03F1500A26C485A381F807E380F00FEC75AA213015CA213035C13075CA2
130F5C131F5CA2133F91C7FCA24913F090387E01F89038FE03FC9038FC07FEA212019038
F80FFF0003149F13F0A2120713E0A2000F14FF9038C007FE121F1380EC03FC000FEB01F8
6CC712F0203A7DB327>37 D<131FEB7FC0497E5A80EA03F1EBE1F8EA07E013C0A513C15C
9039C3F1FF80D9E3E113C03803E7E3EBEFC101FF1480913881F800EC01F0EA01FEEBFC03
01F85B00031307D807FC5B120F381FFE0FD83FBE5BEB3F1FD87E1F90C7FC149F38FC0FBF
14FE1307ECFC020103EB0F80EB01F8A238FE03FC387E07FE397F1FFF9F6CB61200149F6C
EB0FFE390FFC03FC3903F000F822307EAE27>I<120FEA1FC0123F13E0A213F0121F120F
1201A4120313E01207EA0FC0A2EA3F80EA7F005A5A12F812700C1773AD27>I<EB01C0EB
03E0130F131FEB3FC0EB7F80EBFE00485A5B1203485A5B485AA2485AA248C7FCA3127EA4
5AAC127EA47EA36C7EA26C7EA26C7E7F6C7E12017F6C7EEB7F80EB3FC0EB1FE0130F1303
EB01C0133A73B327>I<127012F812FE7E6C7E6C7EEA0FE06C7E12037F6C7E1200137EA2
7FA2EB1F80A3EB0FC0A4EB07E0ACEB0FC0A4EB1F80A3EB3F00A2137EA25B1201485A5B12
07485AEA3FC0485A48C7FC5A12F81270133A7AB327>I<130F497EA60078EB81E000FEEB
87F000FF138FEBDFBF6CB512E06C14C0000F1400000313FCC613F0A2000313FC000F13FF
003F14C04814E039FFDFBFF0EB1F8F00FE13870078EB81E00000EB8000A66DC7FC1C207B
A627>I<EB03C0497EAD007FB512FEB7FCA46C14FE390007E000AD6D5A20227DA727>I<12
0FEA3FC013E0EA7FF0A213F8A2123FA2120F120113F01203EA07E0121FEA7FC0EAFF8013
005A12700D14738927>I<007FB512F8B612FCA46C14F81E067C9927>I<121EEA7F80A2EA
FFC0A4EA7F80A2EA1E000A0A728927>I<1538157C15FCA2140115F8140315F0140715E0
140F15C0141F1580143F1500A25C147E14FE5C13015C13035C13075C130F5CA2131F5C13
3F91C7FC5B137E13FE5B12015B12035BA212075B120F5B121F5B123F90C8FC5A127E12FE
5AA25A12781E3A7CB327>I<EB07E0EB3FFC497E90B5FC4814803903FC3FC03907F00FE0
390FE007F0EBC003391F8001F8A248C712FCA2003E147C007E147EA3007C143E00FC143F
AC007E147EA46C14FCA2EB8001001F14F8EBC003000F14F0EBE0073907F00FE03903FC3F
C06CB512806C14006D5A6D5AEB07E020307DAE27>I<130E131FA25B5BA25B5A5A127FB5
FCA213BFEA7E3F1200B3AA003FB512805A15C01580A21A2F79AE27>I<EB3FE03801FFF8
4813FE000FEBFF804814C0393FE07FE0EB800F397F0007F0007EEB03F800FE13015A6C14
FC1400A3127CC8FCA2140115F8A2140315F01407EC0FE0EC1FC0143FEC7F80ECFF00495A
495A495A495A495A495A495A01FEC7FC485AD807F81378484813FC485A485A48B5FCB6FC
A36C14F81E2F7CAE27>I<EB1FF8EBFFFE0003EBFF80000F14C015E0391FF01FF0393FC0
07F8EB800115FC1400A26CC7FC1204C8FC140115F81403EC07F0140FEC3FE090381FFFC0
491380A215E06D13F09038001FF8EC03FC1401EC00FE157E157F153FA21238127C12FEA2
157F48147E6C14FE007FEB01FCEB8003393FF01FF86CB512F06C14E000031480C6EBFE00
EB1FF820307DAE27>I<EC3F804A7EA214FF5BA2EB03F7EB07E7A2EB0FC71487131FEB3F
07A2137E13FCA2EA01F813F01203EA07E0A2EA0FC0EA1F80A2EA3F00123E127E5AB71280
16C0A36C1580C73807C000A849B5FC491480A36D1400222F7EAE27>I<001FB512E04814
F0A315E090C8FCACEB1FF0EBFFFC14FF158015C09038F03FE09038C00FF0EB0007003EEB
03F8001C1301C7FC15FC1400A3127C12FEA2140115F84813036C14F0007F130F9038801F
E0393FE07FC06CB512806C14006C5B000113F838007FC01E2F7CAD27>I<14FF010713C0
011F13F04913F890B5FC48EB81FC3803FE0113F8EA07F0EA0FE09038C000F8001F140048
5A90C8FCA25A127EEB0FF838FE3FFE48B51280B612C015E09038F80FF09038E007F89038
8001FC90C7FC15FE48147E157F153F5A7E127EA3127F6C147F157E6C6C13FE9038C001FC
120F9038F007F83907F81FF06CB512E06C14C06C148090383FFE00EB0FF820307DAE27>
I<1278B612FE15FFA315FE39FC0001FCEC03F8EC07F0007814E0C7120FEC1FC01580143F
EC7F00147E14FE5C13015C13035C13075CA2495AA3495AA3133F91C7FCA55B137EA9133C
20307DAE27>I<EB0FF0EB7FFE48B512804814C0000F14F0EBF81F391FE007F8393F8001
FC90C7FC4814FE007E147EA56C14FCEB8001391FC003F8390FE007F03907FC3FE00001B5
128039007FFE006D5A90B5FC000314C0390FF00FF0391FC003F8393F8001FC90C7FC007E
147EA248143FA6007E147EA2007F14FE393F8001FC391FE007F8EBF81F6CB512F06C14E0
0001148039007FFE00EB0FF020307DAE27>I<EB0FF0EB7FFC48B5FC4814804814C0390F
F81FE0391FE007F0393FC003F8EB8001D87F0013FC007E130012FE48147EA4157F153F15
7F7E127E007F14FF7E6D5A381FE007380FF01F6CB6FC7E6C143F39007FFC7F90381FF07E
90C7FCA215FCA2140115F8001F1303393F8007F0EC0FE0141FEC3FC09038C0FF806CB512
005C6C13F8000313E0C6138020307DAE27>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00
C7FCAC121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A20729F27>I<120FEA3FC0A2EA7FE0
A4EA3FC0A2EA0F00C7FCAC120FEA3F8013C0127F13E0A3123FA2120F120713C0120FA2EA
3F80EA7F005A5A12F812700B2A739F27>I<153815FC14011407140FEC3FF8EC7FE0ECFF
C001031300495AEB1FF8495A495A3801FF804890C7FCEA0FFC485AEA7FF0EAFFC05BA27F
EA7FF0EA1FF86C7EEA03FF6C7F38007FE06D7E6D7EEB07FE6D7E010013C0EC7FE0EC3FF8
EC0FFC14071401140015381E287CAA27>I<007FB512FEB7FCA4003F14FEC9FCA6003FB5
12FEB7FCA46C14FE20127D9F27>I<127012FC7E6C7E7FEA7FF0EA1FF86C7EEA03FF6C7F
38007FE06D7E6D7EEB07FE6D7E010013C0EC7FE0EC3FF8EC0FFC1407A2140FEC3FF8EC7F
E0ECFFC001031300495AEB1FF8495A495A3801FF804890C7FCEA0FFC485AEA7FF0EAFFC0
5B48C8FC5A12701E287CAA27>I<EBFFF8000313FF000F14C0003F14E04814F09038C01F
F839FF0003FC4813011400A21401007C1303C7EA0FF8EC1FF0EC7FE0ECFFC0491300EB03
FC495A5C495A5C131F5CA76DC7FC90C8FCA7130F497E497EA46D5A6DC7FC1E2E7CAD27>
I<EB03F0497EA2497EA4143CEB1F3EA5EB3F3FA3EB3E1FA2017E7FA4496C7EA548486C7E
A390B5FCA24880A3EBF003A248486C7EA4000F803A7FFC0FFF8000FF15C06D5A497E007F
1580222F7EAE27>65 D<007FB5FCB612C08115F87E3907E003FCEC00FE157E157F81A615
7EA25D1403EC0FF890B55A15C015F081819038E000FE157FED3F80151FA2ED0FC0A6151F
1680153FED7F004A5A007FB55AB65A5D15E06C1480222E7FAD27>I<903803F80E90381F
FE1F90383FFFBF90B6FC5A3803FE0F3807F803497E48487E485A49137FA248C7123FA25A
127E151E150012FE5AAA7E127EA2151E007F143F7EA26C7E157F6D137E6C6C13FE3907F0
01FCEBF8033903FE0FF86CB512F06C14E0013F13C06D1300EB03F820307DAE27>I<387F
FFFC14FFB612C06C80813907E00FF81407EC01FC6E7EA2157E157F811680151FA316C015
0FABED1F80A3153F1600A25D15FEA24A5A4A5A140F007FB55A5DB65A6C91C7FC14FC222E
7FAD27>I<007FB61280B712C0A37E3907E0000FA6ED078092C7FCA4EC07804A7EA390B5
FCA5EBE00FA36E5A91C8FCA4ED03C0ED07E0A7007FB6FCB7FCA36C15C0232E7FAD27>I<
007FB61280B712C0A37E3907E0000FA6ED078092C7FCA4EC07804A7EA390B5FCA5EBE00F
A36E5A91C8FCAC387FFF80B57EA36C5B222E7EAD27>I<903807F03890381FFC7C90387F
FFFC90B5FC5A3803FC1F3807F00F380FE007EBC003001F13011380123F90C7FCA2127EA2
157892C7FC5AA8EC1FFF4A1380A3007E6D1300EC00FCA36C1301A21380121FEBC003120F
EBE0073807F00F3803FC1F6CB5FC7EEB7FFE90381FFC78D907F0C7FC21307DAE27>I<00
7FB512E0B612F0A36C14E039001F8000B3B2007FB512E0B612F0A36C14E01C2E7BAD27>
73 D<90381FFFF84913FCA36D13F89038001F80B3AC127CA212FEA2EC3F005C387F81FE
13FF6C5B6C5B000713E0C690C7FC1E2F7BAD27>I<3A7FFC07FF8016C0486C5A6C487E16
803A07C001F80014035D4A5A4A5A141F5D4AC7FC147E14FE5CEBC1F8EBC3F013C75CEBCF
F0EBDFF813FF8013FEEBFC7E143EEBF83F497E01E07F140F01C07F1407811403816E7EA2
6E7E157C157E3A7FFC01FFC016E0486C5A6C487E16C0232E7FAD27>I<387FFFC080B5FC
7E5CD803F0C8FCB3AAED0780ED0FC0A7007FB6FCA2B7FC7E1680222E7FAD27>I<D87FE0
EB7FE0486CEBFFF0A26D5A007F15E0000F150001B813DFEBBC03A3EBBE07019E139FA3EB
9F0FA2018F131FA2149FA2EB879EA4EB839C14FCA3EB81F8A2EB80F01400AAD87FF0EBFF
E0486C4813F0A36C486C13E0242E7FAD27>I<3A7FF003FFE0486C4813F0A213FC007F6D
13E000079038003E0013DEA313CFA3148013C714C0A213C314E0A213C114F0A3EBC0F8A3
1478147CA2143C143EA2141E141F140FA3EC07BEA3EC03FEEA7FFCEAFFFE1401A26C486C
5A242E7FAD27>I<EBFFFC0007EBFF80001F14E0A24814F0EBC00F397F8007F8EB000300
7E1301A348EB00FCB3A76C1301007E14F8A3007F1303EB8007393FE01FF090B5FC6C14E0
A200071480C6EBFC001E307CAE27>I<007FB5FCB612E081816C803907E003FEEC00FF81
ED3F80151F16C0150FA6151F1680153FED7F005DEC03FE90B55A5D5D5D92C7FC01E0C8FC
ADEA7FFEB5FCA36C5A222E7FAD27>I<EBFFFC0007EBFF80001F14E0A24814F0EBE01F39
7F8007F8EB0003007E1301A300FE14FC481300B3A4EB07E0A200FE13F1007E14F8EB03F9
A2387F01FF1381D83FE013F090B5FC6C14E0A200071480C6FC9038001FC0A2EC0FE0A2EC
07F0A2EC03F8A2EC01F01E397CAE27>I<387FFFF0B512FE6E7E816C803907E01FF01407
6E7E1401811400A514015D14034A5A141F90B55A5D5DA281EBE01F6E7E14076E7EA816F0
EDF1F8A4397FFE01FBB5EBFFF08016E06C48EB7FC0C8EA1F00252F7FAD27>I<90387FC0
E03901FFF1F0000713FF5A5AEA3FE0EB801F387F000F007E130712FE5A1403A3EC01E06C
90C7FC127E127FEA3FC013F86CB47E6C13F86C13FE6CEBFF80C614C0010F13E0010013F0
140FEC07F81403140115FC1400127812FCA46CEB01F8A26C130390388007F09038F01FE0
90B5FC15C0150000F85B38701FF81E307CAE27>I<007FB61280B712C0A439FC03F00FA6
0078EC0780000091C7FCB3AB90B512C04880A36C5C222E7EAD27>I<3A7FFE01FFF8B548
13FCA36C486C13F83A07E0001F80B3AB6D133F00031500A26D5B0001147E6D13FE6C6C48
5A90387F87F814FF6D5B010F13C06D5BD901FEC7FC262F80AD27>I<D87FE0EB7FE0486C
EBFFF0A36C48EB7FE0001FC7EA0F80A76C6CEB1F00A614F0EB81F83907C3FC3EA4149CEB
C79EA30003143CA301E7137CEBEF9FA2140FA200011478A49038FE07F8A300005CA2EBFC
0390387801E0242F7FAD27>87 D<393FFC1FFE387FFE3F815D383FFC1F3903F00FE001F8
5B1201EBFC1F00005CEBFE3F017E90C7FCEB7F7FEB3F7E14FE6D5AA26D5AA26D5AA21303
130780130F80131F80EB3F7E147F497E017E7F141F01FC7F140FD801F87F14071203496C
7E120701E07F3A7FFC0FFF8000FF15C06D5A497E007F1580222E7EAD27>I<387FFFF0B5
12F8A314F000FCC7FCB3B3ACB512F014F8A36C13F0153A71B327>91
D<127812F87EA27E127E127F7E7F121F7F120F7F12077F1203A27F12017F12007F137E13
7F7F80131F80130FA280130780130380130180130080147E147F80A21580141F15C0140F
15E0140715F0140315F8140115FC1400A2157C15381E3A7CB327>I<387FFFF0B512F8A3
7EEA0001B3B3ACEA7FFFB5FCA36C13F0153A7EB327>I<131C137E3801FF80000713E000
1F13F84813FC38FFE7FF13C3130000FC133F0078131E180B79AD27>I<007FB512F8B612
FCA46C14F81E067C7E27>I<3803FFC0000F13F04813FC4813FF811380EC1FC0381F000F
000480C71207A2EB0FFF137F0003B5FC120F5A383FFC07EA7FC0130012FE5AA46C130F00
7F131FEBC0FF6CB612806C15C07E000313F1C69038807F8022207C9F27>97
D<EA7FE0487EA3127F1203A914FF01F313C090B512F08181EC81FE49C67E49EB3F804913
1F16C049130FA216E01507A6150F16C07F151F6DEB3F80157F6DEBFF009038FF83FEECFF
FC5D5D01F313C02601E0FEC7FC232E7FAD27>I<EB0FFF017F13C048B512E04814F05A38
0FF807EA1FE0393FC003E0903880008048C8FC127EA212FE5AA67E127EA2007F14F0393F
8001F813C0381FE003390FF80FF06CB5FC6C14E06C14C06C6C1300EB0FF81D207B9F27>
I<EC3FF04A7EA3143F1401A9EB0FE1EB7FFD48B5FC5A5A380FF83F381FE00F383FC007EB
8003EA7F00007E1301A212FE5AA67E007E1303A2127F6C1307EB800F381FE01F380FF03F
6CB612C06C15E06C13FD38007FF9D91FE013C0232E7EAD27>I<EB0FF8EB3FFE90B51280
000314C04814E0390FFC0FF0391FE003F8EBC001D83F8013FC48C7FC127E157E12FEB612
FEA415FC00FCC8FC7E127E127F6C143C6D137E6C7E01F013FE390FFC07FC6CB5FC000114
F86C14F0013F13C0903807FE001F207D9F27>I<EC1FF0ECFFF84913FC4913FE5BEB0FF0
14C0011F137CEC8000A6007FB512F0B612F8A36C14F039001F8000B3A4003FB512C04814
E0A36C14C01F2E7EAD27>I<153F90391FC0FF80D97FF313C048B612E05A4814EF390FF0
7F873A1FC01FC3C0EDC000EB800F48486C7EA66C6C485AEBC01FA2390FF07F8090B5C7FC
5C485BEB7FF0EB1FC090C9FCA27F6CB5FC15E015F84814FE4880EB8001007EC7EA3F8000
7C140F00FC15C0481407A46C140F007C1580007F143F6C6CEB7F009038F807FF6CB55A00
0714F86C5CC614C0D90FFCC7FC23337EA027>I<EA7FE0487EA3127F1203A9147F9038F1
FFC001F713F090B5FC8114C1EC01FCEBFE005B5BA25BB03A7FFF83FFE0B500C713F0A36C
018313E0242E7FAD27>I<130F497E497EA46D5A6DC7FC90C8FCA7383FFF80487FA37EEA
000FB3A4007FB512F0B6FC15F815F07E1D2F7BAE27>I<143C147E14FFA4147E143C1400
A73801FFFE4813FFA37EC7123FB3B0147E1238007C13FE38FE01FC1303B512F814F06C13
E06C13803807FE0018407CAE27>I<EA7FE07F12FF127FA21201A991383FFFC04A13E0A3
6E13C0913803F8004A5A4A5A4A5A4A5A02FFC7FCEBF1FEEBF3FCEBF7F8EBFFFC8080143F
496C7E496C7E01F87FEBF0076E7E6E7E816E7E157E3A7FFFC1FFF002C313F8B512E36C13
C316F0252E80AD27>I<387FFF80B57EA37EEA000FB3B2007FB512F8B612FCA36C14F81E
2E7CAD27>I<397F07C01F3AFF9FF07FC09039FFF9FFE091B57E7E3A0FFC7FF1F89038F0
3FC001E0138001C01300A3EB803EB03A7FF0FFC3FF486C01E3138001F913E701F813E36C
4801C313002920819F27>I<387FE07F39FFF1FFC001F713F090B5FC6C80000313C1EC01
FCEBFE005B5BA25BB03A7FFF83FFE0B500C713F0A36C018313E024207F9F27>I<EB1FE0
EB7FF83801FFFE487F481480390FF03FC0391FC00FE0393F8007F0EB00034814F8007E13
01A248EB00FCA76C1301007E14F8A2007F1303393F8007F0A2391FE01FE0390FF03FC06C
B512806C14006C5B38007FF8EB1FE01E207C9F27>I<387FE0FFD8FFF313C090B512F081
6C800003EB81FE49C67E49EB3F8049131F16C049130FA216E01507A6150F16C07F151F6D
EB3F80157F6DEBFF009038FF83FEECFFFC5D5D01F313C0D9F0FEC7FC91C8FCAC387FFF80
B57EA36C5B23317F9F27>I<90380FF03C90383FFE7E90B5FC000314FE5A380FFC1F381F
E007EBC003383F800148C7FC127EA200FE147E5AA67E007E14FEA2007F1301EA3F80EBC0
03381FE007380FF81F6CB5FC7E6C147E38007FFCEB0FF090C7FCAC91381FFFF8A24A13FC
6E13F8A226317E9F27>I<397FFC03FC39FFFE0FFF023F13804A13C0007F90B5FC39007F
FE1F14F89138F00F809138E002004AC7FC5CA291C8FCA2137EAD007FB57EB67EA36C5C22
207E9F27>I<9038FFF3800007EBFFC0121F5A5AEB803F38FC000F5AA2EC07806C90C7FC
EA7F8013FC383FFFF06C13FC000713FF00011480D8000F13C09038003FE014070078EB03
F000FC1301A27E14036CEB07E0EBE01F90B512C01580150000FB13FC38707FF01C207B9F
27>I<133C137EA8007FB512F0B612F8A36C14F0D8007EC7FCAE1518157EA415FE6D13FC
1483ECFFF86D13F06D13E0010313C0010013001F297EA827>I<397FE01FF8486C487EA3
007F131F00031300B21401A21403EBFC0F6CB612E016F07EEB3FFE90390FF87FE024207F
9F27>I<3A7FFC0FFF80486C4813C0A36C486C13803A07C000F800EBE00100035CA2EBF0
0300015CA2EBF80700005CA390387C0F80A36D48C7FCA3EB3F3FEB1F3EA214FE6D5AA36D
5AA26D5A22207E9F27>I<3A7FFE07FFE000FF15F06D5A497E007F15E03A0F80001F00A3
6D5B0007143EA414F0EBC1F83903E3FC7CA4EBE79EA200011478A301F713F8A2EBFF0F6C
5CA3EBFE0790387C03E024207F9F27>I<393FFC1FFF486C5A168016006C487E3901F807
E06C6C485A4A5A017E90C7FC6D5AEB1F7E5C6D5A13076D5A5C80497E130F497E143EEB3E
3FEB7E1F90387C0F8001F87F00016D7E3803F0033A7FFE1FFF80A2B54813C06C486C1380
A222207E9F27>I<3A7FFC0FFF80486C4813C0A36C486C13803A07E000F800000313015D
13F00001130301F85B1200A26D485A137CA290387E0F80133EA2011F90C7FC5CA2130F14
9E14BE130714FC1303A25C1301A25CA213035CA213075C1208EA3E0F007F5B131FD87E7F
C8FCEA7FFE6C5A5B6C5AEA07C022317E9F27>I<001FB512FE4814FFA490380001FEEC03
FCEC07F8EC0FF0001EEB1FE0C7EA3FC0EC7F80ECFF00495A495A495AEB1FE0495A495A49
C7FC485A4848131E4848133F485A485A485A485AB7FCA46C14FE20207E9F27>I<EC07F8
EC3FFC14FF130315F8903807FE00EB0FF05C5CB0131FEB7F80EA3FFFB5C7FC5BA27F003F
7FEA007FEB1FC0130FB08080EB07FE903803FFF815FC1300143FEC07F81E3A7CB327>I<
EA7F80EAFFF013FC13FF7E00017F38003FC0131F130FB080EB07F8ECFFF06D13FC7FA25B
4913F0ECF800EB0FE05CB0131F133F48B45A007F90C7FCB5FC13FC13F0EA7F801E3A7CB3
27>125 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fe eusm10 12 2
/Fe 2 67 df<F001FC181FF0FFF85F943807EFF0EF0F87EF1F07173E177C177817F01601
17E0160317C016071780160F17005EA2163EA25EA216FC5E1501A24B5AA34B5AA2150F5E
A2151FA24B5AA293B6FC5DA303FEC712075D14015DA24A5AA24A5AA24B814A5A123C007E
49C8FCB4FC023E1880023C9338FC01C0027CEF07804A9338FE1F004948EEFFFED87F0360
D987E06F13F06CB4485F6C90C914806C487090C7FCD803F0EE00F84A4680C44D>65
D<15035D151F92387FFFF8020FB612C0027F15F8903B03FF7F807FFED90FE0EC07FFD93F
0002001380017CEE7FC04848EE3FE04848161F4848EE0FF0485A485A180748C7FC5AA348
18E0A2180F19C07FF01F8019006CC7153E60001C5FC8EC03F0EF0FC0057FC7FC93B5FC18
FCF0FF80DC800F13C093C7EA7FE0F01FF0F00FF8F007FC1803F001FE1800037E15FFA203
FE157FA25DA35D0201167E5DA24A4815FCA24B15F8020715014A4815F0021FED03E04AC8
EA07C0027EED0F804948ED3F00494815FE011FED0FF848B85A4817C095C7FC4816F81780
40477CC64C>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ff cmmi6 6 6
/Ff 6 121 df<EC03E0EC3FC0A21403A2EC0780A4EC0F00A4EB1F1EEBFF9E3801E0DE38
03807E3807007C48133C121E123E003C5B127CA3485BA215401560903801E0C012781303
393807E180391C1CF300380FF87F3807E03C1B247EA220>100 D<1338137CA213781370
1300A7EA0780EA1FC0EA38E01230EA60F0EAC1E0A3EA03C0A3EA0780A2EA0F0013041306
EA1E0CA21318121CEA1E70EA0FE0EA07800F237DA116>105 D<1418143C147CA2143814
00A7EB0780EB1FE01338EB60F013C0A2EA0180A2380001E0A4EB03C0A4EB0780A4EB0F00
A4131EA21238EA783CEAF8381378EA70F0EA7FC0001FC7FC162D81A119>I<000F13FC38
1FC3FF3931C707803861EC0301F813C0EAC1F0A213E03903C00780A3EC0F00EA0780A2EC
1E041506D80F00130C143C15181538001EEB1C70EC1FE0000CEB07801F177D9526>110
D<3801E01F3903F07FC0390639C1E0390C3F80F0EB3E00001814F8013C137815F8C65AA4
9038F001F0A3EC03E0D801E013C0EBF00715809038F80F003803DC3CEBCFF8EBC7E001C0
C7FC485AA448C8FCA2EA7FF012FF1D20809520>112 D<3801F01E3907FC7F80390E1CE1
C038180F8100301383007013071260EC0380D8001EC7FCA45BA21580003014C039787801
8012F8EC030038F0FC0638E19C1C387F0FF8381E03E01A177D9523>120
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fg cmr6 6 5
/Fg 5 55 df<13FF000313C0380781E0380F00F0001E137848133CA248131EA400F8131F
AD0078131EA2007C133E003C133CA26C13786C13F0380781E03803FFC0C6130018227DA0
1E>48 D<13E01201120712FF12F91201B3A7487EB512C0A212217AA01E>I<EA01FC3807
FF80381C0FC0383003E0386001F0EB00F812F86C13FCA2147C1278003013FCC7FC14F8A2
EB01F0EB03E014C0EB0780EB0F00131E13385B5B3801C00CEA0380380600185A5A383FFF
F85AB512F0A216217CA01E>I<13FF000313C0380F03E0381C00F014F8003E13FC147CA2
001E13FC120CC712F8A2EB01F0EB03E0EB0FC03801FF00A2380003E0EB00F01478147C14
3E143F1230127812FCA2143E48137E0060137C003813F8381E03F0380FFFC00001130018
227DA01E>I<EB0FC0EB7FF03801F0383803C0183807803C380F007C121E001C1338003C
1300A2127C1278EB7FC038F9FFE038FB80F038FE0038143C48131EA248131FA41278A36C
131EA2001C133C001E13386C1370380781E03801FFC038007F0018227DA01E>54
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fh cmsy6 6 3
/Fh 3 49 df<B712C0A322037A8D30>0 D<136013701360A20040132000E0137038F861
F0387E67E0381FFF803807FE00EA00F0EA07FE381FFF80387E67E038F861F038E0607000
40132000001300A21370136014157B9620>3 D<EA01E0EA03F0A4EA07E0A213C0120FA2
1380A2EA1F00A2121EA2123E123CA25AA3127012F05A12600C1A7E9B12>48
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fi cmex10 12 22
/Fi 22 115 df<171E173E177C17F8EE01F0EE03E0EE07C0160FEE1F80EE3F00167E167C
16FC4B5A4B5A15075E4B5A4B5A153F93C7FC5D15FE5D14015D14034A5AA24A5AA24A5AA2
4A5AA24AC8FCA214FEA213015C13035C1307A25C130F5C131FA25C133FA3495AA349C9FC
A35A5BA312035BA31207A25BA2120FA35BA3121FA35BA3123FA55BA2127FAB485AB3B06C
7EAB123FA27FA5121FA37FA3120FA37FA31207A27FA21203A37F1201A37F7EA36D7EA36D
7EA3131F80A2130F80130780A21303801301801300A2147FA26E7EA26E7EA26E7EA26E7E
A26E7E140181140081157F8182151F6F7E6F7E8215036F7E6F7E167C167E82EE1F80EE0F
C01607EE03E0EE01F0EE00F8177C173E171E2FEE6B8349>18 D<12F07E127C7E7E6C7E6C
7E7F6C7E6C7E6C7E137C137E7F6D7E80130F6D7E6D7E801301806D7E147E147F80816E7E
A26E7EA26E7EA26E7EA26E7EA26E7EA2818182153F82A2151F82150F82A2150782A36F7E
A36F7EA38281A31780167FA317C0A2163FA217E0A3161FA317F0A3160FA317F8A51607A2
17FCABEE03FEB3B0EE07FCAB17F8A2160FA517F0A3161FA317E0A3163FA317C0A2167FA2
1780A316FF1700A35D5EA34B5AA34B5AA35E150FA25E151F5E153FA25E157F93C7FC5D5D
A24A5AA24A5AA24A5AA24A5AA24A5AA24A5A92C8FC5C147E14FE495A5C13035C495A495A
131F5C49C9FC137E137C13FC485A485A485A5B485A48CAFC123E5A5A5A2FEE7C8349>I<
B612C0A600FCC8FCB3B3B3B3B3B3B3B3B3B3B3B3AAB612C0A61AEE678335>I<B612C0A6
C7120FB3B3B3B3B3B3B3B3B3B3B3B3AAB6FCA61AEE7F8335>I<170F173F17FF1603EE0F
FCEE1FF0EE7FE0EEFF804B13004B5A4B5A4B5A4B5A4B5A4B5A15FF5E5C93C7FC5C5D1407
5DA3140F5DB3B3B3AE4A5AA3143F5DA24A5AA24A5AA24990C8FC495AA2495A495A495A49
5A495A49C9FC485AEA07FCEA0FF0EA3FC0B4CAFC12FCA2B4FCEA3FC0EA0FF0EA07FCEA01
FE6C7EEB7FC06D7E6D7E6D7E6D7E6D7EA26D7E6D7FA26E7EA26E7EA281141FA36E7EB3B3
B3AE811407A38114038180828082157F6F7E6F7E6F7E6F7E6F7E6F7E6F1380EE7FE0EE1F
F0EE0FFCEE03FF1600173F170F30EE73834B>26 D<12F012FE6C7E7FEA3FF0EA0FFC6C7E
3801FF806C7F6D7EEB1FF06D7E6D7E806D7E7F6D7F81147F81143F81141FA381140FB3B3
B3AE6E7EA46E7EA26E7EA26E7FA26F7EA26F7E6F7E6F7E15076F7E6F7E923800FF80EE7F
C0EE1FE0EE0FF8EE03FCEE00FF173FA217FFEE03FCEE0FF8EE1FE0EE7FC0EEFF80923801
FE004B5A4B5A150F4B5A4B5A4B5AA24B5AA24A90C7FCA24A5AA24A5AA44A5AB3B3B3AE14
1F5DA3143F5D147F5D14FF5D4990C8FC5B495A5C495A495AEB7FE0495A485BD807FEC9FC
485AEA3FF0EAFFC05B48CAFC12F030EE73834B>I[<EF03E01707EF0FC0EF1F80173F1800
177E5F16014C5A5F4C5A160F4C5A5F163F4CC7FC16FEA24B5A15035E4B5AA24B5A151F5E
153F5E157F93C8FC5D4A5AA24A5AA24A5AA24A5AA34A5AA24A5AA2147F5DA214FF92C9FC
5B5CA213035CA213075C130FA35C131FA25C133FA3495AA4495AA45A91CAFCA45A5BA312
07A35BA3120FA35BA3121FA55BA2123FA85BA2127FAD5B12FFB3B3A6127F7FAD123FA27F
A8121FA27FA5120FA37FA31207A37FA31203A37F7EA4807EA46D7EA46D7EA3131F80A213
0F80A31307801303A2801301A2807F81147FA281143FA26E7EA26E7EA36E7EA26E7EA26E
7EA26E7E8182153F82151F82150F6F7EA26F7E8215016F7EA2167F707E161F83707E1607
707E83707E1600177E831880171FEF0FC0EF07E01703>51 298 104
131 79 32 D[<12F87E127E7E7F121F6C7E6C7E7F6C7E12016C7E7F137F7F806D7E6D7E
A26D7E8013036D7EA26D7E808081143F81141F816E7EA26E7EA26E7EA26E7EA36E7EA26F
7EA282153FA282151F82150FA2821507A282150382A3150182A28183A3707EA4707EA483
161FA483160FA383A31607A383A31603A383A582A21880A882A218C0AD177F18E0B3B3A6
18C017FFAD1880A25EA81800A25EA55FA31607A35FA3160FA35FA3161F5FA4163F5FA44C
5AA44C5AA394C7FC5DA25E1503A35E15075EA2150F5EA2151F5E153F5EA2157F5EA24BC8
FCA24A5AA34A5AA24A5AA24A5AA24A5A5D143F5D147F92C9FC5C5C495AA2495A13075C49
5AA2495A495A91CAFC5B13FE5B485A1203485A5B485A485A123F90CBFC127E5A5A>51
298 125 131 79 I[<B612F8A600FCC8FCB3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B0B612F8
A6>29 298 101 131 58 I[<B612F8A6C71201B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B0B6
FCA6>29 298 127 131 58 I[<EF03E0170F173F177FEE01FF4C13804C1300EE1FFC4C5A
4C5A4C5A4B5B4B5B94C7FC4B5A150F4B5A5E4B5AA24B5AA24B5AA25C5EA25C93C8FCA35C
5DB3B3B3B3AD4A5AA54A5AA34A5AA24A5AA24A5AA2495BA24990C9FC495A5C130F495A49
5A495A495A485B4890CAFC485AEA0FF8EA3FF0EA7FC0485A48CBFCA26C7E6C7EEA3FF0EA
0FF8EA07FE6C7E6C7F6C7F6D7E6D7E6D7E6D7E1307806D7E6D7FA26D7FA26E7EA26E7EA2
6E7EA36E7EA56E7EB3B3B3B3AD8180A38280A28280A26F7EA26F7EA26F7E826F7E15076F
7E836F7F6F7F707E707E707EEE07FF7013807013E0EE007F173F170F1703>51
298 114 131 80 40 D<ED0F80153F15FF5C14074A1300EC1FFC4A5A4A5A49485A495B49
5B92C7FC495A495A495A137F5C495A5A5C5A5C5A91C8FC5A5B121FA25B123FA3485AA548
5AB3B3B0215A5A7E59>56 D<EAFFF0B3B3B06C7EA56C7EA3121F7FA2120F7F7E807E807E
807E6D7E80133F6D7E6D7E6D7E816D7F6D7F6D6C7E6E7E6E7E6EB4FC6E1380140180153F
150F215A5A8059>58 D<913807FF80B3B3B04A1300A55D141FA35D143F5DA2147F5D14FF
5DA2495B5D5B4990C7FC5C130F5C495A495A495AA2495A485B4890C8FCEA07FC485A485A
EA7FE0EAFF8090C9FC12FCB4FC7FEA7FE0EA1FF06C7E6C7E6CB4FC6C7F6C7F6D7EA26D7E
6D7E6D7E801307806D7F7F816D7FA281147F81143FA281141F81A3140F81A56E1380B3B3
B021B56F8059>60 D<BD12FC88A3D87FF0CA0007806DEF000F6C6C1800001F081F13806C
6C19076D19016C9738007FC06C6D193F6E190F6C6DF107E06C1B036D6C19016E1AF0013F
1A006D6C1A706D6C1A786E1A387F6D6D191C6F19007F6D7F6E7E81143F6E7E816E7E806E
7F82806E7F826F7E153F6F7E82150F6F7E6F7F83816F7F83167F163F161F5F705A5F4CCC
FC5E167E167C5E4B5A15034B5A4B5A5E4BCDFC153E157E5D5D4A5A4A5A14074A5A5D4ACD
121C023E1A3C4A1A3814FC49481A784A1AF0495A49481901010FF203E04948190791CD12
0F013EF21FC0491A7F01FC1AFF48480703138049190F4848197F48480607B51200484805
03B6FC48BDFC4863A25ABD5AA25E647B7F69>80 D<17FF040313C093380F81F093381E00
78043E137C93387C01FC9338F803FEA2150116F01503EF01FC9338E0007003071400A315
0FA45E151FA7153FA74B5AA715FFA85C93C8FCA95C5DA85DA74A5AA75DA75D140FA45DA3
001C5C007F131FEAFF8092C9FC5C143EA26C485A007C5B003C5B381F03E03807FF80D801
FECAFC376F7B7F2F>82 D<007C191E1A3E00FE197FA26C19FFA26C19FE6D1701A2003F19
FC6D1703A2001F19F86D1707A26C6CEF0FF0A2000719E06D171FA2000319C06D173FA200
0119806D177FA2000019006D5FA26D5F6E1501A2013F5F6E1503A26D6C4B5AA2010F5F6E
150FA201075F6E151FA201035F6E153FA201015F6E157FA2010094C7FC6E5DA26E5D6F13
01A26E6C495AA2021F5D6F1307A2020F5D6F130FA202075D6F131FA202035D6F133FA202
015D6F137FA2020092C8FC6F5BA292387F81FEA2033F5B16C3A2031F5B16E7A2030F5B16
FFA26F5BA36F5BA36F5BA36F90C9FCA282167E163C48647B7F53>87
D<C27E8DA38D6C01C0CC12036EDF0001816C6DF200076C6DE1007F7F6C1E0F6E1C016C6D
766C7E6C6D1D1F6CF707FE6F1C036C6EF400FF6D6D896D8B6FF51F806D6D1D0F6DF707C0
6F1D036D6DF501E06D6D1D007F701D706D806E6D1D386E1F00826E7F6E7F80826E7F8083
6E806F7F81836F7F6F7F81836F7F816F8084707F8284707F707F8284707F70808285717F
83717F85717F8385717F718083A27290CEFC725A725A61725A61181F4E5A614ECFFC18FE
4D5A4D5A17074D5A604D5A4D5A4DD0FC17FE16014C5A5F4C5A4C5A4C5A4C5A167F4CD1FC
5E4B5A4B5A4B5A150F4B5A4B5A4C1D384BD1127015FE4A481EF002031FE04A481D014B1D
034A481EC04A481D074A48F50F804AD1121F4A1E3F4948F6FF004A6549481D074948535A
49481D3F494852B45A013F1D0749481C3F91CF0003B55A01FE1C7F484850B7FC48C15A5A
48685AA248685AC2FC69858B7B7F90>I<1B3FF3FFC0973803E0F0973807C03897380F80
1C081F137E97383F01FEF303FF1A7E1AFE1AFC1901A2963903F801FEF300781C004F5AA2
190FA262191FA34F5AA44F5AA319FF97C8FCA360A261A21803A3611807A461180FA44E5A
A4183FA261A2187FA361A218FFA44D5BA55F96C9FCA35FA360A2170FA460171FA460173F
A54D5AA54D5AA45E60A55E60A44C90CAFCA54C5AA55F161FA45F163FA45FA2167FA35FA3
16FF5FA54B5BA494CBFCA25DA35EA21507A25EA44B5AA45E151FA45E153FA35EA2157FA2
5EA315FF93CCFCA34A5AA44A5AA35D14075DA2140F5D121E397F801FC0EAFFC05D143F92
CDFC5C147E6C485AEA7E00383801F86C485A380F07C03803FF80D800FCCEFC58DD7B7F37
>90 D<003EF407C0007FF40FE0481DF06D1B1FA26D1B3FA2007F1DE06D1B7F003F1DC0A2
6D1BFF001F1D80A26D62000F1D00A26D62000764A26D1A07000364A26D1A0F6C646E191F
A26C646E193F017F63A26E197F013F63A26E19FF011F63A26E60010F98C7FCA26E600107
62A26E18070103626E180FA26D626F171F6D62A26F173F027F61A26F177F023F61A26F17
FF021F61A26F5E020F96C8FCA26F5E0207606F1607A20203606F160F6E60A270151F6E60
A270153F037F5FA270157F033F5FA27015FF031F5FA2705C030F94C9FC705CA203075E70
140703035EA270140F6F5EA271131F6F5EA271133F047F5DA271137F043F5DA27113FF04
1F5D715AA2040F92CAFC715A04075CA2EFFE0704035CA2EFFF0F705CA2189F705CA218FF
715BA3715BA3715BA27190CBFCA3715AA3715AA21701EF00F0648B7B7F6F>95
D<1DC0F401E01C03A2F407C0A2F40F80A2F41F00A21C3EA264A264A2641B01A2515AA251
5AA2515AA251C7FCA21B3EA263A263A2505AA2505AA2505AA2505AA250C8FCA21A3EA21A
3C1A7CA262A24F5AA24F5AA24F5AA24F5AA24FC9FCA20104173E130E011E5F137F495F5A
486D4B5A120F261C7FC04B5A123826F03FE04B5A124000004D5A6D7E96CAFC6D6C5DA26D
6C153EA2606D7E606D7E4D5A6D7F4D5AA26E6C495AA26E6C495AA26E6C49CBFCA26E6C13
3EA25F6E7E5F6E7E4C5AEC01FF4C5AA26EEB83C01687ED7FC7EECF80ED3FEF04FFCCFCA2
6F5AA26F5AA26F5AA25E15035E6F5A5B78758364>112 D<1DC0F401E0A21C03A21DC0A2
1C07A21D80A21C0FA21D00A364A21C1EA21C3EA21C3CA21C7CA21C78A21CF8A264A21B01
A264A31B03A264A21B07A264A21B0FA299C7FCA263A21B1EA21B3EA21B3CA31B7CA21B78
A21BF8A263A21A01A263A21A03A263A21A07A263A31A0FA298C8FCA262A21A1EA21A3EA2
1A3CA21A7CA21A78A21AF8A262A31901A262A21903A262A21907A262A2190FA297C9FCA2
61A2191EA21304193E130E011E173CA2013E177C133F4917785B19F85A486D5EA2000617
01120E000C60486C7E1803123000706038603FE012C0004017071200616D7E180FA296CA
FC6D7E60A2181EA26D6C153EA2183CA2187C6D7E1878A36D6C15F8A260A217016D7F60A2
17036E7E60A21707A26E6C5CA2170FA295CBFC6E7EA25FA26E6C131EA2173EA2173C6E7E
177CA217786E7E17F8A25FA2913801FF01A25FA36E1383A25FA2ED7FC7A25FA216CFED3F
EF94CCFCA216FF815EA46F5AA56F5AA46F5AA45E15015E5BEF758364>114
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fj cmti12 12 50
/Fj 50 122 df<EF7FF80407B5FC93391FC00FC093393E0001E004FCEB00F04B4813014B
4813075E0307140FA24B5A19E0031FEC03804C90C7FCA3153F93C9FCA45D157EA415FE91
B8FCA260DA00FCC7127E020115FE4B5CA317016014035D170360A214074B130760A3020F
140F4B5CA3171F021F5D5DA2053F13E01801023F16C092C7FCA2EF7F03057E13805C027E
15071900173E180E02FEEC1E1E4AEC1F1CEF07F8EF01E094C8FC495AA35C1303A2001C5B
127FEAFF075CA2495A00FE90CBFCEAF81FEA701EEA783CEA1FF0EA07C03C5A83C537>12
D<DDFFC0903803FFE0040701F8011F13FE93261FC03E90397F001F8093283E000F01F8EB
03C004FC90261F03E0EB01E04B4890263F87C013034C90267F8F80130F0303ECFF9F4C02
BFC7121F0307153FF07E7E4B48013C16C00600ED07004F91C7FC151F5EA2180161153F93
C7FCA21803615D157EA291BB12FEA264DA00FCC7D807E0C7FC1B01060F5D6114014B1703
64181F61020318074B60A2183F96C7120F0207615DA21B1F4E5D187E140F4B173F99C7FC
18FE60021F95387F01C04BEF7E031D80170160023FF0FE0792C704FC1300A205035E4E15
0E4A187C027E61F33C3C4D48EC3E38F30FF04AF003C098C8FC4D5AA2495A60171F5CD81C
03013891CBFC007F02FE5B00FF01E1143E177ED907C1147C02815CD8FE0F49485A00F890
3901F003E03B701E00E007C0D8783CD9781FCCFCD81FF8EB3FFCD807E0EB07F05B5A83C5
56>14 D<13F0EA03F8EA07FC120FA6EA03CCEA001C1318A213381330A2137013E013C012
0113801203EA0700120E5A5A5A5A5A0E1D6BC41E>39 D<007FB5FCB6FCA214FEA2180578
9723>45 D<120FEA3FC0127FA212FFA31380EA7F00123C0A0A76891E>I<ED3F80913801
FFE0913807C0F891381F007C023C7F4A131E4A131F49487F01031580495A5C130F49C713
C0A25B137EA213FE5B161F12014915801203A249143F1207A2170048485CA4484814FEA4
4848495AA448C7485AA35E1507127E5E00FE140F5EA248141F5EA24BC7FC153E157E007C
147C15FC5D4A5A003C495A003E5C4A5A6C011FC8FC380F803E3807C0F83801FFE06C6CC9
FC2A4475C132>48 D<16C01501A215031507ED0F80151F153F157F913801FF005C140F14
7F903807FCFEEB0FF0EB0700EB00015DA314035DA314075DA3140F5DA3141F5DA3143F5D
A3147F92C7FCA35C5CA313015CA313035CA313075CA2130FA2131F133FB612FCA25D2242
76C132>I<ED3FC0913801FFF0913807C07C4AC67E021CEB1F800278130F4AEB07C04948
14E04A1303494814F0130749C7FCEB0E06D91E0714F8EB1C03133C1338137813704A1307
D9F00614F013E0140E020C130F0001011C14E0EBC0180238131F4A14C06C6C48EB3F80D9
E1C0137FD97F801400013EC712FE90C7485A4B5A4B5A4B5AED1F804BC7FC15FC4A5AEC03
E0EC0FC0023FC8FC147CEB01F0495AEB0780011FC9FC133E49EC03805B49140748481500
485A48485C90C8121E5A001E5D001C157CD83FFC5C9038FFC0013A7C0FFC07F0D87803B5
5AEA700126F0007F5B486D90C7FCEC0FFEEC03F82D4478C132>I<ED1FE0EDFFFC913803
E03F91390F000F80023EEB07C00278EB03E05C4948EB01F0495A495A91C713F85BEB0E0C
EB1E0EEB1C061603013C15F01338A2020E1307020C14E0141CD91C78EB0FC0D90FE0131F
6D48148090C8EA3F00167E5E4B5A4B5AED0FE091383FFF804A48C7FC15F8EC007E151F6F
7E6F7E82150382A482A34B5A121FEA7F80A2150F48C75BA2484A5A12F800E04A5AA24BC7
FC007014FE5D0078495A0038495A003CEB0FC06C495A260780FEC8FC3803FFF038007F80
2D4477C132>I<EE0380EE0FC0A2161F1780A3163F1700A3167EA35EA34B5AA34B5AA25E
1507A24B5AA24B5AA293C7FC5D153E157E157C15FC5D4A5AA24A5A14075D4A5A16E09138
1F01F0EC3E03143C147CECF807D901F05B14E01303903807C00FD90F805BEB1F00131E49
131F495C5B485A3903FFC03F000F01F890C7FC4813FF397E003FFF007801071480480101
EBFFC000606D7EC8EBFE0003FEC7FC5DA314015DA314035DA314075DA4EC03802A557DC1
32>I<026014300278EB01F091397F801FE091B612C01780170016FC4914F016C0DACFFE
C7FC02C0C8FC13035CA3130791C9FCA35B130EA3131E90381C07F8EC3FFE9138F80F8090
393DC007C0D93F807F90383E0003013C80496D7E1370A290C7FC82A41503A415075E120E
123F486C130F00FF5DA390C7485A5A00F84A5A12E04B5A93C7FC15FE14016C5C0070495A
0078495A6CEB1FC0003E495A261F80FEC8FC6CB45A000313E0C66CC9FC2C4476C132>I<
ED03FCED1FFF037F13C0913801FE07913903F001E091380FE00091381F800391383F000F
027E131F5C495A495A010715C04948EB07004A90C7FC131F495AA249C9FCA213FE1201A2
485AEC07F09038F83FFC0007EB781F9039F9E00F803A0FFB8007C0EBF70001FE80491303
001F815B5B82485AA3491307127F5BA2150F5E90C7FCA2151F485DA25A4B5AA2007E5D15
7F93C7FC5D5D4A5A003E495A003F5C4A5A6C6C485A000FEB3F80D9C0FEC8FC3803FFFC6C
13F038007F802B4475C132>I<9026380FC0131C9038787FE0902671FFF0133C01F31578
01EF15F090B5FC4801E0EB01E09139007003C04848EB380701F8EC1F804848EB1C3F4990
381FFF004848EB07DF49EB001E48C85A121E5E4815F800385D0078140100705D00F01403
485D1507C8485AA24BC7FCA25D153E157E157C15FC5D1401A24A5AA214075D140F5D141F
A25D143FA24AC8FCA314FEA21301A25C1303A25C1307A35C130FA35C5C6D5A2E4472C132
>I<ED1FE0EDFFFC020313FF913907E03F8091391F800FC091393E0007E04A13034A14F0
49481301495AA2495AA2495AA21603011F15E0A216076E14C0EE0F806E131F6EEB3F006E
133E6D6C5B02FF13F0ED83E06DEBC7C06D01FFC7FC6D13FC6D5B6E7E6E7E91B57ED901EF
7FD907837FEB1F01D93E007F496D7E49133F4848131F4848130F48486D7E48481303001F
140190C7FC5A003E1400007E5D127CA2150100FC5D5A4B5AA24B5A127C4B5A4BC7FC6C14
3E003F5C6C495A390FC003F03907F01FC06CB5C8FCC613FCEB1FE02C4477C132>I<ED3F
C0EDFFF0020313FC91380FE07E91383F803F4A487E02FC14800101140F494814C0495A49
5AA2495A133F4A14E0137FA249C7FC161FA24816C05BA2163F12035BA2167F17804914FF
A34B130012015D5D00005D6D130F017C131D153B6DEBF3FC90381F03C3903907FF83F890
3801FC0790C7FC5E150F5E151F5E4B5AA24BC7FCA2001C14FE007F5C48495A4A5A14074A
5A485C00F8013FC8FC48137E5C387C07F0383FFFE06C1380D803FCC9FC2B4476C132>I<
EF03801707A24D7EA2171FA2173F177FA217FFA25EA2EE03BF1607173F160F160E161C84
1638171F167016F016E0ED01C0A2ED0380A2ED0700A2150E151E151C5D845D170F5D1401
5D14035D4AC7FC92B6FC5CA2021CC7120F143C14385CA24A81A249481407A2495A130791
C8FC130E131EA25B137C13FC00014C7ED807FE151FB500E00107B512F8A219F03D477BC6
48>65 D<DC0FF8130393B513070307ECC00F923A1FF803E01F923A7FC000F81E4BC7EA7C
3EDA03FCEC3C7EDA0FF0EC1EFE4A48EC0FFC4A4814074AC8FC02FE1503494816F8130349
481501495A494816F0495A137F5C01FF17E04890C9FCA2485A19C0485AA2485A95C7FC12
1F5BA2123F5BA3127F5BA4485AA41838A218781870A218F0007F5F1701601703003F5F17
076D4BC7FC001F160E171E6C6C5D6D5D00075E6C6C4A5A6DEC07C06C6C4A5AD8007F023E
C8FCD93FC013FC90391FF807F00107B512C0010191C9FC9038001FF0404872C546>67
D<91B712F818FF19C00201903980003FF06E90C7EA0FF84AED03FCF000FE4B157FA2F13F
800203EE1FC05DF10FE0A214074B16F01907A2140F5D1AF8A2141F5DA2190F143F5D1AF0
A2147F4B151FA302FF17E092C9123FA34918C04A167F1A80A2010317FF4A1700A24E5A13
074A4B5A611807010F5F4A4B5A181F61011F4C5A4A4BC7FC18FE4D5A013F4B5A4A4A5A4D
5A017FED3FC005FFC8FC4AEB03FE01FFEC1FF8B812E094C9FC16F845447AC34A>I<91B9
1280A30201902680000713006E90C8FC4A163FA24B81A30203160E5DA314074B151E191C
A2140F5D17075F021F020E90C7FC5DA2171E023F141C4B133CA2177C027F5CED800392B5
FCA291B65AED00071601A2496E5A5CA2160101035D5CA2160301075D4A90CAFCA3130F5C
A3131F5CA3133F5CA2137FA313FFB612E0A341447AC340>70 D<DC0FF81306DCFFFE130E
03079038FF801E923A1FF807E03E923A7F8001F03CDA01FEC7EA787CDA03F8EC3CFCDA0F
F0141D4A48EC1FF8DA3F80140F4AC8FCD901FE1507494816F05C01071603495A494816E0
495A137F5C01FF17C04890C9FC5B12031980485AA2485A95C7FC121F5BA2123F5BA3127F
5BA4485A043FB512E0A39339001FF80060A360A2007F163F60A3177F003F5F7F121F17FF
6D93C7FC000F5D6C6C5C7F6C6C4A5A6C6CEC1F3E6C6C143ED93FC0EBF81E903A1FF007F0
1C0107B5EAC00C010149C9FC9038003FF03F4872C54B>I<91B66C90383FFFF8A3020101
80C7000F13006E90C8EA07FC4A17F01AC04B4B5A4FC7FC193C02035E4B5DF003E0F00780
02074BC8FC4B141E6018F8020F4A5A4BEB03C04D5A4DC9FC021F141E4B137C17F04C5A02
3F495A4B487E161F163F027F497EED80FFED81EF923883CFF89138FF8F8FED1E07033C7F
157849EBF00303E07F15C092380001FF495A5C707FA213074A6E7EA2173F010F825C171F
84131F4A140F84A2013F6F7E5CA2017F6F7EA24A4A7E496C4A7FB66C90B512FC5E614D44
7AC34B>75 D<91B612F0A25F020101C0C7FC6E5B4A90C8FCA25DA314035DA314075DA314
0F5DA3141F5DA3143F5DA3147F5DA314FF92C9FCA35B5CA3010316104A1538A218780107
16705C18F018E0010F15015C18C01703011F15074A1580170FA2013FED1F004A5C5F017F
15FE16034A130F01FFEC7FFCB8FCA25F35447AC33D>I<91B56C93387FFFC08298B5FC02
014DEBC0006E614A5FA203DF4C6CC7FC1A0E63912603CFE05D038F5F1A381A711407030F
EEE1FCA2F101C3020FEE0383020E60F107036F6C1507021E160E021C60191CF1380F143C
023804705BA2F1E01F0278ED01C091267003F85EF003801A3F02F0ED070002E0030E5CA2
4E137F130102C04B91C8FC606201036D6C5B02805F4D5A943803800113070200DA07005B
A2050E1303495D010E606F6C5A1907011E5D011C4B5CA27048130F133C01384B5C017892
C7FC191F01F85C486C027E5DD807FE027C4A7EB500F00178013FB512C0A216705A447AC3
57>I<91B712F018FEF0FF800201903980007FE06E90C7EA1FF04AED07F818034B15FCF0
01FE1403A24B15FFA21407A25DA2140FF003FE5DA2021F16FC18074B15F8180F023F16F0
F01FE04B15C0F03F80027FED7F0018FE4BEB03FCEF0FF002FFEC7FC092B6C7FC17F892CA
FC5BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CA2137FA25C497E
B67EA340447AC342>80 D<91B77E18F818FE020190398001FF806E90C7EA3FC04AED1FE0
F00FF04BEC07F8180319FC14034B15FEA314075DA3020FED07FC5DA2F00FF8141F4B15F0
F01FE0F03FC0023F16804BEC7F0018FEEF03F8027F4A5A4BEB1FC04CB4C7FC92B512F891
B612E092380003F8EE00FE177F496F7E4A6E7EA28413034A140FA2171F13075CA2173F13
0F5CA24D5A131F5CA3013F170E5CA2017FEE801E191C4A163C496C1638B66C90383FC070
051F13F094380FE1E0CA3803FF80943800FE003F467AC347>82 D<48B912F85AA2913B00
07FC001FF0D807F84A130701E0010F140349160148485C90C71500A2001E021F15E05E12
1C123C0038143F4C1301007818C0127000F0147F485DA3C800FF91C7FC93C9FCA35C5DA3
14035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92CAFCA35B5CA21303A2
1307497E007FB612C0A25E3D446FC346>84 D<001FB500F090383FFFFCA326003FF0C700
0113806D48913800FE00013F167C18785C187018F0017F5E5CA2170101FF5E91C8FCA217
03485F5BA21707000394C7FC5BA25F0007160E5BA2171E120F49151CA2173C121F491538
A21778123F491570A217F0127F495DA2160100FF5E90C8FCA216035F16074893C8FC5E16
0E161E5E007E1538007F15785E6C4A5A6D495A001F4A5A6D49C9FC6C6C133E6C6C13F839
03FC07F0C6B512C0013F90CAFCEB07F83E466DC348>I<EC1F80EC7FE0903901F0707090
3907C039F890380F801D90381F001F013E6D5A137E5B484813075E485A120749130F000F
5DA2485A151F003F5D5BA2153F007F92C7FC90C7FCA25D157E12FEA29238FE0380EDFC07
1700A2007E13015E913803F80E1407003E010F131E161C6C131C02385B3A0F80F078783A
07C3E07C703A01FF801FE03A007E000780292D76AB32>97 D<EB0FE0EA07FFA338001FC0
130F131FA25CA3133F91C8FCA35B137EA313FE5BA312015BEC1F80EC7FE03903F9E0F890
38F3C07C9038F7003E13FE48487F5BA2491480485AA25BA2121F5BA2153F123F90C7FCA2
157F481500127EA25D5D5AA24A5AA24A5AA2007C5C4A5A140F5D4A5A003C49C7FC003E13
7E001E5B6C485A380783E03803FF80C648C8FC214676C42D>I<EC0FE0EC7FF8903801F8
1E903807E00F90390F80078090381F0003017E14C049131F0001143F5B4848EB7F801207
485AED3E00484890C7FCA2485AA2127F90C9FCA35A5AA45AA5ED0180ED03C0ED0780A200
7CEC0F00007E141E003E147C15F06CEB03E0390F800F802607C07EC7FC3801FFF838007F
C0222D75AB2D>I<EE07F0ED03FFA39238000FE01607160FA217C0A2161FA21780A2163F
A21700A25EA2167EA216FEA25EEC1F80EC7FE1903801F071903907C039F890380F801D90
381F001F013E130F017E5C5B48481307A248485C120749130F120F5E485A151F123F495C
A2153F127F90C790C7FCA25DA200FE147EA29238FE0380160703FC1300A2007E13015E91
3803F80E1407003E010F131E161C6C131C02385B3A0F80F078783A07C3E07C703A01FF80
1FE03A007E0007802C4676C432>I<EC0FE0EC7FF8903801F83E903807C00F90391F8007
80EB3F00017E14C0491303485A48481307000715805B000F140F484814005D4848133E15
FCEC07F0007FEBFFC0D9FFFEC7FC14C090C9FC5A5AA55AA4ED0180ED03C0007CEC0780A2
007EEC0F00003E141E157C6C14F06CEB03E03907800F802603C07EC7FC3801FFF838003F
C0222D75AB2D>I<EE0F80EE3FE0EEF870923801F038923803E0F8923807E1FC16C3ED0F
C7A2EE87F892381F83F0EE81E0EE8000153F93C7FCA45D157EA415FE5DA349B512FEA390
260001F8C7FCA314035DA414075DA4140F5DA4141F5DA4143F92C8FCA55C147EA314FE5C
A413015CA4495AA35C1307121C007F5B12FF495AA291C9FC485AEAF81E485AEA7878EA1F
F0EA07C02E5A83C51E>I<15FCEC03FF91390F83838091393E01CFC091387C00EF4A13FF
4948137F010315804948133F495A131F4A1400133F91C75A5B167E13FE16FE1201495CA2
15011203495CA21503A2495CA21507A25EA2150F151F5E0001143F157F6C6C13FF913801
DF8090387C039F90383E0F3FEB0FFCD903F090C7FC90C7FC5DA2157EA215FEA25DA2001C
495A127F48495A14074A5A485C023FC8FC00F8137E387C01F8381FFFE0000390C9FC2A40
7BAB2D>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25CA213
1FA25C157F90393F83FFC091388F81F091381E00F802387F4948137C5C4A137EA2495A91
C7FCA25B484814FE5E5BA2000314015E5BA2000714035E5B1507000F5DA249130F5E001F
1678031F1370491480A2003F023F13F0EE00E090C7FC160148023E13C01603007E1680EE
070000FEEC1E0FED1F1E48EC0FF80038EC03E02D467AC432>I<143C147E14FE1301A3EB
00FC14701400AE137C48B4FC3803C780380703C0000F13E0120E121C13071238A21278EA
700F14C0131F00F0138012E0EA003F1400A25B137EA213FE5B12015BA212035B141E0007
131C13E0A2000F133CEBC038A21478EB807014F014E0EB81C0EA0783EBC7803803FE00EA
00F8174378C11E>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130F
A25CA2131FA25C167E013F49B4FC92380783C09138000E07ED3C1F491370ED603F017E13
E0EC01C09026FE03801380913907000E00D9FC0E90C7FC5C00015B5C495AEBF9C03803FB
8001FFC9FCA214F03807F3FCEBF07F9038E01FC06E7E000F130781EBC003A2001F150FA2
0180140EA2003F151E161C010013E0A2485DA2007E1578167000FE01015B15F148903800
7F800038021FC7FC2A467AC42D>107 D<EB03F8EA01FFA3380007F013031307A214E0A2
130FA214C0A2131FA21480A2133FA21400A25BA2137EA213FEA25BA21201A25BA21203A2
5BA21207A25BA2120FA25BA2121FA25BA2123FA290C7FCA2387F01C01303007E1380A213
0700FE130012FCA25B130EEA7C1E131CEA3C3CEA3E786C5AEA07C0154678C419>I<D801
F0D90FE0EB07F0D803FCD97FF8EB3FFC28071E01F03EEBF81F3E0E1F03C01F01E00F8027
1E0F8700D983807F001C018E90390F870007003C019C148E003801B802DC8002F814FC26
781FF05C0070495CA24A5C00F0494948130FD8E03F6091C75B1200043F141F4960017E92
C7FCA24C143F01FE95C7FC49147E6104FE147E1201494A14FE610301EE07800003050114
00494A14F8A2030302035B0007F0F00E495C1A1E0307EDE01C000F193C494A153862030F
020113F0001FF0F1E0494A903800FF800007C7D80380023EC7FC492D78AB50>I<D801F0
EB0FE0D803FCEB7FF83A071E01F03E3A0E0F03C01F001ED987001380001C018E130F003C
139C003801B814C014F838781FF000705BA25C00F049131FD8E03F158091C7FC1200163F
491500137EA25E01FE147E5B16FE5E12014913015E170F00030203130E4914F0A2030713
1E0007EDE01C5B173CEEC038000F167849157017E0ED03C1001FEDE3C049903801FF0000
07C8127C302D78AB37>I<EC0FE0EC7FFC903801F83E903907E00F8090390F8007C0EB1F
00017EEB03E04914F0A248481301484814F81207485AA2485AA2485A1503127F90C7FCA2
15074815F05AA2150F16E05AED1FC0A21680153F16005D157E5D007C495A007E495A003E
5C4A5A6CEB1F80260F803EC7FC3807C0FC3801FFF038003F80252D75AB32>I<D903E013
7E903A07F801FF80903A0E3C0783E0903A1C1E0F01F0903A3C1F1C00F801385B01784913
7C01705BA24A48137E01E05BA292C7FC00015B13C0147EC7FC02FE14FEA25CA201011401
17FC5CA20103140317F85CA20107EC07F0A24AEB0FE0A2010F15C0EE1F80163F1700496C
137E5E4B5A9138B803F090393F9C07E091389E0F80DA07FEC7FCEC01F849C9FCA2137EA2
13FEA25BA21201A25BA21203A21207B512F0A25C2F3F7FAB32>I<91381F800C91387FE0
1C903901F0703C903907C0387890390F801CF890381F001D013E130F017E14F05B484813
07A2484814E012075B000F140F16C0485AA2003F141F491480A3007F143F90C71300A35D
00FE147EA315FE5DA2007E1301A24A5A1407003E130FA26C495A143B380F80F33807C3E7
3901FF87E038007E071300140F5DA3141F5DA3143F92C7FCA25CA25C017F13FEA25D263F
76AB2D>I<D801F0EB3F803A03FC01FFF03A071E03C0F83A0E0F0F007C001E90389E01FC
001C139CECB803003813F0A2D91FE013F80078EC00E00070491300A200F05BEAE03F91C8
FC1200A25B137EA313FE5BA312015BA312035BA312075BA3120F5BA3121F5B0007C9FC26
2D78AB29>I<EC0FE0EC7FF8903801F01E903803C00F90390780078090380F0003011E14
C0150749131FA2017CEB3F801378137CED0E0092C7FC137E137F14F014FF6D13C06D13F0
6D7F6D7F1300EC0FFE14011400157F81120E003F141E487EA2153E48C7123CA200FC5C12
705D0078495A6C495A6CEB0F80260F803EC7FC3803FFF838007FC0222D7AAB28>I<1470
EB01F8A313035CA313075CA3130F5CA3131F5CA2007FB512E0B6FC15C0D8003FC7FCA25B
137EA313FE5BA312015BA312035BA312075BA3120F5BA2EC0780001F140013805C140E00
3F131EEB001C143C14385C6C13F0495A6C485AEB8780D807FEC7FCEA01F81B3F78BD20>
I<137C48B414072603C780EB1F80380703C0000F7F000E153F121C0107150012385E1278
D8700F147E5C011F14FE00F05B00E05DEA003FEC0001A2495C137E150313FE495CA21507
1201495CA2030F13380003167849ECC070A3031F13F0EE80E0153F00011581037F13C06D
EBEF8300000101148090397C03C787903A3E0F07C70090391FFE01FE903903F000782D2D
78AB34>I<017C143848B414FC3A03C78001FE380703C0000F13E0120E001C1400010714
7E1238163E1278D8700F141E5C131F00F049131C12E0EA003F91C7123C16385B137E1678
01FE14705BA216F0000115E05B150116C0A24848EB0380A2ED0700A2150E12015D6D5B00
0014786D5B90387C01E090383F0780D90FFFC7FCEB03F8272D78AB2D>I<02F8133FD907
FEEBFFE0903A0F0F83C0F0903A1C07C780F890393803CF03017013EE01E0EBFC07120101
C013F8000316F00180EC01C000074AC7FC13001407485C120EC7FC140F5DA3141F5DA314
3F92C8FCA34AEB03C01780147EA202FEEB0700121E003F5D267F81FC130E6E5BD8FF8314
3CD903BE5B26FE079E5B3A7C0F1F01E03A3C1E0F83C0271FF803FFC7FC3907E000FC2D2D
7CAB2D>120 D<137C48B414072603C780EB1F80380703C0000F7F000E153F001C160013
0712385E0078157EEA700F5C011F14FE00F0495B12E0EA003FEC00015E5B137E150301FE
5C5BA2150700015D5BA2150F00035D5BA2151F5EA2153F12014BC7FC6D5B00005BEB7C03
90383E0F7EEB1FFEEB03F090C712FE5DA214015D121F397F8003F0A24A5A4848485A5D48
131F00F049C8FC0070137E007813F8383801F0381E07C06CB4C9FCEA01FC294078AB2F>
I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fk cmsl12 12 34
/Fk 34 90 df<EA03C0EA0FF0121F13F8A6EA0798EA001813381330A213701360A213E0
13C01201EA038013005A120E5A5A5A5A5A0D1D70C41B>39 D<007FB512E0A3B612C0A31B
067C9721>45 D<121EEA3F80EA7FC012FFA41380EA7F00123C0A0A77891B>I<151C153C
157CEC01FCEC07F8147FEB7FFF14F31483EB000715F0A5140F15E0A5141F15C0A5143F15
80A5147F1500A55C5CA513015CA513035CA513075CA3130FEB3FFCB612FEA31F4277C131
>49 D<EDFF80020713F0021F13FE91383E01FF9139F8007F80D901E0EB3FC0D90380EB1F
E049C7EA0FF0010E15F8491407A24915FC01301403137EEB7F80497EA31607A25C17F801
3EC7120F90C8FC17F0161F17E0163F17C0EE7F8016FF17004B5A4B5A4B5A5E4B5A4B5A4B
C7FC157E5D4A5A4A5AEC07C04A5A4AC8FC143E14785C4948EB01804948EB0300495A49C7
FC011C14065B49140E49140C4848141C485A000FB612F85A5A485DB7FCA25E2E427BC131
>I<EDFF80020713F0023F13FC91387F01FF903A01F0007F80D903C0EB3FC049C7121F01
0E15E05BD91FC0EB0FF0497EA2161FA317E05C010FC7123F90C813C0A2EE7F80A2EEFF00
4B5A5E4B5A4B5AED0FC0033FC7FCEC01FCECFFF015FE9138001F80ED0FE06F7E6F7E6F7E
82150082A21780A6120FEA3FC0127F5D00FF1600A349495A90C7FC00FC4A5A00605D0070
140F4B5A6C5D6C4A5A001F4A5A270F8001FEC7FC3903F807FCC6B512F0013F1380D907FC
C8FC2C447AC131>I<EE0380A21607160FEE1F005E5EA25E5D4B5A15071506150C151815
30ED71FC15E115C1EC0181EC0301140791380E03F8140C14181430146014E04948485A14
80EB03001306130E5B0118495A5B5B5B1201485A90C7485A12065A121C5A1230484A5AB8
12C0A3C8383F8000157FA293C7FCA45DA25DA314014A7E0103B6FCA25E2A437AC231>I<
0103156002E0EB03E002FCEB3FC091B6128049150016FC5E16E016809026063FFCC7FC01
0EC9FC130CA5131C1318A513381330EC07F8EC3FFE9138F80F80903933C007C090397700
03E0017E8001786D7E137001606D7EA290C87EA482A65D000F5DEA3FC0127FA34B5A12FF
495C48C7120700605D150F5E00704A5AA26C4A5A4BC7FC6C14FE6C495A390F8007F03907
E01FE00001B512806C6C48C8FCEB1FE02B4479C131>I<ED0FF0ED7FFE0203B5FC913907
F00FC091381FC001027FC712E002FC14604948EB0FE04948131F4948133F495A131F495A
91C713C049EC1F8001FE91C7FC5B120112035B12075BA2120F9038E00FF0001FEB3FFCEC
F01F9039E3C00FC04848C66C7E01CE6D7E01DC130101D88001F86D7E485A4980A25B825B
12FFA290C8FCA35D5EA25AA34B5AA2127E5E15075E007F4A5A7E4B5A6C4A5A6D91C7FC6C
6C137E5D3907E003F83903F80FE0C6B55AD93FFEC8FCEB0FF02B4478C131>I<487E1203
13F048B712F817F0A24816E0A217C0481680001CC8EA07000018150E00385D00305D1630
4815705E4B5A484A5A4BC7FCC8120E5DA25D5D5D4A5A4A5AA24AC8FC140E141E141C143C
5C14F85C1301A2495A1307A2495AA2131F5C133FA2137F91C9FC5BA3485AA21203A4485A
A5120F5BA26C5AEA03C02D4573C231>I<170C171C173C173E177EA217FEA21601835EA2
1606A24C7FA2EE187FA21630A204607F173F16C0A2ED018084ED0300171F1506A25D844B
130FA25D157003608015E04B130714015D140392C77F02061403A2020FB6FCA24A810218
C712034A1401A25CA24A8183495AA249C9FC851306187F5B131CA2013C83137CEA01FE26
07FF80913801FFF0007F01E0027FEBFFC0B5FCA242477DC649>65
D<011FB712E018FCF0FF809026003FF8C76C7E6E48EC1FF0727E4B6E7E1803727E858414
3F5D1A80A4027F17005D606118036102FF150792C8485A614E5AF07FC04EC7FC49ED03FE
4AEC0FF8EFFFE091B7128018F04AC7EA03FC0103ED00FF4A6F7E727E727E727EA2010770
7E5C85A31803130F4A1507A461011F160F4A5E181F4E5AA24E5A013F4C5A4A4A90C7FC4D
5AEF0FFC017FED3FF001FF4AB45AB9128005FCC8FC17C041447CC345>I<DC1FF8EB01C0
4BB5FC030F9138C00380923A3FF003F007913B01FF8000780FDA03FCC7123CDA0FF0EC0E
1FDA1FC0EC073FDA7F80913803FF004AC8FC494881494881495A4948824948167E494816
3E495A13FF91CA121E485A0003181C5B12075B120FA248481718A2003F95C7FC5BA3485A
A512FF5BA719C0A3007F170161A26D1603003F95C7FC6018066C6C160E180C000F171C6D
5E6C6C5E000317F06D4B5A6C6C4B5A6C6C4B5A6D6C4AC8FC6D6C143CD90FF05CD907FCEB
03F0903A01FF801FC06D6CB5C9FC021F13F8020113C0424876C546>I<011FB712E018FE
49707E9026003FF8C713E06E48EC1FF0F007FC4BEC01FE727EF17F80193FF11FC0023FEE
0FE05DF107F0A21AF81903147F4B16FCA219011AFEA214FF92C9FCA54917035CA5010318
FC4A1607A31AF8A20107170F4A17F0A2191F1AE0A2010FEF3FC05CF17F801A006161011F
4C5A4A4B5A4E5A180F4E5A4E5A013F4CC7FC4A15FEEF03FCEF0FF0017FED3FE0496C9038
03FF80B848C8FC17F094C9FC47447CC34B>I<011FB9FCA39026003FF8C7120F6E481400
197F4B151FA2190F1907A2143F5DA21903A3147F5D1706A3190002FF5C92C7FCA2171CA2
173C4915F84A130391B6FCA39138FE00070103EC01F04A13001770A4010715604A160CA3
191894C7FC130F4A1630A219701960A2011F17E04A16C01801180319801807013F160F4A
ED1F006018FF017FED03FE01FF153FB9FC60A240447CC342>I<011FB812FEA39026003F
F8C7121F6E481401F0007E4B153E191EA2190EA2143F5D1906A4147F5DA2170CA2190002
FF5C92C7FCA21738A217784915704AEB01F0160791B6FCA3903A03FE000FE04A13031601
1600A301075D5CA5010F92C8FC5CA5131F5CA5133F5CA3137FEBFFF0B612F8A33F447CC3
40>I<DC1FF8EB01C04BB5FC030F9138C00380923A3FF003F007913B01FF8000780FDA03
FCC7123CDA0FF0EC0E1FDA1FC0EC073FDA7F80913803FF004AC8FC494881494881495A49
48824948167E4948163E495A13FF91CA121E485A0003181C5B12075B120FA248481718A2
003F95C7FC5BA3485AA512FF5BA44CB612805EA293C7EBE000725A183F007F177FA2617F
123FA218FF6C7E96C7FC6C7EA26C6C5D12036D5D6C6C5E6C6C15076D6CEC0E7E6D6C141C
D90FF0EC783ED907FC903801F01E903B01FF801FC01C6D6CB5EA000C021F01FC90C8FC02
0113C0424876C54D>I<011FB500FC017FB512F04C16E0A29026003FFCC8EBF000DA1FF0
ED7FC0A24B5EA419FF143F4B93C7FCA460147F4B5DA4180314FF92C85BA418075B4A5E91
B8FCA34AC8120F13034A5EA4181F13074A5EA4183F130F4A5EA4187F131F4A5EA418FF13
3F4A93C8FCA3017F5D496C4A7FB6D8E003B67EA203C093C7FC4C447CC349>I<011FB512
FEA39039001FFE00EC0FF8A25DA5141F5DA5143F5DA5147F5DA514FF92C7FCA55B5CA513
035CA513075CA5130F5CA5131F5CA3133F497E007FB512F0B6FCA227447DC323>I<011F
B500FC91383FFFF8A2495C9026003FFCC8000F1300DA1FF0ED07F81AE04B5E4FC7FC191E
193861023F5E4B4A5A4E5A060EC8FC6060027F5D4B5CEF03804DC9FC170E5F02FF5C92C7
12E04C5A4C5A4C7E160F49EC3FE04A137F4C7EED01DF9238038FF8ED0E0F0103496C7EEC
FC384B6C7EECFDE09139FF8001FF150049486D7F5C4A6E7EA2717EA2010F6F7E5C717EA2
717EA2011F6F7E5C717EA2717FA2013F707E5C8585137F496C913801FFFCB600E0010FEB
FFE05FA24D447CC34C>75 D<011FB6FCA39026003FFCC8FCEC1FF0A25DA5143F5DA5147F
5DA514FF92C9FCA55B5CA513035CA513074A1503A31806A2130F4A150E180CA2181C1818
011F16385C1878187018F01701013FED03E04A1407170F173F017FEDFFC001FF140FB9FC
1880A238447CC33D>I<90261FFFF094B512C06F198062D9003F9439037FC000021F4EC7
FC1A06DA19FC5F1A0CA21A18DA18FE1619023817310230601A611AC1157FF10183147002
6093380303F8A26F6C1406A2F10C0714E002C004185B6F7E193019601A0F010117C04A6C
6C5EF00180A2F003006F6C151F0103160602006060606F7E4E133F5B01064C5CA26F6C5B
A24D48137F130E010C4BC790C8FCED00FE17065F62011C5D0118027F5D5FA25FDC3FE013
0101385D6201785D94C7FCD801FC6E1403D807FF021E4A7EB500F80307B512FE161C4A01
0C5E5A447BC359>I<90261FFFF84AB512F01BE081D9001F9239001FFC006E6CED07F002
1F705ADA19FF6F5A6202187FA26F6C140314389126303FE092C7FCA26F7EA26F6C5C1470
91266007FC1406A26F7EA26F6C140E14E04A6C6D130CA2707EA2706C131C13014A6D6C13
18A2707EA2706C1338130391C76C6C1330A2707EA270EB80705B010692387FC060A2EF3F
E0A294381FF0E0130E010C6F6C5AA2EF07FCA2EF03FF131C01186F5BA283A2187F133872
C8FC137884EA01FCD807FF82B512F818065C4C447CC349>I<EE3FF00303B5FC92391FC0
1FE092397E0003F0DA01F8EB00FCDA07E0147E4A486E7E023FC8EA0FC0027E824A6F7E49
481503D907F0824A6F7E495A011F707E495A49CA7E49835B00011980485AA24848EF3FC0
A2120F5B121FA25B123F197F5B127FA54848EFFF80A44E1300A3611803A24E5A127F6118
0F616D4C5A123F4E5A001F4D5A7F4EC7FC000F4C5A6C6C5E4D5A6C6C4B5A6C6C4B5A0000
4C5A017E4BC8FC6D15FE6D6CEB01F8D90FE0EB07F0D903F8EB1FC0D900FE01FEC9FC9138
3FFFF802031380424876C54C>I<011FB712C018F818FF9028003FF8000113806E489038
003FE0F00FF04BEC07F8F003FCA2F001FEA2023F16FF4B80A5027F5D5DA319FE180314FF
92C813FCF007F8A2F00FF0F01FE049EE3FC04AED7F00EF01FEEF07F8EF3FE091B7128049
03FCC7FC02FCCAFCA513075CA5130F5CA5131F5CA5133F5CA3137F497EB612E0A25D4044
7CC342>I<EE3FF00303B5FC92391FE01FE092397E0003F0DA01F8EB00FCDA07E0147E4A
486E7EDA3F806E7E027EC86C7E4A6F7E49481503D907F082727E495A4948824948150001
7F8349CAFC498300011980485AA2000719C05B120F5B121FA25B123FA3485AA54848EFFF
80A41A0060A2611803A261007F170761180F614E5A6C7E4E5A001FDA1F805CDB7FE0137F
6DD9E07049C7FC000F49486C5B3C07F003801801FC4B6C485A6C6C484A5A000101069038
0E0FE0D800FC9138061FC0017E4BC8FC013F15FED91F86EB07F8D90FE75CD903FBEB1FC0
902700FF80FFC71218023FB5FC0203D98780133891C71207193019707113F061EFE003EF
F0079438F81FC094B5FC618296C7FC60705B705BEF7FE0EF1F80425976C54C>I<011FB6
12FEEFFFE018F8903B003FF80007FE6E48903800FF80F03FC04B6E7E727E727E727EA202
3F824B1401A5027F15035DA34E5AA202FF5E92C8485A614E5A4E5A4EC7FC49ED01FE4AEC
03F8EF1FE0EFFF8091B600FCC8FC17F0903A03FE0001FC4AEB007F717E717E717E840107
6F7E5CA21703A21707130F5CA5011F150F5CA41A38013F18305CA21A70017F0307146049
6C17E0B600E0903903FC01C00501EB03804B903900FE0F00CBEA3FFEF007F045467CC348
>I<DB3FE01370913801FFFC020701FF13E091391FC01FC191397F0003E102FCEB00F349
48147F4948143F4948EC1FC0495A4A140F131F91C812075B013E1680137E1703A313FE18
00A27FA26E91C7FC137F8014F014FC6DB47E15F86DEBFF806D14F06D14FC6D14FF010081
023F80020780DA007F7F150F03007F161F707E16071603A21601A2120C001C15001218A4
160100385EA2003C5E1603A2003E4B5A007E5E007F150F6D4A5A6D4AC7FCD87DE0147ED8
78F05CD8F87EEB03F83AF01FC00FE0486CB51280010149C8FC39C0003FF034487BC536>
I<0007BAFCA3270FFE0003EB000301E04AEB007F49173F90C749141F001E180FA2001C18
0712180038020715065E1230A25AA2150F5E5AA3C81600151F5EA5153F5EA5157F5EA515
FF93C9FCA55C5DA514035DA514075DA3140FEC3FFE48B712C05FA2404475C346>I<B600
E0010FB512804B1600A2000101E0C813E06C0180ED3F8072C7FC91C9120E180CA3181C5A
491618A418381203491630A418701207491660A418E0120F495EA41701121F495EA41703
123F4993C8FCA45F007F16065BA2170E003F160C171C171817386D1530001F16705F4C5A
6C7E4C5A6C6C4AC9FC6C6C141E00015DD800FE14F8017FEB03E090393FE01FC0010FB5CA
FC010313FC9038003FE0414671C349>I<B66C91383FFFF092C8FCA2000301E003071300
6C0180ED03FC6CEF01F06161017F5FA24EC7FCA26E1506013F160E180C608060131F60A2
6E5D130F4D5A170395C8FC6E140613075FA26E5CA201035DA25F6E14E05F01014A5AA24C
C9FC806D1406A25EA26F5A027F133816305E15C05E143FEDC180A203E3CAFC141F15E615
EE15EC15F8140F5DA25DA26E5AA25DA26ECBFC444673C349>I<B60107B500F80107B5FC
5113FEA2000701C09026003FFEC813E06C90C8D80FF8ED3F806C1C00491A1E6D1A1C6C04
071618A264A2050F5EA26E4A6C5D017F151B05334B5AA20563150399C7FC05E35D6EDAC3
FE1406013FDA01C1150E0581150C160305015DA204066D5C6E80011F4A5EA24C5EA24C4B
5A6E1680010F4A017F49C8FCA24C1506A24B485DA26E48C76D5A0107163F03065EA24B16
701A60031C16E0DAFC186F5A01030138EC1FE103305E1570036003E3C9FCA24B15F614FE
6D6C48EC0FFCA292C85BA24A5EA24A6F5A13004A5EA24A5EA24A93CAFC026081604673C3
64>I<0107B500FC0103B512E0A2495ED9001F01C00100EBFC00020790C8EA7FC06E70C7
FC4B153E6E6C153C19386E6D5C616F6C495A616F6C49C8FC18066F6C5B181C6F6C5B1830
6F6C5B606F6C485A17036F6C48C9FC170E6F138C1798EE7FF05F163FA2707EA2707EA24C
7E163FEE73FE1663EEC1FFED0181DB03807F4B5A030E6D7E150C4B804B133F4B8003E013
1F4A5A4B6D7E4AC7FC02066E7E5C021C6E7E5C4A6E7E14604A6E7F130149486F7E010F83
131FD97FC04B7E2603FFE0020313FC007F01FC021FEBFFF0B5FCA24B447EC349>I<B66C
91380FFFFCA260000301F0C8000313C0C649923801FE00017FEE00F861013F4C5A616D6C
4B5A96C7FC6D6C1506606D6C151C606E153001035E606D6C1401606D6D49C8FC17066E6C
130E5F17186E6C5B5F6E6C13E05F6E6C485A4CC9FC6F5A0207130E160C6E6C5A5E913801
FF7016606E5B5EA293CAFCA55D1401A55D1403A55D1407A4140F4A7E011FB512FC5EA246
4474C349>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fl cmsy8 8 13
/Fl 13 113 df<B812C0A32A037A9137>0 D<123C127E12FFA4127E123C08087A9414>I<
006015C000E014016C14030078EC07806CEC0F006C141E6C5C6C6C5B6C6C5B6C6C485A6C
6C485A90387807806D48C7FCEB1E1E6D5AEB07F86D5A6D5A497E497EEB0F3CEB1E1E497E
496C7E496C7E48486C7E48486C7E4848137848C77E001E80488048EC078048EC03C04814
0100601400222376A137>I<130C131EA50060EB01800078130739FC0C0FC0007FEB3F80
393F8C7F003807CCF83801FFE038007F80011EC7FCEB7F803801FFE03807CCF8383F8C7F
397F0C3F8000FCEB0FC039781E078000601301000090C7FCA5130C1A1D7C9E23>I<EB7F
803801FFE0000713F8380FC0FC381F003E003C130F00387F007814800070130300F014C0
481301A66C1303007014800078130700381400003C5B001F133E380FC0FC6CB45A000113
E038007F801A1A7C9D23>14 D<170EA3170F8384170384170184717E1878187C84180FF0
07C0BA12F819FC19F8CBEA07C0F00F00183E601878604D5A60170360170795C7FC5F170E
A33E237CA147>33 D<137813FE1201A3120313FCA3EA07F8A313F0A2EA0FE0A313C0121F
1380A3EA3F00A3123E127E127CA35AA35A0F227EA413>48 D<D93F80EC07F0D9FFF0EC3F
FC000301FC91B5FC4801FF903901F80780D80F80903A8007C001C03D1E003FC00F8000E0
486D6C48C71270003890260FF03E143048902607F83C14386E6C48141800606D6C5A00E0
6D6C48141C48027F150C5E153F6F7E6F7E82151F6C6F141C0060DA3DFE1418DB78FF1438
00704A6C7E003001016D6C1370003849486C6C13F06C903B07C00FF001E06C903B0F8007
FC07C02807807E0003B512806CB44801001400C601F0EC3FFCD93F80EC07F03E1F7C9D47
>I<91B512C01307131FD97F80C7FC01FCC8FCEA01F0EA03C0485A48C9FC120E121E5A12
3812781270A212F05AA3B712C0A300E0C9FCA37E1270A212781238123C7E120E120F6C7E
6C7EEA01F0EA00FCEB7F80011FB512C013071300222B7AA52F>I<0060150C00E0151CB3
AA6C153C00701538A2007815786C15F06CEC01E06C6CEB07C0D807E0EB1F803A03FE01FF
00C6B512FC013F13F0010390C7FC26297CA72F>91 D<EB03FF013F13F090B512FC3903FE
01FF3A07E0001F80D80F80EB07C0001EC7EA01E048EC00F048157800701538A200F0153C
48151CB3AA0060150C26297CA72F>I<12E0B3B3B3AD034378B114>106
D<18031807180F180E181E181C183C18381878187018F018E01701EF03C0188017071800
5F170E171E171C173C17381778177017F05F16015F16035F160701C092C7FC486C5C0007
151E486C141C003F153CD873F8143800E31578D801FC147016F06C6C5C1501017F5C1503
D93F805B1507D91FC090C8FC5D90380FE00E151E903807F01C153C903803F83815786D6C
5A5DEB00FF5D147F5D143F92C9FC80141E140E38427C823B>112
D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fm cmbx12 12 65
/Fm 65 122 df<DB0FFFEB03FF4AB5D8C03F13C0020F02F1B512E0027F91B612F0902701
FFF8039038FE1FF849018002F813FC010F4948EBF03F49484913E0495A4A15C0495AF11F
F801FF16804A6DEC07E070EC018096C7FCABBA12F0A5C69026E000030180C7FCB3B0007F
D9FFC1B67EA546467EC541>11 D<EA07C0EA1FF0487E487E487E7FA31480A37E7EEA1FF7
EA07C7EA0007130FA21400A25B131E133EA25B13FC5B485A485A1207485A485A90C7FC12
0C112278C41F>39 D<EC01E01403EC0FC0EC1F80EC3F00147E5C1301495A495A5C130F49
5A133F5C137F49C7FCA2485AA2485AA212075BA2120F5BA2121FA25B123FA4485AA612FF
A25BAE7FA2127FA66C7EA4121F7FA2120FA27F1207A27F1203A26C7EA26C7EA26D7E133F
80131F6D7E1307806D7E6D7E1300147E80EC1F80EC0FC0EC03E014011B6476CA2C>I<12
F07E127E7E6C7E6C7E6C7E7F6C7E6C7E12007F137F80133F806D7EA26D7EA26D7EA28013
03A2801301A280A27F1580A4EC7FC0A615E0A2143FAE147FA215C0A6ECFF80A415005BA2
5CA213035CA213075CA2495AA2495AA2495A5C137F91C7FC13FE5B1201485A485A5B485A
485A48C8FC127E12F85A1B647ACA2C>I<B612F8A91D097F9A25>45
D<EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA1FF0EA07C00F0F788E1F>I<
EC3FF849B5FC010F14E0013F14F890397FF01FFC9039FFC007FE4890380001FF48486D13
80000716C049147F000F16E049143F001F16F0A2003F16F8A249141F007F16FCA600FF16
FEB3A3007F16FCA56C6CEC3FF8A3001F16F0A2000F16E06D147F000716C06D14FF6C6C49
13806C6D4813006C6D485A90397FF01FFC6DB55A010F14E0010314809026003FF8C7FC2F
427CC038>48 D<EC03C01407141F147FEB03FF133FB6FCA413C3EA0003B3B3ADB712FCA5
264177C038>I<ECFFE0010F13FE013F6D7E90B612E0000315F82607FC0313FE3A0FE000
7FFFD81F806D138048C7000F13C0488001C015E001F07F00FF6E13F07F17F881A46C5A6C
5A6C5AC9FC17F05DA217E05D17C04B13804B1300A2ED1FFC4B5A5E4B5A4B5A4A90C7FC4A
5A4A5AEC0FF04A5AEC3F804AC7127814FE495A494814F8D907E014F0495A495A49C8FC01
7C140149140348B7FC4816E05A5A5A5A5AB8FC17C0A42D417BC038>I<ECFFF0010713FF
011F14C0017F14F049C66C7ED803F8EB3FFED807E06D7E81D80FF86D138013FE001F16C0
7FA66C5A6C4815806C485BC814005D5E4B5A4B5A4B5A4A5B020F1380902607FFFEC7FC15
F815FF16C090C713F0ED3FFCED0FFEEEFF80816F13C017E0A26F13F0A217F8A3EA0FC0EA
3FF0487EA2487EA217F0A25D17E06C5A494913C05BD83F80491380D81FF0491300D80FFE
EBFFFE6CB612F800015D6C6C14C0011F49C7FC010113E02D427BC038>I<163FA25E5E5D
5DA25D5D5D5DA25D92B5FCEC01F7EC03E7140715C7EC0F87EC1F07143E147E147C14F8EB
01F0EB03E0130714C0EB0F80EB1F00133E5BA25B485A485A485A120F5B48C7FC123E5A12
FCB91280A5C8000F90C7FCAC027FB61280A531417DC038>I<0007150301E0143F01FFEB
07FF91B6FC5E5E5E5E5E16804BC7FC5D15E092C8FC01C0C9FCAAEC3FF001C1B5FC01C714
C001DF14F09039FFE03FFC9138000FFE01FC6D7E01F06D13804915C0497F6C4815E0C8FC
6F13F0A317F8A4EA0F80EA3FE0487E12FF7FA317F05B5D6C4815E05B007EC74813C0123E
003F4A1380D81FC0491300D80FF0495AD807FEEBFFFC6CB612F0C65D013F1480010F01FC
C7FC010113C02D427BC038>I<4AB47E021F13F0027F13FC49B6FC01079038807F809039
0FFC001FD93FF014C04948137F4948EBFFE048495A5A1400485A120FA248486D13C0EE7F
80EE1E00003F92C7FCA25B127FA2EC07FC91381FFF8000FF017F13E091B512F89039F9F0
1FFC9039FBC007FE9039FF8003FF17804A6C13C05B6F13E0A24915F0A317F85BA4127FA5
123FA217F07F121FA2000F4A13E0A26C6C15C06D4913806C018014006C6D485A6C9038E0
1FFC6DB55A011F5C010714C0010191C7FC9038003FF02D427BC038>I<121E121F13FC90
B712FEA45A17FC17F817F017E017C0A2481680007EC8EA3F00007C157E5E00785D15014B
5A00F84A5A484A5A5E151FC848C7FC157E5DA24A5A14035D14074A5AA2141F5D143FA214
7F5D14FFA25BA35B92C8FCA35BA55BAA6D5A6D5A6D5A2F447AC238>I<EC7FF00103B5FC
010F14C0013F14F090397F801FFC3A01FC0003FE48486D7E497F4848EC7F80163F484815
C0A2001F151FA27FA27F7F01FE143F6D158002C0137F02F014006C01FC5B6E485A6C9038
FF83FCEDE7F86CECFFE06C5D6C92C7FC6D14C06D80010F14F882013F8090B7FC48013F14
802607FC0F14C0260FF80314E04848C6FC496D13F0003F141F48481307496D13F8150000
FF157F90C8123F161F160FA21607A36D15F0127F160F6D15E06C6C141F6DEC3FC06C6CEC
7F80D80FFE903801FF003A07FFC00FFE6C90B55AC615F0013F14C0010F91C7FC010013F0
2D427BC038>I<EC7FF0903807FFFE011F6D7E017F14E09039FFE03FF0489038800FF848
496C7E48488048486D7E001F80003F1680A2484815C08117E0A212FF17F0A617F8A45D12
7FA3003F5CA26C7E5D6C6C5B12076C6C133E6CEBC07C6CEBFFF8013F5B010F01C013F001
01130090C8FCA217E05DA2EA03C0D80FF015C0487E486C491380A217004B5A150F5E4949
5A6C48495A01C0EBFFE0260FF0035B6CB65A6C4AC7FC6C14F86C6C13E0D907FEC8FC2D42
7BC038>I<EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA1FF0EA07C0C7FCAE
EA07C0EA1FF0EA3FF8EA7FFCEAFFFEA7EA7FFCEA3FF8EA1FF0EA07C00F2C78AB1F>I<EE
1F80A24C7EA24C7EA34C7EA24B7FA34B7FA24B7FA34B7F169F031F80161F82033F80ED3E
07037E80157C8203FC804B7E02018115F0820203814B137F0207815D173F020F814B7F02
1F8292C77EA24A82023E80027E82027FB7FCA291B87EA2498302F0C8FCA20103834A157F
0107834A153FA249488284011F8491C97E4984133E017E82B6020FB612F0A54C457CC455
>65 D<B9FC18F018FE727E19E026003FFCC700077F05017F716C7E727E727EA2721380A3
7213C0A74E1380A24E1300A24E5A4E5A4E5A4D5B05075B94B5128091B700FCC7FC18F018
FF19E002FCC7000113F8716C7EF01FFE727E7213801AC07213E0A27213F0A31AF8A71AF0
A2601AE0604E13C0604E138095B5120005075BBA12F86119C04EC7FC18E045447CC350>
I<DCFFF01470031F01FF14F04AB6EAE0010207EDF803023FEDFE0791B539E001FF0F4949
C7EA3F9F010701F0EC0FFF4901C0804990C87E4948814948814948167F4849163F484916
1F5A4A160F485B19074890CAFC19035A5BA2007F1801A34994C7FC12FFAE127F7F1AF0A2
123FA27F6C18011AE06C7F19036C6D17C06E16077E6C6DEE0F806C6DEE1F006D6C5E6D6C
167E6D6C6C5D6D6D4A5A6D01F0EC07F0010101FEEC1FE06D903AFFF001FF80023F90B6C7
FC020715FC020115F0DA001F1480030001F8C8FC44467AC451>I<B9FC18F018FE727E19
E026003FFEC7001F13F805017F9438003FFF060F7F727F727F727F84737E737EA2737EA2
737EA21B80A2851BC0A51BE0AD1BC0A51B8061A21B006162193F624F5A19FF624E5B0607
5B4E5B063F90C7FC4DB45A050F13F8BA5A19C04EC8FC18F095C9FC4B447CC356>I<BA12
F8A485D8001F90C71201EF003F180F180318011800A2197E193EA3191EA21778A285A405
F890C7FCA316011603161F92B5FCA5ED001F160316011600A2F101E01778A2F103C0A494
C7FC1907A21A80A2190FA2191FA2193FF17F0061601807181F4DB5FCBBFC61A443447DC3
4A>I<BA1280A419C026003FFEC7121F1701EF007F183F181F180F180719E01803A31801
A3EE01E0F000F0A419001603A31607160F167F91B6FCA59138FE007F160F16071603A316
01A693C9FCAFB712F0A53C447CC346>I<DCFFF01470031F01FF14F04AB6EAE0010207ED
F803023FEDFE0791B539E001FF0F4949C7EA3F9F010701F0EC0FFF4901C0804990C87E49
48814948814948167F4849163F4849161F5A4A160F485B19074890CAFC19035A5BA2007F
1801A34994C8FC12FFAD057FB612F0127F7FA3003FDC0001EBF000A27F7EA26C7FA26C7F
807E6C7F6C7F6D7E6D6C5D6D6C7E6D6D5C6D01F05C010101FE143F6D903AFFF001FF9F02
3F90B6120F0207EDFC030201EDF000DA001F02C01330030001FCC9FC4C467AC458>I<B7
D88003B612FEA526003FFEC9EBF800B3A791B9FCA54AC9FCB3AAB7D88003B612FEA54F44
7CC358>I<B712E0A5D8001F90C7FCB3B3B3A4B712E0A523447DC32A>I<B76C0103B512F8
A526003FFEC93807E0004F5A4F5A077EC7FC614E5A4E5A4E5AF01F804EC8FC187E604D5A
EF07F0EF0FC04D5A4DC9FC177E4C5AEE03F04C5A4C5A4C7EEE7FF04C7E5D4B7F4B7F4B7F
ED3F3FDB7E1F7F03FC806E486C7F4B7E4B6C7F0380804B6C7F4A7F717E84717F83717F85
717F83717F85717F187F727E86727F84727F86727F84B76C90B612FCA54E447CC358>75
D<B712F0A526003FFECAFCB3B1F00780A4180F1900A460A360A2187EA218FE1701170317
07171F177FEE03FFB95AA539447CC343>I<B500FE067FB512806E95B6FCA26F5EA2D800
3F50C7FC013D6DEE03DFA2013C6DEE079FA26E6CEE0F1FA26E6C161EA26E6C163CA36E6C
1678A26E6C16F0A26E6DEC01E0A26E6DEC03C0A36E6DEC0780A26F6CEC0F00A26F6C141E
A26F6C5CA36F6C5CA26F6C5CA26F6D485AA26F6D485AA26F6D485AA3706C48C7FCA29338
3FF81EA2706C5AA2706C5AA3706C5AA2705BA2705BA2705BA2B6057FB6128071C7FCA217
3E171C61447CC36A>I<B64BB512FE8181A281D8003F6D91C7EA780081013D7F81133C6E
7E6E7F6E7F6E7F6E7F82806E7F6E7F6F7E6F7F83816F7F6F7F6F7F6F7F6F7F8382707F70
7F707F707F8482707F707F717E7113807113C019E0837113F07113F87113FC7113FE19FF
847213F884848484A28484197F193F191FA2190F1907B61603190119001A78A24F447CC3
58>I<923807FFC092B512FE0207ECFFC0021F15F091267FFE0013FC902601FFF0EB1FFF
01070180010313C04990C76C7FD91FFC6E6C7E49486F7E49486F7E01FF8348496F7E4849
6F1380A248496F13C0A24890C96C13E0A24819F04982003F19F8A3007F19FC49177FA400
FF19FEAD007F19FC6D17FFA3003F19F8A26D5E6C19F0A26E5D6C19E0A26C6D4B13C06C19
806E5D6C6D4B13006C6D4B5A6D6C4B5A6D6C4B5A6D6C4A5B6D01C001075B6D01F0011F5B
010101FE90B5C7FC6D90B65A023F15F8020715C002004AC8FC030713C047467AC454>I<
B9FC18F018FE727E19E0D8001F90C7000F7F05017F716C7E727E727E721380A21AC084A2
1AE0A91AC0A24E1380A21A00604E5A4E5A4D485A050F5B92B712C096C7FC18FC18C092CB
FCB3A7B712E0A543447DC34D>I<923807FFC092B512FE0207ECFFC0021F15F091267FFE
0013FC902601FFF0EB1FFF010701C0010713C04990C700017F49486E7F49486F7E49486F
7E49486F7E48496F7E48496F1380A248496F13C0A24819E091C97E4819F0A248487013F8
A3007F19FCA249177FA300FF19FEAD007F19FCA36D17FF003F19F8A3001F19F06D5EA26C
19E06E01FE5B6C912603FF8014C06C6D486D4813804B13E06C9028E01F83F00F13006C90
3BF01E00F81FFE90267FF83E90387C3FFC90263FFC3C6D485AD91FFE91381EFFF0D90FFF
021F5B6D01FE5D010194C7FC6D6D6CB45A023F90B512F8020703E0130202006F13070307
13C792C7EA07F8716C130F72131F9538FF80FF96B5FC7114FEA3831AFCA27213F81AF084
7213E07213C0721300F001FC48587AC454>I<B812F8EFFFC018F818FE727ED8001F90C7
003F13E005037F05007F727E727E727EA28684A286A762A24E90C7FCA24E5A61187F9438
01FFF005075B053F138092B7C8FC18F818E018F892C77FEF3FFF050F7F717F717FA2717F
A2717FA785A61B0F85A2187F73131F72141EB700E06DEB803E72EBE0FC72EBFFF8060114
F0726C13E0CC0007138050457DC354>I<DAFFE0131C010701FE133C013F9038FF807C90
B6EAE0FC4815F9489038801FFF3907FC00014848EB007F4848143F4848140F491407007F
15035B1601160012FF177CA27FA26D153C7F7F6D92C7FC6C7EEBFFE014FE6CEBFFF015FF
6C15E016FC6C816C6F7E6C826C826C6C81011F810107811300020F80140003077FED007F
82040F1380828212F082A282A27EA218007EA26C5D6C5E6D14036D5D6D140701F84A5A01
FFEC3FF002F8EBFFE0486CB65AD8FC1F92C7FCD8F80714FC48C614F0480107138031467A
C43E>I<003FBA12E0A59026FE000FEB8003D87FE09338003FF049171F90C71607A2007E
1803007C1801A300781800A400F819F8481978A5C81700B3B3A20107B8FCA545437CC24E
>I<B76C010FB512F8A526003FFEC93803E000B3B3A9011F17076280190F6D606F151F6D
95C7FC6D6D5D197E6D6D5D6D6D1403DA7FFC4A5A6EB4EC3FF0020F9039F003FFE06E90B6
1280020193C8FC6E6C14FC030F14E09226007FFEC9FC4D457CC356>I<B792B6FCA52600
3FFECAEAFC00806D606F15016D608119036D606F15076D606F150F6D6081191F6D6D93C7
FC61027F163E6F157E023F167C8119FC6E6D5C18016E5E7013036E5E8218076E6D5C180F
6E5E70131F6E93C8FC705B037F143E82187E033F147C7013FC6F5C17816F5C17C117C36F
5C17E76F5C17FF6F5CA36F91C9FCA2705AA2705AA3705AA2705AA2705AA250457EC355>
I<B600FE017FB691B512FEA526007FFCC8D83FFEC9EA7C006E82013F701778807415F86D
705F6F7014016D705FA26F7014036D64814E6D14076D646F70140F6D041E94C7FCA26F02
3E6D5C6DDC3C7F151E81027F037C6D5CF0783F6F70147C023F4B6C1578A26F01016F13F8
6E4B6C5D16806E02036F485A4E7E04C0EEE0036E4A486C5DA2DCE00FEDF0076E4B6C5D16
F06E4A6F48C8FC051E7F04F8705A6E4A027F131EA2DCFC7CEDFE3E037F0178023F133C04
FE16FF033F01F85E4D8004FF17F86F496E5BA36F496E5BA26F604D80A26F90C86C5BA36F
486F90C9FCA26F48167EA30478163C6F457EC374>I<007FB6D8C003B61280A5D8000F01
E0C7D801F8C7FC6D4C5A6F14076D6D5D6D6D4A5A4E5A6D6D143F6E6C92C8FC6E157E705B
6EEBC0016E01E05B4D5A6E6D485A6EEBF80F6E01FC5B4D5A6E6D48C9FC6F6C5A6F137E5F
6F5B815F816F7F81836F7F707E93B5FC844B805D4B8004E77FDB0FC37FED1F83DB3F817F
04007F037E137F4B8002016E7F4B6D7F4A5A4A486D7F020F6E7F4B7F4A48814AC76C7F71
7F147E4A6F7E0101707F4A8149488349486F7F010F707FB600E00103B612FCA54E447DC3
55>I<B76C027FB5FCA5D8003F0180C9EAFC006D6D4B5AA26D6D4B5A6D6D4B5A816D4D5A
6D6D4B5A816D4DC7FC6E6C157E826E5E6E6D495A826E4B5A6E6D495A6E7F4E5A6E6D495A
6E7F4EC8FC6F6C137E6F1380606FEBC1F86F13E1EFF3F06FEBF7E06F13FF606F5C8195C9
FC705A163FB3A592B77EA550447EC355>I<903801FFE0011F13FE017F6D7E48B612E03A
03FE007FF84848EB1FFC6D6D7E486C6D7EA26F7FA36F7F6C5A6C5AEA00F090C7FCA40203
B5FC91B6FC1307013F13F19038FFFC01000313E0000F1380381FFE00485A5B127F5B12FF
5BA35DA26D5B6C6C5B4B13F0D83FFE013EEBFFC03A1FFF80FC7F0007EBFFF86CECE01FC6
6CEB8007D90FFCC9FC322F7DAD36>97 D<EB7FC0B5FCA512037EB1ED0FF892B57E02C314
E002CF14F89139DFC03FFC9139FF000FFE02FCEB03FF4A6D13804A15C04A6D13E05CEF7F
F0A218F8173FA318FCAC18F8A2177F18F0A3EFFFE06E15C06E5B6E491380027C49130049
6C495A903AFC1FC07FFC496CB512F0D9F00314C049C691C7FCC8EA1FF036467DC43E>I<
EC3FFC49B512C0010F14F0013F14FC90397FF003FE9039FFC001FF0003495A4849481380
5B120F485AA2485A6F1300007F6E5AED00784991C7FCA212FFAC6C7EA3123F6DEC03C0A2
6C6C1407000F16806D140F6C6DEB1F006C6D133E6C01F05B3A007FFC03F86DB55A010F14
C0010391C7FC9038003FF82A2F7CAD32>I<EE03FEED07FFA5ED001F160FB1EC3FE09038
03FFFC010FEBFF8F013F14CF9039FFF807FF48EBC00148903880007F4890C7123F484814
1F49140F121F485AA3127F5BA212FFAC127FA37F123FA26C6C141FA26C6C143F0007157F
6C6C91B5FC6CD9C00314FC6C9038F01FEF6DB5128F011FEBFE0F010713F89026007FC0EB
F80036467CC43E>I<EC3FF80103B57E010F14E0013F8090397FF83FF89039FFC007FC48
496C7E48496C7E48486D1380485A001FED7FC05B003FED3FE0A2127F5B17F0161F12FFA2
90B7FCA401F0C9FCA5127FA27FA2123F17F06C7E16016C6C15E06C6C14036C6DEB07C06C
6DEB0F806C01F0EB3F0090397FFE01FE011FB55A010714F0010114C09026001FFEC7FC2C
2F7DAD33>I<EDFF80020F13E0027F13F049B512F849EB8FFC90390FFE0FFE90381FFC1F
14F8133FEB7FF0A2ED0FFCEBFFE0ED03F0ED00C01600ABB612F8A5C601E0C7FCB3B0007F
EBFFE0A527467DC522>I<DAFFE0137E010F9039FE03FF80013FEBFF8F90B812C048D9C0
7F133F489038001FF84848EB0FFC4848903907FE1F80001F9238FF0F00496D90C7FCA200
3F82A8001F93C7FCA26D5B000F5D6C6C495A6C6C495A6C9038C07FF04890B55A1680D807
8F49C8FC018013E0000F90CAFCA47F7F7F90B612C016FC6CEDFF8017E06C826C16FC7E00
0382000F82D81FF0C77ED83FC014074848020113808248C9FC177FA46D15FF007F17006D
5C6C6C4A5A6C6C4A5AD80FFEEC3FF83B07FFC001FFF0000190B612C06C6C92C7FC010F14
F8D9007F90C8FC32427DAC38>I<EB7FC0B5FCA512037EB1ED07FE92383FFF8092B512E0
02C114F89139C7F03FFC9138CF801F9139DF000FFE14DE14FC4A6D7E5CA25CA35CB3A7B6
0083B512FEA537457CC43E>I<137C48B4FC4813804813C0A24813E0A56C13C0A26C1380
6C1300EA007C90C7FCAAEB7FC0EA7FFFA512037EB3AFB6FCA518467CC520>I<EB7FC0B5
FCA512037EB293387FFFE0A593380FE0004C5A4CC7FC167E5EED03F8ED07E04B5A4B5A03
7FC8FC15FEECC1FCECC3FE14C7ECDFFF91B57E82A202F97F02E17F02C07FEC807F6F7E82
6F7E816F7F836F7F816F7F83707E163FB60003B512F8A535457DC43B>107
D<EB7FC0B5FCA512037EB3B3B3A3B61280A519457CC420>I<90277F8007FEEC0FFCB590
263FFFC090387FFF8092B5D8F001B512E002816E4880913D87F01FFC0FE03FF8913D8FC0
0FFE1F801FFC0003D99F009026FF3E007F6C019E6D013C130F02BC5D02F86D496D7EA24A
5D4A5DA34A5DB3A7B60081B60003B512FEA5572D7CAC5E>I<90397F8007FEB590383FFF
8092B512E0028114F8913987F03FFC91388F801F000390399F000FFE6C139E14BC02F86D
7E5CA25CA35CB3A7B60083B512FEA5372D7CAC3E>I<EC1FFC49B512C0010714F0011F14
FC90397FF80FFF9026FFC0017F48496C7F4848C7EA3FE000078248486E7E49140F001F82
A2003F82491407007F82A400FF1780AA007F1700A46C6C4A5AA2001F5E6D141F000F5E6C
6C4A5AA26C6C6CEBFFE06C6D485B27007FF80F90C7FC6DB55A010F14F8010114C0902600
1FFCC8FC312F7DAD38>I<90397FC00FF8B590B57E02C314E002CF14F89139DFC03FFC91
39FF001FFE000301FCEB07FF6C496D13804A15C04A6D13E05C7013F0A2EF7FF8A4EF3FFC
ACEF7FF8A318F017FFA24C13E06E15C06E5B6E4913806E4913006E495A9139DFC07FFC02
CFB512F002C314C002C091C7FCED1FF092C9FCADB67EA536407DAC3E>I<DA3FE0131E90
2603FFFC133E010F01FF137E013F1480903AFFF80FE0FE489038E003F148EBC001489038
8000FB4890C7127F49143F001F151F485A160F5B127FA3485AAC6C7EA46C7EA26C6C141F
163F6C6C147F6C15FF6C6D5A6C9038E003EF6C9038F01FCF6DB5128F011FEBFE0F010313
F89038007FC091C7FCAD0307B512FCA536407CAC3B>I<90387F807FB53881FFE0028313
F0028F13F8ED8FFC91389F1FFE000313BE6C13BC14F8A214F0ED0FFC9138E007F8ED01E0
92C7FCA35CB3A5B612E0A5272D7DAC2E>I<90391FFC038090B51287000314FF120F381F
F003383FC00049133F48C7121F127E00FE140FA215077EA27F01E090C7FC13FE387FFFF0
14FF6C14C015F06C14FC6C800003806C15806C7E010F14C0EB003F020313E0140000F014
3FA26C141F150FA27EA26C15C06C141FA26DEB3F8001E0EB7F009038F803FE90B55A00FC
5CD8F03F13E026E007FEC7FC232F7CAD2C>I<EB01E0A51303A41307A2130FA2131FA213
3F137F13FF1203000F90B51280B7FCA4C601E0C7FCB3A3ED01E0A9150302F013C0137F15
0790393FF80F8090391FFC1F006DB5FC6D13FC01015B9038003FE023407EBE2C>I<D97F
C049B4FCB50103B5FCA50003EC000F6C81B3A85EA25EA25E7E6E491380017FD901F713FE
9138F807E76DB512C7010F1407010313FE9026007FF0EBFC00372E7CAC3E>I<B6903803
FFFCA5000101E09038003E006C163C80017F5D8017F8013F5D6E1301011F5D6E1303010F
5D6E13076D5DED800F6D92C7FC15C05E6DEBE01E163E6D143CEDF07C027F1378EDF8F802
3F5B15FD021F5B15FF6E5BA36E5BA26E90C8FCA26E5AA26E5AA21578362C7EAB3B>I<B5
D8FE1FB539801FFFF0A500019027C0003FE0C7EA7C007114786E17F86C6F6C5C6E160101
7F6E6C5CA26E011F1403013F6F5C6E013F1407011F6F5CA26E0179140F010F048090C7FC
6E01F95C6D02F0EBC01E15806D902681E07F5B18E003C3157C6D9139C03FF07815E76DDA
801F5B18F803FF14F96E9039000FFDE018FF6E486D5BA36E486D5BA26E486D90C8FCA24B
7F02075DA26E48147C4B143C4C2C7EAB51>I<B500FE90383FFFF0A5C601F0903803E000
6D6C495A013F4A5A6D6C49C7FC6E5B6D6C137E6DEB807C6D6D5A6DEBC1F0EDE3E06DEBF7
C06EB45A806E90C8FC5D6E7E6E7F6E7FA24A7F4A7F8291381F3FFCEC3E1F027C7F4A6C7E
49486C7F01036D7F49487E02C08049486C7F49C76C7E013E6E7E017E141FB500E090B512
FCA5362C7EAB3B>I<B6903803FFFCA5000101E09038003E006C163C80017F5D8017F801
3F5D6E1301011F5D6E1303010F5D6E13076D5DED800F6D92C7FC15C05E6DEBE01E163E6D
143CEDF07C027F1378EDF8F8023F5B15FD021F5B15FF6E5BA36E5BA26E90C8FCA26E5AA2
6E5AA21578A215F85D14015D001F1303D83F805B387FC007D8FFE05B140F92C9FC5C143E
495A387FC1F8EB07F06CB45A6C5B000790CAFCEA01FC36407EAB3B>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fn cmbx12 17.28 44
/Fn 44 121 df<EA01FCEA07FF4813804813C04813E04813F014F8B5FCA214FCA314FEA2
7EA27E7E6C13BE6C133EEA01FCC7FCA2147E147CA314FC14F8A2130114F01303A2EB07E0
A2EB0FC0A2EB1F80EB3F005B13FE485A485A485A485A5B6C5A6CC7FC173174E32D>39
D<B812C0AD2A0D7EA636>45 D<16F04B7E1507151F153FEC01FF1407147F010FB5FCB7FC
A41487EBF007C7FCB3B3B3B3007FB91280A6395E74DD51>49 D<913801FFF8021FEBFFC0
91B612F8010315FF010F16C0013F8290267FFC0114F89027FFE0003F7F4890C7000F7F48
486E7FD807F86E148048486E14C048486E14E048486F13F001FC17F8486C816D17FC6E80
B56C16FE8380A219FFA283A36C5BA26C5B6C90C8FCD807FC5DEA01F0CA14FEA34D13FCA2
19F85F19F04D13E0A294B512C019804C14004C5B604C5B4C5B604C13804C90C7FC4C5A4C
5A4B13F05F4B13804B90C8FC4B5AED1FF84B5A4B5A4B48143F4A5B4A48C8FC4A5A4A4815
7E4A5A4A5AEC7F8092C9FC02FE16FE495A495A4948ED01FCD90FC0150749B8FC5B5B90B9
FC5A4818F85A5A5A5A5ABAFCA219F0A4405E78DD51>I<92B5FC020F14F8023F14FF49B7
12C04916F0010FD9C01F13FC90271FFC00077FD93FE001017F49486D8049C86C7F484883
486C6F7F14C0486D826E806E82487FA4805CA36C5E4A5E6C5B6C5B6C495E011FC85A90C9
5CA294B55A614C91C7FC604C5B4C5B4C5B4C5B047F138092260FFFFEC8FC020FB512F817
E094C9FC17F817FF91C7003F13E0040713F8040113FE707F717F7113E085717FA2717F85
A285831A80A31AC0EA03FCEA0FFF487F487F487FA2B57EA31A80A34D14005C7E4A5E5F6C
495E49C8485BD81FF85F000F5ED807FE92B55A6C6C6C4914806C01F0010791C7FC6C9026
FF803F5B6D90B65A011F16F0010716C001014BC8FCD9001F14F0020149C9FC426079DD51
>I<F01F804E7E187F18FFA25F5F5F5FA25F5F5FA294B5FC5E5E5EA25E5EEE3FBFEE7F3F
A216FEED01FCED03F8ED07F0A2ED0FE0ED1FC0ED3F8016005D15FE4A5A4A5AA24A5A4A5A
4A5A4A5AA24AC7FC14FE495A5C1303495A495A495A5C133F49C8FC13FE485AA2485A485A
485A5B121F485A48C9FC12FEBCFCA6CA6CEBC000B1037FB8FCA6485E7CDD51>I<01C0EE
01C0D801F8160F01FF167F02F0EC07FFDAFF8090B5FC92B7128019006060606060606095
C7FC17FC5F17E0178004FCC8FC16E09026FC3FFCC9FC91CBFCADED3FFE0203B512F0020F
14FE023F6E7E91B712E001FDD9E00F7F9027FFFE00037F02F801007F02E06EB4FC02806E
138091C8FC496F13C04917E07113F0EA00F090C914F8A219FC83A219FEA419FFA3EA03F0
EA0FFC487E487E487FA2B57EA319FEA35C4D13FC6C90C8FC5B4917F8EA3FF001804B13F0
6D17E0001F5E6C6C17C06D4B1380D807FC92B512006C6C4A5B6C6C6C01075B6C01E0011F
5BD97FFE90B55A6DB712C0010F93C7FC6D15FC010115F0D9003F1480020301F0C8FC4060
78DD51>I<EE1FFF0303B512E0031F14F892B612FE0203814AD9FC037F021F9039C0007F
C04A90C7EA1FE0DAFFFC6E7E494914074949EC7FF8494914FF49495B4949497F4990C7FC
495D5C13FF485BA25A4A6E5B5A715B48496E5B725A4894C8FCA35AA35C48913801FFE003
0F13FE033F6D7E4B14E092B612F89126E1FE037FB53AE3F0007FFEDAE7E06D7EDAEFC06D
7F4B6D7F02FFC76C7F4A82717F4A82A2854A8085A24A1780A54A17C0A37EA77EA47E6E17
80A27EA21A007E4D5B7E6E5E7E6E5E6C4C5B6D7E013F4B5B6D6C4A5B6D01C0495B6D6D90
B5C7FC6DD9FC0713FC6D90B65A6D5E023F15C0020F92C8FC020114F8DA001F1380426079
DD51>I<EA07E0120F7F13FCEBFFFC91B912F8A45AA21AF01AE01AC01A801A00A2486061
61616101E0C9123F01804C5A48CA485A4D90C7FC60007E4C5A17074D5A4D5A4D5A485F4D
5A17FF4C90C8FCC9485A5F4C5A160F4C5A5F163F4C5A16FF5F5D94C9FC5D5D5E150FA24B
5AA2153FA24B5AA215FFA34A5BA25CA35CA44A5BA45CA65CAD6E5BA26E5BDA03FECAFC6E
5A456377E051>I<92383FFF800203B512FC021FECFF80027F15E049B712F849D9F0077F
010F90C76C7ED91FFCEC1FFFD93FF06E7F494802037F494882717F484980854890C9127F
A24884183FA25A80A380806E157F6E5E14FE6E7E6F4A5A6C14F003FC495B03FF495B6C15
80DCE0075B6CDBF80F90C7FC9338FE1FFE6C9238FF7FF84D5A6D16C06D5E6D4BC8FC6D6F
7E6D16E00101826D16FC023F814A8149B87E010783498390263FFE3F8190267FFC0F8190
26FFF003814849C6FC48496D804849131F4890C7000780160148486E1580003F163F4915
0F007F7014C0491501717E8400FF835B8484A384A21A80A27F007F1900607F003F606D16
0F001F606D4C5A6C6D153F6C6D4B5A6C01F04B5A6C01FC02035B6C01FF021F5B6D9027F0
01FFFEC7FC6D90B65A010F16F001035E010093C8FC020F14F8DA007F90C9FC426079DD51
>I<F00FE04E7EA24E7EA34E7EA24E7EA34D7FA24D80A24D80A34D80A24D80A34D80A2DD
7FBF7FA2181F05FF8017FE04016D7FA24D7E04038217F804076D80A24D7E040F8217E004
1F6D80A24D7F043F825F047F6E7FA294C77E4C825E03016F7FA24C800303845E03076F80
A24C80030F845E031F6F80A24C81033F845E037F707F93B9FCA292BA7EA24A85A203FCC9
12070203865D020771805D86020F864B82021F865D87023F864B83027F8692CBFC874A86
4A840101875C496C728090381FFFC0B700E092B812FEA66F647BE37A>65
D<BB12F0F2FF801BF81BFEF3FFC088D800010280C7000114F8DF003F7F080F13FF748074
80867480757FA2757FA28987A289A965A26365A2515BA298B55A505C505C5091C7FC505B
505B087F13F00703B512C096B6C8FC93B812F81BC01BF8F3FF801CE00480C8001F13F808
0713FE08016D7E7480757F757F757F89757F89871E80871EC0A41EE087A663A21EC0A363
1E80A2511400A2515B515B6398B55A505C08075C081F5C97B6C7FCBD5A1CF81CE099C8FC
1BF898C9FC63627AE173>I<4DB5ED03C0057F02F014070407B600FE140F047FDBFFC013
1F4BB800F0133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF814A02F0020113
C3020702C09138007FE74A91C9001FB5FC023F01FC16074A01F08291B548824902808249
91CB7E49498449498449498449865D49498490B5FC484A84A2484A84A24891CD127FA25A
4A1A3F5AA348491A1FA44899C7FCA25CA3B5FCB07EA380A27EA2F50FC0A26C7FA37E6E1A
1F6C1D80A26C801D3F6C6E1A00A26C6E616D1BFE6D7F6F4E5A7F6D6D4E5A6D6D4E5A6D6D
4E5A6D6E171F6D02E04D5A6E6DEFFF806E01FC4C90C7FC020F01FFEE07FE6E02C0ED1FF8
020102F8ED7FF06E02FF913803FFE0033F02F8013F1380030F91B648C8FC030117F86F6C
16E004071680DC007F02F8C9FC050191CAFC626677E375>I<BB12E0F2FF801BF01BFE75
7E1CF0D800010280C7000780DF007F13FE080F6D7E0801807480093F7F090F13FC757F75
7F877580767F8A88767F8A888AA2767FA28A881F80A37614C0A41FE0A5881FF0B05214E0
A51FC0A4521480A31F006466A2525BA2525BA2525B666499B55A515C5191C7FC515B515B
515B097F5B50B512C008075C083F91C8FC0707B512FCBD12F01CC051C9FC1BF81B8008E0
CAFC6C627AE17C>I<BD12FCA488A2D8000102C0C71201F1000F1A01F2007F1B3F1B0F1B
07757EA28787A288A3F43F80A31C1FA3197EA3F40FC0A499C7FC19FEA31801A218031807
181F18FF93B6FCA6EEC000181F180718031801A21800A21D7E197EA21DFCA696C812011D
F8A31C03A3F407F0A31C0FA21C1F1C3F1DE01C7F1CFF63631B0F093F13C098B5FC1A0797
B6FCBEFCA31D80A35F617AE06A>I<BD12E0A41CF0A2D8000102C0C71207F1003F1A0F1A
031A001B7F1B3FF31FF81B0FA21B07A21B03A21B011CFCA31B00A419FCA21C7EA41C00A2
1801A31803A21807180F183FEF01FF93B6FCA6EEC001EF003F180F18071803A21801A318
00A896C9FCB3A5B912F8A657617AE065>I<4DB5ED03C0057F02F014070407B600FE140F
047FDBFFC0131F4BB800F0133F030F05FC137F033F9127F8007FFE13FF92B6C73807FF81
4A02F0020113C3020702C09138007FE74A91C9001FB5FC023F01FC16074A01F08291B548
82490280824991CB7E49498449498449498449865D49498490B5FC484A84A2484A84A248
91CD127FA25A4A1A3F5AA348491A1FA44899C8FCA25CA3B5FCB07E071FB812F880A37EA2
96C70001ECC000A26C7FA37E807EA26C80A26C80A26C807F6D7F816D7F7F6D7F6D6D5F6D
14C06D6E5E6E7F6E01FC5E020F01FF5E6E02C0ED7FEF020102F8EDFFC76E02FF02071383
033F02FC013F1301030F91B638FC007F03014D131F6F6C04E01307040704801301DC007F
02F8CAFC050191CBFC6D6677E37F>I<B96C90B91280A6D8000102C0C9000102C0C7FCB3
B3A293BBFCA604C0C91201B3B3A6B96C90B91280A671627AE17E>I<B912E0A6C702E0C7
FCB3B3B3B3AEB912E0A633627CE13C>I<B96C020FB612FCA6D8000102C0CA003FEBF000
0A0390C7FC525A525AF41FF0525A525A525A090390C8FC515AF30FF8515A515A515A5048
5A5090C9FC505AF20FF8505A505A505A4F485A4F90CAFCF107FC4F5A4F5A4F5A4F5A4E48
5A4E90CBFCF007FC4E5A4E7E4E7E18FF4D7F4D805F4D804D804D8094B6FC04C181DCC3FE
809326C7FC7F7F9338CFF83F9326DFF01F7FDCFFE0814D6C804D7EDCFE00814C6D804C7F
4C6D804C824C6E7F85737F8873808588738085738088747F86747F897480868974808674
8089757F87757F8A7580878A7580090F14FCB96C010FB8FCA670627AE17E>75
D<B912F8A6D8000102C0CBFCB3B3B1F307E0A5F30FC0A61B1FA31B3F1C80A21B7FA21BFF
A262A262625013006262624FB5FC1907191F4EB6FCBDFC63A553627AE161>I<B700C008
3FB612F070627097B7FCA37061D800010DF8C7FC70F103EFA202FD6DF107CFA202FC6DF1
0F8FA36F6DF01F0FA26F6D183EA26F6D187CA26F6D18F8A36F6DEF01F0A26F6DEF03E0A2
6F6DEF07C0A26F6DEF0F80A3706DEE1F00A2706D163EA2706D5EA2706D5EA3706D4B5AA2
706D4B5AA2706D4B5AA2706D4B5AA3716D4AC7FCA2716D143EA2716D5CA2716D5CA3716D
495AA2716D495AA2716D495AA2716D495AA3726D48C8FCA272EBC03EA2726D5AA2726D5A
A372EBF9F0A272EBFFE0A2725CA2725CA37390C9FCA2735AA2735A90381FFFC0B700F86E
480207B812F0A3735AA2735A8C627AE199>I<B700E0040FB7128082828282A2D800016E
DC000101FCC7FC719338001FC08383A28302FD808302FC80816F7F6F806F8084816F806F
806F8084707F8270807080857080827080708085717F8371807180718086837180718072
7F8672808472807280877280847280737F87731480857314C07314E01CF07314F8857314
FC7413FE7413FF1D9F867414DF7414FF86A286868787A287878787A28787888888A28888
8890261FFFC084B712F8881D7F1D3F1D1F775A71627AE17E>I<94381FFFE00407B67E04
3F15F04BB712FE030FEEFFC0033FD9FC0014F092B500C0010F13FC020349C7000113FF4A
01F86E6C7F021F496F13E04A01C0030F7F4A496F7F91B5C96C7F0103497013FF49497080
4B834949717F49874949717F49874B8390B586484A717FA24891CB6C7FA2481D804A8448
1DC0A348497214E0A3481DF0A34A85481DF8A5B51CFCB06C1DF8A36E96B5FCA36C1DF0A4
6C6D4E14E0A36C1DC06E606C1D80A26C6E4D1400A26C6E4D5BA26C6E4D5BA26D6D4D5B6D
636D6D4D5B6F94B5FC6D636D6D4C5C6D6D4C91C7FC6D6E4B5B6D02E0031F5B023F6D4B13
F06E01FC92B55A6E01FF02035C020302C0010F91C8FC020002FC90B512FC033F90B712F0
030F17C0030394C9FCDB007F15F804071580DC001F01E0CAFC666677E379>I<BB7E1AFC
F2FFC01BF81BFE757ED800010280C7001F80070114F0736C7F081F7F747F747F74148074
14C0A27414E0A21DF0A27513F8A41DFCA91DF8A498B512F0A21DE0A25014C01D80625014
00505B505B087F5B4FB512E0071F5C93B9C7FC1BFC1BF01B8008F0C8FC04C0CCFCB3B3A2
B97EA65E627AE16E>I<94381FFFE00407B67E043F15F04BB712FE030FEEFFC0033FD9FC
0014F092B500C0010F13FC020349C7000113FF4A01F86E6C7F021F496F13E04A01C0030F
7F4A496F7F91B5C96C7F0103497013FF494970804B834949717F49874949717F4949717F
A290B548717F488892CB7E48884A84481D80A2481DC04A84A2481DE0A24A85481DF0A448
1DF84A85A4B51CFCB06C1DF8A46E61A26C1DF0A46C1DE06E96B5FCA26C1DC0A26C6D4E14
80A26C1D006E606CDC01FE5E6F90260FFFC05B6C043F6D5D6F4901F85B6D92B56C5D6D6D
48D903FE495B6D912703F8007F5D03F0496D6C5A6D6D48486D6C485B6D01FC6F6CB55A6D
01FE4902E191C7FC6D01FFDB07F35B6D02876EB55A023F01C717F06ED9E7E05E6E01FF6E
5C02036E93C8FC02006E010F13FC033F01FF90B512F0030F91B612C003031A0CDB007F19
1E040782DC001F9038E07FF094C86D143E75147E746C14FE751301F4C01F99B5FC7415FC
A4861EF8A2861EF0A27415E0A27415C07415801E00755B755B090F5B7513E00900138067
8077E379>I<BA12F8F1FFE01AFEF2FFC01BF01BFED800010280C76C7F070714C0070014
F0747F081F7F747F747F7480A2748089A37480A389A865A3505CA265A2505C9AC9FC505B
505B505B087F5B4FB55A0707148096B548CAFC93B812F81BC050CBFC621AFF9326800003
14C0DE007F7F071F13F8737F737F737F73808885888688A2747FA688A688A676140FF71F
80A374801F3F86771400745E746E5BB96E6E5B746E485A75EBFE07091F90B55A090715E0
09015DCF003F91C7FC0A0013FC71647AE178>I<DBFFFCEC01E0020FD9FFE01303027F02
FC130749B7130F0107EEC01F011F16F049D9C007EBF83F4948C7383FFE7FD9FFF8020FB5
FC4801E014014849804849153F91C97E484882001F834982003F83845B007F187FA2193F
A200FF181FA27F190FA27FA26D17078080806C01F893C7FC80ECFF8015F86CECFFC016FC
6CEDFFE017FE6CEEFFE018F86C17FE6C717E6C846C846D17F86D836D836D8313036D1880
6D6C17C0020F17E01401DA000F16F01500040715F8EE007F1703050014FC183F84060713
FE84A2007C8300FC83A2197FA3193F7EA31AFC7EA27F1AF86D177F7F1AF06D17FF6D18E0
6D5E01FF18C06E4B138002E04B130002F84B5A02FFED3FFC01CF01E0ECFFF8018301FF01
0F5B010191B65A6D6C5E48011F93C7FC48010315FC48D9003F14E048020149C8FC476677
E35A>I<001FBEFCA64849C79126E0000F148002E0180091C8171F498601F81A03498649
86A2491B7FA2491B3F007F1DC090C9181FA4007E1C0FA600FE1DE0481C07A5CA95C7FCB3
B3B3A3021FBAFCA663617AE070>I<B96C023FB612FEA6D8000102C0CA0007EBF000E200
7FC7FCB3B3B3AA656D63A2821C01806570170380525A6E7F6E4F5A70171F6E626E6D4D5A
6E6D177F525A6E6E030390C8FC033F01E04B5A6F6DED1FFC6F01FCED7FF80303D9FF8090
3803FFE06F02F8017F5B6F6C90B7C9FC041F5E040716F8040016C0050F4ACAFCDD003F13
C06F647AE17C>I<B800FC047FB612E0A6D800070280CB6CEB80006D6EDE07FCC7FC666D
6E611D0F6D6E611D1FA26E6D611D3F6E6D611D7F6E6D96C8FC65A26E6D4D5AA26E6E5F1C
036E6E5F1C076E6E5F1C0FA26E6E5F1C1F6F6D5F1C3F6F6D5F1C7FA26F6D4CC9FCA26F6D
5E1B016F6E5D1B03A26F6E4A5AA26F6E5D1B0F6F6E5D1B1F706D5D1B3FA2706D5D1B7F70
6D92CAFC63706D5C1A01A2706E485AA27002C05B1A077002E05B1A0F7002F05B1A1FA271
01F85B1A3F7101FC5B1A7F7101FE90CBFC62A2716D5AA2715CA2715CA3715CA2715CA272
5BA2725BA37290CCFCA2725AA2725AA2725A73637DE17A>I<B800F8011FB80203B7FCA6
D8000F91C9000102E0CAEBFE006D72F20FF07072715A230F6D73627072171F6D6A708277
173F6D7397C7FC70846B6E72197E707217FE6E726170855118016E6870731503636E6870
4C6E15076E68718451180F6EDE7E7F607172151F6E06FE61714B7E08016F153F6E4E6C95
C8FC71840803616F4D6C177E7102076F15FE6F66714B7E080F7013016F4D6C5F7185081F
18036F4D6C5F71023F7013076F94C75F728450180F6F047E6E5E7272131F1AFE6F4C6E5E
DEE00171133F6F4C6E93C9FC06F084070361704B6E157E06F87213FE1907704B6E5DDEFC
0F1881704B6E5D06FE19C1071F18C3704B6E5DDEFF3F18E7706407BFC9FC07FF18FF704A
705CA3704A705CA27099CAFC4F82A27149705BA37149705BA27149705BA37149705BA371
90CB5BA27148725AA37148725A714872CBFCA0637DE1A7>I<003FB86C011FB712C0A6C7
02FCC9003F01FCC8FC6E6D040113806E6D95C9FC6E4E5A715E6E6E15076E4E5A714B5A6E
6E5E6E6E153F6E4E5A714B5A6F6D93CAFC6F5E714A5A6F6E495A6F6E5C6F160F72495A6F
6E495A6F5F72137F6F6E495A706D4890CBFC705DF0FF0370EC87FC70EC8FF8F1CFF07014
FF705D705D62827191CCFC61717F7180838671808386718071805F4D804D80A24D814D81
DD3FE78018C3057F81DDFF81804C13004D8104036E7F4C486D7F4C487F4D82041F6E804C
487F4C48824D6D8004FF6E804B90C8FC4B48834C6F7F0307824B48834C6F804B486F8003
3F824B48844C6F8003FF824A90C9814A4870804B717F0207844A48854A4871804B83027F
870107B57180B8033FB81280A671627CE17A>I<B9041FB612F8A6D8000302F0CB003FEB
C0006D6EDE07FEC7FC1EF86D6E180F6E6D61535A6E6D183F6E6E60535A6E6E17FF6E6E95
C8FC525A6E6E16036E6E5F525A6E6E160F6F6D5F525A6F6D163F6F6E5E525A6F6E15FF6F
6E4A90C9FC646F6E14036F6E4A5A646F6E140F706D4A5A64706D4A5A706E137F64706E49
CAFC706E5A63706E485A70ECF80763706E485A71EBFE1F07FF5B714A5A7114FF637192CB
FC8362715C8362715C8462B3AF043FB812C0A675627EE17A>I<913803FFFE027FEBFFF0
0103B612FE010F6F7E4916E090273FFE001F7FD97FE001077FD9FFF801017F486D6D7F71
7E486D6E7F85717FA2717FA36C496E7FA26C5B6D5AEB1FC090C9FCA74BB6FC157F0207B7
FC147F49B61207010F14C0013FEBFE004913F048B512C04891C7FC485B4813F85A5C485B
5A5CA2B55AA45FA25F806C5E806C047D7F6EEB01F96C6DD903F1EBFF806C01FED90FE114
FF6C9027FFC07FC01580000191B5487E6C6C4B7E011F02FC130F010302F001011400D900
1F90CBFC49437CC14E>97 D<F17FF8050FB5FCA6EF000F8484B3A892380FFF804AB512F8
020F14FE023FECFF8391B712E301039138807FF3499039F8000FFB011F01E00103B5FC49
4913004990C87E49488148498148834A815A485BA2485BA25AA3485BA4B5FCAE7EA46C7F
A37EA26C7FA26C5F806C5F6C6D5D6C6D5D017F93B5FC6D6C6C0103806D6D49806D01F0D9
1FF7EBFFFE6D9039FE01FFE7010190B612876D6CECFE07021F14F8020314E09127003FFE
00ECC0004F657BE35A>100 D<92380FFFC04AB512FC020FECFF80023F15E091B712F801
03D9FE037F499039F0007FFF011F01C0011F7F49496D7F4990C76C7F49486E7F48498048
844A804884485B727E5A5C48717EA35A5C721380A2B5FCA391B9FCA41A0002C0CBFCA67E
A380A27EA27E6E160FF11F806C183F6C7FF17F006C7F6C6D16FE6C17016D6C4B5A6D6D4A
5A6D01E04A5A6D6DEC3FE0010301FC49B45A6D9026FFC01F90C7FC6D6C90B55A021F15F8
020715E0020092C8FC030713F041437CC14A>I<903807FF80B6FCA6C6FC7F7FB3A8EF1F
FF94B512F0040714FC041F14FF4C8193267FE07F7F922781FE001F7FDB83F86D7FDB87F0
7FDB8FC0814C7F039FC78015BE03BC8003FC825DA25DA25DA45DB3B2B7D8F007B71280A6
51647BE35A>104 D<EB0FE0EB3FF8497E48B5FCA24880A24880A76C5CA26C91C7FCA238
007FFC6D5AEB0FE090C9FCAF903807FF80007FB5FCA6C6FC7F7FB3B3AEB712C0A622657B
E42C>I<902607FF80EB1FFFB691B512F0040714FC041F14FF4C8193267FE07F7F922781
FE001F7FC6DA83F86D7F6DD987F07F6DD98FC0814C7F039FC78015BE03BC8003FC825DA2
5DA25DA45DB3B2B7D8F007B71280A651417BC05A>110 D<902607FF80EBFFF8B6010FEB
FF80047F14F00381B612FC038715FF038F010114C09227BFF0003F7FC6DAFFC0010F7F6D
91C76C7F6D496E7F03F86E7F4B6E7F4B17804B6F13C0A27313E0A27313F0A21BF885A21B
FCA3851BFEAE4F13FCA41BF861A21BF0611BE0611BC06F92B512801B006F5C6F4A5B6F4A
5B03FF4A5B70495B04E0017F13C09226CFFC03B55A03C7B648C7FC03C115F803C015E004
1F91C8FC040313E093CBFCB3A3B712F0A64F5D7BC05A>112 D<D90FFFEB0FFCB690383F
FF8093B512E04B14F04B14F8923907FC7FFC92390FE0FFFEC6EC1F806DD93F0113FF6D13
3E157E157C15F8A215F07013FEA24BEB7FFCEF3FF8EF0FE04B90C7FCA55DB3B0B712F8A6
38417BC042>114 D<EC07E0A6140FA5141FA3143FA2147FA214FF5BA25B5B5B5B137F48
B5FC000F91B512FEB8FCA5D8001F01E0C8FCB3AFEF0FC0AC171F6D6D1480A2173F6D1600
6F5B6D6D137E6D6D5B6DEBFF836EEBFFF86E5C020F14C002035C9126003FFCC7FC325C7D
DA3F>116 D<007FB600C0017FB512F8A6D8001F01F8C70007EBF0006D040190C7FC6D6D
5D6D6D4A5A6D6D4A5A70495A6D4C5A6E7F6E6D495A6E6D495A7049C8FC6E4A5A6E6D485A
6E6D485A6E13FFEF8FF06EEC9FE06FEBFFC06F5C6F91C9FC5F6F5B816F7F6F7F8481707F
8493B57E4B805D4B80DB0FF37FDB1FE17F04C080153F4B486C7F4B486C7F4A486D7F4A48
6D7F4A5A4B6D7F020F6E7F4A486D7F4A486D804A5A4AC86C7F49486F7F4A6F7F0107707F
EB3FFFB600F049B7FCA650407EBF55>120 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fo cmmi8 8 37
/Fo 37 122 df<131C013EEB0380ED07C0017E130F1680137CA201FC131F16005BA20001
5C153E5BA20003147E157C5BA20007ECFC08EDF8185BA2000F0101133816309038E003F0
02071370001F90380EF8609039F83C78E090397FF03FC090391FC00F0048C9FCA2123EA2
127EA2127CA212FCA25AA21270252C7E9D2A>22 D<90B6128012035A481500261E00E0C7
FC5A00705B130112E012C0EA0003A25CA21307A349C8FCA35BA2131E133EA45BA2133821
1E7E9C1F>28 D<123C127EB4FCA21380A2127F123D1201A312031300A25A1206120E5A5A
5A126009157A8714>59 D<15C0140114031580A214071500A25C140EA2141E141CA2143C
143814781470A214F05CA213015CA213035C130791C7FCA25B130EA2131E131CA2133C13
38A21378137013F05BA212015BA212035BA2120790C8FC5A120EA2121E121CA2123C1238
A212781270A212F05AA21A437CB123>61 D<1670A216F01501A24B7EA21507150DA21519
15391531ED61FC156015C0EC0180A2EC03005C14064A7F167E5C5CA25C14E05C4948137F
91B6FC5B0106C7123FA25B131C1318491580161F5B5B120112031207000FED3FC0D8FFF8
903807FFFEA22F2F7DAE35>65 D<013FB6FC17C0903A00FE0007F0EE01F84AEB00FC177E
1301177F5CA21303177E4A14FEA20107EC01FC17F84AEB03F0EE07E0010FEC1FC0EE7F00
9138C003FC91B55A4914FE9139C0003F804AEB0FC017E0013F140717F091C7FC16035BA2
017E1407A201FE15E0160F4915C0161F0001ED3F80EE7F004914FEED03F80003EC0FF0B7
12C003FCC7FC302D7CAC35>I<013FB71280A2D900FEC7127F170F4A1407A20101150318
005CA21303A25C16300107147094C7FC4A136016E0130F15019138C007C091B5FC5BECC0
074A6C5AA2133FA20200EB000CA249151C92C71218017E1538173001FE15705F5B4C5A00
0115034C5A49140F161F00034AB4C7FCB8FC5E312D7DAC34>69 D<90383FFFFCA2903800
FE00A25CA21301A25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA291C7FC
A25BA2137EA213FEA25BA21201A25BA21203B512E0A21E2D7DAC1F>73
D<D93FFE91B5FCA2D900FFEC07E018C06FEB038002DF150001016D5B02CF1406EC8FE014
8701036D130E170C140381D90701141C6F1318EB060081010E017E1338037F1330010C7F
A2011CEC8070031F1360011814C0150F0138ECE0E003075B013014F01503017014F1EEF9
800160130116FD01E0EB00FF94C7FC4980A2000181163E5B486C141EEA0FE0D8FFFE140C
A2382D7CAC38>78 D<913807F00691383FFE0E9138F80F9E903903E001FE903807800049
C7127C131E49143CA2491438A313F81630A26D1400A27FEB7F8014F86DB47E15F06D13FC
01077F01007F141F02011380EC003F151F150FA215071218A3150F00381500A2151EA200
7C5C007E5C007F5C397B8003E039F1F00F8026E07FFEC7FC38C00FF0272F7CAD2B>83
D<000FB8FCA23B1FC003F8003F0100151F001C4A130E123C003801071406123000704A13
0EA20060010F140C12E0485CA2141FC715005DA2143FA292C8FCA25CA2147EA214FEA25C
A21301A25CA21303A25CA21307A25C130F131F001FB512F0A2302D7FAC29>I<B500C090
380FFFC0A2D807F8C73801FC006C48EC00F05F4C5A5F6D4AC7FC120116065EA25E6D5C12
005E5EA24B5A6D49C8FCA2017E13065DA25D017F5BA26D5B5DA24A5A0283C9FCA2EB1F86
148CA2149814F0A26D5A5CA25C91CAFCA21306322E7CAC29>86 D<90260FFFFCEB7FFFA2
9026007FC0EB0FF06E48148018006E6C131E1718020F5C6F5B02075C6F485A020349C7FC
EDF8065E6E6C5A5E6E6C5A5EED7F8093C8FC6F7EA26F7E153F156FEDCFE0EC0187913803
07F0EC0703020E7F141C4A6C7E14704A6C7E495A4948137F49C7FC010E6E7E5B496E7E5B
D801F081D807F8143FD8FFFE0103B5FCA2382D7EAC3A>88 D<EB07E0EB1FF890387C1CE0
EBF80D3801F00F3803E007EA07C0120FD81F8013C0A2EA3F00140F481480127EA2141F00
FE14005AA2EC3F02EC3E06A25AEC7E0E007CEBFE0C14FC0101131C393E07BE18391F0E1E
38390FFC0FF03903F003C01F1F7D9D25>97 D<EB01F8EB0FFE90383E0780EB7C01D801F8
13C03803F0073807E00FEA0FC001801380121F48C8FCA25A127EA312FE5AA51560007C14
E0EC01C0EC03806CEB0F00001E131C380F81F83807FFE0C648C7FC1B1F7D9D1F>99
D<151FEC03FFA2EC003FA2153EA2157EA2157CA215FCA215F8A21401EB07E190381FF9F0
EB7C1DEBF80FEA01F03903E007E0EA07C0120FEA1F8015C0EA3F00140F5A007E1480A214
1F12FE481400A2EC3F021506143E5AEC7E0E007CEBFE0C14FC0101131C393E07BE18391F
0E1E38390FFC0FF03903F003C0202F7DAD24>I<EB03F8EB0FFE90383E0780EBF803D801
F013C03803E001EA07C0000F1303D81F8013801407393F000F00141E387F01FCEBFFF091
C7FC007EC8FC12FE5AA4127C156015E0EC01C06CEB0380EC0F006C131C380F81F83803FF
E0C648C7FC1B1F7D9D21>I<157C4AB4FC913807C380EC0F87150FEC1F1FA391383E0E00
92C7FCA3147E147CA414FC90383FFFF8A2D900F8C7FCA313015CA413035CA413075CA513
0F5CA4131F91C8FCA4133EA3EA383C12FC5BA25B12F0EAE1E0EA7FC0001FC9FC213D7CAE
22>I<14FCEB03FF90380F839C90381F01BC013E13FCEB7C005B1201485A15F8485A1401
120F01C013F0A21403121F018013E0A21407A215C0A2000F130F141F0007EB3F80EBC07F
3803E1FF3800FF9F90383E1F0013005CA2143EA2147E0038137C00FC13FC5C495A38F807
E038F00F80D87FFEC7FCEA1FF81E2C7E9D22>I<131FEA03FFA2EA003FA2133EA2137EA2
137CA213FCA25BA21201143F9038F1FFC09038F3C1F03803FF0001FC7F5BA2485A5BA25B
000F13015D1380A2001F13035D1300140748ECC04016C0003E130F1580007E148191381F
0180007C1403ED070000FCEB0F06151E48EB07F80070EB01E0222F7DAD29>I<1307EB0F
80EB1FC0A2EB0F80EB070090C7FCA9EA01E0EA07F8EA0E3CEA1C3E123812301270EA607E
EAE07C12C013FC485A120012015B12035BA21207EBC04014C0120F13801381381F018013
03EB0700EA0F06131EEA07F8EA01F0122E7EAC18>I<15E0EC01F01403A3EC01C091C7FC
A9147CEB03FE9038078F80EB0E07131C013813C01330EB700F0160138013E013C0EB801F
13001500A25CA2143EA2147EA2147CA214FCA25CA21301A25CA21303A25CA2130700385B
EAFC0F5C49C7FCEAF83EEAF0F8EA7FF0EA1F801C3B81AC1D>I<131FEA03FFA2EA003FA2
133EA2137EA2137CA213FCA25BA2120115F89038F003FCEC0F0E0003EB1C1EEC387EEBE0
7014E03807E1C09038E3803849C7FC13CEEA0FDC13F8A2EBFF80381F9FE0EB83F0EB01F8
1300481404150C123EA2007E141C1518007CEBF038ECF83000FC1470EC78E048EB3FC000
70EB0F801F2F7DAD25>I<137CEA0FFCA21200A213F8A21201A213F0A21203A213E0A212
07A213C0A2120FA21380A2121FA21300A25AA2123EA2127EA2127CA2EAFC08131812F8A2
1338133012F01370EAF860EA78E0EA3FC0EA0F000E2F7DAD15>I<27078007F0137E3C1F
E01FFC03FF803C18F0781F0783E03B3878E00F1E01263079C001B87F26707F8013B00060
010013F001FE14E000E015C0485A4914800081021F130300015F491400A200034A130760
49133E170F0007027EEC8080188149017C131F1801000F02FCEB3F03053E130049495C18
0E001F0101EC1E0C183C010049EB0FF0000E6D48EB03E0391F7E9D3E>I<3907C007E039
1FE03FF83918F8783E393879E01E39307B801F38707F00126013FEEAE0FC12C05B00815C
0001143E5BA20003147E157C5B15FC0007ECF8081618EBC00115F0000F1538913803E030
0180147016E0001F010113C015E390C7EAFF00000E143E251F7E9D2B>I<EB01F8EB0FFF
90383F078090387C03C0D801F813E03903F001F0EA07E0D80FC013F8EB8000121F48C7FC
14015A127EA2140300FE14F05AA2EC07E0A2EC0FC0A2007CEB1F801500143E6C5B6C485A
380F83E03803FF80D800FCC7FC1D1F7D9D22>I<90387C01F89038FE07FE3901CF8E0F3A
03879C0780D907B813C0000713F000069038E003E0EB0FC0000E1380120CA2D8081F1307
12001400A249130F16C0133EA2017EEB1F80A2017C14005D01FC133E5D15FC6D485A3901
FF03E09038FB87C0D9F1FFC7FCEBF0FC000390C8FCA25BA21207A25BA2120FA2EAFFFCA2
232B829D24>I<903807E03090381FF87090387C1CF0EBF80D3801F00F3903E007E0EA07
C0000F1303381F800715C0EA3F00A248130F007E1480A300FE131F481400A35C143E5A14
7E007C13FE5C1301EA3E07EA1F0E380FFCF8EA03F0C7FC13015CA313035CA21307A2EBFF
FEA21C2B7D9D20>I<3807C01F390FF07FC0391CF8E0E0383879C138307B8738707F07EA
607E13FC00E0EB03804848C7FCA2128112015BA21203A25BA21207A25BA2120FA25BA212
1FA290C8FC120E1B1F7E9D20>I<EB07E0EB3FF8EB781EEBF0063801E0073803C00F141F
A20007131E140CEBE00013F8EBFF806C13E06C13F06C13F8EB3FFC13011300147C007813
3C12FCA2147C48137800E013F814F0386001E0387807C0381FFF00EA07F8181F7C9D21>
I<130E131FA25BA2133EA2137EA2137CA213FCA2B512F8A23801F800A25BA21203A25BA2
1207A25BA2120FA25BA2001F1310143013001470146014E0381E01C0EB0380381F0700EA
0F0EEA07FCEA01F0152B7EA919>I<EA01E0D807F8130ED80E3C131FD81C3E5B0038143E
12301270D8607E137ED8E07C137C12C013FC484813FC00005C12015B140100035C13E0A2
020313200007ECE06013C0A216E0020713C00003EB0FC09038E01FC191383BE1803901F0
71E33A007FE0FF0090381F803C231F7E9D29>I<D801E01370D807F813F8380E3C01D81C
3E13FC1238003013000070147CEA607ED8E07C133812C013FC485A0000143012015B1570
000314605B15E015C01207EBC00115801403EC070000031306EBE00E00015BEBF0783800
7FE0EB1F801E1F7E9D22>I<D801E01570D807F890381C01F8D80E3C133ED81C3E017E13
FC0038147C003015000070167CD8607E01FC1378D8E07C49133812C013FC3880F8010000
163000015C13F0020314700003166001E05BA217E00007010714C001C0EBC00117801603
000316006D486C5A160E3A01F01DF01C3A00F838F83890397FF07FF090390FC00FC02E1F
7E9D33>I<013F137C9038FFC1FF3A01C1E383803A0380F703C0390700F60F000E13FE48
13FC12180038EC0700003049C7FCA2EA200100005BA313035CA301075B5D14C000385CD8
7C0F130600FC140E011F130C011B131C39F03BE038D8707113F0393FE0FFC0260F803FC7
FC221F7E9D28>I<EA01E0D807F8130ED80E3C131FD81C3E133F0038143E12301270D860
7E137ED8E07C137C12C013FC484813FC000014F812015B1401000314F013E0A214030007
14E013C0A2140715C00003130FEBE01F143F3901F07F8038007FEFEB1F8FEB001F1500A2
003E133EA2007E5B5C387C01F0387003E0383007C0383C0F80D80FFEC7FCEA03F0202C7E
9D23>I E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fp cmr8 8 16
/Fp 16 111 df<EC7FE0903807FFFE90391FC03F8090397E0007E04848EB03F848486D7E
48486D7E4848147F4848EC3F80A24848EC1FC0A248C8EA0FE0A86C6CEC1FC0A3001F1680
6D143F000F1600A26C6C147EA20003157C6C6C5CA200005D0178495AA201385CD8C03C01
031330011C148000601660010C1400010E5B007016E0D87FFE14FF003F16C0A32C2E7DAD
33>10 D<13031307130E131C1338137013F0EA01E013C01203EA0780A2EA0F00A2121EA3
5AA45AA512F8A25AAB7EA21278A57EA47EA37EA2EA0780A2EA03C0120113E0EA00F01370
1338131C130E1307130310437AB11B>40 D<12C07E12707E7E7E120FEA0780120313C0EA
01E0A2EA00F0A21378A3133CA4131EA5131FA2130FAB131FA2131EA5133CA41378A313F0
A2EA01E0A2EA03C013801207EA0F00120E5A5A5A5A5A10437CB11B>I<EC0380B3A4B812
FCA3C7D80380C7FCB3A42E2F7CA737>43 D<EB3FC0EBFFF03803E07C48487E48487E497E
001EEB0780A2003E14C0A248EB03E0A500FC14F0B0007C14E0A3007E1307003E14C0A36C
EB0F806C14006D5A3807C03E3803F0FC3800FFF0EB3FC01C2D7DAB23>48
D<130C133C137CEA03FC12FFEAFC7C1200B3B113FE387FFFFEA2172C7AAB23>I<EB7F80
3801FFF0380780FC380E003F48EB1F8048EB0FC05A0060EB07E012F000FC14F07E1403A3
007C1307C7FCA215E0140F15C0141F1580EC3F00147E147C5C495A495A495A495A011EC7
FC5B5B4913305B485A4848136048C7FC000E14E0001FB5FC5A4814C0B6FCA21C2C7DAB23
>I<EB3FC03801FFF03807C0FC380E007E487FEC1F80003F14C0A2EB800F1300A2000C13
1FC7FC1580A2EC3F00143E5C5CEB03F0EBFFC014F0EB00FC143FEC1F8015C0140F15E0A2
EC07F0A21238127C12FEA3EC0FE012F8006014C00070131F6C1480001EEB3F00380780FC
3801FFF038007FC01C2D7DAB23>I<EB03F8EB0FFE90383E0780EBF8013901F007C03803
E00FEA07C0EA0F80A2391F00078091C7FC123EA2127EA2127CEB0FC038FC3FF0EBF07C38
FDC01EB4487E01001380EC07C04814E0A214034814F0A4127CA3127EA2003E14E0140712
1E001F14C06CEB0F803907801F003803C03E6C6C5A38007FF0EB1FC01C2D7DAB23>54
D<EB1FC0EBFFF03803E07C3807801E48487E001EEB0780A248EB03C0A4123E1407003F14
80381FC00F01E01300EBF81E6C6C5A3807FFF86C13E0C6FCEB3FF8EBFFFC3803C7FFD807
831380D81F0013C0001E133F48EB1FE0007C13070078EB03F012F84813011400A46C14E0
00781301007C14C0003C13036CEB0780390F800F003807E03C3801FFF038003FC01C2D7D
AB23>56 D<EB3F80EBFFF03803E0783807C03E48487E48487E003E14801407007E14C012
7C00FC14E01403A315F0A5007C1307127EA2003E130F7E6C131F3807803B3803E0F33800
FFC390383F03E013001407A215C0A2140F001E1480003F14005C143E143C003E5B001C5B
380E03E03807FF80D801FEC7FC1C2D7DAB23>I<B812FCA3CBFCADB812FCA32E137C9937>
61 D<EAFFE0A3EAE000B3B3B3A7EAFFE0A30B4379B114>91 D<EAFFE0A31200B3B3B3A7
12FFA30B437FB114>93 D<EA07C012FFA2120F1207B3B3A3EA0FE0EAFFFEA20F2E7EAD14
>108 D<3807C0FE39FFC3FF809038C703E0390FDE01F0EA07F8496C7EA25BA25BB2486C
487E3AFFFE1FFFC0A2221E7E9D27>110 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fq cmsy10 12 24
/Fq 24 113 df<007FB912E0BA12F0A26C18E03C04789A4D>0 D<121FEA3F80EA7FC0EA
FFE0A5EA7FC0EA3F80EA1F000B0B789E1C>I<0060160600F8160F6C161F007E163F6C16
7E6C6C15FC6C6CEC01F86C6CEC03F06C6CEC07E06C6CEC0FC06C6CEC1F80017EEC3F006D
147E6D6C5B6D6C485A6D6C485A6D6C485A6D6C485A6D6C485ADA7E3FC7FCEC3F7E6E5A6E
5A6E5AA24A7E4A7EEC3F7EEC7E3F4A6C7E49486C7E49486C7E49486C7E49486C7E49486C
7E49C7127E017E8049EC1F804848EC0FC04848EC07E04848EC03F04848EC01F84848EC00
FC48C9127E007E163F48161F48160F00601606303072B04D>I<49B4FC010F13E0013F13
F8497F3901FF01FF3A03F8003F80D807E0EB0FC04848EB07E04848EB03F090C71201003E
EC00F8A248157CA20078153C00F8153EA248151EA56C153EA20078153C007C157CA26C15
F8A26CEC01F06D13036C6CEB07E06C6CEB0FC0D803F8EB3F803A01FF01FF0039007FFFFC
6D5B010F13E0010190C7FC27277BAB32>14 D<007FBA1280BB12C0A26C1980CEFCB0007F
BA1280BB12C0A26C1980CEFCB0007FBA1280BB12C0A26C1980422C7BAE4D>17
D<19E0F003F0180FF03FE0F0FF80943803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8
EE3FE0EEFF80DB03FEC8FCED1FF8ED7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CA
FCEB07FCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0EA07FC
EA01FF38007FC0EB1FF0EB07FCEB01FF9038007FC0EC1FF0EC07FC913801FF809138007F
E0ED1FF8ED07FE923800FF80EE3FE0EE0FF8EE03FE933800FF80EF3FE0EF0FF8EF03FE94
3800FF80F03FE0F00FF01803F000E01900B0007FB912E0BA12F0A26C18E03C4E78BE4D>
20 D<127012FCB4FCEA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0EB07FCEB01FF9038
007FC0EC1FF0EC07FC913801FF809138007FE0ED1FF8ED07FE923800FF80EE3FE0EE0FF8
EE03FE933800FF80EF3FE0EF0FF8EF03FE943800FF80F03FE0F00FF0A2F03FE0F0FF8094
3803FE00EF0FF8EF3FE0EFFF80DC03FEC7FCEE0FF8EE3FE0EEFF80DB03FEC8FCED1FF8ED
7FE0913801FF80DA07FEC9FCEC1FF0EC7FC04948CAFCEB07FCEB1FF0EB7FC04848CBFCEA
07FCEA1FF0EA7FC048CCFC12FC1270CDFCB0007FB912E0BA12F0A26C18E03C4E78BE4D>
I<D907F01780D91FFEEE01C090387FFF8090B512E0488048803907F80FFC270FE001FE15
03271F80007F168090C7EA1FC0003E6E6C1407003C6E6C150000386E6C5C00786E6C5C00
706E6C143EDC3F80137E00F092391FE001FC4892390FFC07F870B55A705C705C706C5BDD
1FFEC7FC0040EE03F842187BA44D>24 D<D907F81780D93FFFEE01C090B512C04814F048
804814FE270FF807FF1503261FC00001C0158048C7D83FE01407003EDA0FF8140F486E6C
EC1F000078DA01FF5C00706E01C013FE00F092393FF807FC486FB55A04075C705C04005C
053F90C7FC0040EE07F8CEFCA4D907F81780D93FFFEE01C090B512C04814F048804814FE
270FF807FF1503261FC00001C0158048C7D83FE01407003EDA0FF8140F486E6CEC1F0000
78DA01FF5C00706E01C013FE00F092393FF807FC486FB55A04075C705C04005C053F90C7
FC0040EE07F8422C7BAF4D>I<037FB612E00207B712F0143F91B812E0010301C0C9FCD9
07FCCAFCEB0FE0EB3F8049CBFC13FC485A485A485A5B485A121F90CCFC123EA2123C127C
A2127812F8A25AA87EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D
7EEB1FE0EB07FC6DB47E010090B712E0023F16F01407020016E03C3A78B54D>I<07C014
03DE03E0EC0F80060F153FDE3FC0ECFF00DEFF80EB03FEDD03FEC7EA0FF8DD07F8EC1FE0
DD1FE0EC7F80DD7F80D901FEC7FCDC01FEC7EA07F8DC07FCEC1FF0DC1FF0EC7FC0DC3FC0
4AC8FC04FFC7EA03FCDB03FCEC0FF0DB0FF0EC3FC0DB3FE0ECFF80DBFF80D903FEC9FC4A
48C7EA07F8DA07F8EC1FE0DA1FE0EC7F80DA7F80D901FECAFC4948C7EA07FCD907FCEC1F
F0D90FF0EC3FC0D93FC002FFCBFC01FFC7EA03FCD803FCEC0FF0D80FF8EC3FE0D83FE0EC
FF80D87F804948CCFC00FEC7EA03F8A2D87F80EB01FED83FE06D6C7ED80FF8EC3FE0D803
FCEC0FF0C6B4EC03FCD93FC0EB00FFD90FF0EC3FC0D907FCEC1FF0D901FFEC07FC6D6C6C
EB01FEDA1FE09038007F80DA07F8EC1FE0DA01FEEC07F86E6C6CEB03FEDB3FE0903800FF
80DB0FF0EC3FC0DB03FCEC0FF0DB00FFEC03FCDC3FC0EB00FFDC1FF0EC7FC0DC07FCEC1F
F0DC01FEEC07F89326007F80EB01FEDD1FE09038007F80DD07F8EC1FE0DD03FEEC0FF894
2600FF80EB03FEDE3FC0EB00FFDE0FE0EC3F800603150FDE00C0EC030059407BB864>28
D<1AF0A3861A78A21A7C1A3CA21A3E1A1E1A1F747EA2747E747E87747E747E1B7E87757E
F30FE0F303F8007FBC12FEBE1280A26CF3FE00CEEA03F8F30FE0F31F8051C7FC1B7E6350
5A505A63505A505AA250C8FC1A1E1A3E1A3CA21A7C1A78A21AF862A359347BB264>33
D<49B4EF3FC0010F01E0923803FFF8013F01FC030F13FE4901FF92383FE01F48B66C9139
7E0007C02603F80301E0D901F8EB01E02807E0007FF049486D7E01806D6CD907C0147048
C76C6C494880001EDA07FE49C87E001C6E6C013E150C486E6D48150E71481506486E01E0
160793387FF1F0006092263FF3E08193381FFBC000E004FF1780486F4915017090C9FC82
707F8482717E844D7E6C4B6D1503006004EF1700933803E7FE0070922607C7FF5DDC0F83
7F003004816D140E00384BC6FC0018033E6D6C5C001C4B6D6C143C6C4BD91FFC5C6C4A48
6D6C5C6DD907E06D6C13036C6C49486D9038E00FE0D801F0013FC890B55A27007C03FE6F
91C7FC90263FFFF8031F5B010F01E0030313F8D901FECAEA7FC0592D7BAB64>49
D<92B6FC02071580143F91B7120001030180C8FCD907FCC9FCEB1FE0EB3F80017ECAFC5B
485A485A485A5B485A121F90CBFC123EA2123C127CA2127812F8A25AA2B9FC1880A21800
00F0CBFCA27EA21278127CA2123C123EA27E7F120F6C7E7F6C7E6C7E6C7E137E6D7EEB1F
E0EB07FC6DB47E010090B6FC023F1580140702001500313A78B542>I<1706170F171FA2
173EA2177CA217F8A2EE01F0A2EE03E0A2EE07C0A2EE0F80A2EE1F00A2163EA25EA25EA2
4B5AA24B5AA24B5AA24B5AA24BC7FCA2153EA25DA25DA24A5AA24A5AA24A5AA24A5AA24A
C8FCA2143EA25CA25CA2495AA2495AA2495AA2495AA249C9FCA2133EA25BA25BA2485AA2
485AA2485AA2485AA248CAFCA2123EA25AA25AA25A1260305C72C600>54
D<0060171800F0173C6C177CA200781778007C17F8A2003C17F0003E1601A26CEE03E0A2
6C17C06D1507A2000717806D150FA26C6CED1F00A20001161E6D153EA20000163C90B712
FCA26D5DA2013CC85A013E1401A2011E5D011F1403A26D5D6E1307A26D6C495AA2010392
C7FC6E5BA20101141E6E133EA26D6C5BA202781378027C13F8A2023C5BEC3E01A26E485A
A2020F5B1587A202075B15CFA26EB4C8FCA26E5AA36E5AA315781530364780C437>56
D<4B7E4B7EA21507A25EECFF8F010313EF90260F80FFC7FC90383E003F497F4980484880
4848497E5B0007EC3DF049133C000FEC7CF8A248C7EA787C15F848157E15F0A214014815
7F007E4A7E1403A215C0A200FE01071480A21580140FA21500A25CA2141E143EA2143CA2
147CA21478A214F8A25C1301A2007E491400A21303A2007F495B1307003F157E5CA2130F
001F157C018FC712FCD80F9F5CA201DE130100075DD803FE495AA26C48495A00004A5A01
7C49C7FC017E133E90387F80F89038FBFFE001F8138049C9FC1201A25BA26C5A29557CCC
32>59 D<0060170C00F0171EB3B3A66C173EA20078173C007C177C007E17FC003E17F86C
EE01F06D15036C6CED07E06C6CED0FC0D803F8ED3F80D801FEEDFF0026007FC0EB07FCD9
3FFCEB7FF8010FB612E001031580D9007F01FCC7FC020713C0373D7BBA42>91
D<913807FFC0027F13FC0103B67E010F15E0903A3FFC007FF8D97FC0EB07FCD801FEC8B4
FCD803F8ED3F80D807E0ED0FC04848ED07E04848ED03F090C91201003EEE00F8007E17FC
007C177C0078173C00F8173EA248171EB3B3A60060170C373D7BBA42>I<ED0FE015FF91
3803FC00EC0FE0EC3FC04A5A4AC7FC5C495AA2495AB3AD495AA2495A131F495A495A01FE
C8FCEA07F8EAFFE0A2EA07F8EA00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E
806E7E6E7EEC0FE0EC03FC913800FFE0150F236479CA32>102 D<12FEEAFFE0EA07F8EA
00FEEB7F806D7E6D7E130F6D7EA26D7EB3AD6D7EA26D7E806E7E6E7EEC0FE0EC03FC9138
00FFE0A2913803FC00EC0FE0EC3FC04A5A4AC7FC5C495AA2495AB3AD495AA2495A131F49
5A495A01FEC8FCEA07F8EAFFE048C9FC236479CA32>I<126012F0B3B3B3B3B3A8126004
6474CA1C>106 D<0070130700F01480B3B3B3B3B3A800701400196474CA32>I<1B0C1B1E
1B3EA21B7CA21BF8A2F201F0A2F203E0A2F207C0A2F20F80A2F21F00A21A3EA262A262A2
4F5AA2621903A24F5AA24F5AA24FC7FCA2193EA261A261A24E5AA24E5AA24E5AA24E5AA2
010C4CC8FC133C017C163EEA01FE00035F487E001E5F00387FD8707F4B5A00E07FD8003F
4B5A80011F4B5AA26E4A5A130F6E4AC9FC13076E143E13036E5C13016E5C7F6F5B027F13
01A26F485A143F6F485A141F6F485A140F6F48CAFC1407EDFC3E14035E15FE02015B15FF
6E5BA26F5AA26F5AA26F5AA26FCBFC150E4F647A8353>112 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fr cmmi12 12 67
/Fr 67 123 df<EC03FCEC1FFF9138FE07C0903903F001F049486C7ED91FC06D130E4948
137C49C76C130C01FE143F4848161C48486E131800071680491638000F173048481670EF
C060485A18E0040F13C0484815C1188017C300FFEEC70090C813C617CE17DCEE1FD84816
F85F5F5FA5007E153F167F6C03EF1338ED03CF6C6CD90F0713306C6C011C14706C6C9039
F803E0E03C01F00FE001E1C026007FFFC7EAFF80D91FF0EC3E00372D7CAB3E>11
D<EE1FE0EE7FFC923801E03F923907800F8092390E0007C04BEB03E04B13014B14F04B13
004A4814F85D14034AC8FC1406140E020C1401141C021815F002381403023015E0170702
7015C00260140F188002E0EC1F004A143E5F010190383FF1F84AB512E09238C01F8092B5
7E010390383FF1F091C87E1778177C49811306A283130E130CA3011C16801318A30138ED
3F001330A301705D177E136017FE01E05DA24C5AA200014B5A6D4A5A01B04A5A5FD803B8
4AC7FC0118147E011C5C6DEB01F0486CEB07C0270603C03FC8FC903800FFFCEC3FC0000E
90CAFC120CA3121C1218A312381230A312701260A312E0A235597DC537>I<1578913807
FFE0021F13FC91383C7FFEEC7007EC6003ECE0004A13381600A280A380A280147CA2147E
143E143F816E7EA26E7E81140781EC3FFC14FF903803E1FEEB07C190381F00FF133E49EB
7F805B0001143F485A484814C049131F120F485AA248C7FC150F5A127EA300FEEC1F805A
A316005A5DA2153E157E157CA26C5C127C4A5A6C495AA26C495A6C6C485A6C6C48C7FC38
03E07C3800FFF0EB1FC027487CC62B>14 D<EC07FEEC7FFF903801FFFE903807F800EB1F
E0EB3F8049C7FC13FE485A485A1207485A5B121F123F5BA248B512C015E0A20180C7FC12
FF90C8FCA65AA2127E127FA27EA27F121F6C7E0007140C6C6C133C6C6C13F03900FC07C0
90383FFF00EB07F8202C7CAA27>I<01F8EB03FCD803FEEB1FFFD8071F90387C0FC03B0E
0F80E007E0001C9038C3C003271807C70013F002CE1301003801DC14F8003013D8EB0FF8
00705B00605BA200E0491303D8C01F15F05C12001607133F91C713E0A2160F5B017E15C0
A2161F13FE491580A2163F1201491500A25E120349147EA216FE1207495CA21501120F49
5CEA0380C81203A25EA21507A25EA2150FA25EA2151FA25EA2153FA293C7FC150E2D417D
AB30>17 D<EB07C014F8EB00FE147F6E7E6E7EA36E7EA36E7EA36E7EA36E7EA36E7EA315
7FA36F7EA36F7EA36F7EA36F7EA34B7E151F153BED71FC15F1EC01E1913803C0FEEC0780
EC0F00021E137F143E5C4AEB3F80495A495A4948EB1FC0130F495A49C7120F017E15E05B
48481407000316F0485A48481403484815F8485A48C8EA01FC5A4816FE4815000078167E
2F467BC439>21 D<147002F8140E0101153FA301035DA24A147EA2010715FEA24A5CA201
0F1401A24A5CA2011F1403A24A5CA2013F1407A291C75BA249140FA2017E5DA201FE021F
1318183849ED8030A20001033F13701860EE7F005E486C16E0DB01DF13C09238039F016D
D9071F1380489039801E0F83903BF7C078078700903AE1FFE003FE903AE07F8000F8000F
90CAFCA25BA2121FA25BA2123FA290CBFCA25AA2127EA212FEA25A123835417DAB3B>I<
D93F801470D81FFF15F848150191C7FCC67E160317F0137E160701FE15E0A249EC0FC0A2
0001151F178049143F17000003157EA2495C4B5A12074B5A49495A5E000F140F4B5A4949
C7FC157E001F5C4A5A49485AEC07C0003F495A4AC8FCEB003C14F8387F01E0EB07C0D87E
1FC9FC13FCEAFFE0138000F8CAFC2D2C7BAB30>I<010FB712E0013F16F05B48B812E048
17C02807E0060030C7FCEB800EEA0F00001E010C13705A0038011C13605A0060011813E0
00E013381240C7FC5C4B5AA214F014E01301150314C01303A3EB078082130FA2EB1F00A3
4980133E137EA24980A2000114015BA26C48EB00E0342C7EAA37>25
D<0203B612E0021F15F091B7FC4916E0010716C090270FF80FF8C7FC90381FC00349486C
7E017EC7FC49147E485A4848143E0007153F5B485AA2485AA2123F90C8FC5E48157E127E
A216FE00FE5D5A15015EA24B5A007C5D15074B5A5E6C4AC8FC153E6C5C5D390F8003F039
07C007C02601F03FC9FC38007FFCEB1FE0342C7DAA37>27 D<010FB612FC013F15FE5B48
B712FC4816F82707E001C0C7FC01805B380F0003121E121C5A4849C8FC126012E000405B
C7FC140E141EA45CA3147CA2147814F8A4495AA31303A25C1307A3130FA25C6D5A2F2C7E
AA2A>I<161CA21618A21638A21630A21670A21660A216E0A25EA21501A25EA21503A293
C8FCA25DED7FE0913807FFFE91391FC63F809139FE0E07C0D901F8EB03F0903A07E00C00
F8D91FC08090263F001C137E017E814913184848ED1F8000031438485A4848013014C0A2
48481370A248481360A248C712E0A24B133F481780481301A24B137F180014034816FE92
C7FC4C5A6C49495AA2007E0106495A4C5A6C010E495A4C5A261F800C49C7FC000F15FC3A
07C01C01F8D803E0EB07E03A01F8181F80D8007E01FEC8FC90381FFFF801011380D90030
C9FCA21470A21460A214E0A25CA21301A25CA21303A291CAFCA332597BC43A>30
D<137E48B46C150626078FE0150E260607F0151C260E03F81538000C6D1570D81C0116E0
00006D15C0010015016EEC03806EEC0700170E6E6C5B5F5F6E6C136017E04C5A6E6C485A
4CC7FC0207130E6F5A5E1630913803F8705EEDF9C06EB45A93C8FC5D6E5A81A2157E15FF
5C5C9138073F80140E141C9138181FC014381470ECE00FD901C07FEB038049486C7E130E
130C011C6D7E5B5B496D7E485A48488048C8FC000681000E6F137048EE806048033F13E0
4892381FC0C048ED0FE348923803FF00CA12FC37407DAB3D>I<1730A317701760A317E0
5FA316015FA3160394C8FCA35E1606A3160E160C013E1607D9FF80ED1F802603C3C0011C
EB3FC0260703E01318260601F0157F000E173F001C1538D818030230131F0038170F0030
170700701570D86007026013035CA2D8E00F02E0148000C049491301EA001F4A15030301
1500013F5C1400604901031406017E91C7FC180E180C01FE49141C490106141818386003
0E1460030C14E04D5A4D5A031C49C7FC0318130E017E5D5F6D01385B90261F80305BD90F
C0EB03C0D907F0010FC8FC903901FE707C9039003FFFF002031380DA0060C9FC15E05DA3
14015DA3140392CAFCA35C1406A3140E140C3A597DC43F>I<121EEA7F80A2EAFFC0A4EA
7F80A2EA1E000A0A78891B>58 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413
E013C0A312011380120313005A1206120E5A5A5A12600B1D78891B>I<F001C0F007E018
1FF07FC0943801FF00EF07FCEF1FF0EF7FC04C48C7FCEE0FFCEE3FF0EEFFC0030390C8FC
ED0FF8ED3FE0EDFF80DA03FEC9FCEC1FF8EC7FE0903801FF80D907FECAFCEB1FF0EB7FC0
4848CBFCEA07FCEA1FF0EA7FC048CCFCA2EA7FC0EA1FF0EA07FCEA01FF38007FC0EB1FF0
EB07FE903801FF809038007FE0EC1FF8EC03FE913800FF80ED3FE0ED0FF8ED03FF030013
C0EE3FF0EE0FFCEE01FF9338007FC0EF1FF0EF07FCEF01FF9438007FC0F01FE01807F001
C03B3878B44C>I<1618163C167CA2167816F8A216F01501A216E01503A216C01507A216
80150FA2ED1F00A2151E153EA2153C157CA2157815F8A25D1401A24A5AA25D1407A25D14
0FA292C7FC5CA2141E143EA2143C147CA25CA25C1301A25C1303A25C1307A25C130FA291
C8FC5BA2133EA2133C137CA2137813F8A25B1201A25B1203A2485AA25B120FA290C9FC5A
A2121E123EA2123C127CA2127812F8A25A126026647BCA31>I<127012FCB4FCEA7FC0EA
1FF0EA07FCEA01FF38007FC0EB1FF0EB07FE903801FF809038007FE0EC1FF8EC03FE9138
00FF80ED3FE0ED0FF8ED03FF030013C0EE3FF0EE0FFCEE01FF9338007FC0EF1FF0EF07FC
EF01FF9438007FC0F01FE0A2F07FC0943801FF00EF07FCEF1FF0EF7FC04C48C7FCEE0FFC
EE3FF0EEFFC0030390C8FCED0FF8ED3FE0EDFF80DA03FEC9FCEC1FF8EC7FE0903801FF80
D907FECAFCEB1FF0EB7FC04848CBFCEA07FCEA1FF0EA7FC048CCFC12FC12703B3878B44C
>I<ED7FC0913803FFF8020F13FE91393F807F80913978000FC04A6D7ED901C06D7E4948
6D7E49C87E1306D90FC0147E8083131F1880171F5C0107C8FC90C913C0A84AB4FC020FEB
C03F91387F00F0D901F813384948131CD90FC0130C4948EB0E7F49C700061380017E1407
491403000116FF48481600485A120F4980001F5E1603485A5F127F5B5F160712FF90C85B
160F5F161F485EA24C5AA24CC7FC167E16FE4B5A007E5D007F4A5A6C4A5A6D495A001F4A
5A6C6C017FC8FC6C6C13FC3903F807F8C6B512E06D1380D90FFCC9FC32497CC633>64
D<1830187018F0A217011703A24D7EA2170F171FA21737A2176717E717C793380187FCA2
EE0307EE07031606160CA216181638163004607FA216C0030113011680ED0300A2150615
0E150C5D845D03707F15605DA24A5A4AB7FCA25C0206C87F5C021C157F14185CA25C14E0
5C495A8549C9FC49163F1306130E5B133C137C01FE4C7ED807FFED01FF007F01F0027FEB
FFC0B5FC5C42477DC649>I<91B87E19F019FC02009039C00003FF6F480100138003FFED
3FC01AE093C8121FF10FF0A24A17F84B1507A314035D190FA2020717F04B151F1AE0193F
020F17C04BED7F80F1FF004E5A021F4B5A4B4A5AF01FF0F03FC0023F4AB4C7FC4BEB1FFC
92B612F018FEDA7FC0C7EA7F804BEC1FC0F00FF0727E02FF6F7E92C8FC727EA249835CA3
13035CA301075F4A1503A24E5A130F4A4B5A4E5AA2011F4C5A4A4B5A4D485A013F4B48C7
FCEF0FFC4AEC3FF801FF913801FFE0B9128005FCC8FC17C045447CC34A>I<4CB46C1318
043F01F013384BB512FC0307D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA
01C34A48EC00E7DA0FF0ED7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F
4A178049481607495A137F4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA212
3F5BA3127F5BA4485AA419C0A2180161127F180396C7FC6018066C6C160E601818001F17
386D5E000F5F6D4B5A6C6C4B5A00034CC8FC6C6C150E6C6C153C017F5DD93FC0EB01E0D9
1FF0EB0FC0D907FE017FC9FC0101B512FCD9003F13E0020790CAFC45487CC546>I<91B8
7E19F019FC02009039C00007FF6F489038007FC003FFED1FE0737E93C86C7E737E19014A
707E5D1A7FA20203EF3F805DA21BC014075DA3140F4B17E0A3141F4B17C0A3143F4B167F
A3027F18804B16FFA302FF180092C95A62A24917034A5F19076201034D5A5C4F5A620107
173F4A5F4FC7FC19FE010F4C5A4A15034E5AF00FE0011F4C5A4A4B5A06FFC8FC013FED01
FCEF0FF84AEC3FE001FF913803FF80B848C9FC17F094CAFC4B447CC351>I<91B912FCA3
020001C0C7123F6F48EC03F803FF1501190093C91278A21A385C5DA3020317305DA31407
4B1460A218E0020F4B13005DA21701021F5D4B13031707170F023F027FC8FC92B6FCA391
397FC0007E4B131EA2170E02FF140C92C7FCA2171C49031813035C611906010392C7FC4A
160E190C191C010717184A163819301970130F4A5E180161011F16034A15074E5A013F16
3F4EC7FC4AEC03FF01FFED3FFEB9FCA26046447CC348>I<4CB46C1318043F01F013384B
B512FC0307D9007E1378DB1FF090380F80F0DB7F80EB03C1DA01FEC7EA01C34A48EC00E7
DA0FF0ED7FE04A48153F4A5A02FFC9121F494817C04948160F495A130F4A178049481607
495A137F4948170091CAFC5A485A1906485AA2485A96C7FC121F5BA2123F5BA3127F5BA4
485A4CB612805EA293C7EBE000725AA3007F60A218FF96C7FCA26C7E5F606C7EA2000F16
036D5E6C6C15070003160F6C6C151F6C6CED3DF8D97F8014786D6CEB01E0D91FF0903807
C078D907FE90387F00700101B500FC1330D9003F01F090C8FC020790CAFC45487CC54D>
71 D<027FB512F8A217F09139007FF000ED3FC0157FA25EA315FF93C7FCA35C5DA31403
5DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92C8FCA35B5CA313035CA313
075CA3130F5CA2131FA25CEB7FF0007FB512F0B6FCA22D447DC32B>73
D<91B600E049B512C0A3020001E0C8383FF800DB7F80ED1FE003FF94C7FC1A3E93C91278
62F101C04A4C5A4B4BC8FC191C6102035E4B5DF003804EC9FC0207150E4B14386060020F
4A5A4B0107CAFC170E5F021F14784B13F84C7E1603023F130F4B487E163BEEE1FF91387F
C1C1DB83807FED8700159CDAFFB86D7E5D03C06D7E5D4990C7FC4A6E7EA2717E13034A81
1707A201076F7E5C717EA2130F4A6E7FA2727E131F5C727E133F854A82D9FFE04B7EB600
E0010FB512E05FA252447CC353>75 D<91B612F8A3020001E0C8FC6F5A4B5AA293C9FCA3
5C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA3147F5DA314FF92CAFCA35B4A16
C0A21801010317804A15031900A201075E4A1506180E181E010F161C4A153C1838187801
1F16F84A4A5A1703013F150F4D5A4A14FF01FF02075BB9FCA2603A447CC342>I<91B500
C0933803FFFE63630200F1FE00DB6FE0EE1BF803EF171F1B3703CFEF67F0A21BCF0201EF
018F038F60DB87F0ED030F1B1F020317060307040C5BA2F2183F020717300206616F6C15
601B7F020E17C0020CDC018090C7FCA24F485A021C16060218606F6C5C1A010238161802
3004305BA2F16003027016C00260606F6CEB01801A0702E0ED03004A03065CA24E130F01
015E4A60047F5B1A1F01035E91C74A5CA24D48133F494BC7FC010661EE3F861A7F010E15
8C010C039892C8FCA205B05C011C15E001186001386E5A190101785D01FC92C75BD803FF
EF07FEB500F8011E0107B512FE161C160C5F447BC35E>I<91B500C0020FB5128082A2DA
007F9239007FE00070ED1F8074C7FCDBEFF8150E15CF03C7160C70151C1401DB83FE1518
A2DB81FF1538140303001630831A704A6D7E02061760163F7114E0140E020C6D6C5CA270
6C1301141C021801075D83190302386D7E023094C8FC1601715B147002606DEB8006A294
387FC00E14E04A023F130C18E0191C0101ED1FF04A1618170FF0F838130391C83807FC30
A2943803FE705B01060301136018FF19E0010E81010C5F187FA2131C0118705A1338181F
137801FC70C9FCEA03FFB512F884180651447CC34E>I<EE03FF047F13F0923901FC01FC
92390FE0007F033FC7EA1FC003FEEC07E0DA01F86E7EDA07F06E7EDA0FC06E7E4A488102
7FC9127E02FE167F49488249481780495A010FEF1FC05C495A494817E0137F91CAFC5B48
48170FF11FF0485AA2485AA2120F5B001F19E0A249173F123FA34848EF7FC0A3F1FF80A2
485A4E1300A34E5AA24E5A61180F007F60181F614E5A4E5A6C7E4EC7FC4D5A001F4C5A6D
4B5A000F5F6C6C4B5AEF3F806C6C4BC8FC6C6C15FE6C6CEC01F8017FEC07F06D6CEB1FC0
D90FE0017FC9FC903903F803FC0100B512E0DA0FFECAFC44487CC54B>I<91B712FEF0FF
E019F802009039C0000FFE6F48EB01FF03FF9138007F80F13FC093C8EA1FE0A24AEE0FF0
A25D1AF81403A25DA21407F11FF05DA2020FEE3FE0A24B16C0197F021F1780F1FF004B4A
5A4E5A023F4B5A4E5A4BEC3FC006FFC7FC027FEC07FC92B612F018800380CAFC14FFA292
CBFCA25BA25CA21303A25CA21307A25CA2130FA25CA2131FA25CA2133FA25CEBFFE0B612
E0A345447CC33F>I<EE03FF047F13F0923901FC01FC92390FE0007FDB3F80EB1FC003FE
C76C7EDA01F8EC03F0DA07F0814A486E7EDA1F806E7E027FC9FC02FE167F495A4948EE3F
801307494817C04A161F495A013F18E0495AA249CAFC485A1AF012035B12075B120F5B00
1F19E0193F5B123FA34848EF7FC0A31A8019FF485A1A0060A24E5AA2614E5AA2007F4D5A
A24E5A4E5A61003F021F147F6DD9FFC049C7FC913A01E0E001FE001F90260380705B913A
07003003F8260FE00690383807F00007010E9038180FE0D9F00CEC1F80D803F84BC8FC00
01011CEB1CFE2600FC18EB1DF8017EEC1FF0D93F9C14C0D90FEC017FC9FC902703FE03FC
14600100B5FC91260FFE1C14E091C7001E5C1801A24E5A043F1307180FDD803FC7FC71B4
FCEFFFFE705BA26060705B60040390C8FCEE00FC44597CC54D>I<91B712F018FF19E002
009039C0003FF86F48EB07FC03FFEC01FEF0007F93C8EA3F801AC0F11FE05C5D1AF0A214
035DA30207EE3FE05DA2F17FC0020F17804B15FF1A004E5A021F4B5A4B4A5AF00FE04E5A
023F037FC7FC4BEB03FCEF1FF092B612804A4AC8FC923980007F80EF0FC0EF07F002FF6E
7E92C77F1701845B4A1400A2170113035CA2170313075CA24D5A130F5CA3011F18185CA2
013F4C13381A304A6F1370D9FFE0020314E0B600E0ED01C00501EB0380943900FE0F00CB
EA3FFEF007F045467CC34A>I<9339FF8001800307EBF003033F13FC9239FF007E07DA01
F8EB0F0FDA07E09038079F004A486DB4FC4AC77E023E804A5D187E5C495A183C495AA213
074A1538A3130F183080A295C7FC806D7E8014FF6D13E015FC6DEBFFC06D14FC6E13FF6E
14C0020F80020314F8EC003F03077F9238007FFE160F1603707E8283A283A21206A4000E
163EA2120C177E001E167CA25F5F003F15014C5A6D4A5A4C5A486C4AC8FC6D143ED87CF8
5CD8787E495A3AF01FC00FE0D8E007B51280010149C9FC39C0003FF039487BC53C>I<48
BA12C05AA291C7D980001380D807F092C7121F4949150F0180170748C75B1903120E4802
0316005E12181238003014074C5C00701806126000E0140F485DA3C8001F92C7FC5EA315
3F5EA3157F5EA315FF93CAFCA35C5DA314035DA314075DA3140F5DA3141F5DA3143F5DA2
147FA214FF01037F001FB612FCA25E42447EC339>I<003FB500F80103B512E0A326003F
F8C8381FF800D91FE0ED07E0013F705A615C96C7FC60017F16065CA2180E01FF160C91C9
FCA2181C4817185BA21838000317305BA21870000717605BA218E0120F495EA21701121F
495EA21703123F4993C8FCA25F127F491506A2170E00FF160C90C9FC171CA21718173817
304816705F6C5E6C15014C5A4CC9FC6C150E6D141E001F5D6D5C6C6CEB01E06C6C495A6C
6CEB1F80C6B401FECAFC90387FFFF8011F13E0010190CBFC43467AC342>I<007FB56C91
381FFFF8B65DA2000101E0C8000313006C0180ED01FCF000F0614E5AA2017F4C5A96C7FC
1806A2606E5DA2013F5E1870186060A24D5A6E4AC8FCA2011F1506170E170C5FA26E5C5F
A2010F5D16015F4CC9FCA26E13065EA201075C5EA25E16E06E5B4B5A13034BCAFC1506A2
5D151CECFE185D13015D5DA26E5AA292CBFC5C13005C5CA25CA25C45467BC339>I<B6D8
8003B500FC0107B5FC5E03005D000301C09026001FFEC8EA7FE06C90C8D80FF8ED3F80F4
1F001C1E1C1C17076C1B1864050F16701C60051F5EA205374B5AA205674BC7FC17E705C7
1506DC0187150E72140C6ED903075DA2017FDA06035DA2040C5E041C16E004185E04304B
5AA204604BC8FCA204C01506150104805DDB03005D84DAC0065E1701013F495EA24B5E4B
1501624B4BC9FCA24B1506A2DAC1805D02C3161C92C7141802C66F5A14E602EC5E83D91F
F85EA24A5E4A93CAFCA24A5DA24A5DA291C95AA2011E5E011C5E010C166060467BC35C>
I<023FB500E0011FB5FCA39126007FFEC7000313E0DB3FF8913801FE006F486E5A1AF06F
6C4A5A626F6C4A5A0706C7FC190E6F6C5C616F6C5C6171485A6F5D4EC8FC93387FC00660
706C5A6060706C5A17F193380FFB8005FFC9FC5F705AA2707EA3707E5E04067F5E93381C
7FC0163816704C6C7EED01C04B486C7E160015064B6D7E5D4B6D7E5D5D4A486D7E14034A
C76C7E140E5C4A6E7F143002E06F7E495A0103707E495A131F496C4B7E2603FFE04A487E
007F01FC021FEBFFF0B5FCA250447EC351>I<B66C91381FFFFCA21AF8000101E0C80003
13806C49923801FC004A16F06D6C5E4E5A616D6C4BC7FC180E606D6C1518606E5D010F5E
4D5A6D6C14034DC8FC17066D6C5C5F5F6D6C5C17E04C5A6D01805B4CC9FCEDC006027F5B
5EEDE038023F5B16606E6C5AEDF18003F3CAFCEC0FFEA25D6E5A5D140FA35D141FA35D14
3FA35D147FA392CBFC5CA3495AA3EB07FF0007B6FCA25D46447CC339>I<EC0FC0EC7FF0
903901F8381C903907E01C7E90380FC00E90393F0007FE496D5A13FE485A49130100035D
485A120F491303001F5DA2485A1507007F5D5BA2150F00FF5D90C7FCA2151F5E5AA2033F
1330EE00701760A24B13E017C015FE007E130102031301003ED9073E1380003F010E1303
6C011C14006C6C486C5A3A07C0F00F0E3A01FFC007FC3A007F0001F02C2D7CAB33>97
D<EB0FE0EA07FFA338001FC0130F131FA25CA3133F91C8FCA35B137EA313FE5BA312015B
EC0FC0EC3FF00003EBF07C9038F3C03E9038F7001F01FE14804848130F4914C05B16E048
5A5BA3121F5BA2151F123F90C7FCA2153F4815C0127EA2157F16805A16005DA24A5A007C
5CA24A5A4A5A5D003C130F003E495A001E495A001F017EC7FC6C5B3807C1F03801FFC06C
6CC8FC23467CC429>I<EC07F8EC3FFF9138FC07C0903903F000E049481370D91F801330
49C71270017EEB03F801FE1307485A4848EB0FF012075B000FEC07C0484890C7FCA2485A
A2127F5BA312FF90C9FCA45AA5161816381670007E15E0ED01C06CEC0380ED07006C6C13
1E000F14383907C001F03903F00FC02600FFFEC7FCEB1FF0252D7CAB2A>I<EE01FC16FF
A3EE03F816011603A217F0A21607A217E0A2160FA217C0A2161FA21780A2163FA21700EC
0FC091387FF07F903801F838903907E01C7E90380FC00E90393F0007FE49130301FE5C48
5A491301120348485C120F491303121F5E485A1507127F495CA2150F12FF90C75BA2151F
A2485DA2033F13301770EE0060A24B13E017C015FE007E130102031301003ED9073E1380
003F010E13036C011C14006C6C486C5A3A07C0F00F0E3A01FFC007FC3A007F0001F02E46
7CC433>I<EC07F8EC3FFE903901FC0780903903F003C090390FC001E090381F8000017F
C7FC01FE1470485A484814F0000715E05B000F1401484814C015034848EB0780ED1F0015
FC007FEB1FF090B5128002F0C7FC0180C8FC12FF90C9FCA55AA41618007E15381670007F
15E06CEC01C0ED03806CEC07006C6C131E6D13383907E001F03901F00FC026007FFEC7FC
EB1FF0252D7CAB2D>I<EE07E0EE1FF8EE7C1CEEF80E923801F03E923803E07F17FFED07
E116C117FE92380FC0FC177817004B5AA4153F93C7FCA45D157EA491B61280A3DA00FCC7
FCA314015DA414035DA414075DA4140F5DA5141F5DA4143F92C8FCA45C147EA45CA45C13
01A25CA2EA1C03007F5B12FF5C13075C4848C9FC12F8EA601EEA783CEA1FF0EA07C0305A
7BC530>I<157E913803FF8091390FC1E0E091391F0073F0027E13334A133F4948131F01
0315E04948130F495AA2494814C0133F4A131F137F91C713805B163F5A491500A25E1203
49147EA216FEA2495CA21501A25EA21503150700015D150F0000141F6D133F017CEB77E0
90383E01E790381F078F903807FE0FD901F85B90C7FC151FA25EA2153FA293C7FCA2001C
147E007F14FE485C4A5A140348495AEC0FC000F8495A007C01FEC8FC381FFFF8000313C0
2C407EAB2F>I<14FE137FA3EB01FC13001301A25CA21303A25CA21307A25CA2130FA25C
A2131FA25CED3FC090393F81FFF0913887C0FC91380E007E023C133ED97F70133F4A7F4A
14805C13FF91C7FC5BA24848143F17005BA200035D167E5BA2000715FE5E5B1501000F5D
A24913035E001F1607030713064914E0150F003FEDC00E170C90C7141CEE801848163817
30007E167017E000FE91380781C0EEC38048913801FF000038EC007C30467BC438>I<14
1E143F5C5CA3147E143891C7FCAE133EEBFF803801C3C0380781E0380601F0120E121CEA
180312381230A2EA700700605BA2EAE00F00C05BEA001F5CA2133F91C7FCA25B137E13FE
5BA212015BEC03800003140013F01207495A1406140E140CEBC01C141814385C00035BEB
E1C0C6B45A013EC7FC19437DC121>I<163C16FEA21501A316FCED00701600AE15FCEC03
FF91380F0780021C13C091383803E0147014E014C01301EC8007130314005B0106130F13
0E010C14C090C7FC151FA21680A2153FA21600A25DA2157EA215FEA25DA21401A25DA214
03A25DA21407A25DA2140FA25DA2141F5DA2143F001C91C7FC127F48137E5CA248485AEB
03E038F807C038781F80D83FFEC8FCEA07F0275681C128>I<14FE137FA3EB01FC130013
01A25CA21303A25CA21307A25CA2130FA25CA2131FA25C163F013FECFFC0923803C0E091
38000703ED1E0F491338ED701F017E13E0EC01C001FE018013C00203EB07004948C8FC14
0E00015B5C495A5C3803FBC001FFC9FC8014F83807F1FE9038F03F809038E00FE06E7E00
0F130381EBC001A2001FED01C017801380A2003F15031700010013F05E481506160E007E
150C161C00FE01005BED787048EC3FE00038EC0F802B467BC433>I<EB03F8EA01FFA338
0007F013031307A214E0A2130FA214C0A2131FA21480A2133FA21400A25BA2137EA213FE
A25BA21201A25BA21203A25BA21207A25BA2120FA25BA2121FA25BA2123FA290C7FCA248
136014E0007E13C0A2130100FE138012FCA21303007C13005B1306EA3E0EEA1E1CEA0FF8
EA03E015467CC41D>I<01F8D903FCEC7F80D803FED91FFF903803FFE0D8071F903B7C0F
C00F81F83E0E0F80E007E01C00FC001C9026C3C0030178137C271807C700D9F0E0137E02
CE902601F1C0133E003801DCDAFB80133F003001D892C7FCD90FF814FF0070495C006049
5CA200E04949485CD8C01F187E4A5C1200040715FE013F6091C75BA2040F14014960017E
5D1903041F5D13FE494B130762043F160E0001060F130C4992C713C0191F4CED801C0003
1A1849027E1638F2003004FE167000071A60494A16E0F201C0030192380F0380000FF187
00494AEC03FED80380D90070EC00F84F2D7DAB55>I<01F8EB03FCD803FEEB1FFFD8071F
90387C0FC03B0E0F80E007E03A0C07C3C003001CD9C7007F001801CE1301003801DC8000
3013D8EB0FF800705B00605BA200E0491303D8C01F5D5C12001607013F5D91C7FCA2160F
495D137E161F5F13FE49143F94C7FC187000014B136049147E16FE4C13E0000317C04915
0104F81380170300071700495D170EEE781C000FED7C3849EC1FF0D80380EC07C0342D7D
AB3A>I<EC03FCEC3FFF9138FE07C0903903F003F049486C7E90391FC000FC49C7127C49
147E01FE147F484880485A000716805B120F485AA2485A167F127F5BA216FF00FF160090
C8FCA25D5E5A4B5AA25E15075E4B5A151F007E5D4B5A6C4AC7FC15FE391F8001F86C6C48
5A3907E00FC03901F03F802600FFFCC8FCEB1FE0292D7CAB2F>I<D903E0EB3F80D90FF8
EBFFE0903A1C7C03C0F8903A383E07007C9026703F1E137E9026601F387F5D01E00160EB
1F8001C013E04A5A00014A14C0018090C7FCA200035B1300147EC7FC02FE143FA25CA201
01157F18805CA2010315FF18005C5F010714015F4A13035F010F14075F4C5A5F496C495A
4CC7FC02B8137E02985B90393F9C01F891388F07E0913803FF80DA00FCC8FC4990C9FCA2
137EA213FEA25BA21201A25BA21203A21207B512F0A25C323F83AB31>I<91380FC00391
383FF0079138F83C0F903903E00E1E90390FC0063E90381F800790393F00037E4914FC01
FE1301485AA2484814F812075B000F140316F0485AA2003F14074914E0A3007F140F4914
C0A3151F90C713805AA2153F6C1500A2127E5D007F14FE6C1301A214036C6C485A000F13
1E3807C0383803E0F13901FFC1F838003F01130014035DA314075DA3140F5DA2141FA214
3F011FB51280A21600283F7DAB2B>I<01F8EB0FC0D803FEEB7FF0D8070FEBF038000E90
3883C07C3A0C07C701FC001C13CE0018EBDC03003813D8003013F8D90FF013F800709038
E000E0006015005C12E0EAC01F5C1200A2133F91C8FCA35B137EA313FE5BA312015BA312
035BA312075BA3120F5BEA0380262D7DAB2C>I<EC0FF0EC7FFE903901F00F8090390780
01C049C712E0011E14605BED01F0491307A201F8EB0FE05B7FED03806D90C7FC7F7F14F8
6DB47E15E06D13F86D7F01077F1300EC07FF140081ED3F80151F120E003FEC0F00487EA2
5D48C7121EA200FC5C12605D00705C6C495A6CEB07C0260F803FC7FC3803FFFC38007FE0
242D7BAB2E>I<141C147EA314FE5CA313015CA313035CA313075CA2007FB512FCB6FC15
F839000FC000A2131F5CA3133F91C7FCA35B137EA313FE5BA312015BA312035BA2157000
0714605B15E015C0000F130101C013801403EC070000071306140E5C6C6C5A000113F038
00FFC0013FC7FC1E3F7EBD23>I<013E140ED9FF80EB3F802603C3C0137F380703E03806
01F0120E121CD81803143F0038151F0030150FA2D87007140700605BA2D8E00F150000C0
497FEA001F4A5B1606133F91C7FC160E49140C137EA2161C01FE14185B16381630167048
48146016E05E150100005D15036D49C7FC1506017C130E017E5B6D137890380F81E06DB4
5AD900FEC8FC292D7DAB2F>118 D<013E1738D9FF80D901C013FC2603C3C0903907E001
FE380703E0380601F0000E150F001C16C0D8180316000038187E0030031F143E00705ED8
6007171E5C163FD8E00F92C7121C00C049160CEA001F4A49141C047E1418133F91C7FC04
FE1438491730017E5CA20301157001FE1760495C19E019C0A24949481301198018031900
606D0107140670130E017C010F5C017E010C1418013ED91CFC13386DD9387E13F0903B0F
C0F01F01C0903B03FFC00FFF809028007F0001FEC7FC3F2D7DAB46>I<02FCEB07E0903A
03FF801FFC903A0F07C0781E903A1C03E0E01F903A3801F1C07FD9700013804901FB13FF
4848EBFF00495B000316FE90C71438484A130012061401000E5C120CC7FC14035DA31407
5DA3140F5DA3021F143817305D1770023F1460121E003F16E0267F807FEB01C0026F1480
00FF01EF1303D901CFEB070000FE903887C00E267C03835B3A3C0F01E0783A1FFC00FFE0
D803F0EB3F80302D7EAB37>I<133ED9FF8014E02603C3C0EB03F0380703E0380601F000
0E1507001C16E0EA180312380030150F007016C0EA60075C161FD8E00F158000C05BEA00
1F4A133F1700133F91C7FC5E49147E137EA216FE01FE5C5BA215015E485AA215035EA200
001407150F6D5C017C131F153F6D13FF90391F03CFC0903807FF8F903801FC0F90C7121F
5EA2153F93C7FCD807C05BD81FE0137E5DA24848485A4A5A01805B39380007C00018495A
001C49C8FC6C137C380781F83803FFE0C66CC9FC2C407DAB30>I<027CEB018049B41303
4901801300010F6D5A49EBE00E6F5A90393F03F838903978007EF80170EB1FF00160EB01
E001E05C49495A90C748C7FC150E5D5D5D5D4A5A4A5A4AC8FC140E5C5C5C5CEB03C049C9
FC130E49141C4914185B49143848481430491470D8039014F048B4495A3A0FEFC007C039
1E03F01FD81C01B55A486C91C7FC485C00606D5A00E0EB3FF048EB0FC0292D7CAB2D>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fs cmr12 14.4 12
/Fs 12 118 df<EE03804C7EA34C7EA34C7EA34C7EA34C7EA24C7E16E7A203017F16C3A2
0303801681A2DB07017F82A2030E80177FA24B80173FA24B6D7EA20378800370130FA203
F0804B1307A20201814B7FA24A488183A24AC78083A2020E82187FA24A6F7E021FB7FC4A
82A30278C8EA1FFC0270150FA202F0824A1507A249488284A249488384A249CA7FA24984
010E177FA2011E84193F133E017F8448486C4C7E000F01E04B487EB500FE037FEBFFFEA4
4F557CD458>65 D<B812FEEFFFC018F818FE26007FF8C73807FF806D4802017F011F6F6C
7E727E727E727E727EA2727EA2721380A21AC0A384A360A21A80A2601A00A24E5A180F61
4E5A4E5AF0FFE04D1380050790C7FCEF7FFC91B712E08418FE02F0C73801FF809438007F
E0F01FF8727EF003FE857213807213C0F17FE0A2F13FF0A21AF8191FA21AFCA81AF8193F
A21AF0197FF1FFE0A24E13C04E1380604E1300F03FFC013FEEFFF8496C02075BBA12C096
C7FC18FC18C046527AD153>I<DC1FFC14034BB500C01307030F02F0130F037F14FC9128
01FFF800FF131F02070180EB1FC04A48C73807E03FDA3FF8913801F07FDA7FE0EC00F890
2601FF80ED3CFF4990C97E494882494882495A4948824948825C01FF834849177F91CBFC
48193F485AA24848181FA2121F49180FA2123FA2491807127FA31A005B12FFAE127F7FA3
1A07123F7FA2121FA26D180F000F190EA26C7E1A1E6C6C181C6C193C806C6D1778137F6E
17F06D6CEE01E06D7E6D6CEE03C06D6CEE07806D6CEE0F006D6D151E9026007FE0157CDA
3FF85DDA0FFEEC03F06E6C6CEB0FE0020101F8EBFF806E6CB548C7FC030F14F8030114E0
9226001FFEC8FC48567AD355>I<B812FEEFFFE018FC18FF26007FFCC7000F13C06D4802
017F011F9238003FF8F00FFC727EF001FF727F737E737E737E190F86737EA2737E737EA2
1B8085A21BC01A7F1BE0A4F23FF0A51BF8AE1BF0A4F27FE0A41BC01AFF1B80A24F1300A2
4F5AA24F5AA24F5A4F5A4F5A4F5A4F5A4E90C7FC4E5AF00FFCF03FF8013FEEFFE0496C02
0F5BBAC8FC18FC18E04DC9FC4D527BD159>I<49B612FEA490C7003F138092380FFE0015
07B3B3B3A21206EA3FC0487E487EA44B5AA25B007F5D0180131F0078C75B6C143F003E4A
5A6C5D6C6C495A2707E003FEC7FC3901FC07FC6CB512F0013F13C0D907FCC8FC2F547BD1
3C>74 D<B812C017FEEFFFC018F026007FFCC713FC6D48EC0FFF011F03017F9438007FE0
727E727E727E180785727EA28684A286A762A26097C7FCA24E5A614E5A4E5A4E5AF0FFC0
4D90C8FCEF0FFEEFFFF891B712C04DC9FC839126F8000113C09338003FF0EF0FFC717EEF
01FF85717F727EA2727EA2727EA985A81B0785180FA21B0F0607140E496C82496C6F141E
B76EEB801C72EBC03C96387FE0F896381FFFF0CC000713E09638007F8050547BD156>82
D<DA3FF0130349B55B010714C0011FECF00F903A7FE00FF81F49C712FED801FCEC3F3F48
48EC1FBF48486EB4FC48481403485A4980003F8190C97E5A83127E8312FEA283A37E837F
A27F007F93C7FC7F7FEA3FFC7F6C6C7E14F86CEBFF806C14F8EDFF806C15F06C15FE6C6C
806D15C0010F81010315F8D9007F80140F020080030F7F03001480161F040713C0160182
EF7FE0A2173FEF1FF0A200E0160FA31707A37EA318E07E170F7E18C06C161F6C17806D15
3F6D16006D157E6D15FED8FCFC4A5A017F4A5A26F83FC0EB0FF0D90FFEEB7FC0D8F003B6
5A48C64AC7FC023F13F848010113C034567AD341>I<003FBB12C0A449C79038F0000701
F06E48130001C0183F48C8EE0FE0007E1907007C1903A200781901A400701900A500F01A
F0481A70A6C91700B3B3AC4C7E030313FC027FB712E0A44C517CD055>I<EF1FC0DA3FE0
EBFFE0902701FFFC0313F001079039FF07E1F8903A1FE03FCF01903A3F800FFC03903A7F
0007F80101FE010314F04848903901FC004000036F1300491300000781A24980000F82A8
000793C7FC6D5CA200035D6D130100015D6C6C495A017F495A6E485A9039FFE03FC0D801
C7B5C8FC01C113FC3903803FE091CAFCA57FA27F7F7F6CB612E016FF6C16C017F0013F15
FC8390B8FCD803F8C7001F1380D80FE0020113C04848EC007F4848ED1FE090C9120F127E
EF07F012FE481603A56C1607007E17E0007F160F6C6CED1FC06C6CED3F806C6CED7F006C
6C15FED803FCEC03FCC6B4EC0FF0D93FF0EBFFC0010FB6C7FC010114F8D9001F1380354E
7DB43B>103 D<1378EA01FE487E487FA66C90C7FC6C5AEA007890C8FCB0EB7F80B5FCA4
1203C6FC137FB3B3A43801FFE0B61280A419507CCF21>105 D<01FFEB07FCB590383FFF
8092B512E0913901F00FF8913903C007FC000349C66C7EC6010E13016D486D7E5C143002
706E7E146014E05CA35CB3AD2601FFE0903801FFE0B600C0B612C0A43A347CB341>110
D<D97F80EC7F80B591B5FCA400031503C61500017F157FB3AC17FFA35EA3013F5C6EEB07
7FA2011F020E7F6D6C011C13F06E0178EBFFC0903903FC01F06DB512E06D6C1380912607
FC00EB80003A357CB341>117 D E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Ft cmbx12 14.4 15
/Ft 15 87 df<171F4D7E4D7EA24D7EA34C7FA24C7FA34C7FA34C7FA24C7FA34C808304
7F80167E8304FE804C7E03018116F8830303814C7E03078116E083030F814C7E031F8116
8083033F8293C77E4B82157E8403FE824B800201835D840203834B800207835D844AB87E
A24A83A3DA3F80C88092C97E4A84A2027E8202FE844A82010185A24A820103854A820107
85A24A82010F855C011F717FEBFFFCB600F8020FB712E0A55B547BD366>65
D<932601FFFCEC01C0047FD9FFC013030307B600F81307033F03FE131F92B8EA803F0203
DAE003EBC07F020F01FCC7383FF0FF023F01E0EC0FF94A01800203B5FC494848C9FC4901
F8824949824949824949824949824990CA7E494883A2484983485B1B7F485B481A3FA248
49181FA3485B1B0FA25AA298C7FC5CA2B5FCAE7EA280A2F307C07EA36C7FA21B0F6C6D19
80A26C1A1F6C7F1C006C6D606C6D187EA26D6C606D6D4C5A6D6D16036D6D4C5A6D6D4C5A
6D01FC4C5A6D6DEE7F806D6C6C6C4BC7FC6E01E0EC07FE020F01FEEC1FF80203903AFFE0
01FFF0020091B612C0033F93C8FC030715FCDB007F14E0040101FCC9FC525479D261>67
D<BC1280A5D8000701F8C7000114C0F0001F19071901851A7F1A3F1A1FA2F20FE0A21A07
A31A03A318F81BF01A01A497C7FC1701A317031707170F177F92B6FCA59238F8007F170F
170717031701A317001B3EA31B7CA395C8FCA21BFCA21BF8A21A01A31A031BF01A071A0F
A21A1F1A3FF27FE0F101FF1907191F0603B5FCBCFCA21BC0A34F517CD058>69
D<BB12FEA5D8000701F8C700077FF0007F191F190785858586861B80A21A1FA31A0FA41B
C006F81307A497C7FCA31701A317031707170F177F92B6FCA59238F8007F170F17071703
1701A31700A795C9FCB3B812F8A54A517CD055>I<B812C0A5D8000701F8C7FCB3B3B3B2
B812C0A52A527CD132>73 D<B812F8A5D8000701F8CAFCB3B3A91A7CA41AFC1AF8A51901
A31903A219071AF0190FA2191F193F197F19FF180360183F4DB5FCBB12E0A546527CD151
>76 D<B600FC073FB512FE6F61A26F96B6FCA2D80007F5C00070EF01EFA202EF6DEF03CF
A202E76DEF078FA202E36DEF0F0FA202E16D171EA302E06D173CA26F6C1778A26F6C17F0
A26F6DED01E0A26F6DED03C0A36F6DED0780A26F6DED0F00A26F6D151EA26F6D5DA3706C
5DA2706C5DA2706D495AA2706D495AA2706D495AA3706D49C7FCA2706D131EA2706D5BA2
716C5BA3716C5BA271EB81E0A271EBC3C0A271EBE780A27101FFC8FCA3715BA2715BA272
5AA2725AA2D93FFC6F5AB74DB712FEA2725AA2725A77527CD180>I<B600FC93B7FC8181
A282D800076E9239003FFC0070EE07E08282A28202EF7F02E77F02E380A202E18002E080
6F7F6F7F6F7FA26F7F6F7F6F806F80A26F80707F707F707F707FA2707F70807080708085
83717F717F717F717FA27114807114C07114E07213F07213F8A27213FC7213FE7213FF72
1487A27214C77214E77313F77313FF85A285858585A28586868686A286868686A2D93FFC
187FB7173F1B1F1B0F1B07755A60527CD169>I<93380FFFC00303B6FC031F15E092B712
FC0203D9FC0013FF020F01C0010F13C0023F90C7000313F0DA7FFC02007F494848ED7FFE
4901E0ED1FFF49496F7F49496F7F4990C96C7F49854948707F4948707FA24849717E4886
4A83481B804A83481BC0A2481BE04A83A2481BF0A348497113F8A5B51AFCAF6C1BF86E5F
A46C1BF0A26E5F6C1BE0A36C6D4D13C0A26C6D4D1380A26C1B006C6D4D5A6E5E6C626D6C
4C5B6D6D4B5B6D6D4B5B6D6D4B5B6D6D4B5B6D6D4B90C7FC6D6D4B5A6D01FF02035B023F
01E0011F13F0020F01FC90B512C0020390B7C8FC020016FC031F15E0030392C9FCDB001F
13E0565479D265>I<BAFC19F819FF1AE086D8000701F0C7001F13FC060113FF726C1380
7313C0070F13E01BF0857313F81BFCA27313FEA41BFFA81BFEA31BFC61A21BF84F13F04F
13E0614F13C04F13004E485A061F5B92B812F01AC04FC7FC19E003F8CBFCB3AEB812C0A5
50527CD15C>I<B912F0F0FF8019F819FF1AC0D8000701F0C714F0060F7F060113FE727F
737F737F85737F87A2737FA387A863A2616363A24F5B4F5B4F90C8FC4F5A06035B060F13
F095B512C092B8C9FC19F819E019F89226F0000313FE9439007FFF80727F727F727F727F
727F8684A28684A787A71D1C75133EA38575137E73157C7513FC731401B86C6D9038F803
F807039038FE07F07390B512E0736C14C0080F1400CEEA7FFC5F537CD164>82
D<91260FFF80130791B500F85B010702FF5B011FEDC03F49EDF07F9026FFFC006D5A4801
E0EB0FFD4801800101B5FC4848C87E48488149150F001F824981123F4981007F82A28412
FF84A27FA26D82A27F7F6D93C7FC14C06C13F014FF15F86CECFF8016FC6CEDFFC017F06C
16FC6C16FF6C17C06C836C836D826D82010F821303010082021F16801400030F15C0ED00
7F040714E01600173F050F13F08383A200788200F882A3187FA27EA219E07EA26CEFFFC0
A27F6D4B13806D17006D5D01FC4B5A01FF4B5A02C04A5A02F8EC7FF0903B1FFFC003FFE0
486C90B65AD8FC0393C7FC48C66C14FC48010F14F048D9007F90C8FC3C5479D24B>I<00
3FBC1280A59126C0003F9038C0007F49C71607D87FF8060113C001E08449197F49193F90
C8171FA2007E1A0FA3007C1A07A500FC1BE0481A03A6C994C7FCB3B3AC91B912F0A55351
7BD05E>I<B800C00103B612FCA5D8000701F8CAEBF000F31F80B3B3B11B3FA26D97C7FC
81637F1B7E6D6D17FE505A6E7E505A6E6D15076E4D5A6E6D4B5A6E6D4B5A6E01F84B5A6E
6DDA03FFC8FC6E6CB46CEB0FFE6F9039F001FFF8030F90B65A030316C0DB007F92C9FC04
0F14F8DC007F13805E537CD167>I<B700FE031FB512FEA5D8001F01F0CA383FFE00F307
F06D626F170F6D62811B1F6D6D601B3F6D97C7FC6F5F6D197E821BFE6E6D5E1A016E6D5E
1A036E60701507A26E6D5E1A0F6E6D5E1A1F6E6070153FA26E6D93C8FC626E6E147E1AFE
6F5E711301A26F6D5C19036F6D5C19076F5E71130FA26F6D5C191F6F6D5C193F6F93C9FC
715BA26FEC807E19FE706D5A18C1705C18E3705C18F318F770EBFFE0A2705CA2705CA370
91CAFCA2705BA2715AA3715AA2715AA2715A715A5F537DD166>I
E
%EndDVIPSBitmapFont
%DVIPSBitmapFont: Fu cmr12 12 91
/Fu 91 128 df<1618163CA2167EA216FFA24B7FA24B6C7EA29238063FE0A24B6C7EA24B
6C7EA292383807FC153092387003FE15609238E001FF15C002016D7F5D02036E7E92C7FC
4A6E7E1406020E6E7E140C021C6E7E141802386E7E143002706E7E146002E06E7E5C0101
6F7F5C0103707E91C9FC183F010683181F4983180F49831807498318034983A249707EA2
4848701380A248CBEA7FC0A20006F03FE0A248F01FF0A2001FBA12F8A24819FCA24819FE
A2BCFC48477CC651>1 D<BAFCA3D87FE0C8123F050313806C6CED007F6C6C163F181F6C
6C160F6C6C160718036C6C17C06C1701806C7F017F1600806D7E011F17E06E16606D7E13
076E16006D7E7F816D7F147F816E7E141F816E7E1407A214036E5A5D6E5A4A5A4A5A92CA
FC5C140E5C4A16605C5C4A16E0010117C0495A49CAFC010E16015B5B4916030160178001
E016074848160F4848161F48CA123F000E177F48EE03FF0018167F003FB912005ABAFCA2
3B447BC346>6 D<ED7FF0020FB57E91393FC01FE09139FE0003F8D903F8EB00FED90FE0
EC3F8049486E7ED97F80EC0FF049C86C7E48486F7E48486F7E00078349814848EE7F80A2
001F18C049163F003F18E0A34848EE1FF0AA6C6CEE3FE0A4001F18C06D167F000F1880A2
6C6CEEFF00A200035F6D150100015F00005F6D1503017E5E017F15076D5E6D5E6E140F01
0F5E010793C7FC6E5C0103151E00C018186D6C5CA2D86000033813306E147802701470A2
0070013002601370003018600038013802E013E0263FFFF891B5FCA36C18C0A33D467CC5
46>10 D<9239FFC001FC020F9038F80FFF913B3F803E3F03C0913BFC00077E07E0D903F8
90390FFC0FF0494890383FF81F4948EB7FF0495A494814E049C7FCF00FE04991393FC003
8049021F90C7FCAFB912F0A3C648C7D81FC0C7FCB3B2486CEC3FF0007FD9FC0FB512E0A3
3C467EC539>I<4AB4FC020F13E091387F80F8903901FC001C49487FD907E0130F494813
7F011FECFF80495A49C7FCA25B49EC7F00163E93C7FCACEE3F80B8FCA3C648C7FC167F16
3FB3B0486CEC7FC0007FD9FC1FB5FCA330467EC536>I<913801FFC0020FEBFB8091387F
803F903801FC00494813FFEB07E0EB1FC0A2495A49C7FC167F49143F5BAFB8FCA3C648C7
123FB3B2486CEC7FC0007FD9FC1FB5FCA330467EC536>I<DBFF80EB3FE0020F9039F001
FFFC913B3F807C0FF01F913CFC000E3F800380D903F86D48486C7E4948D90FFC804948D9
3FF8130F4948017F4A7E49485C49C75BA25B494B6D5A041F6E5A96C8FCACF107F0BBFCA3
C648C7391FC0001F190F1907B3B0486C4A6C497E007FD9FC0FB50083B512E0A34B467EC5
51>I<131F1480133F137FA2EBFF00485A485A5B485A485A138048C7FC123E123C5A12E0
124011126CC431>19 D<B712C0A3220379B931>22 D<001EEB03C0397F800FF000FF131F
01C013F8A201E013FCA3007F130F391E6003CC0000EB000CA401E0131C491318A3000114
384913300003147090C712604814E0000614C0000E130148EB038048EB070048130E0060
130C1E1D7DC431>34 D<D91F801618D97FE0163CD9F078167C2603E01C16FC48486C4B5A
260F800F4B5A6E6C1407271F0003E04A5A6FEC3FC0003ED901BE14FF923ACFC00FCF8000
7ED900C1B5001FC7FC9238C03FF0007C92C7123E6F147E00FC0260147C601701604D5A17
07604D5A171F95C8FC173E007C02E0137E4B137C007E5E1601003E01015C4B485A6C1303
4B485A6C6C48130F020E5C2607C00C49C9FC2603E01C5B2600F078133ED97FE05BD91F80
01FCEB03F090C848EB0FFC4B48EB1E0F030391387C03804CEBF801922707C001F013C003
0FED00E04C48481360DB1F0015704D481330033E1638037E010F1418157C4B5C0201171C
4B011F140C4A5A14075D4A5A141F92C7FC143E147E147C5C0101030F141C4A1718494881
A2494802071438010F18304A6E6C137049C81560496F6C13E0013EEF01C049DB00F81380
01FCEE7C034993381E0F0049EE0FFC0160EE03F046517BCA51>37
D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0A312011380120313005A
1206120E5A5A5A12600B1D78C41B>39 D<140C141C1438147014E0EB01C01303EB0780EB
0F00A2131E5BA25B13F85B12015B1203A2485AA3485AA348C7FCA35AA2123EA2127EA412
7CA312FCB3A2127CA3127EA4123EA2123FA27EA36C7EA36C7EA36C7EA212017F12007F13
787FA27F7FA2EB0780EB03C01301EB00E014701438141C140C166476CA26>I<12C07E12
707E7E7E120F6C7E6C7EA26C7E6C7EA21378137C133C133E131E131FA2EB0F80A3EB07C0
A3EB03E0A314F0A21301A214F8A41300A314FCB3A214F8A31301A414F0A21303A214E0A3
EB07C0A3EB0F80A3EB1F00A2131E133E133C137C13785BA2485A485AA2485A48C7FC120E
5A5A5A5A5A16647BCA26>I<16C04B7EB3AB007FBAFCBB1280A26C1900C8D801E0C9FCB3
AB6F5A41407BB84C>43 D<121EEA7F8012FF13C0A213E0A3127FEA1E601200A413E013C0
A312011380120313005A1206120E5A5A5A12600B1D78891B>I<B612C0A61A067F9721>I<
121EEA7F80A2EAFFC0A4EA7F80A2EA1E000A0A78891B>I<1618163C167CA2167816F8A2
16F01501A216E01503A216C01507A21680150FA2ED1F00A2151E153EA2153C157CA21578
15F8A25D1401A24A5AA25D1407A25D140FA292C7FC5CA2141E143EA2143C147CA25CA25C
1301A25C1303A25C1307A25C130FA291C8FC5BA2133EA2133C137CA2137813F8A25B1201
A25B1203A2485AA25B120FA290C9FC5AA2121E123EA2123C127CA2127812F8A25A126026
647BCA31>I<14FF010713E090381F81F890383E007C01FC133F4848EB1F8049130F4848
EB07C04848EB03E0A2000F15F0491301001F15F8A2003F15FCA390C8FC4815FEA54815FF
B3A46C15FEA56D1301003F15FCA3001F15F8A26C6CEB03F0A36C6CEB07E0000315C06D13
0F6C6CEB1F806C6CEB3F00013E137C90381F81F8903807FFE0010090C7FC28447CC131>
I<143014F013011303131F13FFB5FC13E713071200B3B3B0497E497E007FB6FCA3204278
C131>I<EB03FE90381FFFC0017F13F03901F80FFC3903C001FE48486C7E000EC7EA7F80
48EC3FC0ED1FE04815F00030140F007015F800601407126CB415FC7F7F1503A46C481307
6CC7FCC8FC16F8A2150F16F0151F16E0A2ED3FC0ED7F8016005D5D4A5A4A5A4A5A5D4A5A
4A5A4AC7FC147C5C5C495A495A495A49C7120C131E5B013814185B5B485A4848143848C8
1230000E1570001FB612F0A25A5AB712E0A326427BC131>I<49B4FC010F13E0013F13FC
9038FE01FE3A01F0007F80D803C0EB3FC048C7EA1FE0120EED0FF0EA0FE0486C14F8A215
077F5BA26C48130FEA03C0C813F0A3ED1FE0A2ED3FC01680ED7F0015FE4A5AEC03F0EC1F
C0D90FFFC7FC15F090380001FCEC007FED3F80ED1FC0ED0FE016F0ED07F816FC150316FE
A2150116FFA3121EEA7F80487EA416FE491303A2007EC713FC00701407003015F8003814
0F6C15F06CEC1FE06C6CEB3FC0D803E0EB7F803A01FE01FE0039007FFFF8010F13E00101
90C7FC28447CC131>I<ED0380A21507150FA2151F153FA2157F15FFA25CEC03BF153F14
071406140C141C141814301470146014C013011480EB03005B13065B131C13185B137013
6013E0485A5B120390C7FC1206120E120C5A123812305A12E0B812C0A3C8383F8000ADED
FFE0027FEBFFC0A32A437DC231>I<000615C0D807C0130701FCEB7F8090B612005D5D5D
15E0158026063FFCC7FC90C9FCAE14FF010713C090381F01F090383800FC01F0137ED807
C07F49EB1F8016C090C7120F000615E0C8EA07F0A316F81503A216FCA5123E127F487EA4
16F890C712075A006015F0A20070140F003015E00038EC1FC07E001EEC3F806CEC7F006C
6C13FE6C6C485A3901F807F039007FFFE0011F90C7FCEB07F826447BC131>I<EC07FCEC
3FFF91B512C0903903FC03E0903907E000F0D91FC0133849C71258017EEB01FC01FE1303
491307485A485AA24848EB03F8000FEC01F092C7FC485AA3485AA3127FA29038007F8090
3801FFF090380780FC39FF0E003E49EB1F8049EB0FC049EB07E0136001E0EB03F04914F8
150116FC5BED00FEA390C812FFA47EA57F123FA216FE121F15016D14FC120FED03F86C7E
ED07F06C6C14E06C6CEB0FC06C6CEB1F80017EEB3F0090383F80FE90380FFFF8010313E0
0100138028447CC131>I<121CA2EA1F8090B712C0A3481680A217005E0038C8120C0030
151C00705D0060153016705E5E4814014B5A4BC7FCC81206150E5D151815385D156015E0
4A5AA24A5A140792C8FC5CA25C141E143EA2147E147CA214FCA21301A3495AA41307A613
0FAA6D5AEB01C02A457BC231>I<14FF010713E0011F13F890387F00FE01FC133FD801F0
EB1F804848EB0FC049EB07E00007EC03F048481301A290C713F8481400A47FA26D130116
F07F6C6CEB03E013FC6C6CEB07C09039FF800F806C9038C01F006CEBF03EECF87839007F
FEF090383FFFC07F01077F6D13F8497F90381E7FFFD97C1F1380496C13C02601E00313E0
48486C13F000079038007FF84848EB3FFC48C7120F003EEC07FE150148140016FF167F48
153FA2161FA56C151E007C153EA2007E153C003E157C6C15F86DEB01F06C6CEB03E06C6C
EB07C0D803F8EB1F80C6B4EBFF0090383FFFFC010F13F00101138028447CC131>I<14FF
010713E0011F13F890387F80FC9038FC007E48487F4848EB1F804848EB0FC0000FEC07E0
485AED03F0485A16F8007F140190C713FCA25AA216FE1500A516FFA46C5CA36C7E5D121F
7F000F5C6C6C1306150E6C6C5B6C6C5BD8007C5B90383F01E090390FFF80FE903801FE00
90C8FC150116FCA4ED03F8A216F0D80F801307486C14E0486C130F16C0ED1F80A249EB3F
0049137E001EC75A001C495A000F495A3907E01FE06CB51280C649C7FCEB1FF028447CC1
31>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121EEA7F80A2EAFFC0A4EA7F
80A2EA1E000A2B78AA1B>I<121EEA7F80A2EAFFC0A4EA7F80A2EA1E00C7FCB3A5121E12
7FEAFF80A213C0A4127F121E1200A512011380A3120313005A1206120E120C121C5A5A12
600A3E78AA1B>I<007FBAFCBB1280A26C1900CEFCB0007FBAFCBB1280A26C190041187B
A44C>61 D<EB0FFC90387FFFC03901F007F039078001FC000EC77E48147F48EC3F804815
C00060141F00FE15E07E7FA56CC7FC001CEC3FC0C8FCED7F80A2EDFF004A5AEC03F84A5A
5D4A5A4A5A92C7FC143E143C5CA2147014F05CA25C1301A35CA990C9FCAAEB03C0EB0FF0
A2497EA46D5AA2EB03C023467BC52E>63 D<16C04B7EA34B7EA34B7EA34B7EA3ED19FEA3
ED30FFA203707FED607FA203E07FEDC03FA2020180ED801FA2DA03007F160FA202068016
07A24A6D7EA34A6D7EA34A6D7EA20270810260147FA202E08191B7FCA249820280C7121F
A249C87F170FA20106821707A2496F7EA3496F7EA3496F7EA201788313F8486C83D80FFF
03037FB500E0027FEBFFC0A342477DC649>65 D<B8FC17E017FC00019039C00003FF6C6C
4801007FEF3FC0717E717E717E84170384170184A760A21703601707604D5A4D5AEF7FC0
4DC7FCEE03FEEE3FF091B65A17FC0280C7B47EEF1FC0EF0FF0717E717E717E717E198018
7F19C0A2183F19E0A8F07FC0A2198018FF4D1300A24D5AEF0FFC4D5AEF7FE048486C9038
03FFC0B9C7FC17FC17C03B447CC345>I<DB0FFE146092B500C013E0020314F0913A0FFC
01FC0191393FC0003E02FFC7EA0F83D903FCEC03C74948EC01E74948EC00FF4948157F49
48153F4948151F49C9120F485A491607120348481603A248481601A248481600A2123FA2
491760127FA31900485AAE6C7EA21960A2123F7FA2001F18E07F000F18C0A26C6C160119
806C6C160312016DEE07006C6C16066D6C150E6D6C5D6D6C5D6D6C15786D6C5D6D6C4A5A
D900FFEC0780DA3FC0011FC7FCDA0FFC13FC0203B512F0020014C0DB0FFEC8FC3B487BC5
46>I<B8FC17F017FC00019039C00007FF6C499038007FC0017FED1FE0EF07F0EF03FC71
7E717E84727E727E727EA2727E85180385A2180185A38584A31A80AD1A00A36061A36118
0361180761180F614E5A183F614EC7FC18FEEF03FC4D5AEF1FE001FFED7FC0486DD907FF
C8FCB812FC17F094C9FC41447CC34B>I<B912F8A3000101C0C7127F6C6C48EC07FC1701
1700187C183C181CA284A31806A4180704067FA395C7FCA4160EA2161E163E16FE91B5FC
A3EC8000163E161E160EA21606A319C0A3F0018093C7FCA41803A21900A260A260A2181E
A2183E187EEF01FE170748486C147FB95AA33A447CC342>I<B912F0A3000101C0C7127F
6C6C48EC0FF817031701170018781838A2181CA3180CA4180E1806160CA21800A5161CA2
163C167CED01FC91B5FCA3EC8001ED007C163C161CA2160CA793C8FCB08048487EB612F8
A337447CC340>I<DB0FFE146092B500C013E0020314F0913A0FFC01FC0191393FC0003E
02FFC7EA0F83D903FCEC03C74948EC01E74948EC00FF4948157F4948153F4948151F49C9
120F485A491607120348481603A248481601A248481600A2123FA2491760127FA396C7FC
485AAD4CB612C06C7EA293C7387FF000725A003F171F7FA2121F7F120FA26C7EA26C7E6C
7EA26C7E6D7E6D6C153F6D7E6D6C157F6D6C15E7D903FEEC01C7D900FFEC0383DA3FE0EB
0F01DA0FFCEBFE000203B500F81360020002E090C7FCDB0FFEC9FC42487BC54D>I<B6D8
C003B6FCA3000101E0C70007138026007F80913801FE00B3A991B7FCA30280C71201B3AC
2601FFE0913807FF80B6D8C003B6FCA340447CC349>I<B612F0A3C6EBF0006D5A6D5AB3
B3B3A4497E497EB612F0A31C447DC323>I<010FB512FEA3D9000313806E130080B3B3AB
123F487E487EA44A5A13801300006C495A00705C6C13076C5C6C495A6CEB1F802603E07F
C7FC3800FFFCEB1FE027467BC332>I<B600C049B512C0A3000101E0C8387FFC006C49ED
3FE06D481680063EC7FC183C183860604D5A4D5A4DC8FC171E17385F5F4C5A4C5A4CC9FC
160E5E5E5E5E4B5A4B7E4B7E150F4B7E4B7E1577EDE3FE913881C1FFEC8381DA87007F02
8E6D7E149C02B86D7E02F06D7E14C04A6D7E707EA2707E707EA2707F717EA2717E717EA2
717E717EA2717E717EA2717F8585496C82486D4A13FCB600C0011FEBFFE0A343447CC34C
>I<B612F8A3000101E0C9FC6C6C5A5CB3B31830A418701860A518E0A3EF01C0A2170317
07A2170F173F177FEE01FF48486C011F1380B9FCA334447CC33D>I<B56C933807FFFC6E
5EA20001F1FE0026006FE0EE1BF8A3D967F01633A2D963F81663A3D961FC16C3A3D960FE
ED0183A2027FED0303A36E6C1406A36E6C140CA26E6C1418A36E6C1430A36E6C1460A26E
6C14C0A36E6CEB0180A3037FEB0300A292383F8006A36F6C5AA36F6C5AA26F6C5AA36F6C
5AA36F6C5AA26FB45AA370C7FC13F0A2486C143ED80FFFEF0FFEB500F0011C0107B512FC
A34E447BC359>I<B56C020FB5FC8080C6040013F06D6CED1F80D96FF8ED0F00A2D967FC
1506EB63FEA2EB61FF01607FA26E7E6E7EA26E7E6E7EA26E7E6E7EA26E7E6E7FA26F7E6F
7EA26F7E6F7EA26F7E6F7EA26F7E6F1380A2EE7FC0EE3FE0A2EE1FF0EE0FF8A2EE07FCEE
03FEA2EE01FF701386A2EF7FC6EF3FE6A2EF1FF6EF0FFEA217071703A217011700A201F0
167E183E487ED80FFF161EB500F0150EA2180640447CC349>I<ED1FFC4AB512C0913907
F007F091391F8000FC027EC7123FD901F8EC0FC049486E7E49486E7E49486E7E49486E7E
49C9127E017E8201FE834848707E4848707EA24848707EA2000F84491603001F84A24848
707EA3007F84A24982A300FF1980AD6C6C4C1300A4003F606D1603A2001F60A26C6C4C5A
A26C6C4C5AA20003606D161F6C6C4C5A000060017F4CC7FC6E5D013F5E6D6C4A5AD907E0
EC03F06D6C4A5AD901FCEC1FC0D9007E4AC8FCDA1F8013FC913907F007F00201B512C091
26001FFCC9FC41487BC54C>I<B712FCEEFFC017F800019039C0000FFC6C6C48EB01FF93
38007F80EF1FE0170FEF07F018F8EF03FCA218FE1701A218FFA718FEA2170318FCA2EF07
F818F0EF0FE0EF1FC0EF7F80933801FE00EE0FFC91B612F017800280C9FCB3AA3801FFE0
B612C0A338447CC342>I<ED1FFC4AB512C0913907F007F091391F8000FC027EC7123F49
48EC1FC0D903F0EC07E049486E7E49486E7E49486E7E49C9127E49167F01FE707E484870
7E00038449160F000784491607000F84A24848707EA2003F84491601A2007F84A34982A2
00FF1980AD007F19006D5EA3003F60A26D1603001F60A2000F606D16070007606DD903F0
130F0003DA0FFC5C6DD91C0E131F00014A6C5C6C6C903A3003803F80017FD9700149C7FC
92386000C0D93F8015FED91FC0ECE1FCD907E0EC63F0D903F0EC77E0902601FC70EB7FC0
9026007E3091C8FCDA1FB813FC912707FC07F814C00201B57E9139001FFC3C92C7FC053E
1301171E051F13031A80F08007F0C00F94380FF03F95B51200A28361715BA2715B943800
7FE0F01F8042597BC54C>I<B712E016FF17C000019039C0003FF86C6C48EB03FCEE00FF
717E717E717E717E717EA284170384A760A21707604D5AA24D5A4D5A4DC8FCEE01FEEE07
F8EE3FE091B6C9FC16FC913980007F80EE0FE0707EEE03FC707E160083717EA2717EA784
A71A6084171FA21AE0716C13C02601FFE002071301B600C01680943801FC03943900FE07
00CBEA3FFEF007F843467CC348>I<49B41303010FEBE007013F13F89039FE00FE0FD801
F8131FD807E0EB079F49EB03DF48486DB4FC48C8FC4881003E81127E82127C00FC81A282
A37E82A27EA26C6C91C7FC7F7FEA3FF813FE381FFFE06C13FE6CEBFFE06C14FC6C14FF6C
15C0013F14F0010F80010180D9001F7F14019138001FFF03031380816F13C0167F163F16
1F17E000C0150FA31607A37EA36C16C0160F7E17806C151F6C16006C5D6D147ED8FBC05C
D8F9F0495AD8F07C495A90393FC00FE0D8E00FB51280010149C7FC39C0003FF02B487BC5
36>I<003FB912F8A3903BF0001FF8001F01806D481303003EC7150048187C0078183CA2
0070181CA30060180CA5481806A5C81600B3B3A54B7EED7FFE49B77EA33F447DC346>I<
B600C0010FB5FCA3000101E0C813F026007F80ED1F80F00F00A21806B3B3A7180E6D6C15
0CA2181C131F6E1518010F163818306D6C1570606D6C14016D6C5D6D6CEC0780027F4AC7
FC6E6C131EDA1FE0137C913907FC03F00201B55A6E6C1380DB07FCC8FC40467CC349>I<
B692383FFFF0A3000301E003071300C649ED01FC4A5E017F705A6E5E133F616E1501011F
5FA26D6C4BC7FCA28001071606A26E150E0103160CA26D6C5DA2806D5EA26F1470027F15
6081023F5DA281021F4A5AA26F1303020F92C8FC8102071406A26F130E0203140CA26E6C
5BA2816E5CA2EE8070037F1360A26F6C5AA216E092381FE180A216F3030F90C9FC16FBED
07FEA36F5AA36F5AA26F5AA3166044467EC349>I<B60107B500F890380FFFFEA3000301
E0D9001F90C813F06C0180DA0FFCED3FC091C86C48ED1F006C871C0E6D6C6E7E1C0CA26D
6C6F5DA36EDA06FF1538011F1A30A26E020E6D1470010FDB0C7F1560A26E021C7F0107DB
183F5DA2856D6CDA301F4A5AA36D6C4A6C6C49C7FCA36D6C4A6C6C1306A3DB80016E130E
027FDA8003140CA2DBC00380023FDA00015CA203E081021F01066D5CA36E6C486E6C5AA3
6E6C486E6C5AA36F48EC1FE1020360A2DBFE7015F302010160020F90C8FCA2DBFFE015FB
6E49EC07FEA36F486E5AA36FC86C5AA3031E6F5AA4030C16605F467EC364>I<003FB500
E0011FB5FCA3C691C7000713E0D93FFC020190C7FC6D4815FC010F6F5A6D6C15E0A26D6C
4A5A6D6C5D4DC8FC6D6D5B6E6C13065F6E6C131C6E6C13185F6E6C13706E6C13605F9138
03FE01DA01FF5B4CC9FC6E1387ED7FC616CCED3FFC6F5A5E6F7E6F7EA26F7E82A203067F
150E92380C7FC04B6C7E15389238301FF04B6C7E15E04B6C7E4A486C7E14034B6C7E0206
6D7F140E020C6E7E4A6E7E143802306E7E4A6E7E14E04A6E7E49486E7E130349C86C7E49
6F7F5B496C8201FF83000701E0020313F8B500F8021FEBFFF0A344447EC349>I<B66C91
380FFFFCA3000101F8C8000313C026007FE0923800FE0061013F17F06D6C5E80010F5F6D
6C4B5A18036D6C93C7FC6E15066D160E6D6D140C181C6E6C14186E6C5C18706E6C146018
E06E6C5C6E6C495A17036E6C91C8FC5F6E6C13066E6D5A171C92387FC0185FED3FE06F6C
5A17E06F6C5AEEF980ED07FF6F90C9FCA26F5AB3A6923807FF800203B6FCA346447FC349
>I<001FB81280A39126800001130001FCC7FC01F04A5A01C04A5A5B90C8485A121E4C5A
484B5AA200384B5A4C5AA24B90C7FC00304A5AA24B5AA24B5AC8485AA24B5A4B5AA24B5A
5C93C8FC4A5AA24A5A4A5AA24A5A4A5AA24A5A14FF5D4990C9FCEF0180495A495AA2495A
494814031800495AA2495A495A5F4890C8FC485A5F485A48485D5F48485D17FE48481403
4848140F16FFB8FCA331447BC33C>I<EAFFFCA4EAF000B3B3B3B3B3A2EAFFFCA40E6476
CA1B>I<01C01318000114384848137048C712E0000EEB01C0000C1480001C1303001814
0000385B003013060070130E0060130CA300E0131C481318A400CFEB19E039FFC01FF801
E013FCA3007F130FA2003F130701C013F8390F0001E01E1D71C431>I<EAFFFCA4EA003C
B3B3B3B3B3A2EAFFFCA40E647ECA1B>I<130C131E133F497EEBF3C03801E1E03803C0F0
3807807848487E001E7F487F0070EB038048EB01C00040EB00801A0E75C331>I<EB07FC
90383FFF809038F80FE03903C003F048C66C7E000E6D7ED80FC0137E486C137F6D6D7EA3
6F7EA26C5AEA0380C8FCA4EC0FFF49B5FC90380FFE1FEB3FC0EBFF00EA03FC485A485A48
5A485A127F5B176048C7FCA3153FA36D137F007F14EF6D9038C7E0C0003F13013A1FE007
83F13B07F81E03FF802701FFFC0113003A001FE0007C2B2E7CAC31>97
D<EA01FC12FFA3120712031201B3EC03FC91380FFF8091383C07E091387001F89039FDE0
007E02807F01FFEC1F8091C713C049EC0FE049140717F0A2EE03F8A217FCA2160117FEAB
17FC1603A217F8A2EE07F0A26DEC0FE017C06D141F01FBEC3F80D9F380EB7E00D9E1C05B
9039E0F001F89039C03C07E09039801FFF80C7D803FCC7FC2F467DC436>I<EC7F809038
03FFF090380FC07C90383F000F01FCEB03804848EB01C00003140F4848EB1FE049133F12
0F485AA2485AED1FC0007FEC070092C7FCA290C9FC5AAB7E7FA2123F16307F001F15706C
6C146016E06C6C14C06C6C13010001EC03806C6CEB0700013F131E90381FC078903807FF
F001001380242E7DAC2B>I<167FED3FFFA315018182B3EC7F80903803FFF090380FC07C
90383F000E017E1307496D5AD803F87F48487F5B000F81485AA2485AA2127FA290C8FC5A
AB7E7FA2123FA26C7EA2000F5D7F6C6C5B00035C6C6C9038077F806C6C010E13C0013F01
1C13FE90380FC0F8903803FFE09026007F0013002F467DC436>I<EB01FE903807FFC090
381F03F090387E00FC49137E48487F485A4848EB1F80000F15C049130F121F484814E015
07A2007F15F090C7FCA25AA390B6FCA290C9FCA67EA27FA2123F16306C7E1670000F1560
6D14E06C6C14C0000314016C6CEB03806C6CEB0700013E131E90381F80F8903803FFE001
0090C7FC242E7DAC2B>I<EC0FE0EC7FF8903801F81E903803F03F90390FE07F8090381F
C0FF5C133F495AA2ED7F0001FE131C92C7FCAFB67EA3C648C8FCB3B2486C7E007F13FFA3
21467EC51E>I<EE0F80D901FCEB7FE0903A0FFF81F0F090393F07E3819039FC01FF033A
01F800FE014848017E13E00007027FC7FC497F000F8149131F001F81A9000F5D6D133F00
0792C7FC6D5B0003147E6C6C5B6D485A3903BF07E090380FFF80260701FCC8FC90CAFCA2
5AA37F6C7E7F90B512F86C14FF16E06C15F86C6C8048B67E3A07C0000FFF48481300003F
C8EA3F80003E151F48ED0FC0A2481507A56C150F007C1680007E151F003E16006C153E6C
6C5CD807E0495AD801F8EB07E0D8007FEB3F8090261FFFFEC7FC010113E02C427DAC31>
I<EA01FC12FFA3120712031201B3EC01FE913807FFC091381E07F091383801F802707FEC
E000D9FDC07F5C01FF147F91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FEA32F457DC4
36>I<EA01E0EA07F8A2487EA46C5AA2EA01E0C8FCADEA01FC12FFA3120712031201B3B0
487EB512F8A315437DC21C>I<143C14FFA2491380A46D1300A2143C91C7FCADEC7F80EB
3FFFA31300147F143FB3B3AA123E127F39FF807F00A2147EA25C6C485A383C01F06C485A
3807FF80D801FEC7FC195785C21E>I<EA01FC12FFA3120712031201B3A292381FFFE0A3
6F1300ED07F816E05E5E030EC7FC5D5D5D5D4A5A4A5A4AC8FC5CEC3F804A7E14FF9038FD
CFE09038FF8FF01407496C7E01FC7F14016E7E81816F7E82151F6F7E821507826F7E8282
486C491380B5D8F81F13F8A32D457DC433>I<EA01FC12FFA3120712031201B3B3B3A548
7EB512F8A315457DC41C>I<D801FC01FFEC1FE000FF010701E0EBFFFC913B0F03F801E0
7F913C3C01FC07803F800007903C7000FE0E001FC0000349D97E1C130F2601FDC0D97F38
804A143001FFDA3FF06D7E91C75BA2495DA3495DB3A8486C4A6C497EB5D8F81FB50003B5
12E0A34B2C7DAB52>I<3901FC01FE00FF903807FFC091381E07F091383801F800070170
7F0003EBE0002601FDC07F5C01FF147F91C7FCA25BA35BB3A8486CECFF80B5D8F83F13FE
A32F2C7DAB36>I<EC7F80903803FFF090380FC0FC90383E001F496D7E496D7E48486D7E
48486D7E48486D7E000F81A24848147E003F157FA290C87E481680A44816C0AA6C1680A2
6D147F003F1600A2001F157E6D14FE000F5D6D130100075D6C6C495A6C6C495A6C6C495A
013E49C7FC90381FC0FE903807FFF89038007F802A2E7DAC31>I<3901FC03FC00FF9038
0FFF8091383C07E091387001F83A07FDE000FE00010180137F01FFEC3F8091C7EA1FC049
15E049140F17F0160717F8160317FCA3EE01FEABEE03FCA3EE07F8A217F0160F6D15E0EE
1FC06D143F17806EEB7E00D9FDC05B9039FCF003F891383C0FE091381FFF80DA03FCC7FC
91C9FCAE487EB512F8A32F3F7DAB36>I<91387F8003903903FFE00790380FE07890393F
801C0F90387E000E496D5AD803F8EB039F0007EC01BF4914FF48487F121F5B003F81A248
5AA348C8FCAB6C7EA3123F7F121F6D5C120F6D5B12076C6C5B6C6C497E6C6C130E013F13
1C90380FC0F8903803FFE09038007F0091C7FCAEEEFF80033F13FEA32F3F7DAB33>I<39
03F803F000FFEB1FFCEC3C3EEC707F0007EBE0FF3803F9C000015B13FBEC007E153C01FF
13005BA45BB3A748B4FCB512FEA3202C7DAB26>I<90383FE0183901FFFC383907E01F78
390F0003F8001E1301481300007C1478127800F81438A21518A27EA27E6C6C13006C7E13
FC383FFFE06C13FC6C13FF6C14C06C14E0C614F0011F13F81300EC0FFC140300C0EB01FE
1400157E7E153EA27EA36C143C6C147C15786C14F86CEB01F039F38003E039F1F00F8039
E07FFE0038C00FF01F2E7DAC26>I<1306A5130EA4131EA3133E137EA213FE1201120700
1FB512F0B6FCA2C648C7FCB3A4150CAA017E131C017F1318A26D133890381F8030ECC070
903807E0E0903801FFC09038007F001E3E7EBC26>I<D801FC147F00FFEC3FFFA3000714
01000380000181B3A85EA35DA212006D5B017E9038077F80017F010E13C06D011C13FE90
380FC078903803FFF09026007F8013002F2D7DAB36>I<B539F001FFFCA3000790C7EA7F
E06C48EC1F8000011600160E1200160C017F5CA280013F5CA26E1370011F146080010F5C
A2ECF00101075CA26D6C48C7FCA26E5A01011306A26D6C5AA214FF6E5AA215B8EC3FB015
F06E5AA36E5AA26E5AA36EC8FC2E2C7EAA33>I<B500E0B539E03FFF80A30007903C000F
FE000FFC00D803FCD903F8EB03F8F001E0120103015D6D80000060A26D6E13036DD9037E
91C7FCA20280017F5B013FD9063F1306A2D91FC06E5AED0C1FA2D90FE06E5AED180FA2D9
07F06E5AED3007A2D903F86E5AED6003A2902601FCE06D5AEDC00117FCD900FFECFD80ED
800017FF027F92C8FC92C77EA26E147E023E143EA2021E143C021C141CA2412C7EAA46>
I<B539F007FFFCA30003D9C00113C0C6496C1300017F14FC013F5C6E13E06D7E010F495A
6D6C485A02F890C7FC903803FC060101130E6E5A903800FF186E5AEC3FF05D141F140F6E
7E81140FEC0DFCEC19FEEC38FF4A7E9138603F8002C07F0101131F49486C7E02007F0106
6D7E010E1303496D7E013C80017C80D801FC1580D80FFE4913C0B5D8800F13FFA3302B7F
AA33>I<B539F001FFFCA3000790C7EA7FE06C48EC1F8000011600160E0000150C6D141C
6D1418A26E1338013F1430A26D6C5BA26E13E0010F5CA26D6C485AA2ECF803010391C7FC
A2903801FC06A2ECFE0E0100130CA2EC7F18A215B8EC3FB0A2EC1FE0A36E5AA26E5AA36E
C8FCA21406A35CA25CA2123C007E5BB4FC5CA25CEAFE01387C0380D87007C9FCEA3C1EEA
0FFCEA03F02E3F7EAA33>I<003FB612E0A29038C0003F90C713C0003CEC7F800038ECFF
00A20030495A0070495AA24A5A0060495AA24A5A4A5AA2C7485A4AC7FC5B5C495A13075C
495A131F4A1360495A495AA249C712C0485AA2485A485A1501485A48481303A24848EB07
804848131F00FF14FF90B6FCA2232B7DAA2B>I<01F81302D803FE13073907FF800E48EB
E01C391F1FF8F8393807FFF0D8700113E039E0007FC00040EB1F00200978C131>126
D<001EEB0780007FEB0FE039FF801FF0EBC03FA4EB801F397F000FE0001EEB07801C0A76
C231>I E
%EndDVIPSBitmapFont
end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 600dpi
TeXDict begin

%%EndSetup
%%Page: 1 1
1 0 bop Black Black Black Black 1241 274 a Fu(The)33
b(Univ)m(ersit)m(y)h(of)e(Southern)h(Mississippi)p Black
Black 625 781 a Ft(P)-11 b(ARALLEL)44 b(MONTE)g(CARLO)h(COMPUT)-11
b(A)g(TION)1134 1051 y(OF)44 b(INV)-15 b(ARIANT)44 b(MEASURES)p
Black Black 2019 1279 a Fu(b)m(y)p Black Black 1644 1508
a(Zizhong)31 b(John)i(W)-8 b(ang)p Black Black 1514 2084
a(Abstract)34 b(of)e(a)g(Dissertation)1333 2209 y(Submitted)g(to)g(the)
h(Graduate)f(Sc)m(ho)s(ol)1185 2333 y(of)g(The)i(Univ)m(ersit)m(y)f(of)
f(Southern)i(Mississippi)1175 2458 y(in)e(P)m(artial)e(F)-8
b(ul\014llmen)m(t)30 b(of)i(the)h(Requiremen)m(ts)1241
2582 y(for)f(the)h(Degree)g(of)f(Do)s(ctor)g(of)g(Philosoph)m(y)p
Black Black 1803 5387 a(August)h(2000)p Black Black eop
%%Page: 1 2
1 1 bop Black Black Black Black 1740 847 a Fs(ABSTRA)m(CT)p
Black Black 625 1354 a Ft(P)-11 b(ARALLEL)44 b(MONTE)g(CARLO)h(COMPUT)
-11 b(A)g(TION)1134 1624 y(OF)44 b(INV)-15 b(ARIANT)44
b(MEASURES)p Black Black 2002 1852 a Fu(b)m(y)1611 2039
y(Zizhong)32 b(John)h(W)-8 b(ang)1803 2300 y(August)33
b(2000)446 2694 y(In)f(recen)m(t)g(y)m(ears,)h(the)e(statistical)e
(study)j(of)f(c)m(haotic)g(dynamical)e(systems)j(has)g(attracted)300
2814 y(tremendous)23 b(atten)m(tion)e(in)g(science)i(and)f
(engineering.)40 b(In)22 b(doing)f(so)h(the)g(theory)h(and)f(metho)s
(ds)300 2935 y(for)28 b(the)g(existence)i(and)f(computation)d(of)i
(absolutely)g(con)m(tin)m(uous)h(in)m(v)-5 b(arian)m(t)27
b(measures)i(\(also)300 3055 y(called)44 b(ph)m(ysical)h(measures)h(in)
e(ph)m(ysical)h(sciences\))i(ha)m(v)m(e)g(pla)m(y)m(ed)e(a)g(ma)5
b(jor)44 b(role.)81 b(In)45 b(this)300 3176 y(dissertation,)23
b(the)g(computational)c(problem)i(of)h(in)m(v)-5 b(arian)m(t)20
b(measures)j(is)f(studied)g(with)g(Ulam's)300 3296 y(metho)s(d,)38
b(com)m(bined)f(with)g(parallel)e(computing)h(tec)m(hniques)k(and)d(a)g
(kind)h(of)f(Mon)m(te)h(Carlo)300 3416 y(approac)m(h.)446
3537 y(Let)j Fr(S)46 b Fu(:)40 b([0)p Fr(;)17 b Fu(1])40
b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])39 b(b)s(e)h(a)g(nonsingular)f
(transformation)f(and)i(let)f Fr(P)54 b Fu(:)40 b Fr(L)3443
3501 y Fp(1)3483 3537 y Fu(\(0)p Fr(;)17 b Fu(1\))39
b Fq(!)300 3657 y Fr(L)366 3621 y Fp(1)406 3657 y Fu(\(0)p
Fr(;)17 b Fu(1\))44 b(b)s(e)i(the)g(corresp)s(onding)g(F)-8
b(rob)s(enius-P)m(erron)45 b(op)s(erator.)82 b(In)46
b(Ulam's)e(metho)s(d)h(w)m(e)300 3778 y(appro)m(ximate)37
b(the)i(in\014nite)e(dimensional)e(op)s(erator)j Fr(P)51
b Fu(with)38 b(a)f(\014nite)h(dimensional)e(one)i Fr(P)3793
3793 y Fo(n)300 3898 y Fu(obtained)j(via)g(a)g(Galerkin)f(pro)5
b(jection)41 b(on)m(to)h(the)g(subspace)h(of)e(piecewise)i(constan)m(t)
f(func-)300 4018 y(tions)g(with)h(resp)s(ect)h(to)f(the)g(giv)m(en)g
(partition)e(of)i(the)g(in)m(terv)-5 b(al)42 b([0)p Fr(;)17
b Fu(1],)45 b(and)e(then)h(w)m(e)g(solv)m(e)300 4139
y(the)39 b(\014xed)h(p)s(oin)m(t)d(problem)g(of)h(the)h(\014nite)f
(dimensional)e(appro)m(ximation.)59 b(Since)39 b(in)f(general)300
4259 y(the)43 b(analytic)e(ev)-5 b(aluation)41 b(of)h(the)i(resulting)d
(matrix)g(is)i(di\016cult)e(or)i(ev)m(en)h(imp)s(ossible,)f(w)m(e)300
4379 y(emplo)m(y)g(a)h(\\uniform)d(sampling")h(idea,)k(whic)m(h)e(is)f
(a)h(deterministic)e(v)-5 b(arian)m(t)43 b(of)g(the)h(usual)300
4500 y(Mon)m(te)35 b(Carlo)e(metho)s(d)g(for)g(a)h(b)s(etter)g(p)s
(erformance)g(and)g(is)f(called)g(the)i(quasi-Mon)m(te)f(Carlo)300
4620 y(metho)s(d)42 b(in)f(this)h(dissertation,)i(for)e(the)h(implemen)
m(tation)c(of)j(Ulam's)f(metho)s(d.)72 b(T)-8 b(o)42
b(o)m(v)m(er-)300 4741 y(come)f(the)i(disadv)-5 b(an)m(tage)41
b(of)h(time-consuming)d(for)i(the)h(quasi-Mon)m(te)h(Carlo)d(metho)s
(d,)k(w)m(e)300 4861 y(tak)m(e)30 b(adv)-5 b(an)m(tage)30
b(of)e(the)i(fact)f(that)g(the)h(ev)-5 b(aluation)28
b(of)h(the)g(en)m(tries)h(of)f(the)h(matrix)e(in)g(Ulam's)300
4981 y(metho)s(d)42 b(is)f(indep)s(enden)m(t)i(of)f(eac)m(h)h(other.)72
b(Th)m(us)44 b(a)e(natural)f(parallel)e(ev)-5 b(aluation)41
b(sc)m(heme)300 5102 y(is)34 b(prop)s(osed)h(in)f(this)g(w)m(ork.)51
b(Moreo)m(v)m(er,)37 b(w)m(e)e(presen)m(t)h(a)f(completely)e(parallel)f
(algorithm)f(for)300 5222 y(the)e(computation)e(of)h(the)h(\014xed)g
(densit)m(y)h(of)e(the)h(F)-8 b(rob)s(enius-P)m(erron)28
b(op)s(erator,)g(in)g(whic)m(h)h(not)300 5343 y(only)37
b(the)i(ev)-5 b(aluation)36 b(of)i(the)g(matrix)f(is)g(parallelized,)g
(but)h(also)f(the)h(computation,)g(whic)m(h)300 5463
y(uses)f(the)g(iteration)d(algorithm)f(\(IA\))j(as)g(compared)g(with)g
(the)g(Gaussian)g(algorithm)c(\(GA\),)p Black 2046 5764
a(1)p Black eop
%%Page: 2 3
2 2 bop Black 3791 10 a Fu(2)p Black 300 274 a(of)35
b(the)h(\014xed)g(densit)m(y)h(of)e(the)g(matrix)f(is)h(parallelized.)
50 b(The)36 b(n)m(umerical)e(exp)s(erimen)m(ts)i(sho)m(w)300
395 y(that)31 b(the)h(new)g(algorithm)c(is)j(a)g(fast)g(and)h(reliable)
d(n)m(umerical)g(sc)m(heme)k(for)e(the)g(computation)300
515 y(of)f(in)m(v)-5 b(arian)m(t)30 b(measures,)i(and)e(the)i(new)f
(quasi-Mon)m(te)g(Carlo)f(approac)m(h)h(w)m(orks)h(m)m(uc)m(h)g(b)s
(etter)300 635 y(than)d(the)g(Mon)m(te)g(Carlo)e(approac)m(h)i
(initially)c(prop)s(osed)k(b)m(y)g(Hun)m(t)g(of)f(the)h(National)e
(Institute)300 756 y(of)32 b(Standards)h(and)g(T)-8 b(ec)m(hnology)33
b(in)f(1994.)446 876 y(Besides)38 b(the)f(n)m(umerical)f(w)m(ork)h(men)
m(tioned)g(ab)s(o)m(v)m(e,)h(w)m(e)g(also)e(presen)m(t)j(some)d
(theoretical)300 997 y(w)m(ork)44 b(b)m(y)f(giving)e(a)i(rigorous)e
(appro)m(ximation)g(order)i(analysis)f(for)g(the)h(metho)s(d)f(of)g
(piece-)300 1117 y(wise)33 b(linear)f(Mark)m(o)m(v)i(\014nite)e(appro)m
(ximations.)43 b(The)34 b(construction)f(of)f(this)h(piecewise)h
(linear)300 1237 y(metho)s(d)40 b(is)g(for)g(the)g(purp)s(ose)i(of)d
(impro)m(ving)g(the)i(con)m(v)m(ergence)i(rate)d(of)g(Ulam's)f
(piecewise)300 1358 y(constan)m(t)e(metho)s(d.)52 b(In)36
b(the)g(dissertation)f(w)m(e)i(use)g(the)f(idea)f(of)g(appro)m
(ximations)f(of)i(con)m(tin-)300 1478 y(uous)43 b(functions)f(b)m(y)i
(a)e(sequence)j(of)d(p)s(ositiv)m(e)g(linear)f(op)s(erators)h(to)g(pro)
m(v)m(e)i(that)e(the)h(error)300 1598 y(b)s(ound)29 b(for)g(the)h
(piecewise)f(linear)f(Mark)m(o)m(v)i(metho)s(d)f(is)g(indeed)g
Fr(O)s Fu(\()p Fr(h)2870 1562 y Fp(2)2909 1598 y Fu(\),)h(whic)m(h)f
(is)g(compatible)300 1719 y(with)j(past)h(n)m(umerical)e(results.)446
1839 y(Lastly)-8 b(,)43 b(as)f(an)f(application)d(example,)43
b(the)f(computation)d(of)i(the)h(probabilit)m(y)d(densit)m(y)300
1960 y(function)i(\(PDF\))f(of)g(the)i(\014rst-order)f(digital)d(phase)
k(lo)s(c)m(k)m(ed)g(lo)s(op)d(\(DPLL\))i(in)f(electronics)300
2080 y(is)c(discussed)i(with)e(our)g(parallel)e(quasi-Mon)m(te)j(Carlo)
e(algorithm.)52 b(The)38 b(n)m(umerical)d(results)300
2200 y(sho)m(w)f(that)g(the)f(completely)g(parallel)d(quasi-Mon)m(te)k
(Carlo)e(algorithm)e(computes)k(the)g(com-)300 2321 y(plicated)26
b(in)m(v)-5 b(arian)m(t)25 b(densit)m(y)j(m)m(uc)m(h)g(more)e
(e\016cien)m(tly)h(than)g(the)h(original)23 b(\\op)s(erator)j(function)
300 2441 y(ev)-5 b(aluation)31 b(metho)s(d")h(used)h(b)m(y)h(some)e
(researc)m(hers)j(in)d(this)g(\014eld.)p Black Black
eop
%%Page: 3 4
3 3 bop Black Black Black Black 1241 274 a Fu(The)33
b(Univ)m(ersit)m(y)h(of)e(Southern)h(Mississippi)p Black
Black 625 781 a Ft(P)-11 b(ARALLEL)44 b(MONTE)g(CARLO)h(COMPUT)-11
b(A)g(TION)1111 1051 y(OF)44 b(INV)-15 b(ARIANT)44 b(MEASURES)p
Black Black 2019 1505 a Fu(b)m(y)p Black Black 1644 1734
a(Zizhong)31 b(John)i(W)-8 b(ang)p Black Black 1760 2310
a(A)33 b(Dissertation)1333 2435 y(Submitted)f(to)g(the)h(Graduate)f(Sc)
m(ho)s(ol)1185 2559 y(of)g(The)i(Univ)m(ersit)m(y)f(of)f(Southern)i
(Mississippi)1175 2684 y(in)e(P)m(artial)e(F)-8 b(ul\014llmen)m(t)30
b(of)i(the)h(Requiremen)m(ts)1241 2809 y(for)f(the)h(Degree)g(of)f(Do)s
(ctor)g(of)g(Philosoph)m(y)1986 3273 y(Appro)m(v)m(ed:)2695
3394 y Fs(Jiu)38 b(Ding)p 1986 3514 1854 4 v 1986 3642
a Fu(Director)p 1986 3809 V 1986 4048 V 1986 4286 V 1986
4525 V 1986 4763 V 1986 4891 a(Dean)32 b(of)g(the)i(Graduate)e(Sc)m(ho)
s(ol)p Black Black 1803 5387 a(August)h(2000)p Black
Black eop
%%Page: 2 5
2 4 bop Black Black Black Black 1112 150 a Fn(A)l(CKNO)l(WLEDGEMENTS)
479 851 y Fu(F)-8 b(or)40 b(their)g(assistance)h(in)f(the)h(course)g
(of)f(m)m(y)g(do)s(ctoral)f(study)-8 b(,)44 b(man)m(y)c(p)s(eople)h
(deserv)m(e)300 972 y(thanks.)65 b(Sp)s(ecial)38 b(thank)h(m)m(ust)h
(go)e(to)h(m)m(y)h(advisor)f(Jiu)f(Ding)g(for)h(his)g(ongoing)e(helps)j
(and)300 1092 y(supp)s(orts)32 b(in)e(m)m(y)h(progress)h(of)e(course)j
(study)-8 b(,)32 b(researc)m(h,)h(m)m(y)e(job)g(h)m(un)m(ting,)g(and)g
(other)h(\014elds.)300 1212 y(His)26 b(con)m(tin)m(ual)g(encouragemen)m
(t,)j(advise,)g(and)e(understanding)g(are)g(all)e(greatly)h
(appreciated.)446 1333 y(I)36 b(will)c(b)s(e)k(alw)m(a)m(ys)f(grateful)
f(to)h(James)g(Ca)m(v)m(en)m(y)-8 b(,)38 b(Ras)d(P)m(andey)-8
b(,)38 b(Marcin)c(P)m(aprzyc)m(ki,)k(and)300 1453 y(Ra)m(y)43
b(Seyfarth.)75 b(They)45 b(are)e(all)d(m)m(y)j(PhD)g(committee)e(mem)m
(b)s(ers)i(and)g(m)m(y)g(course)h(profes-)300 1574 y(sors,)31
b(and)f(they)i(ga)m(v)m(e)f(me)e(v)m(ery)j(helpful)d(directions)g(and)h
(commen)m(ts)g(during)g(the)g(prosp)s(ectus)300 1694
y(preparation)42 b(and)h(the)h(writing)d(of)i(m)m(y)g(dissertation.)74
b(In)43 b(particular)e(I)i(really)f(appreciate)300 1814
y(that)35 b(Marcin)g(P)m(aprzyc)m(ki)i(ga)m(v)m(e)f(me)e(abundan)m(t)i
(ideas)f(in)g(m)m(y)g(n)m(umerical)f(exp)s(erimen)m(ts)h(with)300
1935 y(parallel)c(computers.)47 b(Besides,)35 b(he)f(help)s(ed)g(me)f
(a)g(lot)g(for)g(job)g(h)m(un)m(ting.)47 b(Ra)m(y)34
b(Seyfarth)g(also)300 2055 y(merits)c(particular)g(thanks)i(for)f(his)g
(v)-5 b(alued)31 b(advise)h(in)f(m)m(y)g(parallel)e(computing)h(w)m
(ork.)44 b(I)32 b(ad-)300 2175 y(mire)g(James)h(Ca)m(v)m(en)m(y)j(for)d
(his)g(graceful)f(teac)m(hing)h(st)m(yle)h(and)f(resp)s(ectable)h(p)s
(ersonalit)m(y)-8 b(.)45 b(Ras)300 2296 y(P)m(andey's)35
b(profound)d(kno)m(wledge)i(and)f(sc)m(holarly)f(c)m(haracter)h
(impress)f(me)g(greatly)-8 b(.)446 2416 y(I)29 b(m)m(ust)g(thank)h
(Joseph)g(Kolibal)25 b(for)k(his)f(time-consuming)f(w)m(ork)j(on)e(the)
i(uniform)d(disser-)300 2537 y(tation)33 b(\(Latex\))i(pac)m(k)-5
b(age.)50 b(Indeed)36 b(it)d(sa)m(v)m(ed)j(me)f(a)f(lot)f(of)h(time)f
(in)h(t)m(yping)g(m)m(y)h(dissertation)300 2657 y(with)d(this)g(pac)m
(k)-5 b(age.)446 2777 y(I)23 b(thank)h(Charles)f(W)-8
b(righ)m(t)22 b(for)h(his)f(e\016cien)m(t)i(managemen)m(t)e(of)h
(Wiglaf)d(parallel)g(computers.)300 2898 y(He)30 b(is)f(a)g(w)m
(arm-hearted,)h(helpful,)f(and)g(friendly)g(p)s(erson)h(and)f(he)h(ga)m
(v)m(e)g(me)f(a)g(lot)f(of)h(supp)s(orts)300 3018 y(in)j(m)m(y)g
(parallel)e(computing)i(exp)s(erimen)m(ts.)446 3139 y(I)41
b(am)e(also)h(grateful)f(to)h(W)-8 b(allace)39 b(Py)m(e,)44
b(Je\013)d(Stuart)g(and)f(man)m(y)h(other)f(professors)i(and)300
3259 y(friends)k(whose)h(en)m(th)m(usiastic)f(helps)g(to)f(me)g(during)
g(m)m(y)h(do)s(ctoral)e(study)j(will)c(alw)m(a)m(ys)k(b)s(e)300
3379 y(memorized.)446 3500 y(Finally)-8 b(,)22 b(I)h(w)m(ould)f(lik)m
(e)g(to)g(dedicate)h(this)f(dissertation)g(to)g(m)m(y)g(grandparen)m
(ts)i(who)f(brough)m(t)300 3620 y(me)46 b(up,)j(to)d(m)m(y)g(wife)g
(Huiqing)f(Y)-8 b(ang)45 b(who)i(is)e(also)g(m)m(y)h(fello)m(w)f
(classmate)h(of)f(the)i(Ph.D.)300 3740 y(program)37 b(in)h(scien)m
(ti\014c)h(computing,)g(and)g(to)f(our)h(lo)m(v)m(ely)g(daugh)m(ter)g
(Angela)f(W)-8 b(ang,)40 b(for)e(all)300 3861 y(the)24
b(happiness)h(of)e(our)h(family)d(life)h(here)j(at)f(The)g(Univ)m
(ersit)m(y)h(of)e(Southern)i(Mississippi)e(during)300
3981 y(the)33 b(past)g(y)m(ears.)p Black 2043 5764 a(ii)p
Black eop
%%Page: 3 6
3 5 bop Black Black Black Black 1181 150 a Fn(T)-13 b(ABLE)53
b(OF)h(CONTENTS)300 851 y Fm(A)m(CKNO)m(WLEDGEMENTS)72
b Fr(:)56 b(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)158 b Fu(ii)304 1096 y
Fm(LIST)38 b(OF)g(ILLUSTRA)-9 b(TIONS)69 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)
h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)152
b Fu(iv)305 1341 y Fm(LIST)38 b(OF)g(T)-9 b(ABLES)74
b Fr(:)55 b(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f
(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)159
b Fu(v)305 1586 y Fm(LIST)38 b(OF)g(ABBREVIA)-9 b(TIONS)86
b Fr(:)56 b(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)172 b Fu(vi)300 1887 y Fm(1)90
b(INTR)m(ODUCTION)84 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)
h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)166
b Fm(1)300 2105 y(2)90 b(FR)m(OBENIUS-PERR)m(ON)35 b(OPERA)-9
b(TORS)72 b Fr(:)56 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f
(:)h(:)154 b Fm(8)300 2323 y(3)90 b(ULAM'S)39 b(METHOD)88
b Fr(:)56 b(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)114 b Fm(12)300
2541 y(4)90 b(PIECEWISE)35 b(LINEAR)h(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-9
b(TION)90 b Fr(:)55 b(:)g(:)h(:)f(:)118 b Fm(20)300 2759
y(5)90 b(QUASI-MONTE)38 b(CARLO)f(ALGORITHM)67 b Fr(:)55
b(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)92
b Fm(25)300 2977 y(6)e(P)-9 b(ARALLEL)36 b(ALGORITHMS)82
b Fr(:)56 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g
(:)h(:)f(:)h(:)f(:)107 b Fm(29)300 3195 y(7)90 b(NUMERICAL)37
b(RESUL)-9 b(TS)81 b Fr(:)56 b(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f
(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)106 b
Fm(36)300 3315 y Fu(7.1)168 b(Numerical)30 b(Results)j(from)f(the)h
(Quasi-Mon)m(te)f(Carlo)g(Approac)m(h)681 b(36)300 3435
y(7.2)168 b(Numerical)30 b(Results)j(from)f(the)h(P)m(arallel)d
(Computation)1017 b(39)300 3556 y(7.3)168 b(An)32 b(Applied)g
(Computational)e(Problem)1592 b(45)300 3774 y Fm(8)90
b(CONCLUDING)37 b(REMARKS)85 b Fr(:)55 b(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)
h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)110 b
Fm(53)305 4060 y(APPENDIX)300 4278 y(A)61 b(BRIEF)37
b(MA)-9 b(TH)36 b(REVIEW)84 b Fr(:)56 b(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g
(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)111
b Fm(54)300 4496 y(B)66 b(A)37 b(SOUR)m(CE)g(CODE)g(IN)g(C)90
b Fr(:)55 b(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h
(:)f(:)h(:)f(:)h(:)f(:)h(:)114 b Fm(61)305 4741 y(BIBLIOGRAPHY)99
b Fr(:)55 b(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h
(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)183 b
Fu(89)p Black 2029 5764 a(iii)p Black eop
%%Page: 4 7
4 6 bop Black Black Black Black 1066 150 a Fn(LIST)54
b(OF)h(ILLUSTRA)-13 b(TIONS)446 851 y Fu(1.1)100 b(The)33
b(orbits)f(of)g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)g(4)p
Fr(x)p Fu(\(1)22 b Fq(\000)g Fr(x)p Fu(\))33 b(with)g(\(ab)s(o)m(v)m
(e\))g Fr(x)2656 866 y Fp(0)2723 851 y Fu(=)28 b(0)p
Fr(:)p Fu(037)k(and)g(\(b)s(elo)m(w\))671 972 y Fr(x)726
987 y Fp(0)793 972 y Fu(=)c(0)p Fr(:)p Fu(038)51 b(.)f(.)g(.)g(.)g(.)f
(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)
g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 132 w(1)p
Black 446 1092 a(1.2)100 b(The)37 b(frequency)i(of)d(the)h(orbits)f(of)
g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))35 b(=)f(4)p Fr(x)p Fu(\(1)25
b Fq(\000)g Fr(x)p Fu(\))37 b(of)f(10000)g(iterations)671
1212 y(and)c(100)g(partitions)f(in)h([0)p Fr(;)17 b Fu(1])32
b(with)g(di\013eren)m(t)h(initial)c(states)135 b(.)50
b(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 132 w(3)p Black 446
1416 a(2.1)100 b(The)30 b(\014xed)h(densit)m(y)f Fr(f)1493
1380 y Fl(\003)1562 1416 y Fu(of)f Fr(P)43 b Fu(for)29
b Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p Fu(\(1)16
b Fq(\000)g Fr(x)p Fu(\))30 b(with)f(100)g(partitions)f(in)671
1536 y([0,1])90 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)
g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f
(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(10)p Black 446 1740
a(7.1)100 b Fr(L)737 1703 y Fp(1)809 1740 y Fu(error)32
b(with)h(c)m(hange)g(of)f Fr(n)h Fu(for)f Fr(S)2003 1755
y Fp(1)2094 1740 y Fu(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)
g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(39)p
Black 446 1860 a(7.2)100 b(E\016ciency)34 b(of)e(UMP)-8
b(A)33 b(for)f Fr(S)1760 1875 y Fp(3)1832 1860 y Fu(on)h(Wiglaf)73
b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)
g(.)p Black 83 w(42)p Black 446 1980 a(7.3)100 b(E\016ciency)34
b(of)e(CP)-8 b(A)33 b(for)f Fr(S)1668 1995 y Fp(3)1740
1980 y Fu(on)h(Wiglaf)88 b(.)50 b(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g
(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(42)p
Black 446 2101 a(7.4)100 b(E\016ciency)34 b(of)e(UMP)-8
b(A)33 b(for)f Fr(S)1760 2116 y Fp(3)1832 2101 y Fu(on)h(Sw)m(eetgum)80
b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p
Black 83 w(44)p Black 446 2221 a(7.5)100 b(E\016ciency)34
b(of)e(CP)-8 b(A)33 b(for)f Fr(S)1668 2236 y Fp(3)1740
2221 y Fu(on)h(Sw)m(eetgum)95 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g
(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(44)p Black
446 2342 a(7.6)100 b(E\016ciency)34 b(comparison)d(of)h(UMP)-8
b(A)34 b(for)e Fr(S)2276 2357 y Fp(3)2348 2342 y Fu(on)g(Sw)m(eetgum)h
(and)g(Wiglaf)58 b(.)50 b(.)g(.)p Black 83 w(45)p Black
446 2462 a(7.7)100 b(The)33 b(graph)g(of)f(DPLL)110 b(.)50
b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)g(.)g(.)g
(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(47)p
Black 446 2582 a(7.8)100 b(E\016ciency)34 b(of)e(UMP)-8
b(A)33 b(for)f(DPLL)h(on)f(Wiglaf)63 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g
(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(49)p
Black 446 2703 a(7.9)100 b(E\016ciency)34 b(of)e(the)h(CP)-8
b(A)33 b(for)f(DPLL)g(on)h(Wiglaf)64 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g
(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(49)p Black
446 2823 a(7.10)h(E\016ciency)34 b(of)e(UMP)-8 b(A)33
b(for)f(DPLL)h(on)f(Sw)m(eetgum)71 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f
(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(51)p Black 446 2943
a(7.11)h(E\016ciency)34 b(of)e(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Sw)m
(eetgum)86 b(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g
(.)p Black 83 w(51)p Black 446 3064 a(7.12)h(E\016ciency)34
b(Comparison)d(of)h(UMP)-8 b(A)34 b(for)e(DPLL)g(on)h(Sw)m(eetgum)g
(and)g(Wiglaf)p Black 131 w(52)p Black 446 3184 a(7.13)51
b(The)33 b(stationary)f(PDF)g(graph)h(of)f(DPLL)g(with)g
Fr(n)c Fu(=)g(4096)77 b(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p
Black 83 w(52)p Black Black 2031 5764 a(iv)p Black eop
%%Page: 5 8
5 7 bop Black Black Black Black 1411 150 a Fn(LIST)54
b(OF)h(T)-13 b(ABLES)446 851 y Fu(3.1)100 b(P)m(erformance)33
b(comparison)e(b)s(et)m(w)m(een)k(IA)e(and)f(GA)101 b(.)50
b(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black
83 w(19)p Black 446 1055 a(7.1)100 b Fr(L)737 1019 y
Fp(1)809 1055 y Fu(error/time)31 b(comparison)g(for)h(the)h(logistic)d
(mo)s(del)78 b(.)50 b(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p
Black 83 w(37)p Black 446 1175 a(7.2)100 b Fr(L)737 1139
y Fp(1)809 1175 y Fu(error/time)31 b(comparison)g(for)h
Fr(S)2010 1190 y Fp(2)2094 1175 y Fu(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g
(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p
Black 83 w(37)p Black 446 1295 a(7.3)100 b Fr(L)737 1259
y Fp(1)809 1295 y Fu(error)32 b(comparisons)g(of)g(the)h(QMC)h(to)e
(the)h(MC)k(.)50 b(.)g(.)g(.)g(.)g(.)g(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p
Black 83 w(38)p Black 446 1416 a(7.4)100 b Fr(L)737 1380
y Fp(1)809 1416 y Fu(error/time)31 b(comparison)g(of)h(QMC,)i(MC,)f
(and)g(Exact)g(for)f(logistic)e(mo)s(del)p Black 106
w(40)p Black 446 1536 a(7.5)100 b Fr(L)737 1500 y Fp(1)809
1536 y Fu(error)32 b(comparison)g(of)g(QMC,)h(MC,)h(and)e(Exact)i(for)e
Fr(S)2868 1551 y Fp(2)2940 1536 y Fu(.)50 b(.)g(.)g(.)f(.)h(.)g(.)g(.)g
(.)g(.)p Black 83 w(40)p Black 446 1657 a(7.6)100 b(P)m(erformance)33
b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8 b(A)33 b(for)f Fr(S)2306
1672 y Fp(3)2378 1657 y Fu(on)h(Wiglaf)65 b(.)50 b(.)g(.)g(.)g(.)f(.)h
(.)g(.)g(.)g(.)g(.)p Black 83 w(41)p Black 446 1777 a(7.7)100
b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8
b(A)33 b(for)f Fr(S)2306 1792 y Fp(3)2378 1777 y Fu(on)h(Sw)m(eetgum)73
b(.)50 b(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(43)p
Black 446 1897 a(7.8)100 b(P)m(erformance)33 b(of)f(UMP)-8
b(A)33 b(and)g(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Wiglaf)56
b(.)50 b(.)g(.)f(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(48)p
Black 446 2018 a(7.9)100 b(P)m(erformance)33 b(of)f(UMP)-8
b(A)33 b(and)g(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Sw)m(eetgum)64
b(.)49 b(.)h(.)g(.)g(.)g(.)g(.)p Black 83 w(50)p Black
Black 2044 5764 a(v)p Black eop
%%Page: 6 9
6 8 bop Black Black Black Black 1037 150 a Fn(LIST)53
b(OF)i(ABBREVIA)-13 b(TIONS)509 823 y Fq(k)22 b(\001)g(k)99
b Fu(-)h Fr(L)979 787 y Fp(1)1018 823 y Fu(-)32 b(norm)630
944 y Fr(d)99 b Fu(-)h(dimension)31 b(of)h(the)h(system)583
1064 y Fr(f)642 1028 y Fl(\003)780 1064 y Fu(-)100 b(\014xed)33
b(densit)m(y)h(of)e Fr(P)623 1185 y(n)99 b Fu(-)h(n)m(um)m(b)s(er)33
b(of)f(subin)m(terv)-5 b(als)32 b(from)g(the)h(partition)d(of)i([0)p
Fr(;)17 b Fu(1])32 b(in)m(terv)-5 b(al)454 1305 y Fr(C)7
b(P)14 b(A)99 b Fu(-)h(completely)31 b(parallel)f(algorithm)499
1425 y Fr(M)10 b(C)107 b Fu(-)100 b(Mon)m(te)33 b(Carlo)f(approac)m(h)
592 1546 y Fr(N)110 b Fu(-)100 b(n)m(um)m(b)s(er)33 b(of)f(random)f(n)m
(um)m(b)s(ers)j(generated)f(in)f(Mon)m(te)h(Carlo)f(metho)s(d)604
1666 y Fr(P)113 b Fu(-)100 b(F)-8 b(rob)s(enius-P)m(erron)32
b(op)s(erator)573 1786 y Fr(P)636 1801 y Fo(h)780 1786
y Fu(-)100 b(Ulam's)31 b(matrix)g(or)h(companion)f(matrix)571
1907 y Fr(P)634 1922 y Fo(n)780 1907 y Fu(-)100 b(Ulam's)31
b(matrix)g(or)h(companion)f(matrix)g(\()p Fr(d)d Fu(=)f(1\))422
2027 y Fr(QM)10 b(C)107 b Fu(-)100 b(quasi-Mon)m(te)33
b(Carlo)e(approac)m(h)350 2148 y Fr(U)10 b(M)g(P)k(A)100
b Fu(-)g(Ulam's)31 b(matrix)g(parallel)f(algorithm)p
Black 2031 5764 a(vi)p Black eop
%%Page: 1 10
1 9 bop Black Black Black Black 1714 150 a Fn(Chapter)53
b(1)p Black Black 1410 581 a(INTR)l(ODUCTION)300 1283
y Fu(In)43 b(the)g(past)g(t)m(w)m(en)m(t)m(y)i(\014v)m(e)f(y)m(ears,)i
(since)d(the)h(term)e(\\Li-Y)-8 b(ork)m(e)41 b(c)m(haos")j(app)s(eared)
f(in)e(their)300 1403 y(seminal)32 b(pap)s(er)h(\\P)m(erio)s(d)g(three)
i(implies)c(c)m(haos")j(published)f(in)g(1975)g([40)o(],)h(c)m(haotic)f
(discrete)300 1524 y(and)47 b(con)m(tin)m(uous)h(dynamical)d(systems,)
52 b(suc)m(h)d(as)e(p)s(opulation)e(dynamics)i(mo)s(dels)f([43])h(in)
300 1644 y(ecology)22 b(and)g(Lorenz)h(equations)g([42])f(in)g
(meteorology)-8 b(,)23 b(ha)m(v)m(e)g(b)s(een)h(widely)e(in)m(v)m
(estigated)g(with)300 1764 y(new)35 b(ideas)e(and)h(metho)s(ds.)47
b(No)m(w)34 b(it)f(is)g(w)m(ell)g(kno)m(wn)i(that,)f(in)f(v)-5
b(arious)33 b(\014elds)h(of)f(science)i(and)300 1885
y(engineering,)c(man)m(y)g(discrete)g(deterministic)f(dynamical)f
(systems,)k(ev)m(en)f(though)f(as)g(simple)300 2005 y(as)40
b(a)f(quadratic)g(p)s(olynomial,)f(giv)m(e)i(rise)f(to)g(c)m(haotic)g
(phenomena.)65 b(A)40 b(famous)e(example)h(is)300 2126
y(the)34 b(one)f(dimensional)e(mapping)h Fr(S)j Fu(:)29
b([0)p Fr(;)17 b Fu(1])29 b Fq(!)g Fu([0)p Fr(;)17 b
Fu(1])32 b(de\014ned)j(b)m(y)f Fr(S)6 b Fu(\()p Fr(x)p
Fu(\))30 b(=)f(4)p Fr(x)p Fu(\(1)22 b Fq(\000)h Fr(x)p
Fu(\),)34 b(whic)m(h)300 2246 y(is)h(the)h(so-called)e(\\logistic)e(mo)
s(del")i(whose)i(orbits)f(corresp)s(onding)g(to)g(t)m(w)m(o)h
(di\013eren)m(t)g(initial)300 2366 y(p)s(oin)m(ts)c(are)h(sho)m(wn)h
(in)d(Figure)h(1.1.)p Black Black Black 570 3335 a @beginspecial
50 @llx 50 @lly 410 @urx 150 @ury 3600 @rwi @setspecial
%%BeginDocument: pic/f37.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: 37.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu May 11 18:37:19 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 410 150
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
420 240 M
63 0 V
6513 0 R
-63 0 V
348 240 M
(0) Rshow
420 566 M
63 0 V
6513 0 R
-63 0 V
348 566 M
(0.2) Rshow
420 893 M
63 0 V
6513 0 R
-63 0 V
348 893 M
(0.4) Rshow
420 1219 M
63 0 V
6513 0 R
-63 0 V
-6585 0 R
(0.6) Rshow
420 1546 M
63 0 V
6513 0 R
-63 0 V
-6585 0 R
(0.8) Rshow
420 1872 M
63 0 V
6513 0 R
-63 0 V
-6585 0 R
(1) Rshow
420 240 M
0 63 V
0 1569 R
0 -63 V
420 120 M
(0) Cshow
1078 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(50) Cshow
1735 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(100) Cshow
2393 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(150) Cshow
3050 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(200) Cshow
3708 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(250) Cshow
4366 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(300) Cshow
5023 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(350) Cshow
5681 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(400) Cshow
6338 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(450) Cshow
6996 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(500) Cshow
1.000 UL
LTb
420 240 M
6576 0 V
0 1632 V
-6576 0 V
420 240 L
1.000 UL
LT0
6429 1749 M
(x0=0.037) Rshow
6501 1749 M
351 0 V
420 473 M
13 565 V
13 833 V
459 243 L
14 10 V
13 38 V
13 148 V
13 501 V
13 899 V
538 369 L
14 347 V
13 873 V
13 -413 V
13 661 V
604 377 L
13 366 V
13 889 V
14 -573 V
13 813 V
670 240 L
13 0 V
13 1 V
13 4 V
13 13 V
14 54 V
13 202 V
13 638 V
13 697 V
788 329 L
13 247 V
14 732 V
13 408 V
841 803 L
13 912 V
867 807 L
13 912 V
893 793 L
14 910 V
920 847 L
13 918 V
946 641 L
13 808 V
13 44 V
14 -88 V
13 169 V
13 -359 V
13 595 V
1038 478 L
13 576 V
13 818 V
1078 240 L
13 0 V
13 0 V
13 1 V
13 5 V
13 17 V
14 67 V
13 251 V
13 737 V
13 385 V
13 -858 V
13 918 V
1235 646 L
14 813 V
13 15 V
13 -30 V
13 58 V
13 -118 V
13 225 V
13 -486 V
14 738 V
1354 284 L
13 126 V
13 440 V
13 918 V
1406 631 L
14 798 V
13 101 V
13 -209 V
13 379 V
13 -846 V
13 918 V
1498 615 L
14 781 V
13 193 V
13 -414 V
13 662 V
1564 375 L
13 361 V
14 885 V
13 -532 V
13 780 V
1630 250 L
13 31 V
13 120 V
13 420 V
14 915 V
13 -999 V
13 886 V
13 -540 V
13 787 V
1748 247 L
14 22 V
13 85 V
13 309 V
13 831 V
13 -92 V
13 176 V
13 -374 V
14 614 V
1867 448 L
13 519 V
13 885 V
1906 317 L
13 218 V
13 671 V
14 611 V
1959 453 L
13 529 V
13 876 V
1998 294 L
13 153 V
14 517 V
13 887 V
2051 322 L
13 229 V
13 695 V
13 537 V
2103 575 L
14 730 V
13 415 V
13 -929 V
13 909 V
13 -843 V
13 918 V
2196 606 L
13 769 V
13 248 V
13 -539 V
13 786 V
2261 248 L
13 22 V
14 88 V
13 320 V
13 843 V
13 -179 V
13 329 V
13 -727 V
13 897 V
2380 360 L
13 324 V
13 849 V
13 -218 V
13 392 V
13 -875 V
14 917 V
2472 696 L
13 858 V
13 -289 V
13 500 V
2524 641 L
13 809 V
14 41 V
13 -83 V
13 161 V
13 -342 V
13 573 V
2616 514 L
14 638 V
13 697 V
2656 330 L
13 249 V
13 735 V
13 395 V
13 -882 V
14 916 V
2735 715 L
13 872 V
13 -406 V
13 653 V
2787 389 L
14 393 V
13 907 V
13 -798 V
13 915 V
2853 495 L
13 606 V
13 766 V
2893 260 L
13 57 V
13 217 V
13 671 V
13 613 V
2958 449 L
13 521 V
14 884 V
2998 312 L
13 204 V
13 641 V
13 690 V
3050 339 L
14 273 V
13 777 V
13 211 V
13 -454 V
13 706 V
3129 319 L
13 220 V
14 678 V
13 591 V
3182 485 L
13 588 V
13 798 V
3221 243 L
14 8 V
13 32 V
13 123 V
13 431 V
13 917 V
3300 677 L
13 843 V
14 -176 V
13 325 V
13 -719 V
13 894 V
3379 348 L
13 296 V
14 813 V
13 21 V
13 -43 V
13 85 V
13 -177 V
13 326 V
13 -719 V
14 894 V
3511 349 L
13 299 V
13 816 V
13 0 V
13 -1 V
13 2 V
14 -3 V
13 7 V
13 -15 V
13 30 V
13 -60 V
13 117 V
14 -245 V
13 435 V
13 -976 V
13 895 V
13 -643 V
13 859 V
3747 264 L
14 69 V
13 258 V
13 752 V
13 327 V
13 -723 V
13 896 V
3840 355 L
13 311 V
13 834 V
13 -110 V
13 209 V
13 -450 V
13 702 V
3932 323 L
13 234 V
13 704 V
13 508 V
3984 625 L
13 791 V
13 139 V
14 -292 V
13 504 V
4050 632 L
13 800 V
13 94 V
13 -196 V
14 357 V
13 -792 V
13 914 V
4142 484 L
13 586 V
13 802 V
4181 242 L
14 5 V
13 22 V
13 87 V
13 315 V
13 837 V
13 -136 V
14 256 V
13 -557 V
13 800 V
4313 242 L
13 7 V
13 27 V
13 106 V
14 376 V
13 896 V
13 -657 V
13 866 V
4418 274 L
13 100 V
14 360 V
13 883 V
13 -517 V
13 767 V
4497 259 L
13 55 V
13 209 V
14 652 V
13 663 V
4563 375 L
13 360 V
13 884 V
13 -524 V
13 773 V
4629 255 L
13 45 V
13 170 V
13 561 V
13 839 V
4694 246 L
14 18 V
13 71 V
13 261 V
13 758 V
13 300 V
13 -659 V
13 868 V
4800 277 L
13 107 V
13 381 V
13 899 V
13 -699 V
13 887 V
4879 321 L
13 226 V
13 691 V
13 553 V
4931 547 L
13 690 V
13 554 V
4971 546 L
13 690 V
13 557 V
5010 541 L
13 681 V
13 583 V
5050 498 L
13 610 V
13 757 V
5089 266 L
13 78 V
13 285 V
13 797 V
14 111 V
13 -233 V
13 417 V
13 -932 V
13 908 V
13 -833 V
13 918 V
5234 580 L
13 737 V
13 388 V
13 -866 V
13 917 V
5299 670 L
14 838 V
13 -136 V
13 255 V
13 -553 V
13 797 V
5378 243 L
13 9 V
14 36 V
13 140 V
13 476 V
13 912 V
5457 458 L
13 538 V
14 867 V
5497 276 L
13 103 V
13 371 V
13 892 V
13 -611 V
13 839 V
5576 246 L
13 19 V
13 73 V
13 271 V
13 773 V
13 230 V
currentpoint stroke M
13 -497 V
14 748 V
5681 274 L
13 101 V
13 360 V
13 884 V
13 -525 V
14 774 V
5760 254 L
13 41 V
13 159 V
13 530 V
13 875 V
5825 290 L
14 144 V
13 489 V
13 906 V
5878 408 L
13 434 V
13 917 V
5918 659 L
13 827 V
13 -68 V
13 133 V
13 -279 V
13 486 V
5996 664 L
14 831 V
13 -95 V
13 182 V
13 -387 V
13 630 V
6075 424 L
14 468 V
13 914 V
6115 494 L
13 603 V
13 771 V
6154 256 L
13 49 V
14 183 V
13 594 V
13 788 V
6220 247 L
13 19 V
13 76 V
13 281 V
14 789 V
13 149 V
13 -315 V
13 537 V
6325 576 L
13 732 V
14 408 V
13 -913 V
13 913 V
13 -910 V
13 912 V
13 -922 V
13 911 V
14 -873 V
13 917 V
6470 688 L
13 853 V
13 -245 V
13 435 V
14 -976 V
13 895 V
13 -642 V
13 858 V
6575 262 L
13 66 V
13 244 V
14 726 V
13 430 V
13 -963 V
13 900 V
13 -702 V
13 888 V
6694 324 L
13 236 V
13 709 V
13 492 V
6746 653 L
13 821 V
13 -30 V
14 59 V
13 -120 V
13 227 V
13 -489 V
13 741 V
6851 281 L
13 118 V
14 416 V
13 914 V
13 -968 V
13 898 V
13 -678 V
13 877 V
6957 295 L
13 156 V
13 524 V
13 881 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial 842 x @beginspecial 50 @llx 50 @lly 410
@urx 150 @ury 3600 @rwi @setspecial
%%BeginDocument: pic/f38.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: 38.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu May 11 18:37:58 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 410 150
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
420 240 M
63 0 V
6513 0 R
-63 0 V
348 240 M
(0) Rshow
420 566 M
63 0 V
6513 0 R
-63 0 V
348 566 M
(0.2) Rshow
420 893 M
63 0 V
6513 0 R
-63 0 V
348 893 M
(0.4) Rshow
420 1219 M
63 0 V
6513 0 R
-63 0 V
-6585 0 R
(0.6) Rshow
420 1546 M
63 0 V
6513 0 R
-63 0 V
-6585 0 R
(0.8) Rshow
420 1872 M
63 0 V
6513 0 R
-63 0 V
-6585 0 R
(1) Rshow
420 240 M
0 63 V
0 1569 R
0 -63 V
420 120 M
(0) Cshow
1078 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(50) Cshow
1735 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(100) Cshow
2393 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(150) Cshow
3050 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(200) Cshow
3708 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(250) Cshow
4366 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(300) Cshow
5023 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(350) Cshow
5681 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(400) Cshow
6338 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(450) Cshow
6996 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(500) Cshow
1.000 UL
LTb
420 240 M
6576 0 V
0 1632 V
-6576 0 V
420 240 L
1.000 UL
LT0
6429 1749 M
(x0=0.038) Rshow
6501 1749 M
351 0 V
420 479 M
13 576 V
13 817 V
459 240 L
14 0 V
13 0 V
13 1 V
13 2 V
13 8 V
13 31 V
14 122 V
13 426 V
13 917 V
591 703 L
13 864 V
13 -335 V
13 564 V
644 531 L
13 666 V
13 626 V
683 428 L
13 478 V
13 911 V
722 452 L
14 526 V
13 879 V
762 298 L
13 168 V
13 551 V
13 851 V
815 255 L
13 43 V
13 164 V
13 546 V
13 858 V
880 263 L
13 67 V
14 252 V
13 739 V
13 379 V
946 856 L
13 918 V
972 610 L
14 774 V
13 225 V
13 -486 V
13 738 V
1038 284 L
13 127 V
13 442 V
14 918 V
1091 619 L
13 785 V
13 170 V
13 -361 V
13 598 V
1157 474 L
13 568 V
13 830 V
1196 242 L
13 6 V
13 23 V
13 89 V
14 324 V
13 850 V
13 -221 V
13 397 V
13 -888 V
13 916 V
1327 731 L
14 882 V
13 -502 V
13 754 V
1380 269 L
13 86 V
13 314 V
14 836 V
13 -126 V
13 238 V
13 -515 V
13 765 V
1485 260 L
13 61 V
14 226 V
13 691 V
13 553 V
1551 548 L
13 692 V
13 549 V
1591 554 L
13 701 V
13 520 V
1630 604 L
13 768 V
13 255 V
13 -555 V
14 799 V
1696 243 L
13 7 V
13 30 V
13 116 V
13 410 V
14 912 V
13 -922 V
13 911 V
13 -873 V
13 917 V
1827 689 L
13 853 V
14 -249 V
13 441 V
13 -989 V
13 890 V
13 -586 V
13 823 V
1932 240 L
14 2 V
13 5 V
13 20 V
13 80 V
13 294 V
13 808 V
14 44 V
13 -89 V
13 172 V
13 -366 V
13 604 V
2090 463 L
13 547 V
14 857 V
2130 260 L
13 61 V
13 225 V
13 689 V
13 558 V
2196 539 L
13 678 V
13 592 V
2235 484 L
13 586 V
13 802 V
2274 242 L
14 5 V
13 21 V
13 84 V
13 304 V
13 825 V
13 -51 V
13 100 V
14 -208 V
13 376 V
13 -837 V
13 918 V
2432 590 L
13 750 V
14 335 V
13 -741 V
13 902 V
2498 382 L
13 378 V
13 897 V
13 -670 V
14 873 V
2564 286 L
13 132 V
13 457 V
13 917 V
2616 544 L
14 686 V
13 568 V
2656 523 L
13 654 V
13 659 V
2695 379 L
13 371 V
14 893 V
13 -614 V
13 841 V
2761 247 L
13 22 V
13 85 V
14 309 V
13 830 V
13 -89 V
13 172 V
13 -366 V
13 604 V
2879 463 L
14 547 V
13 857 V
2919 261 L
13 60 V
13 228 V
13 694 V
13 543 V
2985 565 L
13 716 V
13 467 V
3024 697 L
13 859 V
13 -297 V
14 512 V
3077 621 L
13 786 V
13 162 V
13 -342 V
13 574 V
3142 513 L
14 635 V
13 703 V
3182 322 L
13 230 V
13 698 V
13 529 V
3235 590 L
13 749 V
13 337 V
13 -745 V
13 903 V
3300 390 L
13 396 V
14 907 V
13 -816 V
13 917 V
3366 539 L
13 677 V
13 593 V
3406 483 L
13 583 V
13 806 V
3445 241 L
13 3 V
13 12 V
13 49 V
14 183 V
13 593 V
13 790 V
3537 246 L
13 18 V
13 70 V
13 260 V
14 756 V
13 310 V
13 -683 V
13 880 V
3642 301 L
13 172 V
14 567 V
13 831 V
3695 243 L
13 7 V
13 30 V
13 118 V
13 412 V
14 914 V
13 -946 V
13 905 V
13 -773 V
13 910 V
3826 443 L
14 508 V
13 894 V
3866 346 L
13 292 V
13 806 V
13 60 V
13 -123 V
14 232 V
13 -502 V
13 754 V
3971 270 L
13 86 V
13 316 V
13 839 V
14 -146 V
13 274 V
13 -599 V
13 831 V
4076 242 L
13 8 V
14 28 V
13 111 V
13 393 V
13 906 V
13 -796 V
13 914 V
4181 494 L
14 605 V
13 769 V
4221 258 L
13 53 V
13 200 V
13 633 V
14 709 V
4287 315 L
13 210 V
13 657 V
13 651 V
4339 392 L
13 400 V
14 910 V
13 -852 V
13 918 V
4405 629 L
13 796 V
13 114 V
14 -239 V
13 426 V
13 -955 V
13 902 V
13 -735 V
13 900 V
4523 373 L
14 357 V
13 881 V
13 -495 V
13 747 V
4589 275 L
13 102 V
13 366 V
14 889 V
13 -573 V
13 813 V
4668 240 L
13 0 V
13 1 V
14 3 V
13 12 V
13 48 V
13 181 V
13 588 V
13 798 V
4786 243 L
14 9 V
13 34 V
13 134 V
13 461 V
13 916 V
4865 527 L
14 660 V
13 643 V
4905 403 L
13 424 V
13 917 V
4944 713 L
13 870 V
14 -393 V
13 638 V
4997 412 L
13 445 V
13 918 V
5036 607 L
14 770 V
13 243 V
13 -527 V
13 776 V
5102 254 L
13 40 V
13 155 V
14 521 V
13 884 V
5168 312 L
13 203 V
13 639 V
13 695 V
5220 332 L
14 257 V
13 748 V
13 341 V
13 -754 V
13 905 V
5299 407 L
14 433 V
13 917 V
5339 667 L
13 834 V
13 -113 V
13 214 V
13 -461 V
14 713 V
5418 309 L
13 196 V
13 624 V
13 730 V
5470 292 L
14 149 V
13 505 V
13 896 V
5523 356 L
13 316 V
13 839 V
13 -145 V
14 271 V
13 -592 V
13 827 V
5615 241 L
13 4 V
13 15 V
currentpoint stroke M
13 58 V
14 218 V
13 673 V
13 605 V
5707 463 L
13 546 V
13 858 V
5747 262 L
13 64 V
13 241 V
13 718 V
13 458 V
5812 715 L
13 872 V
14 -405 V
13 651 V
5865 391 L
13 397 V
13 908 V
13 -829 V
14 917 V
5931 572 L
13 725 V
13 433 V
13 -970 V
13 897 V
13 -669 V
14 873 V
6023 285 L
13 131 V
13 452 V
13 918 V
6075 567 L
14 719 V
13 457 V
6115 717 L
13 873 V
13 -417 V
13 665 V
6167 371 L
14 352 V
13 877 V
13 -453 V
13 705 V
6233 320 L
13 224 V
13 685 V
14 569 V
6286 521 L
13 650 V
13 669 V
6325 367 L
13 341 V
14 867 V
13 -363 V
13 600 V
6391 471 L
13 561 V
13 839 V
6430 245 L
14 17 V
13 64 V
13 240 V
13 717 V
13 463 V
6509 706 L
14 865 V
13 -349 V
13 583 V
6562 498 L
13 611 V
13 756 V
6601 268 L
14 80 V
13 296 V
13 812 V
13 24 V
13 -48 V
13 94 V
14 -195 V
13 356 V
13 -789 V
13 913 V
6746 477 L
13 572 V
13 823 V
6786 240 L
13 2 V
13 5 V
13 20 V
13 78 V
13 287 V
13 800 V
14 94 V
13 -194 V
13 354 V
13 -786 V
13 912 V
6943 471 L
14 562 V
13 838 V
6983 245 L
13 15 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial 300 4380 a(Figure)38 b(1.1:)55 b(The)40
b(orbits)e(of)g Fr(S)6 b Fu(\()p Fr(x)p Fu(\))38 b(=)g(4)p
Fr(x)p Fu(\(1)26 b Fq(\000)h Fr(x)p Fu(\))39 b(with)f(\(ab)s(o)m(v)m
(e\))i Fr(x)2872 4395 y Fp(0)2950 4380 y Fu(=)e(0)p Fr(:)p
Fu(037)f(and)i(\(b)s(elo)m(w\))300 4501 y Fr(x)355 4516
y Fp(0)423 4501 y Fu(=)27 b(0)p Fr(:)p Fu(038)p Black
446 4841 a(Figure)34 b(1.1)g(sho)m(ws)i(the)e(\014rst)h(500)f
(iterations)f(of)h(the)h(system)g(with)f(t)m(w)m(o)h(di\013eren)m(t)g
(initial)300 4961 y(p)s(oin)m(ts.)40 b(W)-8 b(e)25 b(can)f(see)h(that)f
(when)h(the)g(initial)20 b(state)25 b(is)e(c)m(hanged)j(b)m(y)f(only)e
(0.001,)i(the)g(c)m(hange)g(in)300 5082 y(the)g(orbit)e(will)g(b)s(e)i
(large.)39 b(F)-8 b(urthermore,)26 b(the)f(outputs)g(of)f(the)h(system)
h(can)f(not)f(approac)m(h)h(an)m(y)300 5202 y(stable)31
b(state)g(for)g(almost)e(all)g(initial)e(p)s(oin)m(ts,)k(but)h(are)f
(lik)m(e)f(\\random)g(n)m(um)m(b)s(ers")h(distributed)300
5322 y(nearly)26 b(\\ev)m(erywhere")j(in)c([0,)j(1].)41
b(This)26 b(is)g(a)g(t)m(ypical)f(c)m(haotic)h(phenomenon,)i(and)e(the)
h(densely)300 5443 y(distributed)32 b(orbit)g(is)g(referred)h(to)f(as)h
(a)f(c)m(haotic)h(orbit.)p Black 2046 5764 a(1)p Black
eop
%%Page: 2 11
2 10 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020
b Fu(2)p Black 446 274 a(The)32 b(study)h(of)d(these)j(systems)f(has)g
(fundamen)m(tal)e(imp)s(ortance)g(not)h(only)g(in)f(mathemat-)300
395 y(ical)e(sciences,)33 b(but)d(also)g(in)f(ph)m(ysical,)i
(biological,)c(and)j(ev)m(en)i(economic)d(sciences)j([1])e([3])g([36].)
300 515 y(There)37 b(are)e(v)-5 b(arious)35 b(de\014nitions)g(for)g
(\\c)m(haos",)i(but)f(a)f(basic)g(feature)h(of)f Fj(chaos)g
Fu(is)g(the)h(sensi-)300 635 y(tiv)m(e)29 b(dep)s(endence)i(on)e
(initial)c(conditions,)k(and)g(so)g(w)m(e)h(are)e(not)h(able)f(to)h
(predict)g(the)g(ev)m(en)m(tual)300 756 y(b)s(eha)m(vior)j(of)g(the)h
(iterates)g(of)f(the)h(dynamical)e(system.)446 876 y(No)m(w)38
b(w)m(e)f(lo)s(ok)f(at)g(c)m(haos)h(from)f(the)h(statistical)d(p)s(oin)
m(t)i(of)g(view.)56 b(Let)37 b Fr(S)j Fu(:)35 b Fr(X)42
b Fq(!)34 b Fr(X)44 b Fu(b)s(e)37 b(a)300 997 y(c)m(haotic)30
b(dynamical)f(system)i(and)g(let)e Fr(A)i Fu(b)s(e)g(a)f(subset)i(of)e
(the)g(phase)i(space)f Fr(X)8 b Fu(,)31 b(and)g(w)m(e)g(w)m(an)m(t)300
1117 y(to)26 b(see)i(ho)m(w)f(often)f(the)h(c)m(haotic)f(orbit)g
(starting)f(from)g Fr(x)2360 1132 y Fp(0)2400 1117 y
Fu(,)j Fq(f)p Fr(x)2560 1132 y Fo(n)2635 1117 y Fu(=)f
Fr(S)2804 1081 y Fo(n)2851 1117 y Fu(\()p Fr(x)2944 1132
y Fp(0)2984 1117 y Fu(\))g Fq(j)h Fr(n)g Fu(=)f(0)p Fr(;)17
b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)d(g)26 b Fu(will)300
1237 y(en)m(ter)k Fr(A)p Fu(.)42 b(That)29 b(is,)h(w)m(e)g(w)m(an)m(t)f
(to)g(observ)m(e)i(the)e(frequency)i(that)e(the)g(p)s(oin)m(ts)g(of)f
(the)h(tra)5 b(jectory)300 1358 y(of)24 b(an)h(initial)c(p)s(oin)m(t)j
(will)f(b)s(e)i(in)f Fr(A)p Fu(.)41 b(F)-8 b(or)24 b(this)g(purp)s
(ose,)j(let)e Fr(\037)2532 1373 y Fo(A)2614 1358 y Fu(b)s(e)g(the)g(c)m
(haracteristic)f(function)300 1478 y(of)32 b Fr(A)p Fu(,)h(that)f(is,)
1444 1741 y Fr(\037)1505 1756 y Fo(A)1562 1741 y Fu(\()p
Fr(x)p Fu(\))c(=)1824 1601 y Fi(\032)1941 1680 y Fu(1)82
b(if)55 b Fr(x)28 b Fq(2)g Fr(A)1941 1800 y Fu(0)82 b(if)55
b Fr(x)39 b(=)-60 b Fq(2)28 b Fr(A)2503 1741 y(:)p Black
1109 w Fu(\(1.1\))p Black 300 2004 a(Then)34 b(the)f
Fj(time)h(me)-5 b(an)32 b Fu(of)g(the)h(orbit)f(starting)f(at)h
Fr(x)d Fq(2)f Fr(X)40 b Fu(in)32 b Fr(A)g Fu(is)h(giv)m(en)f(b)m(y)i
(the)f(frequency)1553 2299 y(lim)1529 2359 y Fo(n)p Fl(!1)1744
2232 y Fu(1)p 1739 2276 59 4 v 1739 2368 a Fr(n)1829
2175 y Fo(n)p Fl(\000)p Fp(1)1824 2205 y Fi(X)1832 2417
y Fo(k)r Fp(=0)1984 2299 y Fr(\037)2045 2314 y Fo(A)2103
2299 y Fu(\()p Fr(S)2207 2258 y Fo(k)2249 2299 y Fu(\()p
Fr(x)p Fu(\)\))p Fr(;)p Black 1194 w Fu(\(1.2\))p Black
300 2594 a(whic)m(h)g(represen)m(ts)i(ho)m(w)e(often)g(the)g(orbit)e
(sta)m(ys)j(in)e Fr(A)p Fu(.)446 2715 y(The)g(Birkho\013)f(individual)e
(ergo)s(dic)h(theorem)h(\(quoted)h(as)f(follo)m(ws,)f(see)j(App)s
(endix)e(A)g(for)300 2835 y(notation\))36 b(sa)m(ys)i(that)f(for)f
Fr(\026)p Fu(-a.e.)57 b Fr(x)35 b Fq(2)h Fr(X)8 b Fu(,)38
b(this)f(time)f(mean)g(equals)i(the)f Fj(sp)-5 b(ac)g(e)38
b(me)-5 b(an)36 b Fr(\026)p Fu(\()p Fr(A)p Fu(\))300
2955 y(if)f Fr(\026)h Fu(is)g(an)g(ergo)s(dic)f(in)m(v)-5
b(arian)m(t)35 b(probabilit)m(y)f(measure)j(under)g Fr(S)6
b Fu(.)54 b(Here)37 b(the)f(in)m(v)-5 b(ariance)36 b(of)f
Fr(\026)300 3076 y Fu(with)30 b(resp)s(ect)i(to)f Fr(S)36
b Fu(means)31 b(that)g Fr(\026)p Fu(\()p Fr(S)1736 3040
y Fl(\000)p Fp(1)1829 3076 y Fu(\()p Fr(B)5 b Fu(\)\))28
b(=)g Fr(\026)p Fu(\()p Fr(B)5 b Fu(\))30 b(for)g(all)f(measurable)h
(subsets)j Fr(B)5 b Fu(.)43 b(The)300 3196 y(ergo)s(dicit)m(y)31
b(means)h(that)g Fr(S)1327 3160 y Fl(\000)p Fp(1)1421
3196 y Fu(\()p Fr(B)5 b Fu(\))28 b(=)f Fr(B)37 b Fu(implies)30
b(that)h Fr(\026)p Fu(\()p Fr(B)5 b Fu(\))28 b(=)f(0)32
b(or)g(1.)43 b(In)32 b(other)g(w)m(ords,)i(the)300 3317
y(time)26 b(mean)h(of)g(the)g(c)m(haotic)g(orbit)g(is)g(indep)s(enden)m
(t)h(of)f(the)h(c)m(hoice)f(of)g(the)h(initial)c(p)s(oin)m(t)i(and)h
(is)300 3437 y(equal)i(to)g(the)h(same)f(constan)m(t)h
Fr(\026)p Fu(\()p Fr(A)p Fu(\),)g(the)f(probabilit)m(y)f(measure)h(of)g
Fr(A)p Fu(.)43 b(Th)m(us)30 b(it)f(can)g(b)s(e)h(seen)300
3557 y(that)i(in)f(man)m(y)h(cases)i Fj(chaotic)g(orbits)g(in)g(the)h
(deterministic)f(sense)f(ar)-5 b(e)34 b(no)h(mor)-5 b(e)33
b(chaotic)h(in)300 3678 y(the)h(statistic)-5 b(al)35
b(sense)p Fu(.)p Black 300 3836 a Fj(The)-5 b(or)g(em)34
b(1.1.)p Black 48 w Fm(Birkho\013)10 b('s)33 b(individual)f(ergo)s(dic)
g(theorem)d Fu([50)o(])g(Let)h(\()p Fr(X)r(;)17 b Fu(\006\))29
b(b)s(e)g(a)g(mea-)300 3956 y(sure)24 b(space)h(and)e
Fr(\026)g Fu(b)s(e)h(a)f(probabilit)m(y)f(measure)h(on)h
Fr(X)31 b Fu(whic)m(h)24 b(is)f(in)m(v)-5 b(arian)m(t)22
b(under)i Fr(S)34 b Fu(:)27 b Fr(X)36 b Fq(!)27 b Fr(X)8
b Fu(.)300 4076 y(Then)34 b(for)e(an)m(y)h Fr(f)38 b
Fq(2)28 b Fr(L)1134 4040 y Fp(1)1174 4076 y Fu(\()p Fr(X)8
b Fu(\))32 b(and)h(almost)e(ev)m(ery)j Fr(x)29 b Fq(2)f
Fr(X)8 b Fu(,)32 b(the)h(time)e(mean)1596 4377 y(lim)1572
4437 y Fo(n)p Fl(!1)1787 4309 y Fu(1)p 1782 4354 V 1782
4445 a Fr(n)1873 4252 y Fo(n)p Fl(\000)p Fp(1)1867 4282
y Fi(X)1875 4494 y Fo(k)r Fp(=0)2028 4377 y Fr(f)11 b
Fu(\()p Fr(S)2191 4336 y Fo(k)2233 4377 y Fu(\()p Fr(x)p
Fu(\)\))p Black 1237 w(\(1.3\))p Black 300 4695 a(exists)33
b(to)g(b)s(e)843 4669 y(~)821 4695 y Fr(f)11 b Fu(\()p
Fr(x)p Fu(\))33 b(and)1431 4879 y(~)1410 4906 y Fr(f)11
b Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\))27 b(=)1894
4879 y(~)1873 4906 y Fr(f)10 b Fu(\()p Fr(x)p Fu(\))56
b(\()p Fr(\026)22 b Fq(\000)h Fu(a.)43 b(e.\))p Black
1075 w(\(1.4\))p Black 300 5116 a(holds.)52 b(Moreo)m(v)m(er,)38
b(if)c Fr(S)41 b Fu(is)35 b(ergo)s(dic)g(with)g(resp)s(ect)i(to)e
Fr(\026)p Fu(,)h(then)2749 5090 y(~)2728 5116 y Fr(f)46
b Fu(is)35 b(the)h(constan)m(t)g(function)300 5156 y
Fi(R)347 5271 y Fo(X)431 5236 y Fr(f)11 b(d\026)p Fu(.)446
5394 y(The)38 b(existence)g(of)e(an)h(in)m(v)-5 b(arian)m(t)35
b(measure)i(for)f(a)g(con)m(tin)m(uous)h(mapping)e(on)i(a)f(compact)300
5515 y(space)e(has)f(b)s(een)g(established)g(b)m(y)g(the)g(follo)m
(wing)d(theorem)i([50].)p Black Black eop
%%Page: 3 12
3 11 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020
b Fu(3)p Black Black 300 274 a Fj(The)-5 b(or)g(em)34
b(1.2.)p Black 48 w Fu(Let)28 b Fr(X)36 b Fu(b)s(e)29
b(a)f(compact)g(metric)f(space)j(and)e(let)g Fr(S)33
b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fr(X)36 b Fu(b)s(e)28
b(a)g(con)m(tin)m(uous)300 395 y(mapping.)42 b(Then)34
b(there)f(is)f(an)h(in)m(v)-5 b(arian)m(t)31 b(probabilit)m(y)f
(measure)j Fr(\026)f Fu(under)i Fr(S)6 b Fu(.)446 544
y(F)-8 b(or)28 b(the)g(ab)s(o)m(v)m(e)h(logistic)d(mo)s(del)h
Fr(S)6 b Fu(\()p Fr(x)p Fu(\))27 b(=)h(4)p Fr(x)p Fu(\(1)13
b Fq(\000)g Fr(x)p Fu(\))29 b(and)g(when)g(the)g(partition)d(n)m(um)m
(b)s(er)i(of)300 665 y([0)p Fr(;)17 b Fu(1])31 b(in)m(to)h(subin)m
(terv)-5 b(als)32 b(is)f(100,)h(Figure)e(1.2)i(sho)m(ws)i(the)e
(frequencies)i(of)d(its)h(orbits)f(en)m(tering)300 785
y(eac)m(h)i(subin)m(terv)-5 b(al)32 b(with)f(di\013eren)m(t)i(initial)
28 b(states)33 b(and)f(10000)f(iterations.)42 b(F)-8
b(rom)30 b(the)j(picture)300 905 y(w)m(e)38 b(can)f(see)h(that)e(the)h
(frequencies)i(are)e(\\nearly")f(the)h(same)f(for)h(a)f(\014xed)i
(subin)m(terv)-5 b(al)36 b(with)300 1026 y(resp)s(ect)i(to)f
(di\013eren)m(t)g(initial)c(p)s(oin)m(ts.)56 b(When)38
b(the)f(iteration)e(n)m(um)m(b)s(er)j(go)s(es)f(to)f(in\014nit)m(y)-8
b(,)38 b(the)300 1146 y(frequency)j(will)36 b(b)s(e)j(the)g(\\time)e
(mean")h(whic)m(h)h(is)f(equal)g(to)g(some)h(probabilit)m(y)e(measure)h
(of)300 1266 y(eac)m(h)33 b(in)m(terv)-5 b(al.)p Black
Black Black 570 2200 a @beginspecial 50 @llx 50 @lly
410 @urx 150 @ury 3600 @rwi @setspecial
%%BeginDocument: pic/fr37.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: fr37.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu May 11 23:22:14 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 410 150
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
276 240 M
63 0 V
6657 0 R
-63 0 V
204 240 M
(0) Rshow
276 473 M
63 0 V
6657 0 R
-63 0 V
204 473 M
(1) Rshow
276 706 M
63 0 V
6657 0 R
-63 0 V
204 706 M
(2) Rshow
276 939 M
63 0 V
6657 0 R
-63 0 V
204 939 M
(3) Rshow
276 1173 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(4) Rshow
276 1406 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(5) Rshow
276 1639 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(6) Rshow
276 1872 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(7) Rshow
276 240 M
0 63 V
0 1569 R
0 -63 V
276 120 M
(0) Cshow
1620 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.2) Cshow
2964 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.4) Cshow
4308 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.6) Cshow
5652 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.8) Cshow
6996 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(1) Cshow
1.000 UL
LTb
276 240 M
6720 0 V
0 1632 V
-6720 0 V
276 240 L
1.000 UL
LT0
6429 1749 M
(x0=0.037) Rshow
6501 1749 M
351 0 V
242 240 M
34 1483 R
34 0 V
0 -842 V
67 0 V
0 -130 V
67 0 V
0 -89 V
67 0 V
0 -68 V
67 0 V
0 -18 V
68 0 V
0 -77 V
67 0 V
0 18 V
67 0 V
0 5 V
67 0 V
0 -26 V
67 0 V
0 -21 V
68 0 V
0 -11 V
67 0 V
0 16 V
67 0 V
0 -7 V
67 0 V
0 -23 V
67 0 V
0 21 V
68 0 V
0 -58 V
67 0 V
0 11 V
67 0 V
0 12 V
67 0 V
0 23 V
67 0 V
0 -51 V
68 0 V
0 26 V
67 0 V
0 -31 V
67 0 V
0 7 V
67 0 V
0 -2 V
67 0 V
0 -2 V
68 0 V
0 37 V
67 0 V
0 -33 V
67 0 V
0 -30 V
67 0 V
0 5 V
67 0 V
0 28 V
68 0 V
0 -14 V
67 0 V
0 -7 V
67 0 V
0 -3 V
67 0 V
0 35 V
67 0 V
0 -23 V
68 0 V
0 -28 V
67 0 V
0 12 V
67 0 V
0 16 V
67 0 V
0 7 V
67 0 V
0 -51 V
68 0 V
0 49 V
67 0 V
0 -40 V
67 0 V
0 5 V
67 0 V
0 28 V
67 0 V
0 11 V
68 0 V
0 -16 V
67 0 V
0 14 V
67 0 V
0 -28 V
67 0 V
0 12 V
67 0 V
0 -26 V
68 0 V
0 58 V
67 0 V
0 -35 V
67 0 V
0 47 V
67 0 V
0 -79 V
67 0 V
0 30 V
68 0 V
0 -19 V
67 0 V
0 26 V
67 0 V
0 -30 V
67 0 V
0 79 V
67 0 V
0 -93 V
68 0 V
0 35 V
67 0 V
0 39 V
67 0 V
0 -7 V
67 0 V
0 -39 V
67 0 V
0 2 V
68 0 V
0 9 V
67 0 V
0 3 V
67 0 V
0 4 V
67 0 V
0 14 V
67 0 V
0 12 V
68 0 V
0 -19 V
67 0 V
0 5 V
67 0 V
0 -23 V
67 0 V
0 7 V
67 0 V
0 -17 V
68 0 V
0 56 V
67 0 V
0 14 V
67 0 V
0 -46 V
67 0 V
0 2 V
67 0 V
0 49 V
68 0 V
0 -26 V
67 0 V
0 17 V
67 0 V
0 -14 V
67 0 V
0 48 V
67 0 V
0 -46 V
68 0 V
0 37 V
67 0 V
0 -32 V
67 0 V
0 30 V
67 0 V
0 14 V
67 0 V
0 39 V
68 0 V
0 -32 V
67 0 V
0 44 V
67 0 V
0 33 V
67 0 V
0 16 V
67 0 V
0 -12 V
68 0 V
0 103 V
67 0 V
0 12 V
67 0 V
0 142 V
67 0 V
0 972 V
67 0 V
0 -1555 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial 841 x @beginspecial 50 @llx 50 @lly 410
@urx 150 @ury 3600 @rwi @setspecial
%%BeginDocument: pic/fr38.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: fr38.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu May 11 23:24:08 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 410 150
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
276 240 M
63 0 V
6657 0 R
-63 0 V
204 240 M
(0) Rshow
276 473 M
63 0 V
6657 0 R
-63 0 V
204 473 M
(1) Rshow
276 706 M
63 0 V
6657 0 R
-63 0 V
204 706 M
(2) Rshow
276 939 M
63 0 V
6657 0 R
-63 0 V
204 939 M
(3) Rshow
276 1173 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(4) Rshow
276 1406 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(5) Rshow
276 1639 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(6) Rshow
276 1872 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(7) Rshow
276 240 M
0 63 V
0 1569 R
0 -63 V
276 120 M
(0) Cshow
1620 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.2) Cshow
2964 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.4) Cshow
4308 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.6) Cshow
5652 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.8) Cshow
6996 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(1) Cshow
1.000 UL
LTb
276 240 M
6720 0 V
0 1632 V
-6720 0 V
276 240 L
1.000 UL
LT0
6429 1749 M
(x0=0.038) Rshow
6501 1749 M
351 0 V
242 240 M
34 1464 R
34 0 V
0 -862 V
67 0 V
0 -73 V
67 0 V
0 -119 V
67 0 V
0 -65 V
67 0 V
0 -19 V
68 0 V
0 -70 V
67 0 V
0 54 V
67 0 V
0 -70 V
67 0 V
0 54 V
67 0 V
0 -33 V
68 0 V
0 -28 V
67 0 V
0 7 V
67 0 V
0 -7 V
67 0 V
0 -42 V
67 0 V
0 14 V
68 0 V
0 16 V
67 0 V
0 -23 V
67 0 V
0 7 V
67 0 V
0 -25 V
67 0 V
0 14 V
68 0 V
0 -40 V
67 0 V
0 -5 V
67 0 V
0 26 V
67 0 V
67 0 V
0 -35 V
68 0 V
0 54 V
67 0 V
0 -17 V
67 0 V
0 -30 V
67 0 V
0 19 V
67 0 V
0 4 V
68 0 V
0 -7 V
67 0 V
0 3 V
67 0 V
0 2 V
67 0 V
0 19 V
67 0 V
0 -17 V
68 0 V
0 -18 V
67 0 V
0 9 V
67 0 V
0 -21 V
67 0 V
0 44 V
67 0 V
0 -49 V
68 0 V
0 10 V
67 0 V
0 18 V
67 0 V
0 21 V
67 0 V
0 -49 V
67 0 V
0 17 V
68 0 V
0 14 V
67 0 V
0 11 V
67 0 V
0 -46 V
67 0 V
0 11 V
67 0 V
0 5 V
68 0 V
0 7 V
67 0 V
0 -5 V
67 0 V
0 -4 V
67 0 V
0 18 V
67 0 V
0 -23 V
68 0 V
0 -30 V
67 0 V
0 39 V
67 0 V
0 10 V
67 0 V
67 0 V
0 -3 V
68 0 V
0 -2 V
67 0 V
0 -26 V
67 0 V
0 42 V
67 0 V
0 3 V
67 0 V
0 -31 V
68 0 V
0 -21 V
67 0 V
0 47 V
67 0 V
0 7 V
67 0 V
0 -9 V
67 0 V
0 -47 V
68 0 V
0 47 V
67 0 V
0 -19 V
67 0 V
0 9 V
67 0 V
0 -21 V
67 0 V
0 -4 V
68 0 V
0 21 V
67 0 V
0 2 V
67 0 V
0 63 V
67 0 V
0 -49 V
67 0 V
0 12 V
68 0 V
0 14 V
67 0 V
0 -12 V
67 0 V
0 -12 V
67 0 V
0 33 V
67 0 V
0 4 V
68 0 V
0 45 V
67 0 V
0 -5 V
67 0 V
0 -16 V
67 0 V
0 -14 V
67 0 V
0 51 V
68 0 V
0 40 V
67 0 V
0 -26 V
67 0 V
0 5 V
67 0 V
0 14 V
67 0 V
0 109 V
68 0 V
0 -4 V
67 0 V
0 74 V
67 0 V
0 112 V
67 0 V
0 933 V
67 0 V
0 -1525 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial 300 3245 a(Figure)30 b(1.2:)43 b(The)32
b(frequency)i(of)d(the)h(orbits)f(of)f Fr(S)6 b Fu(\()p
Fr(x)p Fu(\))28 b(=)g(4)p Fr(x)p Fu(\(1)20 b Fq(\000)g
Fr(x)p Fu(\))32 b(of)f(10000)f(iterations)g(and)300 3365
y(100)i(partitions)f(in)h([0)p Fr(;)17 b Fu(1])32 b(with)g(di\013eren)m
(t)h(initial)28 b(states)p Black 446 3718 a(In)33 b(ph)m(ysical)e
(sciences)j(suc)m(h)f(as)f(statistical)e(ph)m(ysics)k(and)e(neural)f
(net)m(w)m(orks,)j(man)m(y)e(prob-)300 3838 y(lems)d(are)g(also)f
(closely)h(related)g(to)g(the)h(problem)e(of)h(the)h(existence)h(of)e
(an)g(absolutely)g(con)m(tin-)300 3959 y(uous)39 b(in)m(v)-5
b(arian)m(t)36 b(probabilit)m(y)h(measure)h Fr(\026)g
Fu(of)g(a)f(nonsingular)g(transformation)f(of)i Fr(X)45
b Fq(\032)37 b Fr(R)3772 3923 y Fo(d)3813 3959 y Fu(.)300
4079 y(That)c(is,)f Fr(\026)g Fu(can)h(b)s(e)g(view)m(ed)h(as)e(a)h
Fj(physic)-5 b(al)34 b(me)-5 b(asur)g(e)32 b Fu(in)g(the)h(sense)h
(that)1432 4313 y Fr(\026)p Fu(\()p Fr(A)p Fu(\))28 b(=)1771
4178 y Fi(Z)1827 4403 y Fo(A)1900 4313 y Fr(f)11 b(dm;)44
b Fq(8)28 b Fr(A)g Fq(2)g Fu(\006)p Fr(:)p Black 1098
w Fu(\(1.5\))p Black 300 4552 a(The)46 b(nonnegativ)m(e)g(function)e
Fr(f)56 b Fu(is)45 b(called)f(the)h(densit)m(y)h(of)f
Fr(\026)p Fu(.)81 b(Here)46 b Fr(m)f Fu(is)g(the)h(Leb)s(esgue)300
4672 y(measure)32 b(on)g Fr(X)r(;)45 b Fu(\006)32 b(is)g(the)g(Borel)f
Fr(\033)t Fu(-algebra)g(of)g(subsets)j(of)e Fr(X)8 b
Fu(,)32 b(and)g(the)g(non-singularit)m(y)e(of)300 4792
y Fr(S)38 b Fu(means)33 b(that)f Fr(m)p Fu(\()p Fr(A)p
Fu(\))c(=)g(0)k(implies)e Fr(m)p Fu(\()p Fr(S)1875 4756
y Fl(\000)p Fp(1)1970 4792 y Fu(\()p Fr(A)p Fu(\)\))d(=)h(0.)446
4913 y(As)34 b(men)m(tioned)f(ab)s(o)m(v)m(e,)i(the)f(concept)g(of)f
(absolutely)g(con)m(tin)m(uous)h(in)m(v)-5 b(arian)m(t)32
b(probabilit)m(y)300 5033 y(measures)27 b(is)g(related)f(to)g(the)h
(problem)e(of)i(studying)g(v)-5 b(arious)25 b(statistical)g(prop)s
(erties)h(of)h(orbits)300 5153 y(of)33 b(the)g(c)m(haotic)g(dynamics.)
44 b(No)m(w)34 b(our)f(question)g(is,)g(giv)m(en)g(a)g(c)m(haotic)f
(mapping)g Fr(S)i Fu(:)29 b([0)p Fr(;)17 b Fu(1])27 b
Fq(!)300 5274 y Fu([0)p Fr(;)17 b Fu(1],)32 b(ho)m(w)h(can)g(w)m(e)h
(calculate)d(the)i(in)m(v)-5 b(arian)m(t)31 b(probabilit)m(y)g(measure)
i Fr(\026)p Fu(?)446 5394 y(It)23 b(is)g(w)m(ell-kno)m(wn)g(that)f(the)
i(densit)m(y)f Fr(f)34 b Fu(of)22 b(an)h(absolutely)f(con)m(tin)m(uous)
i(in)m(v)-5 b(arian)m(t)21 b(probabil-)300 5515 y(it)m(y)h(measure)h
(is)f(a)g(\014xed)i(densit)m(y)g(of)e(the)h(so-called)e
Fj(F)-7 b(r)i(ob)g(enius-Perr)g(on)24 b(op)-5 b(er)g(ator)p
Fu(.)39 b(Considering)p Black Black eop
%%Page: 4 13
4 12 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020
b Fu(4)p Black 300 274 a(the)36 b(iteration)d(of)h(the)i(F)-8
b(rob)s(enius-P)m(erron)35 b(op)s(erator)f(leads)h(us)h(to)f(the)g
(same)g(observ)-5 b(ation)35 b(as)300 395 y(ab)s(o)m(v)m(e:)44
b(c)m(haos)34 b(in)e(the)h(deterministic)d(sense)35 b(ma)m(y)d(not)h(b)
s(e)f(so)h(in)f(the)h(probabilistic)d(sense.)446 515
y(Let)46 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))44 b(b)s(e)i(a)f Fr(\033)t Fu(-\014nite)f(measure)h(space,)50
b(let)44 b Fr(S)55 b Fu(:)49 b Fr(X)57 b Fq(!)48 b Fr(X)53
b Fu(b)s(e)45 b(a)g(nonsingular)300 635 y(transformation,)33
b(i.e.,)i Fr(\026)p Fu(\()p Fr(A)p Fu(\))c(=)g(0)j(implies)e
Fr(\026)p Fu(\()p Fr(S)2106 599 y Fl(\000)p Fp(1)2200
635 y Fu(\()p Fr(A)p Fu(\)\))f(=)g(0,)k(and)g(let)f Fr(P)45
b Fu(:)31 b Fr(L)3203 599 y Fp(1)3243 635 y Fu(\()p Fr(X)8
b Fu(\))31 b Fq(!)g Fr(L)3636 599 y Fp(1)3675 635 y Fu(\()p
Fr(X)8 b Fu(\))300 756 y(b)s(e)33 b(the)g(F)-8 b(rob)s(enius-P)m(erron)
32 b(op)s(erator)g(asso)s(ciated)g(with)h Fr(S)38 b Fu(de\014ned)c(b)m
(y)1284 880 y Fi(Z)1340 1105 y Fo(A)1413 1015 y Fr(P)14
b(f)d(d\026)27 b Fu(=)1789 880 y Fi(Z)1845 1105 y Fo(S)1892
1086 y Fh(\000)p Fg(1)1974 1105 y Fp(\()p Fo(A)p Fp(\))2102
1015 y Fr(f)11 b(d\026;)44 b Fq(8)p Fr(A)28 b Fq(2)g
Fu(\006)p Fr(:)p Black 950 w Fu(\(1.6\))p Black 300 1301
a(It)g(is)g(not)g(di\016cult)f(to)h(sho)m(w)h(that)f([36])g(an)m(y)g
(\014xed)i(densit)m(y)f Fr(f)2558 1265 y Fl(\003)2625
1301 y Fu(of)f Fr(P)41 b Fu(giv)m(es)29 b(an)f(absolutely)f(con-)300
1422 y(tin)m(uous)d Fr(S)6 b Fu(-in)m(v)-5 b(arian)m(t)22
b(probabilit)m(y)g(measure)i Fr(\026)2055 1437 y Fo(f)2096
1418 y Fh(\003)2160 1422 y Fu(on)f Fr(X)32 b Fu(de\014ned)25
b(b)m(y)g Fr(\026)2912 1437 y Fo(f)2953 1418 y Fh(\003)2993
1422 y Fu(\()p Fr(A)p Fu(\))j(=)3273 1341 y Fi(R)3320
1456 y Fo(A)3394 1422 y Fr(f)3453 1385 y Fl(\003)3492
1422 y Fr(d\026;)44 b(A)28 b Fq(2)300 1542 y Fu(\006.)446
1662 y(The)44 b(existence)g(problem)e(of)g(\014xed)i(densities)e(of)h
(F)-8 b(rob)s(enius-P)m(erron)42 b(op)s(erators)g(is)h(one)300
1783 y(of)37 b(the)i(main)d(topics)i(in)f(mo)s(dern)g(ergo)s(dic)g
(theory)i([36)o(].)60 b(On)38 b(the)g(other)g(hand,)i(in)d(ph)m(ysical)
300 1903 y(sciences,)j(one)d(often)h(need)g(compute)f(one)h(or)e
(higher)h(dimensional)e(absolutely)h(con)m(tin)m(uous)300
2024 y(in)m(v)-5 b(arian)m(t)23 b(measures.)42 b(F)-8
b(or)23 b(example,)j(in)e(neural)f(net)m(w)m(orks,)29
b(condensed)d(matter)e(ph)m(ysics,)j(tur-)300 2144 y(bulence)h(in)f
(\015uid)h(\015o)m(w,)h(arra)m(ys)f(of)g(Josephson)h(junctions,)g
(large)d(scale)i(laser)f(arra)m(ys,)j(reaction)300 2264
y(di\013usion)37 b(systems,)42 b(etc.,)f(\\coupled)e(map)e(lattices")h
(app)s(ear)g(as)h(mo)s(dels)e(for)i(phase)g(transi-)300
2385 y(tion,)j(in)e(whic)m(h)h(the)g(ev)m(olution)f(and)h(con)m(v)m
(ergence)i(of)e(densities)g(under)g(the)g(action)f(of)h(the)300
2505 y(F)-8 b(rob)s(enius-P)m(erron)40 b(op)s(erator)f(are)h(examined.)
65 b(In)40 b(order)g(to)f(understand)i(some)f(statistical)300
2625 y(prop)s(erties)e(of)f(these)i(systems,)i(it)36
b(is)i(essen)m(tial)g(to)f(b)s(e)h(able)f(to)h(calculate)e(some)i
(global)d(sta-)300 2746 y(tistical)c(quan)m(tities)i(suc)m(h)h(as)f(in)
m(v)-5 b(arian)m(t)32 b(measures,)i(en)m(trop)m(y)-8
b(,)35 b(and)e(top)s(ological)c(pressure)35 b([1].)300
2866 y(Th)m(us,)k(from)c(the)h(ph)m(ysical)h(p)s(oin)m(t)e(of)h(view,)h
(the)g(existence)h(and)e(computation)f(of)g(in)m(v)-5
b(arian)m(t)300 2987 y(densities)33 b(of)f(F)-8 b(rob)s(enius-P)m
(erron)32 b(op)s(erators)h(are)f(v)m(ery)i(imp)s(ortan)m(t.)446
3107 y(Ho)m(w)m(ev)m(er,)51 b(the)45 b(follo)m(wing)d(t)m(w)m(o)j(main)
e(di\016culties)h(mak)m(e)h(solving)e(the)j(ab)s(o)m(v)m(e)f(problem)
300 3227 y(a)40 b(c)m(hallenging)f(one.)68 b(First)39
b(the)j(basic)e(space)i Fr(L)2154 3191 y Fp(1)2193 3227
y Fu(\()p Fr(X)8 b Fu(\))41 b(is)f(not)g(re\015exiv)m(e,)k(and)d
(secondly)h(the)300 3348 y(F)-8 b(rob)s(enius-P)m(erron)28
b(op)s(erator)f Fr(P)41 b Fu(is)27 b(not)h(compact)f(on)h
Fr(L)2399 3312 y Fp(1)2438 3348 y Fu(\()p Fr(X)8 b Fu(\).)42
b(Th)m(us,)30 b(w)m(e)f(can)f(only)f(use)i(some)300 3468
y(sp)s(ecial)j(tec)m(hniques)j(and)f(the)g(structure)g(analysis)f(to)g
(pro)m(v)m(e)h(the)g(existence)h(and)e(to)g(dev)m(elop)300
3589 y(con)m(v)m(ergen)m(t)i(algorithms.)446 3709 y(F)-8
b(or)31 b(the)g(one)g(dimensional)e(case,)j Fr(S)i Fu(:)27
b([0)p Fr(;)17 b Fu(1])27 b Fq(!)h Fu([0)p Fr(;)17 b
Fu(1],)30 b(in)h(his)f(b)s(o)s(ok)h([47],)g(Ulam)e(prop)s(osed)300
3829 y(a)36 b(piecewise)h(constan)m(t)h(appro)m(ximation)c(metho)s(d)i
(to)g(calculate)g(the)g(\014xed)i(p)s(oin)m(t)e(of)g
Fr(P)14 b Fu(,)37 b(and)300 3950 y(he)28 b(conjectured)h(that)e
(piecewise)h(constan)m(t)g(appro)m(ximations)e Fr(f)2687
3965 y Fo(n)2761 3950 y Fu(from)g(the)i(algorithm)c(w)m(ould)300
4070 y(con)m(v)m(erge)40 b(in)d Fr(L)889 4034 y Fp(1)929
4070 y Fu(\(0)p Fr(;)17 b Fu(1\))37 b(to)g(a)h(\014xed)h(p)s(oin)m(t)e
Fr(f)49 b Fu(of)38 b Fr(P)51 b Fu(if)37 b Fr(P)51 b Fu(has)39
b(a)e(non)m(trivial)f(\014xed)j(p)s(oin)m(t)e(\(i.e.,)300
4190 y(if)32 b Fr(S)39 b Fu(preserv)m(es)d(some)d(absolutely)g(con)m
(tin)m(uous)h(measure)f(under)h(some)f(condition)f(on)h
Fr(S)6 b Fu(\).)46 b(In)300 4311 y(1976,)26 b(Li)e([38)o(])i([39)o(])f
(\014rst)h(pro)m(v)m(ed)g(the)g(conjecture)g(for)f(a)f(class)i(of)e
(piecewise)i Fr(C)3173 4275 y Fp(2)3237 4311 y Fu(and)f(stretc)m(hing)
300 4431 y(mappings)34 b Fr(S)j Fu(:)32 b([0)p Fr(;)17
b Fu(1])31 b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])34 b(under)i(whic)m(h)g
(the)f(existence)h(of)f(the)g(absolutely)f(con)m(tin)m(uous)300
4552 y(in)m(v)-5 b(arian)m(t)30 b(measure)h(w)m(as)h(established)g(b)m
(y)g(Lasota)f(and)g(Y)-8 b(ork)m(e)32 b(in)e(an)i(imp)s(ortan)m(t)d
(pap)s(er)i([37].)446 4672 y(F)-8 b(or)33 b(the)h(existence)g(of)f(m)m
(ulti-dimensional)c(in)m(v)-5 b(arian)m(t)31 b(measures,)k(the)f
(\014rst)f(correct,)i(but)300 4792 y(partial)21 b(result)j(app)s(eared)
g(in)f([34)o(].)41 b(There,)26 b(expanding,)g(piecewise)e(analytic)f
(transformations)300 4913 y(on)39 b(the)g(unit)g(square)h(partitioned)d
(b)m(y)j(smo)s(oth)e(b)s(oundaries)h(w)m(ere)h(considered.)64
b(A)39 b(compli-)300 5033 y(cated)f(de\014nition)f(of)g(b)s(ounded)h(v)
-5 b(ariation)35 b(is)i(used)i(and)f(the)g(metho)s(d)e(cannot)i(b)s(e)g
(extended)300 5153 y(b)s(ey)m(ond)32 b(dimension)d(2.)42
b(Tw)m(o)31 b(generalizations)e(w)m(ere)j(obtained)d(later)h(on.)42
b(In)31 b([33],)g(Jablonski)300 5274 y(pro)m(v)m(ed)45
b(the)f(existence)h(of)e(the)h(in)m(v)-5 b(arian)m(t)42
b(measure)i(for)e(a)i(sp)s(ecial)e(class)i(of)f(mappings)f(on)300
5394 y Fr(I)351 5358 y Fo(d)431 5394 y Fu(\()p Fr(I)520
5358 y Fo(d)600 5394 y Fu(=)e([0)p Fr(;)17 b Fu(1])912
5358 y Fo(d)992 5394 y Fu(is)40 b(the)g(unit)f Fr(N)10
b Fu(-cub)s(e)41 b(in)e Fr(R)2041 5358 y Fo(d)2081 5394
y Fu(\))h(with)g(a)f(rectangular)g(partition,)h(using)g(the)300
5515 y(T)-8 b(onnelli)39 b(de\014nition)h(of)h(b)s(ounded)h(v)-5
b(ariation.)67 b(In)42 b([27)o(],)i(G\023)-49 b(ora)40
b(and)h(Bo)m(y)m(arsky)i(seem)f(to)f(b)s(e)p Black Black
eop
%%Page: 5 14
5 13 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020
b Fu(5)p Black 300 274 a(the)36 b(\014rst)h(to)f(use)h(the)f(mo)s(dern)
f(de\014nition)g(of)h(b)s(ounded)h(v)-5 b(ariation)33
b(based)k(on)f(the)h(theory)f(of)300 395 y(distribution)28
b(to)h(pro)m(v)m(e)h(a)g(general)f(existence)i(result)e(for)g
(piecewise)h(expanding)g Fr(C)3405 358 y Fp(2)3474 395
y Fu(transfor-)300 515 y(mations.)42 b(Since)31 b(G\023)-49
b(ora-Bo)m(y)m(arsky)32 b(transformations)e(are)h(more)g(general)f
([27])h(and)h(Jablonski)300 635 y(transformations)26
b(are)i Fr(L)1222 599 y Fp(1)1290 635 y Fu(dense)i(in)d(the)i(class)f
(of)g(all)e(piecewise)i(expanding)h(transformations)300
756 y(on)j Fr(I)486 720 y Fo(d)559 756 y Fu([4],)h(their)f(n)m
(umerical)f(analysis)h(is)g(imp)s(ortan)m(t.)446 876
y(Ho)m(w)m(ev)m(er,)40 b(when)e Fr(d)c(>)g Fu(1,)j(the)g(tec)m(hnique)h
(of)e(v)-5 b(ariation)34 b(of)i(one)h(dimension)e(used)j(in)d([38])300
997 y(is)47 b(not)g(easily)f(extended,)53 b(th)m(us)48
b(no)f(pro)s(of)g(to)g(Ulam's)f(conjecture)i(has)f(app)s(eared)h(in)f
(the)300 1117 y(literature)23 b(for)h(general)g(higher)g(dimensional)d
(mappings.)40 b(Bo)m(y)m(arsky)27 b(and)d(Lou)g([4])h(pro)m(v)m(ed)h
(the)300 1237 y(con)m(v)m(ergence)f(of)e(Ulam's)e(metho)s(d)h(for)g
(the)h(class)g(of)f(Jablonski)g(transformations)f Fr(S)34
b Fu(:)27 b Fr(I)3526 1201 y Fo(d)3594 1237 y Fq(!)h
Fr(I)3773 1201 y Fo(d)3813 1237 y Fu(,)300 1358 y(using)39
b(the)i(classic)e(T)-8 b(onelli)38 b(de\014nition)h([33)o(])h(of)f(v)-5
b(ariation)38 b(in)h(high)g(dimensions.)64 b(With)40
b(the)300 1478 y(help)27 b(of)f(the)h(mo)s(dern)f(notion)g(of)g(v)-5
b(ariation,)26 b(Ding)f(and)i(Zhou)f([24])h(solv)m(ed)g(Ulam's)f
(conjecture)300 1598 y(for)40 b(the)g(G\023)-49 b(ora-Bo)m(y)m(arsky)41
b(class)g(of)e(mappings.)66 b(Some)39 b(high)h(order)g(metho)s(ds,)i
(suc)m(h)g(as)f(the)300 1719 y(Mark)m(o)m(v)26 b(\014nite)e(appro)m
(ximation)e(metho)s(d)h(and)i(the)f(pro)5 b(jection)24
b(metho)s(d)g(ha)m(v)m(e)h(b)s(een)g(prop)s(osed)300
1839 y(for)38 b(computing)f(the)i(m)m(ulti-dimensional)34
b(in)m(v)-5 b(arian)m(t)37 b(measure)i(and)f(their)g(con)m(v)m(ergence)
k(has)300 1960 y(b)s(een)36 b(pro)m(v)m(ed)h(for)e(a)g(class)g(of)g
(mappings)g([24)o(])h([23)o(].)52 b(Although)35 b(suc)m(h)i(metho)s(ds)
e(ha)m(v)m(e)h(higher)300 2080 y(con)m(v)m(ergence)d(rates)d(if)f(the)h
(in)m(v)-5 b(arian)m(t)29 b(densit)m(y)i(satis\014es)g(the)f(regularit)
m(y)f(condition,)g(for)g Fr(d)h Fu(big)300 2200 y(enough,)j(probably)e
(Ulam's)g(original)e(metho)s(d)i(is)h(the)h(only)e(practical)g(one)h
(whic)m(h)h(is)e(easy)i(to)300 2321 y(p)s(erform)f(and)g(natural)g(to)g
(emplo)m(y)g(the)h(Mon)m(te)g(Carlo)f(sc)m(heme)i([30)o(].)446
2441 y(The)40 b(con)m(v)m(ergence)h(rate)d(analysis)g(of)f(the)i(Mark)m
(o)m(v)h(metho)s(d)e(w)m(as)h(\014rst)g(giv)m(en)f(in)g([29)o(])h(in)
300 2562 y(whic)m(h)i(the)h(idea)e(of)g(sp)s(ectral)h(appro)m
(ximations)e(of)h(op)s(erators)h(and)g(the)g(concept)h(of)e(quasi-)300
2682 y(compactness)h(are)g(emplo)m(y)m(ed.)67 b(Then)41
b(in)f([7])g(the)h(authors)g(used)g(the)g(Dunford)f(in)m(tegral)e(of)
300 2802 y(op)s(erators)31 b(to)f(estimate)g(the)h(con)m(v)m(ergence)i
(rate.)43 b(Since)31 b(some)g(\015a)m(w)g(of)f(the)h(w)m(ork)h(w)m(as)g
(found,)300 2923 y(a)38 b(rather)g(complete)f(con)m(v)m(ergence)k(rate)
c(analysis)h(for)f(the)i(Mark)m(o)m(v)g(metho)s(d)e(has)i(app)s(eared)
300 3043 y(in)30 b([18)o(])h(follo)m(wing)d(the)i(initial)d(approac)m
(h)k(of)f([7].)43 b(The)31 b(main)e(result)h(and)h(the)g(analysis)f(in)
f([18])300 3163 y(indicate)38 b(that)h(the)g(error)g(of)g(the)h(appro)m
(ximate)e(solution)f Fr(f)2598 3178 y Fo(n)2684 3163
y Fu(to)i(the)h(exact)g(solution)d Fr(f)3683 3127 y Fl(\003)3761
3163 y Fu(of)300 3284 y(the)d(\014xed)g(densit)m(y)h(equation)e
Fr(P)14 b(f)1578 3248 y Fl(\003)1646 3284 y Fu(=)29 b
Fr(f)1810 3248 y Fl(\003)1882 3284 y Fu(is)k(con)m(trolled)f(b)m(y)j
(the)e(appro)m(ximation)f(error)h(of)g Fr(f)3801 3248
y Fl(\003)300 3404 y Fu(b)m(y)g Fr(P)498 3419 y Fo(n)545
3404 y Fr(f)593 3419 y Fo(n)672 3404 y Fu(in)e(man)m(y)h(cases,)h
(where)g Fr(f)1650 3419 y Fo(n)1729 3404 y Fu(is)e(a)h(\014xed)h
(densit)m(y)g(of)e Fr(P)2651 3419 y Fo(n)2730 3404 y
Fu(in)g(some)h(\014nite)f(dimensional)300 3525 y(subspace)41
b(of)d(the)h Fr(L)1071 3488 y Fp(1)1149 3525 y Fu(space.)63
b(Since)38 b Fr(P)1789 3540 y Fo(n)1874 3525 y Fu(=)g
Fr(Q)2065 3540 y Fo(n)2112 3525 y Fr(P)52 b Fu(where)40
b Fr(Q)2592 3540 y Fo(n)2677 3525 y Fu(is)e(an)h(appro)m(ximation)d(to)
j(the)300 3645 y(iden)m(tit)m(y)i(op)s(erator)g Fr(I)8
b Fu(,)44 b(so)e(the)g(problem)e(of)h(con)m(v)m(ergence)j(rate)d(of)h
(the)f(n)m(umerical)g(metho)s(d)300 3765 y(is)k(reduced)h(to)f(that)g
(of)g(the)h(appro)m(ximation)d(order)i(of)g(the)g(sequence)j(of)d
(appro)m(ximating)300 3886 y(op)s(erators)i Fr(Q)823
3901 y Fo(n)917 3886 y Fu(to)g(the)g(iden)m(tit)m(y)g(op)s(erator)f
Fr(I)8 b Fu(.)87 b(Indeed,)52 b(using)46 b(this)h(idea)f(Hun)m(t)i
([30])f(has)300 4006 y(in)m(v)m(estigated)c(the)g(appro)m(ximation)e
(problem)h(b)m(y)i(using)e(the)i(Bohman-Koro)m(vkin)d(theorem)300
4126 y([10].)46 b(But)33 b(since)h(the)g(pap)s(er)g([30)o(])g(is)f
(based)h(on)f([7])h(whic)m(h)g(main)d(result)j(is)f(\015a)m(w)m(ed)i
(\(see)f([31]\),)300 4247 y(and)i(since)g(some)f(analysis)g(in)g([30)o
(])h(is)f(not)g(v)m(ery)i(strict)e(\(for)g(example,)h(it)f(assumes)h
(that)g(the)300 4367 y(sc)m(heme)i(of)e(piecewise)i(linear)d(Mark)m(o)m
(v)j(\014nite)f(appro)m(ximations)e(k)m(eeps)k(an)m(y)e(linear)e
(function)300 4488 y(\014xed,)g(whic)m(h)f(is)f(not)h(so\),)g(a)f
(rigorous)g(appro)m(ximation)e(analysis)i(of)g(the)h(Mark)m(o)m(v)h
(metho)s(d)e(is)300 4608 y(presen)m(ted)i(here.)446 4728
y(Numerical)e(exp)s(erimen)m(ts)j(ha)m(v)m(e)g(sho)m(wn)g(that)f
(Ulam's)f(metho)s(d)g(con)m(v)m(erges)j(not)e(only)f(for)300
4849 y(the)g(class)f(of)f(piecewise)i(stretc)m(hing)g(mappings,)e(but)h
(also)g(for)f(man)m(y)h(other)h(classes)g(of)e(map-)300
4969 y(pings.)79 b(But)44 b(this)g(metho)s(d)g(has)h(one)g(shortage.)79
b(That)44 b(is,)j(the)e(n)m(umerical)e(ev)-5 b(aluation)43
b(in)300 5090 y(implemen)m(ting)36 b(Ulam's)h(metho)s(d)h(b)s(ecomes)h
(di\016cult)e(or)h(ev)m(en)i(imp)s(ossible)c(if)i(the)g(mapping)300
5210 y Fr(S)44 b Fu(has)39 b(a)f(complicated)f(expression)i(or)f(the)h
(expression)h(of)d Fr(S)45 b Fu(is)37 b(hard)i(to)f(obtain,)h(whic)m(h)
f(is)300 5330 y(often)25 b(the)h(case)g(when)h Fr(S)k
Fu(results)26 b(from)e(some)h(ph)m(ysical)g(exp)s(erimen)m(t.)41
b(F)-8 b(or)25 b(m)m(ulti-dimensional)300 5451 y(systems,)33
b(\014nding)f(in)m(v)m(erse)h(images)d(in)h(Ulam's)g(metho)s(d)g(will)f
(b)s(e)i(v)m(ery)h(hard.)43 b(In)32 b(this)g(w)m(ork)g(a)p
Black Black eop
%%Page: 6 15
6 14 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020
b Fu(6)p Black 300 274 a(new)34 b(algorithm)c(is)j(prop)s(osed)h(to)f
(o)m(v)m(ercome)h(this)f(di\016cult)m(y)-8 b(.)45 b(The)34
b(basic)f(idea)g(of)f(the)i(Mon)m(te)300 395 y(Carlo)f(approac)m(h)h
(whic)m(h)h(w)m(as)f(\014rst)h(prop)s(osed)f(b)m(y)h(Hun)m(t)f([30])g
(is)f(emplo)m(y)m(ed.)48 b(But)34 b(unlik)m(e)g(the)300
515 y(random)c(c)m(hoice)h(of)g(p)s(oin)m(ts)f(in)h([30)o(],)h(a)e
(uniform)f(distribution)g(of)i(p)s(oin)m(ts)f(is)h(used,)h(so)g(the)f
(new)300 635 y(metho)s(d)i(can)h(b)s(e)f(classi\014ed)h(as)f(a)g
(quasi-Mon)m(te)h(Carlo)f(metho)s(d.)45 b(Generally)32
b(sp)s(eaking,)i(The)300 756 y(con)m(v)m(ergence)39 b(rate)e(of)g(the)g
(standard)g(Mon)m(te)h(Carlo)e(metho)s(d)g(for)g(in)m(tegration)f(is)i
(v)m(ery)h(slo)m(w)300 876 y(and)i(its)f(error)h(is)g(ab)s(out)f
Fr(O)s Fu(\()p Fr(N)1482 840 y Fl(\000)p Fp(1)p Fo(=)p
Fp(2)1647 876 y Fu(\),)i(where)h Fr(N)50 b Fu(is)39 b(the)i(n)m(um)m(b)
s(er)f(of)f(the)i(no)s(des)f(used.)67 b(The)300 997 y(quasi-Mon)m(te)39
b(Carlo)f(metho)s(d,)j(whic)m(h)e(uses)i(the)e(quasi-random)f(n)m(um)m
(b)s(er)h(generation,)h(will)300 1117 y(b)s(e)f(m)m(uc)m(h)g(b)s
(etter,)i(and)e(its)g(error)f(can)h(ac)m(hiev)m(e)h Fr(O)s
Fu(\()p Fr(N)2347 1081 y Fl(\000)p Fp(1)2442 1117 y Fu(\))e(\(see)i
([44])f(for)f(more)g(detail)f(ab)s(out)300 1237 y(the)42
b(comparison)f(of)g(the)h(standard)g(Mon)m(te)g(Carlo)f(metho)s(d)g
(and)h(the)g(quasi-Mon)m(te)g(Carlo)300 1358 y(metho)s(d\).)446
1478 y(The)34 b(Mon)m(te)g(Carlo)e(approac)m(h)h(has)h(the)f(shortage)g
(of)g Fj(time-c)-5 b(onsuming)p Fu(,)32 b(for)g(it)g(generally)300
1598 y(uses)27 b(lots)d(of)h(testing)g(p)s(oin)m(ts)g(to)f(sim)m(ulate)
g(the)i(mo)s(del)d(of)i(the)h(ob)5 b(ject.)42 b(F)-8
b(or)24 b(m)m(ulti-dimensional)300 1719 y(transformations,)i(the)i
(load)d(of)i(computation)e(is)i(rather)g(high.)41 b(Therefore)28
b(the)f(parallel)d(com-)300 1839 y(putation)36 b(of)g(the)h(m)m
(ulti-dimensional)31 b(system)38 b(will)c(b)s(e)j(the)g(only)f
(practical)f(c)m(hoice.)56 b(F)-8 b(ortu-)300 1960 y(nately)g(,)46
b(the)e(main)e(frame)h(of)h(the)g(Ulam)e(metho)s(d,)k(the)e
(computation)e(of)h(the)h(companion)300 2080 y(matrix,)32
b(is)h(easy)h(to)f(parallelize.)43 b(So)34 b(in)e(this)h(dissertation)g
(w)m(e)h(dev)m(elop)g(a)f(parallel)e(algorith-)300 2200
y(m)42 b(that)h(com)m(bines)g(Ulam's)f(metho)s(d)g(with)h(the)g
(quasi-Mon)m(te)h(Carlo)e(approac)m(h)h(and)g(uses)300
2321 y(parallel)31 b(computers)j(to)g(ev)-5 b(aluate)33
b(en)m(tries)h(of)g(the)g(resulting)f(matrix.)45 b(Besides,)35
b(the)g(parallel)300 2441 y(computation)g(of)h(the)g(\014xed)i(v)m
(ector)f(of)f(the)h(companion)d(matrix)h(with)h(the)h(direct)f
(iteration)300 2562 y(of)i(the)h(matrix)e(is)h(also)g(prop)s(osed)h(in)
f(our)g(w)m(ork)h(to)g(ha)m(v)m(e)g(a)g(completely)e(parallel)f
(algorith-)300 2682 y(m)i(of)h(general)g(use,)i(with)e(whic)m(h)h(the)f
(n)m(umerical)f(appro)m(ximation)f(of)h(the)i(\014xed)g(densit)m(y)g
(of)300 2802 y(F)-8 b(rob)s(enius-P)m(erron)42 b(op)s(erators)f(can)h
(b)s(e)g(constructed)h(rather)f(easily)-8 b(.)70 b(One)43
b(c)m(hapter)f(of)g(the)300 2923 y(dissertation)29 b(sho)m(ws)i(all)c
(details)h(of)h(parallel)e(tec)m(hniques)k(using)e(the)h(MPI)h
(\(Message)g(P)m(assing)300 3043 y(In)m(terface\))j(pac)m(k)-5
b(age)33 b(and)f(the)h(parallel)d(algorithms.)446 3163
y(In)35 b(the)g(n)m(umerical)f(exp)s(erimen)m(ts,)h(in)f(order)h(to)f
(test)i(the)f(e\013ectiv)m(eness)i(of)d(the)h(prop)s(osed)300
3284 y(new)26 b(algorithms,)f(w)m(e)h(compare)f(the)h
Fr(L)1744 3248 y Fp(1)1784 3284 y Fu(-norm)e(errors)i(with)f(three)h
(di\013eren)m(t)f(approac)m(hes:)42 b(the)300 3404 y(exact)29
b(ev)-5 b(aluation)26 b(of)h(the)i(matrix)d(in)i(Ulam's)e(metho)s(d,)j
(the)f(Mon)m(te)h(Carlo)e(ev)-5 b(aluation)26 b(of)i(the)300
3525 y(matrix)h(in)i(Ulam's)f(metho)s(d)g(prop)s(osed)i(b)m(y)g(Hun)m
(t,)g(and)f(the)g(quasi-Mon)m(te)h(Carlo)e(ev)-5 b(aluation)300
3645 y(of)41 b(the)g(matrix)f(in)h(Ulam's)f(metho)s(d)g(prop)s(osed)i
(in)f(this)g(dissertation.)68 b(W)-8 b(e)42 b(shall)e(see)i(that)300
3765 y(the)47 b(quasi-Mon)m(te)f(Carlo)f(approac)m(h,)51
b(whic)m(h)46 b(is)g(based)h(on)f(the)h(idea)f(of)f(using)h(uniformly)
300 3886 y(distributed)36 b(test)h(p)s(oin)m(ts,)g(can)f(ac)m(hiev)m(e)
i(the)f(error)f(from)f(the)i(exact)g(Ulam)d(metho)s(d,)j(and)f(is)300
4006 y(m)m(uc)m(h)e(b)s(etter)f(than)g(the)h(original)29
b(Mon)m(te)34 b(Carlo)e(approac)m(h.)46 b(Therefore,)34
b(in)f(the)g(completely)300 4126 y(parallel)k(quasi-Mon)m(te)j(Carlo)e
(algorithm)f(that)i(w)m(e)h(ha)m(v)m(e)h(dev)m(elop)s(ed)g(in)d(this)i
(dissertation,)300 4247 y(the)f(parallel)d(tec)m(hnique)k(for)f(the)g
(matrix)e(ev)-5 b(aluation)37 b(and)i(the)g(computation)e(of)i(the)g
(\014xed)300 4367 y(densit)m(y)27 b(are)f(com)m(bined)g(with)f(the)i
(idea)e(of)h(the)g(quasi-Mon)m(te)h(Carlo)e(approac)m(h)h(to)g
(implemen)m(t)300 4488 y(the)42 b(famous)g(Ulam)e(metho)s(d)h(for)h
(the)g(computation)f(of)g(absolutely)h(con)m(tin)m(uous)g(in)m(v)-5
b(arian)m(t)300 4608 y(measures)33 b(of)f(c)m(haotic)h(dynamical)e
(systems.)446 4728 y(Besides)43 b(the)g(n)m(umerical)d(exp)s(erimen)m
(ts)i(for)g(some)g(test)g(problems,)i(w)m(e)f(apply)e(our)h(new)300
4849 y(algorithms)34 b(to)j(an)f(imp)s(ortan)m(t)f(application)f
(problem)i(in)g(the)h(study)h(of)f(c)m(haos)g(in)f(electron-)300
4969 y(ics)g([49])g(that)g(is)f(used)j(to)d(study)j(the)e(b)s(eha)m
(vior)g(the)h(\014rst-order)f(digital)d(phase)k(lo)s(c)m(k)m(ed)f(lo)s
(op)300 5090 y(\(DPLL\))27 b(mo)s(del)f(in)h(electronics.)42
b(T)-8 b(o)27 b(study)i(the)f(statistical)e(prop)s(erties)h(of)g(some)h
(c)m(haotic)f(b)s(e-)300 5210 y(ha)m(vior)e(in)g(electronics,)i(the)f
(F)-8 b(rob)s(enius-P)m(erron)25 b(op)s(erator)g(is)g(used)i(to)e
(study)i(the)f(ev)m(olution)e(of)300 5330 y(probabilit)m(y)29
b(distributions)h(of)h(underlying)f(ph)m(ysical)h(quan)m(tities.)43
b(And)32 b(a)f(limiting)26 b(b)s(eha)m(vior)300 5451
y(of)36 b(suc)m(h)h(a)f(densit)m(y)h(ev)m(olution)e(is)g(often)h
(examined,)h(and)f(so)h(w)m(e)g(need)g(to)e(\014nd)i(a)f(stationary)p
Black Black eop
%%Page: 7 16
7 15 bop Black 300 10 a Fk(CHAPTER)34 b(1.)76 b(INTR)m(ODUCTION)2020
b Fu(7)p Black 300 274 a(distribution,)31 b(whic)m(h)i(is)f(giv)m(en)h
(b)m(y)g(a)f(\014xed)i(p)s(oin)m(t)e(of)g(the)h(F)-8
b(rob)s(enius-P)m(erron)32 b(op)s(erator.)446 395 y(In)45
b(the)f(pap)s(er)g([48],)j(a)d(probabilit)m(y)e(densit)m(y)j(function)f
(\(PDF\))f(estimation)f(algorithm)300 515 y(based)37
b(on)f(the)h(statistical)d(study)j(of)e(the)i(systems)g(is)f(prop)s
(osed.)55 b(Its)36 b(basic)g(idea)g(is)f(the)i(n)m(u-)300
635 y(merical)g(iteration)h(of)h(the)g(F)-8 b(rob)s(enius-P)m(erron)40
b(op)s(erator)e([49].)64 b(Because)41 b(this)e(metho)s(d)g(has)300
756 y(sev)m(eral)27 b(ob)m(vious)g(limitations,)d(for)i(example,)h(the)
g(ev)-5 b(aluation)25 b(of)h(the)h(in)m(v)m(erse)h(mappings)d(ma)m(y)
300 876 y(b)s(e)i(di\016cult)g(or)g(imp)s(ossible)e(for)i(some)g(cases)
h(and)g(the)g(initial)23 b(PDF)k(ma)m(y)g(b)s(e)g(c)m(hosen)i(inappro-)
300 997 y(priately)g(so)g(the)i(calculation)c(pro)s(cess)k(can)f(b)s(e)
g(time-consuming)d(or)j(div)m(erge,)g(it)f(will)f(b)s(e)h(v)m(ery)300
1117 y(di\016cult)36 b(to)g(use)i(this)e(metho)s(d)g(in)g(most)g
(cases,)k(and)d(its)f(con)m(v)m(ergence)j(can)e(not)g(b)s(e)g(assured)
300 1237 y(in)f(general.)57 b(Since)37 b(the)g(PDF)g(computation)f(of)g
(the)i(DPLL)e(is)h(just)g(to)g(compute)g(the)h(\014xed)300
1358 y(densit)m(y)44 b(of)f(the)g(F)-8 b(rob)s(enius-P)m(erron)43
b(op)s(erator)f(asso)s(ciated)h(with)g(the)g(DPLL,)g(the)h(parallel)300
1478 y(quasi-Mon)m(te)31 b(Carlo)f(metho)s(d)g(that)h(w)m(e)h(ha)m(v)m
(e)g(dev)m(elop)s(ed)g(will)c(b)s(e)j(an)g(ideal)e(to)s(ol)g(for)i(the)
g(fast)300 1598 y(and)39 b(e\016cien)m(t)h(computation)e(of)g(a)h(PDF)g
(for)f(the)i(DPLL.)e(The)i(n)m(umerical)e(exp)s(erimen)m(ts)i(in)300
1719 y(the)33 b(last)f(c)m(hapter)h(will)e(illustrate)f(this)i
(conclusion.)446 1839 y(In)j(the)f(next)h(c)m(hapter,)h(the)e
(de\014nition)g(of)f(F)-8 b(rob)s(enius-P)m(erron)34
b(op)s(erators)g(is)g(in)m(tro)s(duced.)300 1960 y(Then)26
b(in)e(Chapter)i(3,)g(Ulam's)d(metho)s(d)i(for)f(computing)f(the)j
(\014xed)g(densit)m(y)f(of)g(the)g(F)-8 b(rob)s(enius-)300
2080 y(P)m(erron)38 b(op)s(erator)f(is)f(studied.)58
b(The)38 b(order)g(analysis)e(of)h(the)g(piecewise)h(linear)e(Mark)m(o)
m(v)j(ap-)300 2200 y(pro)m(ximation)23 b(is)h(presen)m(ted)j(in)e
(Chapter)g(4,)i(based)f(on)e(the)i(general)e(theory)i(of)e(appro)m
(ximation)300 2321 y(of)30 b(con)m(tin)m(uous)h(functions)g(b)m(y)g(a)f
(sequence)j(of)d(p)s(ositiv)m(e)g(op)s(erators)h(as)f(dev)m(elop)s(ed)i
(b)m(y)f(DeV)-8 b(ore)300 2441 y(in)47 b([10)o(].)89
b(Then)48 b(the)g(quasi-Mon)m(te)g(Carlo)e(approac)m(h)i(is)f(studied)h
(in)f(Chapter)h(5,)j(and)d(in)300 2562 y(the)38 b(next)h(t)m(w)m(o)f(c)
m(hapters)h(the)f(t)m(w)m(o)h(parallel)c(algorithms,)h(n)m(umerical)g
(exp)s(erimen)m(ts,)k(and)e(an)300 2682 y(application)k(example)i
(\(DPLL\))g(are)g(discussed.)81 b(W)-8 b(e)45 b(conclude)g(in)f
(Chapter)h(8.)79 b(A)45 b(brief)300 2802 y(mathematics)35
b(review)j(is)e(presen)m(ted)j(in)d(App)s(endix)h(A)g(for)f(a)h(b)s
(etter)g(understanding)g(of)g(the)300 2923 y(w)m(ork.)44
b(A)33 b(complete)f(source)i(co)s(de)e(is)h(included)f(in)g(App)s
(endix)h(B.)p Black Black eop
%%Page: 8 17
8 16 bop Black Black Black Black 1714 107 a Fn(Chapter)53
b(2)p Black Black 682 539 a(FR)l(OBENIUS-PERR)l(ON)h(OPERA)-13
b(TORS)470 1241 y Fu(Let)38 b(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))37 b(b)s(e)g(a)g Fr(\033)t Fu(-\014nite)g(measure)g
(space)i(\(see)f(App)s(endix)g(A\).)f(F)-8 b(or)37 b(a)g(giv)m(en)g
(mea-)300 1361 y(surable)h(transformation)f Fr(S)43 b
Fu(:)38 b Fr(X)45 b Fq(!)37 b Fr(X)8 b Fu(,)40 b(the)f(corresp)s
(onding)f(F)-8 b(rob)s(enius-P)m(erron)39 b(op)s(erator)300
1481 y(giv)m(es)30 b(the)g(ev)m(olution)e(of)h(probabilit)m(y)f
(densities)i(go)m(v)m(erned)h(b)m(y)f(the)g(deterministic)e(dynamical)
300 1602 y(system.)p Black 300 1748 a Fj(De\014nition)34
b(2.1.)p Black 48 w Fu(A)51 b(measurable)f(transformation)f
Fr(S)65 b Fu(:)59 b Fr(X)67 b Fq(!)58 b Fr(X)h Fu(on)51
b(a)g(measure)g(space)300 1868 y(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))32 b(is)g(nonsingular)g(if)f Fr(\026)p
Fu(\()p Fr(S)1585 1832 y Fl(\000)p Fp(1)1679 1868 y Fu(\()p
Fr(A)p Fu(\)\))c(=)h(0)k(for)g(all)f Fr(A)d Fq(2)g Fu(\006)33
b(suc)m(h)h(that)e Fr(\026)p Fu(\()p Fr(A)p Fu(\))27
b(=)h(0.)p Black 300 2014 a Fj(De\014nition)34 b(2.2.)p
Black 48 w Fu(Let)23 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))24 b(b)s(e)f(a)g(measure)h(space)g(and)g(let)f
Fr(S)33 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fr(X)j Fu(b)s(e)23
b(a)h(measurable)300 2135 y(transformation.)41 b(W)-8
b(e)33 b(sa)m(y)h(that)e Fr(\026)g Fu(is)h(in)m(v)-5
b(arian)m(t)31 b(under)i Fr(S)38 b Fu(or)33 b Fr(S)38
b Fu(is)32 b(measure)h(preserving)g(if)1268 2317 y Fr(\026)p
Fu(\()p Fr(S)1431 2276 y Fl(\000)p Fp(1)1525 2317 y Fu(\()p
Fr(A)p Fu(\)\))27 b(=)h Fr(\026)p Fu(\()p Fr(A)p Fu(\))55
b(for)32 b(all)53 b Fr(A)28 b Fq(2)g Fu(\006)p Fr(:)p
Black 934 w Fu(\(2.1\))p Black 446 2500 a(F)-8 b(or)32
b(a)g(giv)m(en)h Fr(f)38 b Fq(2)29 b Fr(L)1204 2464 y
Fp(1)1243 2500 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))33 b(de\014ne)1359 2732 y Fr(\026)1418 2747 y Fo(f)1463
2732 y Fu(\()p Fr(A)p Fu(\))27 b(=)1743 2596 y Fi(Z)1798
2822 y Fo(S)1845 2803 y Fh(\000)p Fg(1)1927 2822 y Fp(\()p
Fo(A)p Fp(\))2056 2732 y Fr(f)11 b(d\026;)71 b(A)28 b
Fq(2)g Fu(\006)p Fr(:)p Black 1024 w Fu(\(2.2\))p Black
300 2984 a(Since)42 b Fr(S)48 b Fu(is)41 b(nonsingular,)i
Fr(\026)p Fu(\()p Fr(A)p Fu(\))g(=)h(0)d(implies)f Fr(\026)2205
2999 y Fo(f)2250 2984 y Fu(\()p Fr(A)p Fu(\))j(=)g(0.)72
b(Th)m(us)43 b(the)f(Radon-Nik)m(o)s(dym)300 3116 y(Theorem)31
b(\(A-14\))g(implies)d(that)j(there)h(exists)g(a)f(unique)2493
3089 y(^)2472 3116 y Fr(f)38 b Fq(2)28 b Fr(L)2718 3079
y Fp(1)2758 3116 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\),)31 b(denoted)h(as)g Fr(P)14 b(f)d Fu(,)300 3236
y(suc)m(h)34 b(that)1451 3442 y Fr(\026)1510 3457 y Fo(f)1555
3442 y Fu(\()p Fr(A)p Fu(\))27 b(=)1835 3307 y Fi(Z)1890
3532 y Fo(A)1985 3416 y Fu(^)1964 3442 y Fr(f)11 b(d\026;)71
b(A)28 b Fq(2)g Fu(\006)p Fr(:)p Black 1116 w Fu(\(2.3\))p
Black Black 300 3682 a Fj(De\014nition)34 b(2.3.)p Black
48 w Fu(The)f(op)s(erator)f Fr(P)41 b Fq(\021)28 b Fr(P)1833
3697 y Fo(S)1912 3682 y Fu(:)g Fr(L)2033 3646 y Fp(1)2072
3682 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))28 b Fq(!)f Fr(L)2669 3646 y Fp(1)2709 3682 y Fu(\()p
Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(de\014ned)i(b)m(y)1180
3778 y Fi(Z)1235 4003 y Fo(A)1309 3913 y Fr(P)14 b(f)d(d\026)26
b Fu(=)1685 3778 y Fi(Z)1740 4003 y Fo(S)1787 3985 y
Fh(\000)p Fg(1)1869 4003 y Fp(\()p Fo(A)p Fp(\))1998
3913 y Fr(f)11 b(d\026)54 b Fu(for)32 b(all)54 b Fr(A)27
b Fq(2)h Fu(\006)p Black 846 w(\(2.4\))p Black 300 4160
a(is)k(called)f(the)i(F)-8 b(rob)s(enius-P)m(erron)33
b(op)s(erator)f(corresp)s(onding)g(to)g Fr(S)6 b Fu(.)446
4306 y(It)33 b(is)f(straigh)m(tforw)m(ard)g(to)g(sho)m(w)i(that)e
Fr(P)46 b Fu(has)33 b(the)g(follo)m(wing)d(prop)s(erties:)446
4426 y(\(i\))i Fr(P)46 b Fu(is)32 b(linear,)f(that)h(is,)g(for)g(all)f
Fr(\013)q(;)17 b(\014)33 b Fq(2)28 b Fr(R)q(;)44 b(f)2191
4441 y Fp(1)2231 4426 y Fr(;)17 b(f)2323 4441 y Fp(2)2390
4426 y Fq(2)28 b Fr(L)2550 4390 y Fp(1)2589 4426 y Fu(,)1337
4609 y Fr(P)14 b Fu(\()p Fr(\013)q(f)1563 4624 y Fp(1)1623
4609 y Fu(+)22 b Fr(\014)6 b(f)1830 4624 y Fp(2)1870
4609 y Fu(\))27 b(=)h Fr(\013)q(P)14 b(f)2227 4624 y
Fp(1)2288 4609 y Fu(+)22 b Fr(\014)6 b(P)14 b(f)2572
4624 y Fp(2)2610 4609 y Fu(;)p Black 1002 w(\(2.5\))p
Black 446 4792 a(\(ii\))31 b Fr(P)46 b Fu(is)32 b(a)g(p)s(ositiv)m(e)g
(op)s(erator,)g(that)h(is,)f Fr(P)14 b(f)38 b Fq(\025)28
b Fu(0)k(if)f Fr(f)39 b Fq(\025)28 b Fu(0;)446 4913 y(\(iii\))i
Fr(<)e(P)14 b(f)5 b(;)17 b Fu(1)26 b Fr(>)p Fu(=)p Fr(<)i(f)5
b(;)17 b Fu(1)27 b Fr(>)p Fu(,)33 b(that)f(is)1863 4832
y Fi(R)1910 4947 y Fo(X)1994 4913 y Fr(P)14 b(f)d(d\026)26
b Fu(=)2370 4832 y Fi(R)2417 4947 y Fo(X)2501 4913 y
Fr(f)11 b(d\026)p Fu(;)446 5033 y(\(iv\))26 b Fr(P)690
5048 y Fo(T)10 b Fl(\016)p Fo(S)855 5033 y Fu(=)27 b
Fr(P)1021 5048 y Fo(T)1076 5033 y Fr(P)1139 5048 y Fo(S)1217
5033 y Fu(for)f(nonsingular)f(transformations)g Fr(T)40
b Fu(and)27 b Fr(S)6 b Fu(.)41 b(In)27 b(particular,)f
Fr(P)3643 5048 y Fo(S)3690 5029 y Ff(n)3764 5033 y Fu(=)300
5153 y(\()p Fr(P)401 5168 y Fo(S)452 5153 y Fu(\))490
5117 y Fo(n)537 5153 y Fu(,)32 b(where)i Fr(S)944 5117
y Fo(n)1018 5153 y Fu(=)28 b Fr(S)g Fq(\016)22 b(\001)17
b(\001)g(\001)j(\016)i Fr(S)6 b Fu(.)446 5274 y(Prop)s(erties)41
b(\(ii\))d(and)i(\(iii\))e(mean)h(that)h(the)h(F)-8 b(rob)s(enius-P)m
(erron)40 b(op)s(erator)g(is)f(a)h Fj(Markov)300 5394
y(op)-5 b(er)g(ator)p Fu(.)59 b(A)38 b(systematic)g(study)i(of)d(Mark)m
(o)m(v)i(op)s(erators)f(is)f(con)m(tained)i(in)e(the)h(monograph)300
5515 y([36].)p Black 2046 5764 a(8)p Black eop
%%Page: 9 18
9 17 bop Black 300 10 a Fk(CHAPTER)34 b(2.)76 b(FR)m(OBENIUS-PERR)m(ON)
33 b(OPERA)-8 b(TORS)1131 b Fu(9)p Black Black 300 274
a Fj(The)-5 b(or)g(em)34 b(2.1.)p Black 48 w Fu([36])41
b(Let)h(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))41
b(b)s(e)h(a)f Fr(\033)t Fu(-\014nite)g(measure)h(space,)j
Fr(S)j Fu(:)c Fr(X)50 b Fq(!)43 b Fr(X)49 b Fu(a)41 b(non-)300
395 y(singular)e(transformation,)h(and)h Fr(P)54 b Fu(the)41
b(F)-8 b(rob)s(enius-P)m(erron)40 b(op)s(erator)g(asso)s(ciated)g(with)
g Fr(S)6 b Fu(.)300 515 y(Then)34 b(for)e(a)g(giv)m(en)h
Fr(f)1099 479 y Fl(\003)1166 515 y Fq(2)28 b Fr(L)1326
479 y Fp(1)1365 515 y Fu(,)33 b(the)g(measure)g Fr(\026)2032
530 y Fo(f)2073 511 y Fh(\003)2146 515 y Fu(giv)m(en)f(b)m(y)1426
780 y Fr(\026)1485 795 y Fo(f)1526 776 y Fh(\003)1566
780 y Fu(\()p Fr(A)p Fu(\))c(=)1847 644 y Fi(Z)1902 870
y Fo(A)1976 780 y Fr(f)2035 739 y Fl(\003)2074 780 y
Fr(d\026;)71 b(A)28 b Fq(2)g Fu(\006)p Black 1092 w(\(2.6\))p
Black 300 1040 a(is)k(in)m(v)-5 b(arian)m(t)31 b(under)j
Fr(S)k Fu(if)31 b(and)i(only)f(if)g Fr(f)1824 1004 y
Fl(\003)1895 1040 y Fu(is)g(a)h(\014xed)g(p)s(oin)m(t)f(of)g
Fr(P)14 b Fu(.)p Black 300 1200 a Fj(R)-5 b(emark)34
b(2.1.)p Black 48 w Fu(Note)f(that)g(from)e(the)i(theorem)f(the)h
(original)d(measure)j Fr(\026)f Fu(is)g(in)m(v)-5 b(arian)m(t)31
b(if)h(and)300 1320 y(only)g(if)f Fr(P)14 b Fu(1)27 b(=)h(1.)446
1479 y(Some)k(more)g(prop)s(erties)h(of)f Fr(P)46 b Fu(are)32
b(con)m(tained)h(in)f(the)h(follo)m(wing)d(prop)s(osition.)p
Black 300 1638 a Fj(Pr)-5 b(op)g(osition)34 b(2.1.)p
Black 48 w Fu(If)28 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))28 b(is)f(a)h Fr(\033)t Fu(-\014nite)f(measure)h(space,)i
Fr(S)k Fu(is)27 b(a)h(nonsingular)f(transfor-)300 1758
y(mation)f(on)j Fr(X)8 b Fu(,)29 b(and)f Fr(P)42 b Fu(is)28
b(the)g(corresp)s(onding)h(F)-8 b(rob)s(enius-P)m(erron)28
b(op)s(erator,)g(then)h(for)f(ev)m(ery)300 1879 y Fr(f)38
b Fq(2)28 b Fr(L)546 1843 y Fp(1)586 1879 y Fu(,)446
1999 y(\(i\))k(\()p Fr(P)14 b(f)d Fu(\))794 1963 y Fp(+)880
1999 y Fq(\024)28 b Fr(P)14 b(f)1121 1963 y Fp(+)1179
1999 y Fu(;)446 2120 y(\(ii\))31 b(\()p Fr(P)14 b(f)d
Fu(\))821 2083 y Fl(\000)907 2120 y Fq(\024)28 b Fr(P)14
b(f)1148 2083 y Fl(\000)1206 2120 y Fu(;)446 2240 y(\(iii\))30
b Fq(j)p Fr(P)14 b(f)d Fq(j)26 b(\024)i Fr(P)14 b Fq(j)p
Fr(f)d Fq(j)p Fu(;)31 b(and)446 2360 y(\(iv\))h Fq(k)p
Fr(P)14 b(f)d Fq(k)27 b(\024)h(k)p Fr(f)11 b Fq(k)p Fu(,)32
b(where)i Fq(k)p Fr(f)11 b Fq(k)27 b Fu(=)1790 2280 y
Fi(R)1837 2395 y Fo(X)1921 2360 y Fq(j)p Fr(f)11 b Fq(j)p
Fr(d\026)p Fu(.)p Black 300 2520 a Fj(De\014nition)34
b(2.4.)p Black 48 w Fu(Let)f(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))32 b(b)s(e)h(a)f(measure)h(space.)44
b(Denote)809 2733 y Fr(D)30 b Fq(\021)e Fr(D)s Fu(\()p
Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28 b(=)f
Fq(f)p Fr(f)38 b Fq(2)28 b Fr(L)1912 2692 y Fp(1)1952
2733 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))28 b(:)55 b Fr(f)39 b Fq(\025)28 b Fu(0)p Fr(;)44
b Fq(k)p Fr(f)11 b Fq(k)27 b Fu(=)g(1)p Fq(g)p Fr(:)p
Black 474 w Fu(\(2.7\))p Black 300 2946 a(An)m(y)34 b(function)f
Fr(f)39 b Fq(2)29 b Fr(D)35 b Fu(is)e(called)f(a)h(densit)m(y)-8
b(.)45 b(If)33 b Fr(\026)2172 2961 y Fo(f)2217 2946 y
Fu(\()p Fr(A)p Fu(\))c(=)2499 2866 y Fi(R)2546 2981 y
Fo(A)2620 2946 y Fr(f)11 b(d\026)32 b Fu(and)h Fr(f)39
b Fq(2)29 b Fr(D)s Fu(,)k(then)h(w)m(e)g(sa)m(y)300 3067
y(that)g Fr(f)45 b Fu(is)34 b(the)h(densit)m(y)h(of)e
Fr(\026)1387 3082 y Fo(f)1432 3067 y Fu(.)49 b(An)m(y)36
b(\014xed)f(densit)m(y)h Fr(f)2354 3031 y Fl(\003)2427
3067 y Fu(of)e(the)h(F)-8 b(rob)s(enius-P)m(erron)35
b(op)s(erator)300 3187 y Fr(P)46 b Fu(is)32 b(also)g(called)f(an)i
Fj(invariant)h(density)e Fu(or)g(a)h(stationary)f(densit)m(y)h(of)f
Fr(P)14 b Fu(.)446 3346 y(F)-8 b(or)30 b(the)h(one)g(dimensional)d
(case,)j(supp)s(ose)h Fr(X)k Fu(=)27 b([)p Fr(a;)17 b(b)p
Fu(])31 b(and)g Fr(\026)f Fu(is)g(the)h(Leb)s(esgue)h(measure)300
3467 y Fr(m)p Fu(.)44 b(Then,)34 b(from)d(the)i(de\014nition)e(of)i
(the)g(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erator)g(\(2.4\),)1397
3595 y Fi(Z)1496 3622 y Fo(x)1452 3821 y(a)1557 3731
y Fr(P)14 b(f)d(dm)27 b Fu(=)1959 3595 y Fi(Z)2015 3821
y Fo(S)2062 3802 y Fh(\000)p Fg(1)2144 3821 y Fp(\([)p
Fo(a;x)p Fp(]\))2355 3731 y Fr(f)11 b(dm:)p Black 1062
w Fu(\(2.8\))p Black 300 4008 a(The)34 b(fundamen)m(tal)d(theorem)i(of)
f(calculus)g(giv)m(es)h(the)g(explicit)e(expression)j(of)e
Fr(P)1307 4265 y(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))27 b(=)1742
4198 y Fr(d)p 1715 4243 107 4 v 1715 4334 a(dx)1847 4130
y Fi(Z)1903 4355 y Fo(S)1950 4336 y Fh(\000)p Fg(1)2032
4355 y Fp(\([)p Fo(a;x)p Fp(]\))2243 4265 y Fr(f)11 b(dm)56
b Fu(a.e.)p Fr(:)p Black 972 w Fu(\(2.9\))p Black 300
4548 a Fm(Example)30 b(1)c Fu(Consider)i(\([0)p Fr(;)17
b Fu(1])p Fr(;)g Fe(B)p Fr(;)g(m)p Fu(\).)40 b(Let)27
b Fr(S)33 b Fu(:)28 b([0)p Fr(;)17 b Fu(1])27 b Fq(!)h
Fu([0)p Fr(;)17 b Fu(1])26 b(b)s(e)h(the)g(w)m(ell-kno)m(wn)g(Logistic)
300 4669 y(Mo)s(del,)32 b Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28
b(=)f(4)p Fr(x)p Fu(\(1)c Fq(\000)f Fr(x)p Fu(\).)44
b(Then)860 4939 y Fr(S)926 4898 y Fl(\000)p Fp(1)1020
4939 y Fu(\([0)p Fr(;)17 b(x)p Fu(]\))28 b(=)1429 4799
y Fi(\024)1482 4939 y Fu(0)p Fr(;)1584 4872 y Fu(1)p
1584 4916 49 4 v 1584 5008 a(2)1665 4939 y Fq(\000)1775
4872 y Fu(1)p 1775 4916 V 1775 5008 a(2)1834 4856 y Fq(p)p
1917 4856 226 4 v 83 x Fu(1)22 b Fq(\000)g Fr(x)2143
4799 y Fi(\025)2217 4939 y Fq([)2306 4799 y Fi(\024)2368
4872 y Fu(1)p 2368 4916 49 4 v 2368 5008 a(2)2449 4939
y(+)2557 4872 y(1)p 2557 4916 V 2557 5008 a(2)2616 4856
y Fq(p)p 2699 4856 226 4 v 83 x Fu(1)g Fq(\000)h Fr(x;)17
b Fu(1)3018 4799 y Fi(\025)3087 4939 y Fr(;)p Black 477
w Fu(\(2.10\))p Black 300 5205 a(th)m(us)34 b(the)f(F)-8
b(rob)s(enius-P)m(erron)32 b(op)s(erator)g(is)g(giv)m(en)h(b)m(y)732
5470 y Fr(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))28 b(=)1295
5402 y(1)p 1140 5447 358 4 v 1140 5545 a(4)1189 5467
y Fq(p)p 1272 5467 226 4 v 78 x Fu(1)22 b Fq(\000)g Fr(x)1524
5329 y Fi(\032)1599 5470 y Fr(f)11 b Fu(\()1706 5402
y(1)p 1706 5447 49 4 v 1706 5538 a(2)1787 5470 y Fq(\000)1896
5402 y Fu(1)p 1896 5447 V 1896 5538 a(2)1955 5387 y Fq(p)p
2038 5387 226 4 v 83 x Fu(1)22 b Fq(\000)g Fr(x)q Fu(\))g(+)g
Fr(f)11 b Fu(\()2529 5402 y(1)p 2529 5447 49 4 v 2529
5538 a(2)2609 5470 y(+)2717 5402 y(1)p 2717 5447 V 2717
5538 a(2)2776 5387 y Fq(p)p 2859 5387 226 4 v 83 x Fu(1)22
b Fq(\000)h Fr(x)p Fu(\))3123 5329 y Fi(\033)3214 5470
y Fr(:)p Black 350 w Fu(\(2.11\))p Black Black Black
eop
%%Page: 10 19
10 18 bop Black 300 10 a Fk(CHAPTER)34 b(2.)76 b(FR)m(OBENIUS-PERR)m
(ON)33 b(OPERA)-8 b(TORS)1082 b Fu(10)p Black 300 274
a(In)33 b(1947,)f(Ulam)e(and)j(v)m(on)g(Neumann)g(sho)m(w)m(ed)i(that)d
(the)h(\014xed)h(densit)m(y)f(of)f Fr(P)46 b Fu(is)32
b(giv)m(en)h(b)m(y)1525 533 y Fr(f)1584 492 y Fl(\003)1623
533 y Fu(\()p Fr(x)p Fu(\))28 b(=)2129 466 y(1)p 1896
510 516 4 v 1896 615 a Fr(\031)1955 530 y Fi(p)p 2054
530 358 4 v 2054 615 a Fr(x)p Fu(\(1)23 b Fq(\000)f Fr(x)p
Fu(\))2422 533 y Fr(:)p Black 1142 w Fu(\(2.12\))p Black
300 823 a(Hence)34 b(the)f(measure)1444 1067 y Fr(\026)1503
1082 y Fo(f)1544 1063 y Fh(\003)1585 1067 y Fu(\()p Fr(A)p
Fu(\))27 b(=)1865 932 y Fi(Z)1920 1157 y Fo(A)2209 1000
y Fr(dx)p 2004 1044 516 4 v 2004 1150 a(\031)2063 1064
y Fi(p)p 2162 1064 358 4 v 2162 1150 a Fr(x)p Fu(\(1)22
b Fq(\000)h Fr(x)p Fu(\))p Black 3591 1067 a(\(2.13\))p
Black 300 1363 a(is)42 b(in)m(v)-5 b(arian)m(t)41 b(under)j(the)f
(quadratic)f(mapping)f Fr(S)6 b Fu(\()p Fr(x)p Fu(\))45
b(=)g(4)p Fr(x)p Fu(\(1)29 b Fq(\000)g Fr(x)p Fu(\).)74
b(The)44 b(picture)e(of)h(the)300 1483 y(in)m(v)-5 b(arian)m(t)31
b(densit)m(y)j(is)e(sho)m(w)m(ed)i(in)e(Figure)g(2.1.)p
Black Black Black 570 2452 a @beginspecial 50 @llx 50
@lly 410 @urx 150 @ury 3600 @rwi @setspecial
%%BeginDocument: pic/sys.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: den.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu May 11 23:56:33 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 410 150
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
276 240 M
63 0 V
6657 0 R
-63 0 V
204 240 M
(0) Rshow
276 473 M
63 0 V
6657 0 R
-63 0 V
204 473 M
(1) Rshow
276 706 M
63 0 V
6657 0 R
-63 0 V
204 706 M
(2) Rshow
276 939 M
63 0 V
6657 0 R
-63 0 V
204 939 M
(3) Rshow
276 1173 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(4) Rshow
276 1406 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(5) Rshow
276 1639 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(6) Rshow
276 1872 M
63 0 V
6657 0 R
-63 0 V
-6729 0 R
(7) Rshow
276 240 M
0 63 V
0 1569 R
0 -63 V
276 120 M
(0) Cshow
1620 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.2) Cshow
2964 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.4) Cshow
4308 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.6) Cshow
5652 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(0.8) Cshow
6996 240 M
0 63 V
0 1569 R
0 -63 V
0 -1689 R
(1) Cshow
1.000 UL
LTb
276 240 M
6720 0 V
0 1632 V
-6720 0 V
276 240 L
1.000 UL
LT0
6429 1749 M
(Fixed density of S\(x\)=4x\(1-x\)) Rshow
6501 1749 M
351 0 V
242 240 M
34 1632 R
34 0 V
0 -886 V
67 0 V
0 -216 V
67 0 V
0 -95 V
67 0 V
0 -56 V
67 0 V
0 -38 V
68 0 V
0 -29 V
67 0 V
0 -21 V
67 0 V
0 -17 V
67 0 V
0 -15 V
67 0 V
0 -12 V
68 0 V
0 -10 V
67 0 V
0 -9 V
67 0 V
0 -7 V
67 0 V
0 -7 V
67 0 V
0 -6 V
68 0 V
0 -6 V
67 0 V
0 -4 V
67 0 V
0 -5 V
67 0 V
0 -4 V
67 0 V
0 -3 V
68 0 V
0 -4 V
67 0 V
0 -3 V
67 0 V
0 -3 V
67 0 V
0 -2 V
67 0 V
0 -3 V
68 0 V
0 -2 V
67 0 V
0 -2 V
67 0 V
0 -2 V
67 0 V
0 -1 V
67 0 V
0 -2 V
68 0 V
0 -2 V
67 0 V
0 -1 V
67 0 V
0 -1 V
67 0 V
0 -1 V
67 0 V
0 -1 V
68 0 V
0 -1 V
67 0 V
0 -1 V
67 0 V
0 -1 V
67 0 V
0 -1 V
67 0 V
0 -1 V
68 0 V
67 0 V
0 -1 V
67 0 V
67 0 V
67 0 V
0 -1 V
68 0 V
67 0 V
67 0 V
67 0 V
0 -1 V
67 0 V
68 0 V
67 0 V
0 1 V
67 0 V
67 0 V
67 0 V
68 0 V
0 1 V
67 0 V
67 0 V
67 0 V
0 1 V
67 0 V
68 0 V
0 1 V
67 0 V
0 1 V
67 0 V
0 1 V
67 0 V
0 1 V
67 0 V
0 1 V
68 0 V
0 1 V
67 0 V
0 1 V
67 0 V
0 1 V
67 0 V
0 1 V
67 0 V
0 2 V
68 0 V
0 2 V
67 0 V
0 1 V
67 0 V
0 2 V
67 0 V
0 2 V
67 0 V
0 2 V
68 0 V
0 3 V
67 0 V
0 2 V
67 0 V
0 3 V
67 0 V
0 3 V
67 0 V
0 4 V
68 0 V
0 3 V
67 0 V
0 4 V
67 0 V
0 5 V
67 0 V
0 4 V
67 0 V
0 6 V
68 0 V
0 6 V
67 0 V
0 7 V
67 0 V
0 7 V
67 0 V
0 9 V
67 0 V
0 10 V
68 0 V
0 12 V
67 0 V
0 15 V
67 0 V
0 17 V
67 0 V
0 21 V
67 0 V
0 29 V
68 0 V
0 38 V
67 0 V
0 56 V
67 0 V
0 95 V
67 0 V
0 216 V
67 0 V
0 -746 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial 300 2655 a(Figure)j(2.1:)51 b(The)37 b(\014xed)h(densit)m
(y)f Fr(f)1657 2619 y Fl(\003)1732 2655 y Fu(of)f Fr(P)50
b Fu(for)36 b Fr(S)6 b Fu(\()p Fr(x)p Fu(\))34 b(=)g(4)p
Fr(x)p Fu(\(1)25 b Fq(\000)g Fr(x)p Fu(\))36 b(with)g(100)g(partitions)
f(in)300 2776 y([0,1])p Black 446 3126 a(Comparing)30
b(Figure)h(1.2)g(with)g(Figure)g(2.1,)g(w)m(e)h(could)g(imagine)d(that)
i(when)i(the)f(n)m(um)m(b)s(er)300 3246 y(of)g(iterations)f(go)s(es)i
(to)f(in\014nit)m(y)-8 b(,)32 b(the)h(three)g(pictures)g(will)e(b)s(e)h
(exactly)h(the)g(same.)446 3408 y(F)-8 b(or)31 b(m)m(ulti-dimensional)
26 b(cases,)32 b(let)f Fr(X)39 b Fu(b)s(e)31 b(an)g Fr(d)p
Fu(-dimensional)c(rectangle)k([)p Fr(a)3320 3423 y Fp(1)3360
3408 y Fr(;)17 b(b)3445 3423 y Fp(1)3485 3408 y Fu(])i
Fq(\002)g(\001)e(\001)g(\001)h(\002)300 3528 y Fu([)p
Fr(a)378 3543 y Fo(d)419 3528 y Fr(;)f(b)504 3543 y Fo(d)544
3528 y Fu(].)44 b(Then)34 b(di\013eren)m(tiating)c(the)j(equalit)m(y)
1173 3664 y Fi(Z)1273 3690 y Fo(x)1313 3699 y Fg(1)1228
3889 y Fo(a)1265 3898 y Fg(1)1368 3799 y Fq(\001)17 b(\001)g(\001)1501
3664 y Fi(Z)1600 3690 y Fo(x)1640 3702 y Ff(d)1556 3889
y Fo(a)1593 3901 y Ff(d)1697 3799 y Fr(P)d(f)d Fu(\()p
Fr(s)1917 3814 y Fp(1)1955 3799 y Fr(;)17 b Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(s)2238 3814 y Fo(d)2279 3799 y Fu(\))p Fr(dt)2403
3814 y Fp(1)2458 3799 y Fq(\001)g(\001)g(\001)e Fr(dt)2677
3814 y Fo(d)1014 4070 y Fu(=)1173 3934 y Fi(Z)1289 4070
y Fq(\001)i(\001)g(\001)1422 3934 y Fi(Z)1477 4160 y
Fo(S)1524 4141 y Fh(\000)p Fg(1)1607 4160 y Fp(\([)p
Fo(a)1691 4169 y Fg(1)1726 4160 y Fo(;x)1786 4169 y Fg(1)1820
4160 y Fp(])p Fl(\002\001\001\001)n(\002)p Fp([)p Fo(a)2065
4172 y Ff(d)2101 4160 y Fo(;x)2161 4172 y Ff(d)2197 4160
y Fp(]\))2264 4070 y Fr(f)11 b Fu(\()p Fr(s)2407 4085
y Fp(1)2446 4070 y Fr(;)17 b Fq(\001)g(\001)g(\001)32
b Fr(;)17 b(s)2730 4085 y Fo(d)2770 4070 y Fu(\))p Fr(dt)2894
4085 y Fp(1)2950 4070 y Fq(\001)g(\001)g(\001)d Fr(dt)3168
4085 y Fo(d)300 4353 y Fu(with)32 b(resp)s(ect)i(to)e
Fr(x)1030 4368 y Fp(1)1070 4353 y Fr(;)17 b Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(x)1362 4368 y Fo(d)1435 4353 y Fu(successiv)m(ely)-8
b(,)35 b(w)m(e)f(ha)m(v)m(e)408 4630 y Fr(P)14 b(f)d
Fu(\()p Fr(x)637 4645 y Fp(1)676 4630 y Fr(;)17 b Fq(\001)g(\001)g
(\001)31 b Fr(;)17 b(x)968 4645 y Fo(d)1009 4630 y Fu(\))28
b(=)1367 4563 y Fr(@)1423 4527 y Fo(d)p 1188 4607 455
4 v 1188 4699 a Fr(@)5 b(x)1299 4714 y Fp(1)1357 4699
y Fq(\001)17 b(\001)g(\001)d Fr(@)5 b(x)1600 4714 y Fo(d)1669
4495 y Fi(Z)1785 4630 y Fq(\001)17 b(\001)g(\001)1918
4495 y Fi(Z)1973 4720 y Fo(S)2020 4701 y Fh(\000)p Fg(1)2102
4720 y Fp(\([)p Fo(a)2186 4729 y Fg(1)2222 4720 y Fo(;x)2282
4729 y Fg(1)2315 4720 y Fp(])p Fl(\002\001\001\001)o(\002)p
Fp([)p Fo(a)2561 4732 y Ff(d)2597 4720 y Fo(;x)2657 4732
y Ff(d)2692 4720 y Fp(]\))2760 4630 y Fr(f)11 b Fu(\()p
Fr(s)2903 4645 y Fp(1)2942 4630 y Fr(;)17 b Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(s)3225 4645 y Fo(d)3265 4630 y Fu(\))p Fr(dt)3389
4645 y Fp(1)3445 4630 y Fq(\001)g(\001)g(\001)e Fr(dt)3664
4645 y Fo(d)3705 4630 y Fr(:)3591 4829 y Fu(\(2.14\))300
5048 y Fm(Example)26 b(2)d(The)k(bak)m(er)g(transformation)p
Fu(.)40 b(Let)23 b Fr(X)35 b Fu(=)28 b([0)p Fr(;)17 b
Fu(1])s Fq(\002)s Fu([0)p Fr(;)g Fu(1].)39 b(De\014ne)24
b Fr(S)34 b Fu(:)27 b Fr(X)36 b Fq(!)27 b Fr(X)300 5169
y Fu(b)m(y)843 5441 y Fr(S)6 b Fu(\()p Fr(x;)17 b(y)t
Fu(\))27 b(=)1266 5301 y Fi(\032)1382 5380 y Fu(\(2)p
Fr(x;)1578 5341 y Fp(1)p 1578 5357 36 4 v 1578 5414 a(2)1624
5380 y Fr(y)t Fu(\))428 b(0)27 b Fq(\024)h Fr(x)g(<)2520
5341 y Fp(1)p 2520 5357 V 2520 5414 a(2)2565 5380 y Fr(;)44
b Fu(0)28 b Fq(\024)g Fr(y)j Fq(\024)d Fu(1)1382 5500
y(\(2)p Fr(x)23 b Fq(\000)f Fu(1)p Fr(;)1749 5461 y Fp(1)p
1749 5478 V 1749 5535 a(2)1794 5500 y Fr(y)j Fu(+)1975
5461 y Fp(1)p 1975 5478 V 1975 5535 a(2)2021 5500 y Fu(\))2151
5461 y Fp(1)p 2151 5478 V 2151 5535 a(2)2224 5500 y Fq(\024)k
Fr(x)f Fq(\024)g Fu(1)p Fr(;)44 b Fu(0)27 b Fq(\024)i
Fr(y)h Fq(\024)f Fu(1)p Fr(:)p Black 3591 5441 a Fu(\(2.15\))p
Black Black Black eop
%%Page: 11 20
11 19 bop Black 300 10 a Fk(CHAPTER)34 b(2.)76 b(FR)m(OBENIUS-PERR)m
(ON)33 b(OPERA)-8 b(TORS)1082 b Fu(11)p Black 300 274
a(Since)33 b Fr(S)621 238 y Fl(\000)p Fp(1)715 274 y
Fu(\([0)p Fr(;)17 b(x)p Fu(])22 b Fq(\002)h Fu([0)p Fr(;)17
b(y)t Fu(]\))26 b(=)i([0)p Fr(;)1573 235 y Fp(1)p 1573
251 36 4 v 1573 309 a(2)1618 274 y Fr(x)p Fu(])23 b Fq(\002)g
Fu([0)p Fr(;)17 b Fu(2)p Fr(y)t Fu(])31 b(for)h(0)27
b Fq(\024)h Fr(y)j(<)2625 235 y Fp(1)p 2625 251 V 2625
309 a(2)2670 274 y Fu(,)i(w)m(e)g(ha)m(v)m(e)667 574
y Fr(P)14 b(f)d Fu(\()p Fr(x;)17 b(y)t Fu(\))26 b(=)1231
507 y Fr(@)1287 471 y Fp(2)p 1169 552 221 4 v 1169 643
a Fr(@)5 b(x@)g(y)1416 439 y Fi(Z)1526 438 y Ff(x)p 1526
450 35 3 v 1528 491 a Fg(2)1471 664 y Fp(0)1591 574 y
Fr(ds)1705 439 y Fi(Z)1804 465 y Fp(2)p Fo(y)1760 664
y Fp(0)1897 574 y Fr(f)11 b Fu(\()p Fr(s;)17 b(t)p Fu(\))p
Fr(dt)27 b Fu(=)h Fr(f)11 b Fu(\()2481 507 y(1)p 2481
552 49 4 v 2481 643 a(2)2539 574 y Fr(x;)17 b Fu(2)p
Fr(y)t Fu(\))p Fr(;)44 b Fu(0)27 b Fq(\024)h Fr(y)j(<)3222
507 y Fu(1)p 3222 552 V 3222 643 a(2)3280 574 y Fr(:)p
Black 284 w Fu(\(2.16\))p Black 300 854 a(F)-8 b(or)485
815 y Fp(1)p 485 831 36 4 v 485 889 a(2)558 854 y Fq(\024)28
b Fr(y)j Fq(\024)d Fu(1,)595 1128 y Fr(S)661 1087 y Fl(\000)p
Fp(1)755 1128 y Fu(\([0)p Fr(;)17 b(x)p Fu(])22 b Fq(\002)g
Fu([0)p Fr(;)17 b(y)t Fu(]\))27 b(=)g(\([0)p Fr(;)1651
1061 y Fu(1)p 1651 1105 49 4 v 1651 1197 a(2)1710 1128
y Fr(x)p Fu(])22 b Fq(\002)h Fu([0)p Fr(;)17 b Fu(1]\))k
Fq([)i Fu(\([)2333 1061 y(1)p 2333 1105 V 2333 1197 a(2)2392
1128 y Fr(;)2445 1061 y Fu(1)p 2445 1105 V 2445 1197
a(2)2526 1128 y(+)2634 1061 y(1)p 2634 1105 V 2634 1197
a(2)2693 1128 y Fr(x)p Fu(])g Fq(\002)f Fu([0)p Fr(;)17
b Fu(2)p Fr(y)25 b Fq(\000)e Fu(1]\))p Fr(;)p Black 211
w Fu(\(2.17\))p Black 300 1374 a(hence,)633 1670 y Fr(P)14
b(f)d Fu(\()p Fr(x;)17 b(y)t Fu(\))81 b(=)1308 1602 y
Fr(@)1364 1566 y Fp(2)p 1246 1647 221 4 v 1246 1738 a
Fr(@)5 b(x@)g(y)1476 1670 y Fq(f)1526 1534 y Fi(Z)1636
1533 y Ff(x)p 1636 1545 35 3 v 1638 1586 a Fg(2)1581
1759 y Fp(0)1701 1670 y Fr(ds)1815 1534 y Fi(Z)1914 1560
y Fp(1)1870 1759 y(0)1970 1670 y Fr(f)11 b Fu(\()p Fr(s;)17
b(t)p Fu(\))p Fr(dt)k Fu(+)2435 1534 y Fi(Z)2545 1533
y Fg(1)p 2545 1545 31 3 v 2545 1586 a(2)2585 1560 y Fp(+)2650
1533 y Ff(x)p 2650 1545 35 3 v 2652 1586 a Fg(2)2491
1759 y Fp(0)2716 1670 y Fr(ds)2830 1534 y Fi(Z)2929 1560
y Fp(2)p Fo(y)r Fl(\000)p Fp(1)2884 1759 y(0)3112 1670
y Fr(f)11 b Fu(\()p Fr(s;)17 b(t)p Fu(\))p Fr(dt)p Fq(g)1077
1924 y Fu(=)83 b Fr(f)11 b Fu(\()1343 1857 y(1)p 1343
1901 49 4 v 1343 1993 a(2)1423 1924 y(+)1531 1857 y(1)p
1531 1901 V 1531 1993 a(2)1590 1924 y Fr(x;)17 b Fu(2)p
Fr(y)25 b Fq(\000)e Fu(1\))p Fr(;)2107 1857 y Fu(1)p
2107 1901 V 2107 1993 a(2)2193 1924 y Fq(\024)28 b Fr(y)j
Fq(\024)d Fu(1)p Fr(:)300 2170 y Fu(In)33 b(summary)-8
b(,)32 b(w)m(e)h(ha)m(v)m(e)1010 2442 y Fr(P)14 b(f)d
Fu(\()p Fr(x;)17 b(y)t Fu(\))26 b(=)1503 2302 y Fi(\032)1619
2381 y Fr(f)11 b Fu(\()1726 2342 y Fp(1)p 1726 2358 36
4 v 1726 2416 a(2)1771 2381 y Fr(x;)17 b Fu(2)p Fr(y)t
Fu(\))p Fr(;)428 b Fu(0)28 b Fq(\024)g Fr(y)j(<)2838
2342 y Fp(1)p 2838 2358 V 2838 2416 a(2)1619 2502 y Fr(f)11
b Fu(\()1726 2462 y Fp(1)p 1726 2479 V 1726 2536 a(2)1793
2502 y Fu(+)1901 2462 y Fp(1)p 1901 2479 V 1901 2536
a(2)1946 2502 y Fr(x;)17 b Fu(2)p Fr(y)26 b Fq(\000)c
Fu(1\))p Fr(;)2474 2462 y Fp(1)p 2474 2479 V 2474 2536
a(2)2547 2502 y Fq(\024)28 b Fr(y)j Fq(\024)d Fu(1)p
Fr(:)p Black 3591 2442 a Fu(\(2.18\))p Black 300 2715
a(Since)33 b Fr(P)14 b Fu(1)27 b(=)g(1,)33 b(the)g(Leb)s(esgue)g
(measure)g Fr(m)g Fu(is)f(in)m(v)-5 b(arian)m(t)31 b(under)j
Fr(S)6 b Fu(.)446 2835 y(The)24 b(existence)g(of)f(an)g(absolutely)f
(con)m(tin)m(uous)h(\014nite)g(in)m(v)-5 b(arian)m(t)21
b(measure)i(is)g(equiv)-5 b(alen)m(t)22 b(to)300 2956
y(that)28 b(of)g(a)g(non)m(trivial)e(solution)h(to)h(the)g(\014xed)i(p)
s(oin)m(t)d(equation)h Fr(P)14 b(f)2786 2920 y Fl(\003)2853
2956 y Fu(=)27 b Fr(f)3015 2920 y Fl(\003)3083 2956 y
Fu(for)g(the)i(F)-8 b(rob)s(enius-)300 3076 y(P)m(erron)33
b(op)s(erator)f Fr(P)46 b Fu(asso)s(ciated)33 b(with)f
Fr(S)6 b Fu(.)p Black 300 3238 a Fj(The)-5 b(or)g(em)34
b(2.2.)p Black 48 w Fu([36])26 b(Let)g Fr(f)38 b Fq(2)28
b Fr(L)1505 3202 y Fp(1)1571 3238 y Fu(b)s(e)f(a)e(densit)m(y)i
(function.)41 b(If)26 b(the)h(Ces\023)-49 b(aro)27 b(a)m(v)m(erages)g
(sequence)1622 3548 y Fr(A)1695 3563 y Fo(n)1742 3548
y Fr(f)38 b Fq(\021)1948 3481 y Fu(1)p 1943 3525 59 4
v 1943 3616 a Fr(n)2034 3424 y Fo(n)p Fl(\000)p Fp(1)2028
3453 y Fi(X)2043 3663 y Fo(i)p Fp(=0)2189 3548 y Fr(P)2266
3507 y Fo(i)2293 3548 y Fr(f)p Black 1250 w Fu(\(2.19\))p
Black 300 3860 a(is)29 b(w)m(eakly)h(pre-compact,)g(then)g(it)e(con)m
(v)m(erges)k(strongly)d(to)g(some)g(in)m(v)-5 b(arian)m(t)28
b(densit)m(y)i Fr(f)3573 3824 y Fl(\003)3640 3860 y Fq(2)e
Fr(L)3800 3824 y Fp(1)300 3981 y Fu(of)k Fr(P)14 b Fu(,)32
b(i.e.,)g Fr(P)14 b(f)867 3944 y Fl(\003)934 3981 y Fu(=)27
b Fr(f)1096 3944 y Fl(\003)1168 3981 y Fu(and)1558 4201
y(lim)1534 4260 y Fo(n)p Fl(!1)1735 4201 y Fq(k)p Fr(A)1858
4216 y Fo(n)1904 4201 y Fr(f)33 b Fq(\000)23 b Fr(f)2144
4160 y Fl(\003)2183 4201 y Fq(k)28 b Fu(=)f(0)p Fr(:)p
Black 1151 w Fu(\(2.20\))p Black Black Black eop
%%Page: 12 21
12 20 bop Black Black Black Black 1714 122 a Fn(Chapter)53
b(3)p Black Black 1357 554 a(ULAM'S)g(METHOD)477 1255
y Fu(No)m(w)41 b(w)m(e)g(in)m(tro)s(duce)f(the)g(idea)f(b)s(ehind)h
(Ulam's)e(piecewise)j(constan)m(t)g(appro)m(ximations)300
1376 y(for)30 b(computing)e(the)j(\014xed)g(densit)m(y)g(of)f(the)h(F)
-8 b(rob)s(enius-P)m(erron)29 b(op)s(erator.)42 b(W)-8
b(e)31 b(\014rst)g(consider)300 1496 y(the)g(one)g(dimensional)d(case,)
k(whic)m(h)f(w)m(as)g(initially)26 b(prop)s(osed)31 b(b)m(y)h(Ulam)d
(in)g(his)i(famous)e(b)s(o)s(ok)300 1616 y([47])j(on)h(mathematical)c
(problems.)446 1737 y(Assume)44 b(that)e Fr(S)50 b Fu(:)45
b([0)p Fr(;)17 b Fu(1])44 b Fq(!)g Fu([0)p Fr(;)17 b
Fu(1])42 b(is)g(a)h(nonsingular)e(transformation)f(suc)m(h)k(that)f
(the)300 1857 y(corresp)s(onding)28 b(F)-8 b(rob)s(enius-P)m(erron)27
b(op)s(erator)g Fr(P)41 b Fu(:)28 b Fr(L)2297 1821 y
Fp(1)2337 1857 y Fu(\(0)p Fr(;)17 b Fu(1\))27 b Fq(!)g
Fr(L)2775 1821 y Fp(1)2815 1857 y Fu(\(0)p Fr(;)17 b
Fu(1\))27 b(has)h(a)f(\014xed)i(densit)m(y)300 1978 y
Fr(f)359 1941 y Fl(\003)398 1978 y Fu(.)53 b(T)-8 b(o)36
b(illustrate)e(the)i(basic)f(idea)g(b)s(ehind)h(the)g(probabilit)m(y)e
(argumen)m(t)h(of)h(Ulam's)e(for)i(the)300 2098 y(motiv)-5
b(ation)35 b(of)i(his)h(metho)s(d,)g(w)m(e)h(\014rst)f(use)h(a)f
(simple)e(partition)f(of)j(the)g(in)m(terv)-5 b(al)37
b([0)p Fr(;)17 b Fu(1])37 b(in)m(to)300 2218 y(three)c(subin)m(terv)-5
b(als,)33 b(and)g(then)g(generalize)f(it)f(to)h(a)h(partition)d(of)i
Fr(n)h Fu(subin)m(terv)-5 b(als.)446 2339 y(Supp)s(ose)40
b([0)p Fr(;)17 b Fu(1])37 b(is)h(divided)g(in)m(to)g(three)h(subin)m
(terv)-5 b(als)38 b Fr(I)2567 2354 y Fp(1)2606 2339 y
Fr(;)17 b(I)2693 2354 y Fp(2)2733 2339 y Fr(;)g(I)2820
2354 y Fp(3)2859 2339 y Fu(.)60 b(Let)39 b Fr(f)49 b
Fu(b)s(e)38 b(a)g(piecewise)300 2459 y(constan)m(t)44
b(densit)m(y)g(suc)m(h)h(that)e(the)h(p)s(ossibilit)m(y)d(of)i
Fr(I)2323 2474 y Fp(1)2406 2459 y Fu(is)f Fr(a)2565 2474
y Fp(1)2605 2459 y Fu(,)k(the)e(probabilit)m(y)d(of)i
Fr(I)3531 2474 y Fp(2)3613 2459 y Fu(is)g Fr(a)3773 2474
y Fp(2)3813 2459 y Fu(,)300 2580 y(and)37 b(the)g(probabilit)m(y)d(of)j
Fr(I)1327 2595 y Fp(3)1403 2580 y Fu(is)f Fr(a)1556 2595
y Fp(3)1596 2580 y Fu(.)55 b(Ulam's)36 b(idea)g(is)g(that)g
Fr(P)14 b(f)47 b Fu(can)37 b(b)s(e)g(appro)m(ximated)f(b)m(y)h(a)300
2700 y(piecewise)i(constan)m(t)h(densit)m(y)f(with)f(the)h
(probabilities)d(of)i Fr(I)2598 2715 y Fp(1)2638 2700
y Fr(;)17 b(I)2725 2715 y Fp(2)2764 2700 y Fr(;)39 b
Fu(and)f Fr(I)3068 2715 y Fp(3)3146 2700 y Fu(to)g(b)s(e)h
Fr(b)3451 2715 y Fp(1)3491 2700 y Fr(;)17 b(b)3576 2715
y Fp(2)3616 2700 y Fu(,)40 b(and)300 2820 y Fr(b)341
2835 y Fp(3)381 2820 y Fu(.)j(W)-8 b(e)33 b(w)m(an)m(t)h(to)e(\014nd)h
(ho)m(w)g Fr(b)1416 2835 y Fp(1)1456 2820 y Fr(;)17 b(b)1541
2835 y Fp(2)1581 2820 y Fu(,)32 b(and)h Fr(b)1871 2835
y Fp(3)1944 2820 y Fu(dep)s(end)g(on)g Fr(a)2469 2835
y Fp(1)2508 2820 y Fr(;)17 b(a)2603 2835 y Fp(2)2643
2820 y Fu(,)32 b(and)h Fr(a)2943 2835 y Fp(3)2983 2820
y Fu(.)446 2941 y(F)-8 b(rom)32 b(the)j(de\014nition)d(of)i(the)g(F)-8
b(rob)s(enius-P)m(erron)33 b(op)s(erator)g Fr(P)14 b
Fu(,)34 b(the)g(new)g(probabilit)m(y)e Fr(b)3800 2956
y Fp(1)300 3061 y Fu(of)k Fr(I)458 3076 y Fp(1)533 3061
y Fu(should)g(carry)g(the)h(old)e(probabilit)m(y)f(of)h
Fr(S)2121 3025 y Fl(\000)p Fp(1)2215 3061 y Fu(\()p Fr(I)2296
3076 y Fp(1)2336 3061 y Fu(\))g(whic)m(h)i(is)e(the)i(disjoin)m(t)e
(union)g(of)h(the)300 3181 y(three)d(parts)g(of)f Fr(S)976
3145 y Fl(\000)p Fp(1)1070 3181 y Fu(\()p Fr(I)1151 3196
y Fp(1)1191 3181 y Fu(\))g(in)g Fr(I)1418 3196 y Fp(1)1457
3181 y Fr(;)17 b(I)1544 3196 y Fp(2)1584 3181 y Fu(,)32
b(and)h Fr(I)1876 3196 y Fp(3)1915 3181 y Fu(:)1229 3377
y Fr(I)1272 3392 y Fp(1)1334 3377 y Fq(\\)22 b Fr(S)1488
3336 y Fl(\000)p Fp(1)1582 3377 y Fu(\()p Fr(I)1663 3392
y Fp(1)1703 3377 y Fu(\))p Fr(;)17 b(I)1828 3392 y Fp(2)1889
3377 y Fq(\\)23 b Fr(S)2044 3336 y Fl(\000)p Fp(1)2138
3377 y Fu(\()p Fr(I)2219 3392 y Fp(1)2258 3377 y Fu(\))p
Fr(;)17 b(I)2383 3392 y Fp(3)2444 3377 y Fq(\\)23 b Fr(S)2599
3336 y Fl(\000)p Fp(1)2693 3377 y Fu(\()p Fr(I)2774 3392
y Fp(1)2813 3377 y Fu(\))p Fr(:)300 3573 y Fu(So)32 b(w)m(e)i(can)f
(obtain)492 3792 y Fr(b)533 3807 y Fp(1)656 3792 y Fu(=)815
3657 y Fi(Z)870 3882 y Fo(I)901 3891 y Fg(1)956 3792
y Fr(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))p Fr(dx)27 b Fu(=)1460
3657 y Fi(Z)1515 3882 y Fo(S)1562 3863 y Fh(\000)p Fg(1)1644
3882 y Fp(\()p Fo(I)1702 3891 y Fg(1)1737 3882 y Fp(\))1785
3792 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(dx)656 4068
y Fu(=)815 3932 y Fi(Z)870 4158 y Fo(S)917 4139 y Fh(\000)p
Fg(1)999 4158 y Fp(\()p Fo(I)1057 4167 y Fg(1)1092 4158
y Fp(\))p Fl(\\)p Fo(I)1197 4167 y Fg(1)1252 4068 y Fr(f)g
Fu(\()p Fr(x)p Fu(\))p Fr(dx)23 b Fu(+)1669 3932 y Fi(Z)1724
4158 y Fo(S)1771 4139 y Fh(\000)p Fg(1)1853 4158 y Fp(\()p
Fo(I)1911 4167 y Fg(1)1946 4158 y Fp(\))p Fl(\\)p Fo(I)2051
4167 y Fg(2)2106 4068 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p
Fr(dx)23 b Fu(+)2523 3932 y Fi(Z)2578 4158 y Fo(S)2625
4139 y Fh(\000)p Fg(1)2707 4158 y Fp(\()p Fo(I)2765 4167
y Fg(1)2800 4158 y Fp(\))p Fl(\\)p Fo(I)2905 4167 y Fg(3)2960
4068 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(dx)656 4354
y Fu(=)825 4287 y Fr(m)p Fu(\()p Fr(I)991 4302 y Fp(1)1053
4287 y Fq(\\)22 b Fr(S)1207 4250 y Fl(\000)p Fp(1)1301
4287 y Fu(\()p Fr(I)1382 4302 y Fp(1)1422 4287 y Fu(\)\))p
825 4331 673 4 v 1039 4422 a Fr(m)p Fu(\()p Fr(I)1205
4437 y Fp(1)1245 4422 y Fu(\))1530 4354 y Fq(\001)f Fr(a)1630
4369 y Fp(1)1692 4354 y Fu(+)1800 4287 y Fr(m)p Fu(\()p
Fr(I)1966 4302 y Fp(2)2028 4287 y Fq(\\)i Fr(S)2183 4250
y Fl(\000)p Fp(1)2277 4287 y Fu(\()p Fr(I)2358 4302 y
Fp(1)2397 4287 y Fu(\)\))p 1800 4331 V 2015 4422 a Fr(m)p
Fu(\()p Fr(I)2181 4437 y Fp(2)2220 4422 y Fu(\))2505
4354 y Fq(\001)f Fr(a)2606 4369 y Fp(2)2668 4354 y Fu(+)2776
4287 y Fr(m)p Fu(\()p Fr(I)2942 4302 y Fp(3)3004 4287
y Fq(\\)g Fr(S)3158 4250 y Fl(\000)p Fp(1)3252 4287 y
Fu(\()p Fr(I)3333 4302 y Fp(1)3373 4287 y Fu(\)\))p 2776
4331 V 2990 4422 a Fr(m)p Fu(\()p Fr(I)3156 4437 y Fp(3)3196
4422 y Fu(\))3481 4354 y Fq(\001)f Fr(a)3581 4369 y Fp(3)3621
4354 y Fr(;)300 4600 y Fu(or)32 b(in)g(this)g(w)m(a)m(y)-8
b(,)1390 4881 y Fr(b)1431 4896 y Fp(1)1498 4881 y Fu(=)1656
4756 y Fp(3)1602 4786 y Fi(X)1617 4996 y Fo(i)p Fp(=1)1772
4813 y Fr(m)p Fu(\()p Fr(I)1938 4828 y Fo(i)1989 4813
y Fq(\\)22 b Fr(S)2143 4777 y Fl(\000)p Fp(1)2238 4813
y Fu(\()p Fr(I)2319 4828 y Fp(1)2358 4813 y Fu(\))p 1772
4858 624 4 v 1968 4949 a Fr(m)p Fu(\()p Fr(I)2134 4964
y Fo(i)2162 4949 y Fu(\))2428 4881 y Fq(\001)g Fr(a)2529
4896 y Fo(i)2557 4881 y Fr(:)p Black 1055 w Fu(\(3.1\))p
Black 300 5159 a(By)33 b(the)g(same)g(tok)m(en,)1390
5439 y Fr(b)1431 5454 y Fp(2)1498 5439 y Fu(=)1656 5315
y Fp(3)1602 5345 y Fi(X)1617 5554 y Fo(i)p Fp(=1)1772
5372 y Fr(m)p Fu(\()p Fr(I)1938 5387 y Fo(i)1989 5372
y Fq(\\)22 b Fr(S)2143 5336 y Fl(\000)p Fp(1)2238 5372
y Fu(\()p Fr(I)2319 5387 y Fp(2)2358 5372 y Fu(\))p 1772
5416 V 1968 5508 a Fr(m)p Fu(\()p Fr(I)2134 5523 y Fo(i)2162
5508 y Fu(\))2428 5439 y Fq(\001)g Fr(a)2529 5454 y Fo(i)2557
5439 y Fr(;)p Black 1055 w Fu(\(3.2\))p Black Black 2021
5764 a(12)p Black eop
%%Page: 13 22
13 21 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(13)p Black 1390 352 a Fr(b)1431 367
y Fp(3)1498 352 y Fu(=)1656 227 y Fp(3)1602 257 y Fi(X)1617
467 y Fo(i)p Fp(=1)1772 285 y Fr(m)p Fu(\()p Fr(I)1938
300 y Fo(i)1989 285 y Fq(\\)22 b Fr(S)2143 248 y Fl(\000)p
Fp(1)2238 285 y Fu(\()p Fr(I)2319 300 y Fp(3)2358 285
y Fu(\))p 1772 329 624 4 v 1968 420 a Fr(m)p Fu(\()p
Fr(I)2134 435 y Fo(i)2162 420 y Fu(\))2428 352 y Fq(\001)g
Fr(a)2529 367 y Fo(i)2557 352 y Fr(:)p Black 1055 w Fu(\(3.3\))p
Black 446 653 a(In)31 b(general,)f(if)e([0)p Fr(;)17
b Fu(1])30 b(is)f(divided)h(in)m(to)f Fr(n)h Fu(subin)m(terv)-5
b(als)30 b Fr(I)2537 668 y Fp(1)2577 653 y Fr(;)17 b(I)2664
668 y Fp(2)2703 653 y Fr(;)g Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(I)2983 668 y Fo(n)3059 653 y Fu(and)31 b(if)d
Fr(f)41 b Fu(is)29 b(a)h(piece-)300 774 y(wise)i(constan)m(t)h(densit)m
(y)g(suc)m(h)g(that)f(the)h(probabilit)m(y)d(of)h Fr(I)2489
789 y Fo(i)2549 774 y Fu(is)h Fr(a)2698 789 y Fo(i)2726
774 y Fu(,)g(then)h(the)f(new)h(probabilit)m(y)300 894
y(of)f Fr(I)454 909 y Fo(j)523 894 y Fu(is)g Fr(b)662
909 y Fo(j)732 894 y Fu(with)1374 1186 y Fr(b)1415 1201
y Fo(j)1479 1186 y Fu(=)1633 1062 y Fo(n)1583 1091 y
Fi(X)1598 1301 y Fo(i)p Fp(=1)1753 1119 y Fr(m)p Fu(\()p
Fr(I)1919 1134 y Fo(i)1970 1119 y Fq(\\)22 b Fr(S)2124
1082 y Fl(\000)p Fp(1)2219 1119 y Fu(\()p Fr(I)2300 1134
y Fo(j)2336 1119 y Fu(\)\))p 1753 1163 659 4 v 1966 1254
a Fr(m)p Fu(\()p Fr(I)2132 1269 y Fo(i)2161 1254 y Fu(\))2444
1186 y Fq(\001)g Fr(a)2545 1201 y Fo(i)2573 1186 y Fr(:)p
Black 1039 w Fu(\(3.4\))p Black 300 1487 a(Let)35 b Fr(a)c
Fu(=)f([)p Fr(a)743 1502 y Fp(1)783 1487 y Fr(;)17 b(a)878
1502 y Fp(2)917 1487 y Fr(;)g Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(a)1205 1502 y Fo(n)1252 1487 y Fu(])35 b(and)f
Fr(b)e Fu(=)e([)p Fr(b)1752 1502 y Fp(1)1792 1487 y Fr(;)17
b(b)1877 1502 y Fp(2)1917 1487 y Fr(;)g Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(b)2195 1502 y Fo(n)2242 1487 y Fu(],)35 b(and)g(let)e(the)i
Fr(n)24 b Fq(\002)g Fr(n)34 b Fu(matrix)f Fr(P)3492 1502
y Fo(n)3570 1487 y Fu(=)d([)p Fr(p)3752 1502 y Fo(ij)3813
1487 y Fu(])300 1608 y(b)s(e)j(de\014ned)h(b)m(y)1514
1875 y Fr(p)1563 1890 y Fo(ij)1651 1875 y Fu(=)1764 1807
y Fr(m)p Fu(\()p Fr(I)1930 1822 y Fo(i)1981 1807 y Fq(\\)23
b Fr(S)2136 1771 y Fl(\000)p Fp(1)2230 1807 y Fu(\()p
Fr(I)2311 1822 y Fo(j)2347 1807 y Fu(\)\))p 1764 1852
V 1978 1943 a Fr(m)p Fu(\()p Fr(I)2144 1958 y Fo(i)2172
1943 y Fu(\))2433 1875 y Fr(:)p Black 1179 w Fu(\(3.5\))p
Black 300 2138 a(Then)34 b(w)m(e)f(ha)m(v)m(e)h Fr(b)28
b Fu(=)g Fr(aP)1210 2153 y Fo(n)1257 2138 y Fu(.)43 b(Since)33
b Fr(P)1645 2153 y Fo(n)1725 2138 y Fu(is)f(a)g(nonnegativ)m(e)h
(matrix)e(and)1205 2297 y Fo(n)1155 2327 y Fi(X)1165
2537 y Fo(j)t Fp(=1)1315 2422 y Fr(p)1364 2437 y Fo(ij)1452
2422 y Fu(=)1606 2297 y Fo(n)1556 2327 y Fi(X)1566 2537
y Fo(j)t Fp(=1)1726 2354 y Fr(m)p Fu(\()p Fr(I)1892 2369
y Fo(i)1943 2354 y Fq(\\)22 b Fr(S)2097 2318 y Fl(\000)p
Fp(1)2192 2354 y Fu(\()p Fr(I)2273 2369 y Fo(j)2309 2354
y Fu(\)\))p 1726 2399 V 1939 2490 a Fr(m)p Fu(\()p Fr(I)2105
2505 y Fo(i)2134 2490 y Fu(\))2423 2422 y(=)2536 2354
y Fr(m)p Fu(\()p Fr(I)2702 2369 y Fo(i)2730 2354 y Fu(\))p
2536 2399 233 4 v 2536 2490 a Fr(m)p Fu(\()p Fr(I)2702
2505 y Fo(i)2730 2490 y Fu(\))2806 2422 y(=)28 b(1)p
Fr(;)300 2730 y Fu(so)46 b Fr(P)496 2745 y Fo(n)588 2730
y Fu(is)f(a)g(sto)s(c)m(hastic)g(matrix.)81 b(By)46 b(the)f(F)-8
b(rob)s(enius-P)m(erron)46 b(theorem)f(for)g(nonnegativ)m(e)300
2851 y(matrices,)52 b(there)d(is)f(a)g(nonnegativ)m(e)h(v)m(ector)h
Fr(c)2123 2815 y Fo(T)2233 2851 y Fu(=)k(\()p Fr(c)2443
2866 y Fp(1)2483 2851 y Fr(;)17 b(c)2569 2866 y Fp(2)2608
2851 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)2887
2866 y Fo(n)2934 2851 y Fu(\),)52 b(the)d(sum)g(of)f(whose)300
2971 y(comp)s(onen)m(ts)33 b(is)f(1,)h(suc)m(h)h(that)1245
3185 y(\()p Fr(c)1325 3200 y Fp(1)1364 3185 y Fr(;)17
b(c)1450 3200 y Fp(2)1489 3185 y Fr(;)g Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(c)1768 3200 y Fo(n)1815 3185 y Fu(\))p Fr(P)1916
3200 y Fo(n)1990 3185 y Fu(=)28 b(\()p Fr(c)2174 3200
y Fp(1)2213 3185 y Fr(;)17 b(c)2299 3200 y Fp(2)2338
3185 y Fr(;)g Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2618
3200 y Fo(n)2664 3185 y Fu(\))p Fr(:)p Black 910 w Fu(\(3.6\))p
Black 300 3398 a(The)34 b(corresp)s(onding)e(densit)m(y)1544
3681 y Fr(f)1592 3696 y Fo(n)1640 3681 y Fu(\()p Fr(x)p
Fu(\))c(=)1953 3557 y Fo(n)1902 3587 y Fi(X)1917 3797
y Fo(i)p Fp(=1)2154 3614 y Fr(c)2196 3629 y Fo(i)p 2073
3659 V 2073 3750 a Fr(m)p Fu(\()p Fr(I)2239 3765 y Fo(i)2267
3750 y Fu(\))2315 3681 y Fr(\037)2376 3696 y Fo(I)2407
3706 y Ff(i)2437 3681 y Fu(\()p Fr(x)p Fu(\))p Fr(:)300
3977 y Fu(This)c(famous)f(sc)m(heme)i(is)e(called)g(Ulam's)f(metho)s
(d.)40 b(The)25 b(matrix)d Fr(P)2793 3992 y Fo(n)2863
3977 y Fu(is)i(called)e(the)i(companion)300 4098 y(matrix)31
b(or)h(Ulam's)g(matrix.)446 4218 y(In)43 b(1960)e(Ulam)f(conjectured)j
(that)f(the)g(piecewise)h(constan)m(t)g(appro)m(ximations)d
Fr(f)3599 4233 y Fo(n)3688 4218 y Fu(will)300 4338 y(con)m(v)m(erge)32
b(to)e Fr(f)872 4302 y Fl(\003)942 4338 y Fu(as)g Fr(n)h
Fu(go)s(es)f(to)g(in\014nit)m(y)g([47)o(].)43 b(In)31
b(1976)e(T.)i(Y.)g(Li)e(pro)m(v)m(ed)j(this)e(conjecture)h(for)300
4459 y(a)h(class)h(of)f(piecewise)h Fr(C)1221 4423 y
Fp(2)1293 4459 y Fu(and)g(stretc)m(hing)g(mappings)f([38)o(].)446
4579 y(Ulam's)46 b(metho)s(d)g(can)g(b)s(e)h(in)m(tro)s(duced)g(in)e
(another)i(w)m(a)m(y)h([22],)i(using)c(the)h(concept)g(of)300
4699 y(dual)d(op)s(erators.)78 b(F)-8 b(rom)43 b(this)h(more)g(general)
g(n)m(umerical)f(analysis)g(for)h(F)-8 b(rob)s(enius-P)m(erron)300
4820 y(op)s(erators,)33 b(w)m(e)i(will)c(see)j(clearly)f(that)g(Ulam's)
f(metho)s(d)h(is)f(actually)g(a)h(Galerkin)f(pro)5 b(jection)300
4940 y(metho)s(d)27 b(asso)s(ciated)g(with)g(the)h(corresp)s(onding)f
(subspace)j(of)d(piecewise)h(constan)m(t)g(functions.)446
5061 y(By)49 b(the)g(de\014nition)e(of)g(F)-8 b(rob)s(enius-P)m(erron)
48 b(op)s(erators)g(it)f(can)i(b)s(e)f(easily)f(pro)m(v)m(en)j(\(see)
300 5181 y([36]\))39 b(that)g(the)h(dual)f(of)g Fr(P)53
b Fu(:)39 b Fr(L)1512 5145 y Fp(1)1552 5181 y Fu(\(0)p
Fr(;)17 b Fu(1\))39 b Fq(!)g Fr(L)2014 5145 y Fp(1)2054
5181 y Fu(\(0)p Fr(;)17 b Fu(1\))38 b(is)h(the)h Fj(Ko)-5
b(opman)40 b(op)-5 b(er)g(ator)39 b Fr(U)50 b Fq(\021)40
b Fr(U)3722 5196 y Fo(S)3813 5181 y Fu(:)300 5301 y Fr(L)366
5265 y Fl(1)441 5301 y Fu(\(0)p Fr(;)17 b Fu(1\))27 b
Fq(!)g Fr(L)879 5265 y Fl(1)954 5301 y Fu(\(0)p Fr(;)17
b Fu(1\))32 b(with)g(resp)s(ect)i(to)e Fr(S)6 b Fu(,)33
b(de\014ned)h(b)m(y)1617 5515 y Fr(U)10 b(g)t Fu(\()p
Fr(x)p Fu(\))28 b(=)g Fr(g)t Fu(\()p Fr(S)6 b Fu(\()p
Fr(x)p Fu(\)\))p Fr(:)p Black 1281 w Fu(\(3.7\))p Black
Black Black eop
%%Page: 14 23
14 22 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(14)p Black 300 274 a(Supp)s(ose)46
b Fr(f)754 238 y Fl(\003)841 274 y Fq(2)i Fr(L)1021 238
y Fp(1)1061 274 y Fu(\(0)p Fr(;)17 b Fu(1\))43 b(is)h(a)h(\014xed)g
(densit)m(y)h(of)e Fr(P)14 b Fu(,)47 b(i.e.,)g Fr(P)14
b(f)2731 238 y Fl(\003)2817 274 y Fu(=)48 b Fr(f)3000
238 y Fl(\003)3084 274 y Fu(with)c Fr(f)3377 238 y Fl(\003)3464
274 y Fq(\025)49 b Fu(0)44 b(and)300 395 y Fq(k)p Fr(f)409
358 y Fl(\003)448 395 y Fq(k)e Fu(=)g(1.)69 b(Let)41
b Fq(f)p Fr(\036)1094 410 y Fo(n)1140 395 y Fq(g)1190
358 y Fl(1)1190 419 y Fo(n)p Fp(=1)1368 395 y Fu(b)s(e)h(a)e(sequence)k
(of)d(functions)g(in)f Fr(L)2749 358 y Fl(1)2824 395
y Fu(\(0)p Fr(;)17 b Fu(1\))40 b(suc)m(h)j(that)e(for)f(an)m(y)300
525 y Fr(f)64 b Fq(2)54 b Fr(L)598 488 y Fp(1)638 525
y Fu(\(0)p Fr(;)17 b Fu(1\),)51 b(if)1038 444 y Fi(R)1105
471 y Fp(1)1085 559 y(0)1161 525 y Fr(f)11 b Fu(\()p
Fr(x)p Fu(\))p Fr(\036)1409 540 y Fo(n)1455 525 y Fu(\()p
Fr(x)p Fu(\))p Fr(dx)54 b Fu(=)g(0)47 b(for)g(all)f Fr(n)p
Fu(,)52 b(then)c Fr(f)64 b Fu(=)54 b(0.)88 b(Examples)48
b(of)f(suc)m(h)300 645 y(sequences)h(are)d Fq(f)p Fr(x)1035
609 y Fo(n)1082 645 y Fq(g)1132 609 y Fl(1)1132 670 y
Fo(n)p Fp(=0)1314 645 y Fu(\(Lemma)e(3.1)h(in)g([12]\))h(and)f(all)f
(the)i(piecewise)h(p)s(olynomials)41 b(of)300 765 y(some)36
b(\014xed)h(degree)g(corresp)s(onding)f(to)f(partitions)f(0)g(=)f
Fr(x)2541 780 y Fp(0)2614 765 y Fr(<)g(x)2778 780 y Fp(1)2852
765 y Fr(<)g Fq(\001)17 b(\001)g(\001)31 b Fr(<)j(x)3275
780 y Fo(k)r Fl(\000)p Fp(1)3441 765 y Fr(<)g(x)3606
780 y Fo(k)3682 765 y Fu(=)f(1)300 886 y(with)40 b(lim)665
901 y Fo(k)r Fl(!1)866 886 y Fu(max)1047 901 y Fo(i)1075
886 y Fu(\()p Fr(x)1168 901 y Fo(i)1224 886 y Fq(\000)28
b Fr(x)1384 901 y Fo(i)p Fl(\000)p Fp(1)1503 886 y Fu(\))40
b(=)h(0.)65 b(Suc)m(h)42 b(a)e(sequence)i(will)c(b)s(e)j(called)e
(complete.)65 b(The)300 1006 y(follo)m(wing)42 b(result)i(is)g(a)h
(basis)f(for)g(constructing)h(pro)5 b(jection-t)m(yp)s(e)45
b(n)m(umerical)e(metho)s(ds)h(to)300 1127 y(compute)33
b(\014xed)g(p)s(oin)m(ts)g(of)f(F)-8 b(rob)s(enius-P)m(erron)32
b(op)s(erators.)p Black 300 1288 a Fj(L)-5 b(emma)34
b(3.1.)p Black 48 w Fu(Let)h Fq(f)p Fr(\036)1138 1303
y Fo(n)1185 1288 y Fq(g)f Fu(b)s(e)h(a)g(complete)f(sequence)k(of)c
(functions.)51 b(Then)36 b Fr(P)14 b(f)3281 1252 y Fl(\003)3351
1288 y Fu(=)31 b Fr(f)3517 1252 y Fl(\003)3591 1288 y
Fu(if)j(and)300 1409 y(only)e(if)1128 1553 y Fi(Z)1228
1579 y Fp(1)1184 1778 y(0)1284 1688 y Fu([)p Fr(\036)1369
1703 y Fo(n)1416 1688 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h
Fr(\036)1727 1703 y Fo(n)1774 1688 y Fu(\()p Fr(S)6 b
Fu(\()p Fr(x)p Fu(\)\)])16 b Fr(f)2149 1647 y Fl(\003)2188
1688 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)29 b Fu(=)e(0)p Fr(;)72
b Fq(8)p Fr(n:)p Black 794 w Fu(\(3.8\))p Black 446 1955
a Fm(Pro)s(of.)44 b Fu(If)32 b Fr(P)14 b(f)1026 1919
y Fl(\003)1092 1955 y Fu(=)28 b Fr(f)1255 1919 y Fl(\003)1294
1955 y Fu(,)33 b(then)g(for)f(all)e Fr(n)p Fu(,)1225
2099 y Fi(Z)1325 2125 y Fp(1)1281 2325 y(0)1381 2235
y Fr(\036)1439 2250 y Fo(n)1486 2235 y Fu(\()p Fr(x)p
Fu(\))p Fr(P)14 b(f)1753 2194 y Fl(\003)1792 2235 y Fu(\()p
Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)2160 2099 y Fi(Z)2260
2125 y Fp(1)2216 2325 y(0)2316 2235 y Fr(\036)2374 2250
y Fo(n)2421 2235 y Fu(\()p Fr(x)p Fu(\))p Fr(f)2611 2194
y Fl(\003)2650 2235 y Fu(\()p Fr(x)p Fu(\))p Fr(dx:)300
2507 y Fu(Since)k(the)g(Ko)s(opman)e(op)s(erator)i Fr(U)42
b Fu(de\014ned)33 b(b)m(y)g(\(3.7\))e(is)h(the)g(dual)f(of)g
Fr(P)14 b Fu(,)32 b(the)g(left)f(hand)h(side)300 2637
y(of)f(the)i(ab)s(o)m(v)m(e)f(equals)1148 2557 y Fi(R)1215
2583 y Fp(1)1195 2672 y(0)1271 2637 y Fr(U)10 b(\036)1405
2652 y Fo(n)1452 2637 y Fu(\()p Fr(x)p Fu(\))p Fr(f)1642
2601 y Fl(\003)1682 2637 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28
b Fu(=)2050 2557 y Fi(R)2117 2583 y Fp(1)2097 2672 y(0)2173
2637 y Fr(\036)2231 2652 y Fo(n)2277 2637 y Fu(\()p Fr(S)6
b Fu(\()p Fr(x)p Fu(\)\))p Fr(f)2609 2601 y Fl(\003)2649
2637 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)p Fu(.)43 b(Hence)33
b(w)m(e)g(ha)m(v)m(e)g(\(3.8\).)300 2758 y(Con)m(v)m(ersely)43
b(if)d(\(3.8\))h(is)f(satis\014ed)i(for)e(some)h Fr(f)2101
2721 y Fl(\003)2140 2758 y Fu(,)i(then)f(the)g(rev)m(erse)h(pro)s(cess)
f(of)f(the)g(ab)s(o)m(v)m(e)300 2878 y(argumen)m(t)32
b(giv)m(es)h(that)1267 3022 y Fi(Z)1367 3048 y Fp(1)1322
3247 y(0)1406 3157 y Fu(\()p Fr(P)14 b(f)1580 3116 y
Fl(\003)1618 3157 y Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)g
Fr(f)1931 3116 y Fl(\003)1970 3157 y Fu(\()p Fr(x)p Fu(\)\))p
Fr(\036)2197 3172 y Fo(n)2244 3157 y Fu(\()p Fr(x)p Fu(\))p
Fr(dx)28 b Fu(=)f(0)p Fr(;)44 b Fq(8)p Fr(n:)300 3430
y Fu(Since)33 b Fq(f)p Fr(\036)663 3445 y Fo(n)709 3430
y Fq(g)g Fu(is)f(complete,)g Fr(P)14 b(f)1465 3394 y
Fl(\003)1531 3430 y Fu(=)27 b Fr(f)1693 3394 y Fl(\003)1733
3430 y Fu(.)p 1929 3405 89 4 v 1929 3455 4 50 v 2015
3455 V 1929 3458 89 4 v 446 3550 a(Based)40 b(on)e(the)h(ab)s(o)m(v)m
(e)g(lemma,)f(a)g(general)g(algorithm)d(for)j(computing)f(a)h(\014xed)i
(densit)m(y)300 3671 y(of)e Fr(P)52 b Fu(is)38 b(prop)s(osed)i(here.)62
b(This)39 b(algorithm)c(is)k(in)f(fact)g(an)h(application)d(of)i
(Galerkin's)g(pro-)300 3791 y(jection)e(principle.)52
b(Let)36 b Fq(f)p Fr(\036)1356 3806 y Fo(n)1403 3791
y Fq(g)g Fu(and)g Fq(f)p Fr( )1795 3806 y Fo(n)1842 3791
y Fq(g)g Fu(b)s(e)g(t)m(w)m(o)h(complete)f(sequences)j(of)d(functions.)
54 b(F)-8 b(or)300 3912 y(the)35 b(sak)m(e)h(of)e(computing)f(appro)m
(ximate)h(\014xed)i(densities)e(w)m(e)i(usually)e(require)h(that)f(eac)
m(h)i Fr( )3793 3927 y Fo(n)300 4032 y Fu(b)s(e)k(nonnegativ)m(e.)67
b(Let)41 b Fr(n)f Fu(b)s(e)h(a)f(c)m(hosen)i(natural)d(n)m(um)m(b)s
(er.)67 b(Then)41 b(w)m(e)g(ha)m(v)m(e)h(the)f(follo)m(wing)300
4152 y(algorithm:)300 4273 y Fj(Gener)-5 b(al)35 b(A)n(lgorithm.)42
b Fu(Let)33 b(the)g Fr(n)22 b Fq(\002)h Fr(n)33 b Fu(matrix)e
Fr(A)c Fu(=)h([)p Fr(a)2374 4288 y Fo(ij)2435 4273 y
Fu(])33 b(b)s(e)f(de\014ned)i(b)m(y)816 4561 y Fr(a)867
4576 y Fo(ij)956 4561 y Fu(=)1059 4425 y Fi(Z)1159 4451
y Fp(1)1115 4651 y(0)1215 4561 y Fu(\()p Fr(\036)1311
4576 y Fo(i)1339 4561 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h
Fr(\036)1650 4576 y Fo(i)1678 4561 y Fu(\()p Fr(S)6 b
Fu(\()p Fr(x)p Fu(\)\)\))16 b Fr( )2068 4576 y Fo(j)2105
4561 y Fu(\()p Fr(x)p Fu(\))p Fr(dx;)73 b(i;)17 b(j)33
b Fu(=)28 b(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32
b(;)17 b(n:)p Black 481 w Fu(\(3.9\))p Black 300 4828
a(Solv)m(e)33 b(the)g(homogeneous)f(linear)f(system)j(of)e(algebraic)f
(equations)i Fr(Av)e Fu(=)d(0)k(for)g Fr(v)g Fu(=)300
4948 y(\()p Fr(v)385 4963 y Fp(1)425 4948 y Fr(;)17 b(v)516
4963 y Fp(2)555 4948 y Fr(;)g(:)g(:)g(:)f(v)777 4963
y Fo(n)824 4948 y Fu(\))862 4912 y Fo(T)960 4948 y Fq(6)p
Fu(=)44 b(0)e(and)g Fq(k)1437 4873 y Fi(P)1542 4900 y
Fo(n)1542 4977 y(i)p Fp(=1)1676 4948 y Fr(v)1723 4963
y Fo(i)1752 4948 y Fr( )1815 4963 y Fo(i)1843 4948 y
Fq(k)i Fu(=)g(1.)71 b(Then)43 b Fr(f)2516 4963 y Fo(n)2607
4948 y Fu(=)2727 4873 y Fi(P)2832 4900 y Fo(n)2832 4977
y(i)p Fp(=1)2967 4948 y Fr(v)3014 4963 y Fo(i)3042 4948
y Fr( )3105 4963 y Fo(i)3176 4948 y Fu(is)e(a)h(normalized)300
5068 y(appro)m(ximate)32 b(\014xed)h(p)s(oin)m(t)f(of)g
Fr(P)14 b Fu(.)446 5189 y(The)31 b(next)g(lemma)d(sho)m(ws)k(that)d
(the)i(algorithm)c(is)i(w)m(ell-p)s(osed)h(in)f(the)h(sense)i(that)e
Fr(f)3613 5204 y Fo(n)3688 5189 y Fq(6)p Fu(=)d(0)300
5309 y(can)33 b(alw)m(a)m(ys)g(b)s(e)g(calculated)e(for)h(an)m(y)i
Fr(n)p Fu(.)p Black 300 5471 a Fj(L)-5 b(emma)34 b(3.2.)p
Black 48 w Fr(Av)e Fu(=)27 b(0)33 b(has)g(a)f(non)m(trivial)e(solution)
h Fr(v)t Fu(.)p Black Black eop
%%Page: 15 24
15 23 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(15)p Black 446 274 a Fm(Pro)s(of.)77
b Fu(Since)44 b(the)h(constan)m(t)f(function)g(1)i(=)2288
200 y Fi(P)2393 226 y Fo(n)2393 303 y(i)p Fp(=1)2528
274 y Fr(\021)2576 289 y Fo(i)2605 274 y Fr(\036)2663
289 y Fo(i)2734 274 y Fu(for)e(a)f(nonzero)i(v)m(ector)g
Fr(\021)50 b Fu(=)300 395 y(\()p Fr(\021)386 410 y Fp(1)426
395 y Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(\021)709 410 y
Fo(n)756 395 y Fu(\))794 358 y Fo(T)849 395 y Fu(,)32
b(and)h(since)g Fr(U)10 b Fu(1\()p Fr(x)p Fu(\))28 b(=)g(1\()p
Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\))27 b(=)h(1,)k(w)m(e)i(ha)m(v)m(e,)g
(for)e(eac)m(h)h Fr(j)6 b Fu(,)781 560 y Fo(n)730 590
y Fi(X)745 800 y Fo(i)p Fp(=1)891 685 y Fr(a)942 700
y Fo(ij)1002 685 y Fr(\021)1050 700 y Fo(i)1162 685 y
Fu(=)1371 560 y Fo(n)1320 590 y Fi(X)1335 800 y Fo(i)p
Fp(=1)1481 685 y Fr(\021)1529 700 y Fo(i)1574 549 y Fi(Z)1674
575 y Fp(1)1629 775 y(0)1730 685 y Fu(\()p Fr(\036)1826
700 y Fo(i)1853 685 y Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)f
Fr(U)10 b(\036)2240 700 y Fo(i)2269 685 y Fu(\()p Fr(x)p
Fu(\)\))17 b Fr( )2518 700 y Fo(j)2555 685 y Fu(\()p
Fr(x)p Fu(\))p Fr(dx)1162 1017 y Fu(=)1320 882 y Fi(Z)1420
908 y Fp(1)1376 1107 y(0)1476 847 y Fi( )1606 893 y Fo(n)1555
923 y Fi(X)1570 1133 y Fo(i)p Fp(=1)1716 1017 y Fr(\021)1764
1032 y Fo(i)1792 1017 y Fr(\036)1850 1032 y Fo(i)1878
1017 y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(U)2275
893 y Fo(n)2224 923 y Fi(X)2239 1133 y Fo(i)p Fp(=1)2385
1017 y Fr(\021)2433 1032 y Fo(i)2461 1017 y Fr(\036)2519
1032 y Fo(i)2547 1017 y Fu(\()p Fr(x)p Fu(\))2678 847
y Fi(!)2774 1017 y Fr( )2837 1032 y Fo(j)2874 1017 y
Fu(\()p Fr(x)p Fu(\))p Fr(dx)1162 1328 y Fu(=)1320 1192
y Fi(Z)1420 1219 y Fp(1)1376 1418 y(0)1460 1328 y Fu(\(1)e
Fq(\000)i Fr(U)10 b Fu(1\()p Fr(x)p Fu(\)\))p Fr( )2025
1343 y Fo(j)2063 1328 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)28
b Fu(=)2431 1192 y Fi(Z)2531 1219 y Fp(1)2487 1418 y(0)2570
1328 y Fu(\(1)22 b Fq(\000)h Fu(1\))p Fr( )2929 1343
y Fo(j)2965 1328 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)29 b
Fu(=)e(0)p Fr(;)300 1602 y Fu(that)32 b(is,)h Fr(A)710
1565 y Fo(T)765 1602 y Fr(\021)e Fu(=)d(0.)43 b(Hence,)34
b Fr(A)f Fu(is)f(singular.)p 2121 1577 89 4 v 2121 1627
4 50 v 2207 1627 V 2121 1630 89 4 v 300 1722 a Fm(Remark)46
b(3.1)41 b Fu(The)h(purp)s(ose)g(of)e(the)h(algorithm)d(is)i(to)g
(\014nd)i(a)e(normalized)f(function)h Fr(f)53 b Fq(2)300
1842 y Fu(span)q Fq(f)p Fr( )609 1857 y Fp(1)648 1842
y Fr(;)17 b( )755 1857 y Fp(2)795 1842 y Fr(;)g(:)g(:)g(:)32
b(;)17 b( )1093 1857 y Fo(n)1140 1842 y Fq(g)33 b Fu(suc)m(h)h(that)893
1986 y Fi(Z)992 2012 y Fp(1)948 2211 y(0)1049 2121 y
Fu([)p Fr(\036)1134 2136 y Fo(n)1180 2121 y Fu(\()p Fr(x)p
Fu(\))23 b Fq(\000)f Fr(\036)1491 2136 y Fo(n)1538 2121
y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p Fu(\)\)])17 b Fr(f)11
b Fu(\()p Fr(x)p Fu(\))p Fr(dx)28 b Fu(=)f(0)p Fr(;)72
b(n)28 b Fu(=)f(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32
b(;)17 b(n:)p Black 510 w Fu(\(3.10\))p Black 300 2383
a(Ho)m(w)m(ev)m(er,)44 b(it)39 b(is)g(not)g(guaran)m(teed)i
Fr(f)1676 2398 y Fo(n)1763 2383 y Fu(can)f(b)s(e)f(nonnegativ)m(e)i(in)
d(general,)k(although)c(Ulam's)300 2503 y(metho)s(d)32
b(b)s(elo)m(w)g(mak)m(es)i(it)d(p)s(ossible.)446 2623
y(No)m(w)i(let's)f(mak)m(e)g(a)f(c)m(hoice)h(for)g Fq(f)p
Fr(\036)1754 2638 y Fo(n)1800 2623 y Fq(g)g Fu(and)g
Fq(f)p Fr( )2184 2638 y Fo(n)2231 2623 y Fq(g)g Fu(to)f(redisco)m(v)m
(er)i(Ulam's)e(sc)m(heme:)45 b(divide)300 2744 y(the)36
b(in)m(terv)-5 b(al)35 b([0)p Fr(;)17 b Fu(1])35 b(in)m(to)g
Fr(n)h Fu(equal)g(subin)m(terv)-5 b(als)36 b Fr(I)2198
2759 y Fo(i)2260 2744 y Fu(=)d([)p Fr(x)2451 2759 y Fo(i)p
Fl(\000)p Fp(1)2570 2744 y Fr(;)17 b(x)2669 2759 y Fo(i)2697
2744 y Fu(])36 b(with)g(the)g(length)f Fr(h)f Fu(=)f(1)p
Fr(=n)p Fu(.)300 2864 y(De\014ne)1283 3078 y Fr(\036)1341
3093 y Fo(i)1397 3078 y Fu(=)27 b Fr(\037)1561 3093 y
Fo(I)1592 3103 y Ff(i)1622 3078 y Fr(;)45 b( )1757 3093
y Fo(i)1813 3078 y Fu(=)27 b(1)1965 3093 y Fo(i)1993
3078 y Fr(;)45 b(i)28 b Fu(=)f(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32
b(;)17 b(n:)p Black 900 w Fu(\(3.11\))p Black 446 3292
a(Then,)40 b(a)e(simple)e(calculation)f(giv)m(es)j(that)g(the)g(\()p
Fr(i;)17 b(j)6 b Fu(\))37 b(elemen)m(t)h(of)f(the)h(matrix)e
Fr(A)i Fu(in)f(the)300 3413 y(general)32 b(algorithm)d(is)300
3686 y Fr(a)351 3701 y Fo(ij)495 3686 y Fu(=)654 3551
y Fi(Z)753 3577 y Fp(1)709 3776 y(0)793 3686 y Fu(\()p
Fr(\037)892 3701 y Fo(I)923 3711 y Ff(i)953 3686 y Fu(\()p
Fr(x)p Fu(\))22 b Fq(\000)h Fr(\037)1267 3701 y Fo(I)1298
3711 y Ff(i)1328 3686 y Fu(\()p Fr(S)6 b Fu(\()p Fr(x)p
Fu(\)\)\)1)1688 3701 y Fo(j)1724 3686 y Fu(\()p Fr(x)p
Fu(\))p Fr(dx)28 b Fu(=)2093 3551 y Fi(Z)2193 3577 y
Fp(1)2148 3776 y(0)2249 3686 y Fr(\037)2310 3701 y Fo(I)2341
3711 y Ff(i)2371 3686 y Fu(\()p Fr(x)p Fu(\)1)2551 3701
y Fo(j)2587 3686 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)23 b
Fq(\000)2947 3551 y Fi(Z)3046 3577 y Fp(1)3002 3776 y(0)3102
3686 y Fr(\037)3163 3703 y Fo(S)3210 3684 y Fh(\000)p
Fg(1)3293 3703 y Fp(\()p Fo(I)3351 3713 y Ff(i)3377 3703
y Fp(\))3409 3686 y Fu(\()p Fr(x)p Fu(\)1)3589 3701 y
Fo(j)3625 3686 y Fu(\()p Fr(x)p Fu(\))p Fr(dx)495 3956
y Fu(=)83 b Fr(n)729 3820 y Fi(Z)784 4046 y Fo(I)815
4056 y Ff(i)841 4046 y Fl(\\)p Fo(I)919 4056 y Ff(j)972
3956 y Fr(dx)22 b Fq(\000)h Fr(n)1275 3820 y Fi(Z)1330
4046 y Fo(S)1377 4027 y Fh(\000)p Fg(1)1459 4046 y Fp(\()p
Fo(I)1517 4056 y Ff(i)1543 4046 y Fp(\))p Fl(\\)p Fo(I)1648
4056 y Ff(j)1702 3956 y Fr(dx)28 b Fu(=)f Fr(\016)1982
3971 y Fo(ij)2065 3956 y Fq(\000)2175 3888 y Fr(m)p Fu(\()p
Fr(S)2364 3852 y Fl(\000)p Fp(1)2458 3888 y Fu(\()p Fr(I)2539
3903 y Fo(i)2567 3888 y Fu(\))22 b Fq(\\)h Fr(I)2759
3903 y Fo(j)2795 3888 y Fu(\))p 2175 3933 659 4 v 2383
4024 a Fr(m)p Fu(\()p Fr(I)2549 4039 y Fo(j)2586 4024
y Fu(\))2843 3956 y Fr(;)300 4237 y Fu(where)35 b Fr(\016)626
4252 y Fo(ij)721 4237 y Fu(is)e(the)i(Kronec)m(k)m(er)h(sym)m(b)s(ol,)d
(i.e.,)h Fr(\016)2046 4252 y Fo(ij)2137 4237 y Fu(=)c(0)k(if)f
Fr(i)d Fq(6)p Fu(=)g Fr(j)40 b Fu(and)34 b Fr(\016)2900
4252 y Fo(ii)2983 4237 y Fu(=)c(1.)47 b(Hence,)36 b Fr(Av)e
Fu(=)c(0)300 4357 y(if)h(and)i(only)f(if)g Fr(v)934 4321
y Fo(T)1016 4357 y Fu(=)c Fr(v)1171 4321 y Fo(T)1225
4357 y Fr(P)1288 4372 y Fo(n)1335 4357 y Fu(,)33 b(where)868
4625 y Fr(P)931 4640 y Fo(n)1006 4625 y Fu(=)27 b([)p
Fr(p)1185 4640 y Fo(ij)1246 4625 y Fu(])p Fr(;)72 b(p)1421
4640 y Fo(ij)1509 4625 y Fu(=)1622 4557 y Fr(m)p Fu(\()p
Fr(I)1788 4572 y Fo(i)1839 4557 y Fq(\\)23 b Fr(S)1994
4521 y Fl(\000)p Fp(1)2088 4557 y Fu(\()p Fr(I)2169 4572
y Fo(j)2205 4557 y Fu(\)\))p 1622 4602 V 1836 4693 a
Fr(m)p Fu(\()p Fr(I)2002 4708 y Fo(i)2030 4693 y Fu(\))2291
4625 y Fr(;)72 b(i;)17 b(j)34 b Fu(=)27 b(1)p Fr(;)17
b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(n:)p Black 485
w Fu(\(3.12\))p Black 300 4895 a(\(3.12\))32 b(is)g(exactly)h(the)g
(matrix)e(\(3.5\))h(in)g(Ulam's)f(metho)s(d.)636 5015
y(F)-8 b(or)43 b(m)m(ulti-dimensional)d(cases,)48 b(let)c(\012)k
Fq(\032)g Fr(R)2386 4979 y Fo(d)2471 5015 y Fu(b)s(e)d(a)f(b)s(ounded)h
(op)s(en)f(set)h(and)g(let)300 5136 y Fr(S)33 b Fu(:)28
b(\012)g Fq(!)g Fu(\012)j(b)s(e)g(a)f(nonsingular)g(transformation)e
(suc)m(h)33 b(that)d(the)h(corresp)s(onding)g(F)-8 b(rob)s(enius-)300
5256 y(P)m(erron)48 b(op)s(erator)e Fr(P)60 b Fu(has)47
b(a)f(non)m(trivial)f(\014xed)j(p)s(oin)m(t.)85 b(Let)47
b Fr(T)2736 5271 y Fo(h)2832 5256 y Fu(=)52 b Fq(f)p
Fu(\012)3080 5271 y Fo(i)3109 5256 y Fq(g)3159 5220 y
Fo(n)3159 5281 y(i)p Fp(=1)3323 5256 y Fu(b)s(e)47 b(a)g(shap)s(e-)300
5376 y(regular)33 b(partition)e(of)i(\012)h(with)g(the)g(mesh)g(size)f
(c)m(haracterized)i(b)m(y)f Fr(h)p Fu(.)47 b(Let)34 b(1)3170
5391 y Fo(i)3227 5376 y Fu(=)3422 5337 y Fp(1)p 3343
5353 195 4 v 3343 5411 a Fo(m)p Fp(\(\012)3483 5421 y
Ff(i)3510 5411 y Fp(\))3547 5376 y Fr(\037)3608 5391
y Fp(\012)3659 5401 y Ff(i)3723 5376 y Fu(for)300 5515
y Fr(i)28 b Fu(=)g(1)p Fr(;)17 b Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(n)p Fu(.)44 b(Then)34 b(eac)m(h)f(1)1403
5530 y Fo(i)1459 5515 y Fq(2)c Fr(L)1620 5478 y Fp(1)1660
5515 y Fu(\(\012\))k(is)f(a)g(densit)m(y)i(function)e(with)h(supp1)3209
5530 y Fo(i)3266 5515 y Fu(=)27 b(\012)3439 5530 y Fo(i)3468
5515 y Fu(.)44 b(Let)33 b(\001)3795 5530 y Fo(h)p Black
Black eop
%%Page: 16 25
16 24 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(16)p Black 300 274 a(b)s(e)31 b(the)g
Fr(n)p Fu(-dimensional)d(subspace)33 b(of)d Fr(L)1804
238 y Fp(1)1844 274 y Fu(\(\012\))h(spanned)h(b)m(y)g(1)2582
289 y Fp(1)2621 274 y Fr(;)17 b(:)g(:)g(:)32 b(;)17 b
Fu(1)2905 289 y Fo(n)2952 274 y Fu(,)31 b(i.e.,)g(\001)3274
289 y Fo(h)3349 274 y Fu(is)g(the)g(space)300 395 y(of)h(piecewise)h
(constan)m(t)g(functions)g(asso)s(ciated)f(with)g Fr(T)2391
410 y Fo(h)2436 395 y Fu(.)44 b(Note)32 b(that)h(\001)3035
410 y Fo(h)3107 395 y Fq(\032)c Fr(L)3279 358 y Fl(1)3354
395 y Fu(\(\012\).)43 b(De\014ne)300 515 y Fr(P)363 530
y Fo(h)435 515 y Fq(\021)29 b Fr(P)604 530 y Fo(h)648
515 y Fu(\()p Fr(S)6 b Fu(\))28 b(:)f(\001)953 530 y
Fo(h)1026 515 y Fq(!)g Fu(\001)1234 530 y Fo(h)1312 515
y Fu(b)m(y)1638 787 y Fr(P)1701 802 y Fo(h)1746 787 y
Fu(1)1795 802 y Fo(i)1850 787 y Fu(=)2004 662 y Fo(n)1954
692 y Fi(X)1964 902 y Fo(j)t Fp(=1)2114 787 y Fr(p)2163
802 y Fo(ij)2224 787 y Fu(1)2273 802 y Fo(j)2309 787
y Fr(;)p Black 1255 w Fu(\(3.13\))p Black 300 1078 a(where)1486
1307 y Fr(p)1535 1322 y Fo(ij)1624 1307 y Fu(=)1737 1240
y Fr(m)p Fu(\(\012)1930 1255 y Fo(i)1981 1240 y Fq(\\)c
Fr(S)2136 1204 y Fl(\000)p Fp(1)2230 1240 y Fu(\(\012)2338
1255 y Fo(j)2375 1240 y Fu(\)\))p 1737 1285 714 4 v 1964
1376 a Fr(m)p Fu(\(\012)2157 1391 y Fo(i)2186 1376 y
Fu(\))2460 1307 y Fr(:)p Black 1104 w Fu(\(3.14\))p Black
446 1553 a(Ulam's)37 b(metho)s(d)g(is)h(to)f(compute)h(a)g(\014xed)h
(densit)m(y)g Fr(f)2487 1568 y Fo(h)2569 1553 y Fq(2)e
Fu(\001)2753 1568 y Fo(h)2836 1553 y Fu(of)g Fr(P)3015
1568 y Fo(h)3098 1553 y Fu(to)g(appro)m(ximate)g(a)300
1674 y(\014xed)j(densit)m(y)f Fr(f)943 1638 y Fl(\003)1020
1674 y Fu(of)f Fr(P)14 b Fu(.)61 b(T)-8 b(o)38 b(study)i(the)f(con)m(v)
m(ergence)i(of)d(Ulam's)f(metho)s(d)h(as)g Fr(h)g Fq(!)f
Fu(0,)j(w)m(e)300 1794 y(need)34 b(to)e(de\014ne)i(a)e(discretized)h
(op)s(erator)f Fr(Q)1963 1809 y Fo(h)2035 1794 y Fu(:)c
Fr(L)2156 1758 y Fp(1)2196 1794 y Fu(\(\012\))g Fq(!)f
Fr(L)2563 1758 y Fp(1)2603 1794 y Fu(\(\012\))33 b(b)m(y)1628
2066 y Fr(Q)1705 2081 y Fo(h)1750 2066 y Fr(f)38 b Fu(=)1990
1941 y Fo(n)1940 1971 y Fi(X)1955 2181 y Fo(i)p Fp(=1)2100
2066 y Fr(f)2148 2081 y Fo(i)2177 2066 y Fr(\037)2238
2081 y Fp(\012)2289 2091 y Ff(i)2319 2066 y Fr(;)p Black
1245 w Fu(\(3.15\))p Black 300 2344 a(where)1561 2563
y Fr(f)1609 2578 y Fo(i)1665 2563 y Fu(=)1884 2496 y(1)p
1778 2540 260 4 v 1778 2631 a Fr(m)p Fu(\(\012)1971 2646
y Fo(i)2000 2631 y Fu(\))2065 2427 y Fi(Z)2120 2653 y
Fp(\012)2171 2663 y Ff(i)2218 2563 y Fr(f)11 b(dm)p Black
1178 w Fu(\(3.16\))p Black 300 2816 a(is)35 b(the)h(a)m(v)m(erage)g(v)
-5 b(alue)35 b(of)g Fr(f)46 b Fu(o)m(v)m(er)36 b(\012)1668
2831 y Fo(i)1697 2816 y Fu(.)52 b(It)35 b(is)g(ob)m(vious)g(that)h
Fr(Q)2632 2831 y Fo(h)2712 2816 y Fu(is)f(a)g(Mark)m(o)m(v)i(op)s
(erator)d(with)300 2936 y(dim)p Fr(R)q Fu(\()p Fr(Q)654
2951 y Fo(h)698 2936 y Fu(\))27 b(=)h Fr(n)p Fu(.)44
b(Moreo)m(v)m(er)34 b Fr(Q)1501 2951 y Fo(h)1578 2936
y Fu(is)e(a)h(Galerkin)e(pro)5 b(jection)32 b(on)m(to)g(\001)2920
2951 y Fo(h)2998 2936 y Fu(in)g(the)h(sense)h(that)1280
3132 y Fr(<)28 b(Q)1461 3147 y Fo(h)1506 3132 y Fr(f)k
Fq(\000)23 b Fr(f)5 b(;)17 b Fu(1)1832 3147 y Fo(i)1888
3132 y Fr(>)p Fu(=)27 b(0)p Fr(;)44 b(i)28 b Fu(=)g(1)p
Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(n)p Black 897 w Fu(\(3.17\))p
Black 300 3328 a(for)32 b(all)f Fr(f)38 b Fq(2)28 b Fr(L)831
3291 y Fp(1)871 3328 y Fu(\(\012\).)44 b(Also)32 b(it)f(is)h(easy)i(to)
e(see)i(that)e Fq(k)p Fr(Q)2333 3343 y Fo(h)2378 3328
y Fr(f)11 b Fq(k)2487 3343 y Fl(1)2589 3328 y Fq(\024)28
b(k)p Fr(f)11 b Fq(k)2853 3343 y Fl(1)2960 3328 y Fu(for)32
b(an)m(y)h Fr(f)38 b Fq(2)28 b Fr(L)3539 3291 y Fl(1)3615
3328 y Fu(\(\012\).)446 3448 y(Some)h(basic)f(prop)s(erties)h(of)f
(Ulam's)g(metho)s(d)g(are)h(summarized)f(in)g(the)h(follo)m(wing)d
(prop)s(o-)300 3568 y(sition.)p Black 300 3720 a Fj(Pr)-5
b(op)g(osition)34 b(3.1.)p Black 48 w Fu(\(i\))k(Let)g(\001)1429
3684 y Fl(0)1429 3746 y Fo(h)1512 3720 y Fu(=)f Fq(f)1675
3645 y Fi(P)1780 3671 y Fo(n)1780 3749 y(i)p Fp(=1)1915
3720 y Fr(a)1966 3735 y Fo(i)1994 3720 y Fu(1)2043 3735
y Fo(i)2109 3720 y Fu(:)h Fr(a)2225 3735 y Fo(i)2291
3720 y Fq(\025)g Fu(0)p Fr(;)2499 3645 y Fi(P)2603 3671
y Fo(n)2603 3749 y(i)p Fp(=1)2738 3720 y Fr(a)2789 3735
y Fo(i)2855 3720 y Fu(=)f(1)p Fq(g)p Fu(.)61 b(Then)39
b Fr(P)3478 3735 y Fo(h)3523 3720 y Fu(\(\001)3642 3684
y Fl(0)3642 3746 y Fo(h)3687 3720 y Fu(\))f Fq(\032)300
3840 y Fu(\001)381 3804 y Fl(0)381 3866 y Fo(h)426 3840
y Fu(.)44 b(Hence,)34 b(there)f(is)f(a)g(\014xed)i(densit)m(y)g
Fr(f)1863 3855 y Fo(h)1940 3840 y Fu(of)e Fr(P)2114 3855
y Fo(h)2159 3840 y Fu(.)446 3961 y(\(ii\))f(lim)744 3976
y Fo(h)p Fl(!)p Fp(0)912 3961 y Fr(Q)989 3976 y Fo(h)1034
3961 y Fr(f)38 b Fu(=)28 b Fr(f)43 b Fu(for)32 b(an)m(y)h
Fr(f)39 b Fq(2)28 b Fr(L)1895 3924 y Fp(1)1935 3961 y
Fu(\(\012\).)446 4081 y(\(iii\))i Fr(P)699 4096 y Fo(h)771
4081 y Fu(=)e Fr(Q)952 4096 y Fo(h)997 4081 y Fr(P)46
b Fu(on)32 b(\001)1322 4096 y Fo(h)1368 4081 y Fu(.)300
4232 y Fm(Pro)s(of.)41 b Fu(\(i\))24 b Fr(P)835 4247
y Fo(h)904 4232 y Fu(is)h(a)f(Mark)m(o)m(v)j(op)s(erator)d(since)h(b)s
(oth)g Fr(Q)2332 4247 y Fo(h)2402 4232 y Fu(and)g Fr(P)39
b Fu(are,)26 b(so)f Fr(P)3044 4247 y Fo(h)3089 4232 y
Fu(\(\001)3208 4196 y Fl(0)3208 4258 y Fo(h)3253 4232
y Fu(\))j Fq(\032)g Fu(\001)3505 4196 y Fl(0)3505 4258
y Fo(h)3550 4232 y Fu(.)41 b(Since)300 4353 y(\001)381
4317 y Fl(0)381 4379 y Fo(h)457 4353 y Fu(is)31 b(a)g(compact)g(con)m
(v)m(ex)j(subset)f(of)e(\001)1831 4368 y Fo(h)1876 4353
y Fu(,)g(b)m(y)i(Brou)m(w)m(er's)g(\014xed)f(p)s(oin)m(t)f(theorem,)g
Fr(P)3478 4368 y Fo(h)3523 4353 y Fr(f)3571 4368 y Fo(h)3644
4353 y Fu(=)c Fr(f)3795 4368 y Fo(h)300 4473 y Fu(for)32
b(some)g Fr(f)741 4488 y Fo(h)814 4473 y Fq(2)c Fu(\001)989
4437 y Fl(0)989 4499 y Fo(h)1034 4473 y Fu(.)446 4594
y(\(ii\))i(It)i(is)g(enough)g(to)f(assume)i(that)e Fr(f)39
b Fq(2)28 b Fr(C)7 b Fu(\()2118 4568 y(\026)2107 4594
y(\012\).)43 b(Then)33 b(from)e(the)h(uniform)e(con)m(tin)m(uit)m(y)i
(of)300 4714 y Fr(f)11 b Fu(,)32 b(for)g(an)m(y)i Fr(\017)28
b(>)f Fu(0,)33 b(for)f Fr(h)g Fu(su\016cien)m(tly)i(small,)1574
4927 y Fq(j)p Fr(f)1650 4942 y Fo(i)1700 4927 y Fq(\000)23
b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)27 b Fr(<)2255
4860 y(\017)p 2158 4904 232 4 v 2158 4995 a(m)p Fu(\(\012\))p
Black 3591 4927 a(\(3.18\))p Black 300 5173 a(for)32
b(all)f Fr(x)d Fq(2)g Fu(\012)832 5188 y Fo(i)893 5173
y Fu(and)33 b(all)d Fr(i)p Fu(.)44 b(Hence,)851 5439
y Fq(k)p Fr(Q)978 5454 y Fo(h)1023 5439 y Fr(f)33 b Fq(\000)22
b Fr(f)11 b Fq(k)28 b Fu(=)1494 5315 y Fo(n)1443 5345
y Fi(X)1458 5554 y Fo(i)p Fp(=1)1604 5304 y Fi(Z)1659
5529 y Fp(\012)1710 5539 y Ff(i)1757 5439 y Fq(j)p Fr(f)1833
5454 y Fo(i)1883 5439 y Fq(\000)23 b Fr(f)11 b Fu(\()p
Fr(x)p Fu(\))p Fq(j)p Fr(dx)27 b(<)2488 5315 y Fo(n)2438
5345 y Fi(X)2453 5554 y Fo(i)p Fp(=1)2598 5439 y Fr(\017)h(m)p
Fu(\(\012)2858 5454 y Fo(i)2887 5439 y Fu(\))g(=)f Fr(\017:)p
Black 469 w Fu(\(3.19\))p Black Black Black eop
%%Page: 17 26
17 25 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(17)p Black 300 274 a(\(iii\))30 b(F)-8
b(or)31 b(eac)m(h)j Fr(i)28 b Fu(=)f(1)p Fr(;)17 b(:)g(:)g(:)33
b(;)17 b(n)p Fu(,)32 b(from)f(the)i(de\014nition)f(of)g
Fr(P)14 b Fu(,)608 547 y Fr(P)671 562 y Fo(h)716 547
y Fu(1)765 562 y Fo(i)876 547 y Fu(=)83 b Fr(Q)1112 562
y Fo(h)1157 547 y Fr(P)14 b Fu(1)1283 562 y Fo(i)1338
547 y Fu(=)1492 422 y Fo(n)1442 452 y Fi(X)1452 662 y
Fo(j)t Fp(=1)1585 547 y Fu(\()p Fr(P)g Fu(1)1749 562
y Fo(i)1777 547 y Fu(\))1815 562 y Fo(j)1851 547 y Fr(\037)1912
562 y Fp(\012)1963 572 y Ff(j)2028 547 y Fu(=)2182 422
y Fo(n)2131 452 y Fi(X)2142 662 y Fo(j)t Fp(=1)2292 376
y Fi(")2469 479 y Fu(1)p 2360 524 269 4 v 2360 615 a
Fr(m)p Fu(\(\012)2553 630 y Fo(j)2590 615 y Fu(\))2655
411 y Fi(Z)2710 637 y Fp(\012)2761 647 y Ff(j)2814 547
y Fr(P)g Fu(1)2940 562 y Fo(i)2967 547 y Fr(dm)3103 376
y Fi(#)3178 547 y Fu(1)3227 562 y Fo(j)3264 547 y Fr(m)p
Fu(\(\012)3457 562 y Fo(j)3494 547 y Fu(\))876 881 y(=)1085
757 y Fo(n)1035 787 y Fi(X)1046 997 y Fo(j)t Fp(=1)1205
814 y Fr(m)p Fu(\(\012)1398 829 y Fo(i)1449 814 y Fq(\\)23
b Fr(S)1604 778 y Fl(\000)p Fp(1)1698 814 y Fu(\(\012)1806
829 y Fo(j)1843 814 y Fu(\)\))p 1205 858 714 4 v 1432
950 a Fr(m)p Fu(\(\012)1625 965 y Fo(i)1654 950 y Fu(\))1929
881 y(1)1978 896 y Fo(j)2042 881 y Fu(=)2196 757 y Fo(n)2145
787 y Fi(X)2156 997 y Fo(j)t Fp(=1)2306 881 y Fr(p)2355
896 y Fo(ij)2415 881 y Fu(1)2464 896 y Fo(j)2501 881
y Fr(:)p 2611 856 57 4 v 2611 906 4 50 v 2664 906 V 2611
909 57 4 v 446 1162 a Fu(W)-8 b(e)38 b(also)f(use)i Fr(P)1057
1177 y Fo(h)1139 1162 y Fu(to)e(denote)i(the)f(matrix)e(represen)m
(tation)j(under)f(the)g(densit)m(y)h(basis)e(of)300 1282
y(\001)381 1297 y Fo(h)460 1282 y Fu(men)m(tioned)d(ab)s(o)m(v)m(e,)i
(whic)m(h)f(is)e(also)h(called)f Fj(Ulam's)j(matrix)e
Fu(or)g(the)h(companion)d(matrix.)300 1403 y(Since)k
Fr(P)621 1418 y Fo(h)701 1403 y Fu(is)f(a)g(Mark)m(o)m(v)i(op)s(erator)
e(of)g(\014nite)g(rank,)i(it)e(giv)m(es)h(a)f(sto)s(c)m(hastic)h
(matrix)e Fr(P)3526 1418 y Fo(h)3570 1403 y Fu(.)53 b(This)300
1523 y(can)33 b(also)e(b)s(e)i(seen)h(from)d(the)i(fact)g(that)f(for)g
(eac)m(h)i Fr(i)p Fu(,)1369 1654 y Fo(n)1319 1684 y Fi(X)1330
1894 y Fo(j)t Fp(=1)1479 1779 y Fr(p)1528 1794 y Fo(ij)1617
1779 y Fu(=)1771 1654 y Fo(n)1720 1684 y Fi(X)1731 1894
y Fo(j)t Fp(=1)1891 1711 y Fr(m)p Fu(\(\012)2084 1726
y Fo(i)2135 1711 y Fq(\\)22 b Fr(S)2289 1675 y Fl(\000)p
Fp(1)2383 1711 y Fu(\(\012)2491 1726 y Fo(j)2528 1711
y Fu(\)\))p 1891 1756 714 4 v 2117 1847 a Fr(m)p Fu(\(\012)2310
1862 y Fo(i)2339 1847 y Fu(\))2642 1779 y(=)27 b(1)p
Fr(:)446 2067 y Fu(If)g Fr(f)586 2082 y Fo(h)659 2067
y Fu(=)762 1992 y Fi(P)867 2019 y Fo(n)867 2096 y(i)p
Fp(=1)1002 2067 y Fr(c)1044 2082 y Fo(i)1073 2067 y Fu(1)1122
2082 y Fo(i)1177 2067 y Fq(2)h Fu(\001)1352 2082 y Fo(h)1397
2067 y Fu(,)h(then)e Fr(f)1717 2082 y Fo(h)1789 2067
y Fu(is)f(a)h(\014xed)h(p)s(oin)m(t)e(of)h Fr(P)2605
2082 y Fo(h)2676 2067 y Fu(if)f(and)h(only)f(if)g(the)i(ro)m(w)f(v)m
(ector)300 2188 y(\()p Fr(c)380 2203 y Fp(1)419 2188
y Fr(;)17 b(c)505 2203 y Fp(2)544 2188 y Fr(;)g Fq(\001)g(\001)g(\001)
32 b Fr(;)17 b(c)824 2203 y Fo(n)870 2188 y Fu(\))34
b(is)g(a)g(left)f(eigen)m(v)m(ector)i(of)f(the)g(matrix)f
Fr(P)2469 2203 y Fo(h)2547 2188 y Fu(asso)s(ciated)h(with)g(the)g
(eigen)m(v)-5 b(alue)300 2308 y(1,)32 b(i.e.,)1246 2493
y(\()p Fr(c)1326 2508 y Fp(1)1365 2493 y Fr(;)17 b(c)1451
2508 y Fp(2)1490 2493 y Fr(;)g Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(c)1769 2508 y Fo(n)1816 2493 y Fu(\))p Fr(P)1917
2508 y Fo(h)1989 2493 y Fu(=)28 b(\()p Fr(c)2173 2508
y Fp(1)2212 2493 y Fr(;)17 b(c)2298 2508 y Fp(2)2337
2493 y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)2616
2508 y Fo(n)2663 2493 y Fu(\))p Fr(:)p Black 863 w Fu(\(3.20\))p
Black 446 2679 a(Th)m(us)39 b(Ulam's)d(metho)s(d)g(is)h(w)m(ell-p)s
(osed)f(for)g(an)m(y)i(partition)d(of)i(the)g(domain,)f(in)h(whic)m(h)g
(a)300 2799 y(\014xed)25 b(densit)m(y)f Fr(f)902 2814
y Fo(h)974 2799 y Fq(2)29 b Fu(\001)1150 2814 y Fo(h)1218
2799 y Fu(is)23 b(computed)h(for)e(the)i(giv)m(en)g Fr(h)f
Fu(to)g(appro)m(ximate)g(a)g(\014xed)h(densit)m(y)h(of)e
Fr(P)300 2919 y Fu(if)32 b(suc)m(h)j(a)f(\014xed)g(densit)m(y)h
(exists.)47 b(It)33 b(is)g(in)m(teresting)h(to)f(note)g(that)h
(although)e(the)i(F)-8 b(rob)s(enius-)300 3040 y(P)m(erron)49
b(op)s(erator)f(ma)m(y)g(not)g(ha)m(v)m(e)h(a)f(\014xed)i(densit)m(y)-8
b(,)53 b(its)48 b(Ulam's)f(\014nite)h(appro)m(ximations)300
3160 y(alw)m(a)m(ys)28 b(ha)m(v)m(e)h(\014xed)f(densities.)42
b(Ulam)26 b(conjectured)j(that)e(suc)m(h)i(appro)m(ximate)d(\014xed)j
(densities)300 3280 y(con)m(v)m(erge)f(to)d(a)h(\014xed)h(densit)m(y)g
(of)e Fr(P)39 b Fu(if)25 b Fr(P)39 b Fu(has)26 b(a)g(\014xed)h(densit)m
(y)g Fr(f)2689 3244 y Fl(\003)2728 3280 y Fu(.)41 b(Although)25
b(this)h(conjecture)300 3401 y(is)32 b(still)e(op)s(en,)j(it)f(can)h(b)
s(e)f(pro)m(v)m(ed)i(for)e(some)h(classes)g(of)f(mappings,)446
3521 y(F)-8 b(or)28 b(the)g(con)m(v)m(ergence)j(rate)d(of)f(Ulam's)g
(metho)s(d)g(for)h(one)g(dimensional)e(transformations,)300
3642 y(the)36 b(\014rst)g(approac)m(h)h(to)e(the)h(con)m(v)m(ergence)i
(rate)e(analysis)f(w)m(as)i(giv)m(en)f(b)m(y)g(Keller)f([34)o(],)i
(based)300 3762 y(on)29 b(the)h(concept)g(of)f(sto)s(c)m(hastic)h
(stabilit)m(y)e(of)g(dynamical)g(systems.)44 b(He)30
b(obtained)e(the)i(rate)f(of)300 3882 y(O\(ln)16 b Fr(n=n)p
Fu(\))32 b(under)i(the)f Fr(L)1258 3846 y Fp(1)1298 3882
y Fu(-norm)e(for)h(the)h(class)g(of)f(piecewise)i(monotonic)d
(transformations,)300 4003 y(where)40 b Fr(n)e Fu(is)g(the)h(n)m(um)m
(b)s(er)g(of)f(subin)m(terv)-5 b(als)38 b(of)g(the)h(partition)d(of)i
([0)p Fr(;)17 b Fu(1])38 b(in)f(Ulam's)g(metho)s(d.)300
4123 y(But)c(an)g(explicit)f(expression)i(of)f(the)g(constan)m(t)h(in)f
(the)g(rate)g(w)m(as)h(not)f(giv)m(en.)46 b(The)34 b(follo)m(wing)300
4244 y(result)f(due)g(to)f(Murra)m(y)i(giv)m(es)f(an)f(explicit)f
(constan)m(t)j(for)e(piecewise)h(on)m(to)f(mappings.)p
Black 300 4391 a Fj(The)-5 b(or)g(em)34 b(3.1.)p Black
48 w Fu([45])e(Let)h Fr(S)g Fu(:)28 b([0)p Fr(;)17 b
Fu(1])27 b Fq(!)h Fu([0)p Fr(;)17 b Fu(1])32 b(b)s(e)g(piecewise)i
Fr(C)2632 4354 y Fp(2)2703 4391 y Fu(and)f(on)m(to)g(and)f(b)s(e)h(suc)
m(h)h(that)446 4511 y(\(i\))e Fq(j)p Fr(S)676 4451 y
Fh(0)702 4511 y Fq(j)27 b(\025)h Fr(\025)g(>)f Fu(1)446
4664 y(\(ii\))635 4616 y Fl(j)p Fo(S)702 4572 y Fh(0)o(0)746
4616 y Fl(j)p 619 4641 163 4 v 619 4706 a Fp(\()p Fo(S)693
4672 y Fh(0)719 4706 y Fp(\))746 4687 y Fg(2)819 4664
y Fq(\024)h Fr(s)p Fu(.)300 4800 y(Let)34 b Fr(P)47 b
Fu(b)s(e)34 b(the)g(F)-8 b(rob)s(enius-P)m(erron)34 b(op)s(erator)f
(asso)s(ciated)h(with)f Fr(S)6 b Fu(,)34 b(and)g(let)f
Fr(f)3260 4764 y Fl(\003)3329 4800 y Fq(\025)d Fu(0)k(b)s(e)f(suc)m(h)
300 4920 y(that)g Fr(P)14 b(f)648 4884 y Fl(\003)715
4920 y Fu(=)28 b Fr(f)878 4884 y Fl(\003)950 4920 y Fu(and)33
b Fq(k)p Fr(f)1249 4884 y Fl(\003)1288 4920 y Fq(k)c
Fu(=)f(1.)44 b(let)33 b Fr(f)1781 4935 y Fo(n)1856 4920
y Fq(2)c Fr(D)c Fq(\\)e Fu(\001)2227 4935 y Fo(n)2307
4920 y Fu(b)s(e)33 b(suc)m(h)i(that)e Fr(f)2921 4935
y Fo(n)2996 4920 y Fu(=)28 b Fr(P)3163 4935 y Fo(n)3210
4920 y Fr(f)3258 4935 y Fo(n)3305 4920 y Fu(.)45 b(Then)34
b(for)f Fr(n)300 5040 y Fu(large)e(enough)788 5278 y
Fq(k)p Fr(f)886 5293 y Fo(n)955 5278 y Fq(\000)22 b Fr(f)1113
5236 y Fl(\003)1153 5278 y Fq(k)27 b(\024)1335 5137 y
Fi(\024)1398 5210 y Fu(log)16 b(8)p Fr(n)p 1398 5255
250 4 v 1423 5346 a Fu(log)g Fr(\025)1680 5278 y Fu(+)22
b(\(2)p Fr(K)29 b Fq(\000)22 b Fu(1\))p Fr(n)2221 5236
y Fl(\003)2261 5137 y Fi(\025)2344 5210 y Fu(1)p 2340
5255 59 4 v 2340 5346 a Fr(n)2480 5210 y(s\025)p 2418
5255 228 4 v 2418 5346 a(\025)g Fq(\000)h Fu(1)2683 5278
y(=)k(O\()2910 5210 y(log)17 b Fr(n)p 2910 5255 201 4
v 2982 5346 a(n)3121 5278 y Fu(\))p Fr(;)p Black 405
w Fu(\(3.21\))p Black 300 5515 a(where)34 b Fr(K)r(;)17
b(n)769 5478 y Fl(\003)840 5515 y Fu(are)33 b(some)f(constan)m(ts.)p
Black Black eop
%%Page: 18 27
18 26 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(18)p Black 446 274 a(It)31 b(has)f(b)s(een)i(sho)m
(wn)f([2])f(that)h(the)f(rate)h(of)e(Ulam's)h(metho)s(d)f(can)i(not)f
(exceed)i Fr(O)s Fu(\()3520 235 y Fp(ln)11 b Fo(n)p 3520
251 114 4 v 3555 309 a(n)3643 274 y Fu(\).)43 b(In)300
395 y([16])28 b(it)f(is)g(sho)m(wn)i(that)f(the)h(order)f(of)f
Fr(O)s Fu(\()1814 355 y Fp(1)p 1810 372 43 4 v 1810 429
a Fo(n)1862 395 y Fu(\))h(is)g(a)m(v)-5 b(ailable)25
b(for)j(the)g(metho)s(d)f(of)h(piecewise)h(linear)300
515 y(Mark)m(o)m(v)e(\014nite)f(appro)m(ximations.)39
b(Moreo)m(v)m(er)28 b(it)d(is)g(sho)m(wn)i(that)f(the)g(same)g(order)g
(is)f(true)h(ev)m(en)300 635 y(under)34 b(the)g(stronger)f
Fr(B)5 b(V)22 b Fu(-norm,)32 b(whic)m(h)h(indicates)g(that)g(the)h(new)
g(metho)s(d)e(is)h(m)m(uc)m(h)h(b)s(etter)300 756 y(as)e(far)g(as)g
(the)h(con)m(v)m(ergence)i(rate)d(is)f(concerned.)45
b(In)33 b(Chapter)g(4)e(w)m(e)j(giv)m(e)e(an)g(error)g(estimate)300
876 y(for)g(the)h(metho)s(d)f(of)g(piecewise)h(linear)e(Mark)m(o)m(v)j
(\014nite)f(appro)m(ximations.)446 997 y(Based)f(on)f(the)h(ab)s(o)m(v)
m(e)g(discussion)f(on)g(Ulam's)f(metho)s(d)h(\(3.5\),)g(\(3.6\),)g
(\(3.14\))f(and)i(\(3.20\),)300 1117 y(w)m(e)e(kno)m(w)g(that)e(the)h
(main)e(n)m(umerical)h(w)m(ork)h(for)f(implemen)m(ting)e(Ulam's)i
(metho)s(d)g(is)g(ev)-5 b(aluat-)300 1237 y(ing)25 b(the)h(Ulam)e
(matrix)g(and)i(solving)f(the)h(resulting)f(\014nite)g(dimensional)e
(\014xed)k(p)s(oin)m(t)e(problem)300 1358 y(whic)m(h)36
b(is)f(a)g(homogeneous)g(system)h(of)f(algebraic)f(linear)f(equations)j
(for)e(the)i(v)m(ector)g Fr(c)p Fu(.)52 b(The)300 1478
y(n)m(umerical)36 b(issue)j(on)f(ho)m(w)g(to)g(ev)-5
b(aluate)38 b(the)g(Ulam)e(matrix)h(for)g(practical)f(purp)s(ose)j
(will)d(b)s(e)300 1598 y(addressed)d(in)e(Chapter)i(5.)42
b(A)m(t)32 b(the)g(end)h(of)e(this)g(c)m(hapter)h(w)m(e)h(consider)f
(the)g(problem)e(of)h(ho)m(w)300 1719 y(to)h(\014nd)h
Fr(c)p Fu(.)44 b(In)33 b([19)o(])g(t)m(w)m(o)g(w)m(a)m(ys)h(to)f
(compute)f Fr(c)h Fu(w)m(ere)h(prop)s(osed.)446 1839
y(The)49 b(\014rst)f(one)g(is)f(based)i(the)f(ideas)f(from)g(Mark)m(o)m
(v)i(c)m(hains)e(since)i(the)f(Ulam)d(matrix)300 1960
y(is)g(a)g(sto)s(c)m(hastic)g(matrix)f(and)h(so)h(it)e(induces)i(a)f
(stationary)f(Mark)m(o)m(v)j(c)m(hain)e(in)f(a)h(natural)300
2080 y(w)m(a)m(y)-8 b(.)81 b(F)-8 b(rom)44 b(the)h(theory)g(of)g
(irreducible)e(sto)s(c)m(hastic)i(matrices)f(w)m(e)i(can)f(deduce)i
(that)d(for)300 2200 y(ergo)s(dic)g(transformations)f
Fr(S)6 b Fu(,)47 b(a)e(simple)e(direct)h(iteration)f(sev)m(eral)i
(times)f(can)h(pro)s(duce)g(a)300 2321 y(v)m(ery)e(go)s(o)s(d)c(appro)m
(ximation)g(of)i(the)g(v)m(ector)h Fr(c)f Fu(\(see)h([29])f(for)g(more)
f(detail)f(on)i(the)h(relation)300 2441 y(of)d(ergo)s(dicit)m(y)g(of)g
Fr(S)46 b Fu(and)40 b(the)g(irreducibilit)m(y)d(of)i(the)h(Ulam)e
(matrix\).)63 b(Th)m(us,)44 b(w)m(e)c(ha)m(v)m(e)i(the)300
2562 y(follo)m(wing)35 b Fm(iteration)41 b(algorithm)f(\(IA\))c
Fu(to)h(compute)h(an)f(appro)m(ximate)g(\014xed)h(densit)m(y)g(of)300
2682 y(F)-8 b(rob)s(enius-P)m(erron)32 b(op)s(erators:)p
Black 419 2910 a(1.)p Black 49 w(Let)e Fr(T)773 2925
y Fo(h)846 2910 y Fu(=)d Fq(f)p Fu(\012)1069 2925 y Fo(i)1098
2910 y Fq(g)1148 2874 y Fo(n)1148 2935 y(i)p Fp(=1)1296
2910 y Fu(b)s(e)j(a)g(shap)s(e-regular)f(partition)f(of)h(\012)h(with)g
(the)g(mesh)h(size)f(c)m(harac-)544 3031 y(terized)i(b)m(y)h
Fr(h)p Fu(.)43 b(F)-8 b(or)32 b(example,)f(in)h(one)g(dimensional)d
(cases,)34 b(c)m(ho)s(ose)f Fr(n)f Fu(equal)g(subin)m(ter-)544
3151 y(v)-5 b(als)32 b(of)g(the)h(partition)d(of)i([0)p
Fr(;)17 b Fu(1].)p Black 419 3354 a(2.)p Black 49 w(Use)29
b(Ulam's)e(metho)s(d)g(\(3.5\))h(or)g(\(3.14\))f(to)h(ev)-5
b(aluate)28 b(the)g(companion)f(matrix)g Fr(P)3543 3369
y Fo(h)3615 3354 y Fu(or)h Fr(P)3793 3369 y Fo(n)544
3475 y Fu(in)k(one)h(dimensional)d(cases.)p Black 419
3678 a(3.)p Black 49 w(Select)44 b(a)g(starting)f(nonnegativ)m(e)h(v)m
(ector)h Fr(c)i Fu(=)g(\()p Fr(c)2454 3693 y Fp(1)2493
3678 y Fr(;)17 b(c)2579 3693 y Fp(2)2618 3678 y Fr(;)g
Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2898 3693 y Fo(n)2944
3678 y Fu(\))2982 3642 y Fo(T)3037 3678 y Fu(;)50 b(a)43
b(usual)h(c)m(hoice)g(is)544 3799 y Fr(c)28 b Fu(=)f(\(1)p
Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17
b Fu(1\))1220 3762 y Fo(T)1275 3799 y Fu(.)p Black 419
4002 a(4.)p Black 49 w(Calculate)31 b Fr(c)1019 3966
y Fl(\003)1087 4002 y Fu(=)c Fr(P)1267 3966 y Fo(T)1253
4028 y(h)1322 4002 y Fr(c)32 b Fu(and)h(the)g(1-norm)e(error)h(Error)h
(=)27 b Fq(k)p Fr(c)2785 3966 y Fl(\003)2847 4002 y Fq(\000)22
b Fr(c)p Fq(k)p Fu(.)p Black 419 4205 a(5.)p Black 49
w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 4169 y Fl(\003)1052
4205 y Fu(and)g(rep)s(eat)f(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e
(Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544
4326 y(tolerance.)p Black 419 4529 a(6.)p Black 49 w(Let)34
b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p
Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 4544 y Fo(h)2545
4529 y Fu(=)2651 4454 y Fi(P)2756 4481 y Fo(n)2756 4558
y(i)p Fp(=1)2891 4529 y Fr(c)2933 4544 y Fo(i)2961 4529
y Fu(1)3010 4544 y Fo(i)3072 4529 y Fu(is)f(an)g(appro)m(ximate)544
4650 y(\014xed)g(densit)m(y)-8 b(.)446 4878 y(The)48
b(second)g(metho)s(d)e(for)h(computing)e Fr(c)i Fu(is)f(the)h
(classical)f(direct)g(metho)s(d)g(based)i(on)300 4998
y(Gaussian)g(elimination.)87 b(In)48 b(other)h(w)m(ords,)k(to)48
b(solv)m(e)h(\(3.5\))f(w)m(e)i(just)e(need)i(to)e(solv)m(e)h(the)300
5119 y(homogeneous)33 b(system)g(of)f(linear)f(equations)1755
5339 y(\()p Fr(I)f Fq(\000)23 b Fr(P)2043 5297 y Fo(T)2029
5363 y(n)2098 5339 y Fu(\))p Fr(c)k Fu(=)h(0)p Fr(:)1206
b Fu(\(3.22\))p Black Black eop
%%Page: 19 28
19 27 bop Black 300 10 a Fk(CHAPTER)34 b(3.)76 b(ULAM'S)33
b(METHOD)1907 b Fu(19)p Black 300 274 a(In)28 b(general,)g(the)g(rank)f
(of)g Fr(I)20 b Fq(\000)12 b Fr(P)1479 289 y Fo(n)1553
274 y Fu(is)27 b Fr(n)12 b Fq(\000)g Fu(1)28 b(for)f(large)f
Fr(n)i Fu(if)e Fr(S)33 b Fu(is)27 b(ergo)s(dic)g([29)o(],)i(so)f(the)g
(tec)m(hnique)300 395 y(of)k(Gaussian)h(elimination)28
b(can)33 b(\014nd)h(the)f(unique)g(normalized)e(solution.)43
b(This)33 b(metho)s(d)f(w)m(as)300 515 y(called)f(the)i
Fm(Gaussian)39 b(algorithm)c(\(GA\))d Fu(in)f([19].)446
635 y(Since)25 b(a)f(small)f(n)m(um)m(b)s(er)i(of)f(direct)g(iteration)
f(requires)i(only)g(O\()p Fr(n)2857 599 y Fp(2)2896 635
y Fu(\))g(n)m(umerical)e(op)s(erations)300 756 y(as)35
b(compared)f(to)h(the)g(O\()p Fr(n)1332 720 y Fp(3)1371
756 y Fu(\))g(complexit)m(y)f(for)g(Gaussian)g(elimination,)d(it)i(is)i
(exp)s(ected)h(that)300 876 y(the)30 b(Gaussian)g(algorithm)d(is)i(m)m
(uc)m(h)i(more)e(time)f(consuming)i(than)g(the)g(iteration)e
(algorithm,)300 997 y(as)f(con\014rmed)h(b)m(y)g(the)f(follo)m(wing)e
(table)h(on)h(the)h(comparison)e(of)h(the)g(p)s(erformance)g(of)g(the)g
(t)m(w)m(o)300 1117 y(algorithms)j(for)i(the)h(logistic)d(mo)s(del)h
Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p Fu(\(1)22
b Fq(\000)h Fr(x)p Fu(\).)446 1237 y(The)h(exp)s(erimen)m(ts)g(w)m(ere)
g(p)s(erformed)f(on)g(the)g(200)g(MHz)g(P)m(en)m(tium)g(Pro)g(computer)
g(running)300 1358 y(Lin)m(ux.)41 b(Both)26 b(algorithms)e(w)m(ere)j
(implemen)m(ted)e(in)g(C)i(co)s(de)f(\(see)h(App)s(endix)g(B\))f(and)g
(all)e(times)300 1478 y(rep)s(orted)34 b(here)g(are)g(a)m(v)m(erages)h
(of)e(m)m(ultiple)e(runs.)48 b(In)34 b(T)-8 b(able)33
b(3.1,)h Fr(n)f Fu(denotes)i(the)f(n)m(um)m(b)s(er)g(of)300
1598 y(sub-in)m(terv)-5 b(als)34 b(from)f(the)i(partition)d(of)i([0)p
Fr(;)17 b Fu(1].)48 b Fr(T)g Fu(is)34 b(the)g(CPU)h(time)e(in)h
(seconds,)j(and)d(Err)g(is)300 1719 y(the)29 b Fr(L)530
1683 y Fp(1)570 1719 y Fu(-error)f(of)g(the)h(computed)g(solution)e(to)
i(the)g(exact)g(solution.)41 b(It)29 b(can)g(b)s(e)f(observ)m(ed)j
(that)p Black Black Black 1133 1858 1874 4 v 1131 1978
4 121 v 1135 1978 V 1231 1942 a Fr(n)p 1381 1978 V 144
w(T)11 b(=I)d(A)p 1721 1978 V 99 w(T)j(=GA)p 2088 1978
V 99 w(E)6 b(r)s(r)s(=I)i(A)p 2532 1978 V 99 w(E)e(r)s(r)s(=GA)p
3002 1978 V 3006 1978 V 1133 1981 1874 4 v 1131 2102
4 121 v 1135 2102 V 1211 2066 a Fu(32)p 1381 2102 V 157
w(0.01)p 1721 2102 V 180 w(0.02)p 2088 2102 V 182 w(0.1651)p
2532 2102 V 185 w(0.1648)p 3002 2102 V 3006 2102 V 1133
2105 1874 4 v 1131 2226 4 121 v 1135 2226 V 1211 2189
a(64)p 1381 2226 V 157 w(0.04)p 1721 2226 V 180 w(0.10)p
2088 2226 V 182 w(0.1262)p 2532 2226 V 185 w(0.1262)p
3002 2226 V 3006 2226 V 1133 2229 1874 4 v 1131 2349
4 121 v 1135 2349 V 1187 2313 a(128)p 1381 2349 V 132
w(0.17)p 1721 2349 V 180 w(0.80)p 2088 2349 V 182 w(0.0954)p
2532 2349 V 185 w(0.0955)p 3002 2349 V 3006 2349 V 1133
2353 1874 4 v 1131 2473 4 121 v 1135 2473 V 1187 2437
a(256)p 1381 2473 V 132 w(0.72)p 1721 2473 V 180 w(6.28)p
2088 2473 V 182 w(0.0707)p 2532 2473 V 185 w(0.0707)p
3002 2473 V 3006 2473 V 1133 2476 1874 4 v 1131 2597
4 121 v 1135 2597 V 1187 2561 a(512)p 1381 2597 V 132
w(3.09)p 1721 2597 V 155 w(51.33)p 2088 2597 V 158 w(0.0534)p
2532 2597 V 185 w(0.0534)p 3002 2597 V 3006 2597 V 1133
2600 1874 4 v Black 870 2760 a(T)-8 b(able)32 b(3.1:)43
b(P)m(erformance)33 b(comparison)e(b)s(et)m(w)m(een)k(IA)e(and)g(GA)p
Black Black 300 3105 a(as)44 b(the)h(n)m(um)m(b)s(er)g(of)f(sub-in)m
(terv)-5 b(als)44 b(increases)h(the)f(iteration)f(algorithm)e(outp)s
(erforms)j(the)300 3225 y(Gaussian)33 b(algorithm.)43
b(F)-8 b(or)33 b(example,)h(when)g Fr(n)c Fu(=)f(512,)k(the)h
(iteration)e(algorithm)f(is)i(almost)300 3346 y(17)h(times)f(faster)i
(than)f(the)h(Gaussian)f(algorithm,)d(while)j(pro)s(ducing)f(the)i
(same)f(error.)49 b(The)300 3466 y(only)33 b(explanation)g(of)h(this)f
(big)g(di\013erence)i(is)e(that)h(the)g(iteration)e(algorithm)f
(required)j(only)300 3587 y(13-14)d(iterations)g(for)h(the)h(con)m(v)m
(ergence)j(for)c(the)h(problem)e(studied.)p Black Black
eop
%%Page: 20 29
20 28 bop Black Black Black Black 1714 127 a Fn(Chapter)53
b(4)p Black Black 862 559 a(PIECEWISE)g(LINEAR)h(MARK)l(O)l(V)1351
741 y(APPR)l(O)l(XIMA)-13 b(TION)465 1443 y Fu(As)36
b(men)m(tioned)f(b)s(efore,)h(for)e(a)h(giv)m(en)h(nonsingular)e
(transformation)f Fr(S)38 b Fu(:)32 b([0)p Fr(;)17 b
Fu(1])32 b Fq(!)f Fu([0)p Fr(;)17 b Fu(1],)300 1563 y(the)33
b(op)s(erator)f Fr(P)41 b Fu(:)28 b Fr(L)1086 1527 y
Fp(1)1126 1563 y Fu(\(0)p Fr(;)17 b Fu(1\))26 b Fq(!)i
Fr(L)1564 1527 y Fp(1)1603 1563 y Fu(\(0)p Fr(;)17 b
Fu(1\))32 b(de\014ned)i(b)m(y)1467 1676 y Fi(Z)1523 1902
y Fo(A)1596 1812 y Fr(P)14 b(f)d(dm)27 b Fu(=)1999 1676
y Fi(Z)2054 1902 y Fo(S)2101 1883 y Fh(\000)p Fg(1)2183
1902 y Fp(\()p Fo(A)p Fp(\))2312 1812 y Fr(f)11 b(dm)p
Black 1132 w Fu(\(4.1\))p Black 300 2081 a(for)25 b(ev)m(ery)i
Fr(m)p Fu(-measurable)e Fr(A)j Fq(\032)g Fu([0)p Fr(;)17
b Fu(1])25 b(is)g(called)g(the)h(F)-8 b(rob)s(enius-P)m(erron)25
b(op)s(erator)g(asso)s(ciated)300 2201 y(with)30 b Fr(S)6
b Fu(.)42 b Fr(P)h Fu(is)30 b(a)f(p)s(ositiv)m(e)g(linear)g(op)s
(erator)g(with)g(norm)g(1,)i(so)f(it)f(is)g(a)h(Mark)m(o)m(v)h(op)s
(erator.)42 b(F)-8 b(or)300 2322 y(an)m(y)39 b(densit)m(y)h
Fr(f)892 2286 y Fl(\003)969 2322 y Fu(\(i.e.,)g Fr(f)1258
2286 y Fl(\003)1335 2322 y Fq(\025)e Fu(0)g(and)h Fq(k)p
Fr(f)1842 2286 y Fl(\003)1881 2322 y Fq(k)f Fu(=)f(1\),)j(the)f
(absolutely)f(con)m(tin)m(uous)h(probabilit)m(y)300 2442
y(measure)1087 2666 y Fr(\026)p Fu(\()p Fr(A)p Fu(\))28
b(=)1426 2530 y Fi(Z)1482 2756 y Fo(A)1555 2666 y Fr(f)1614
2625 y Fl(\003)1653 2666 y Fr(dm)56 b Fq(8)f Fu(measurable)32
b(sets)d Fr(A)f Fq(\032)g Fu([0)p Fr(;)17 b Fu(1])300
2913 y(is)32 b(in)m(v)-5 b(arian)m(t)31 b(under)j Fr(S)k
Fu(if)31 b(and)i(only)f(if)g Fr(f)1824 2877 y Fl(\003)1895
2913 y Fu(is)g(a)h(\014xed)g(p)s(oin)m(t)f(of)g Fr(P)14
b Fu(,)32 b(i.e.,)g Fr(P)14 b(f)3132 2877 y Fl(\003)3199
2913 y Fu(=)27 b Fr(f)3361 2877 y Fl(\003)3400 2913 y
Fu(.)446 3033 y(F)-8 b(or)30 b(the)h(computational)c(purp)s(ose)k(w)m
(e)h(ask)f(ho)m(w)g(to)f(appro)m(ximate)f(the)i(\014xed)g(densit)m(y)h
Fr(f)3774 2997 y Fl(\003)3813 3033 y Fu(.)300 3154 y(Since)23
b Fr(P)36 b Fu(is)22 b(an)g(in\014nite)g(dimensional)e(Mark)m(o)m(v)k
(op)s(erator,)g(it)e(is)g(natural)f(to)h(construct)i(its)e(\014nite)300
3274 y(appro)m(ximations)g(whic)m(h)i(are)f(also)g(Mark)m(o)m(v)i(op)s
(erators.)40 b(Ulam's)23 b(original)d(piecewise)k(constan)m(t)300
3394 y(metho)s(d)32 b(falls)f(in)m(to)h(this)g(category)-8
b(,)33 b(although)e(it)h(con)m(v)m(erges)j(slo)m(wly)d(if)f(it)h(do)s
(es.)44 b(This)33 b(lac)m(k)f(of)300 3515 y(high)38 b(sp)s(eed)h(of)f
(con)m(v)m(ergence)j(lead)d(to)g(the)h(follo)m(wing)d(construction)j
(of)f(a)g(Mark)m(o)m(v)i(metho)s(d)300 3635 y(based)34
b(on)e(piecewise)h(linear)e(appro)m(ximations)g([16])h([21].)446
3755 y(Divide)g(the)h(in)m(terv)-5 b(al)32 b([0)p Fr(;)17
b Fu(1])32 b(in)m(to)h Fr(n)g Fu(equal)g(subin)m(terv)-5
b(als)33 b Fr(I)2635 3770 y Fo(i)2691 3755 y Fu(=)28
b([)p Fr(x)2877 3770 y Fo(i)p Fl(\000)p Fp(1)2996 3755
y Fr(;)17 b(x)3095 3770 y Fo(i)3123 3755 y Fu(])33 b(with)g(the)g
(length)300 3876 y Fr(h)i Fu(=)f(1)p Fr(=n)p Fu(.)55
b(Then)38 b(the)e(corresp)s(onding)h(con)m(tin)m(uous)g(piecewise)g
(linear)e(\014nite)i(elemen)m(t)f(space)300 3996 y(\001)381
4011 y Fo(n)456 3996 y Fq(\032)28 b Fr(C)7 b Fu([0)p
Fr(;)17 b Fu(1])28 b(is)g(\()p Fr(n)14 b Fu(+)g(1\)-dimensional.)40
b(Its)29 b(standard)g(basis)g(consists)g(of)g(the)g Fj(tent)i
(functions)1340 4235 y Fr(\036)1398 4250 y Fo(i)1426
4235 y Fu(\()p Fr(x)p Fu(\))d(=)f Fr(\036)p Fu(\()1794
4167 y Fr(x)22 b Fq(\000)h Fr(x)2026 4182 y Fo(i)p 1794
4212 261 4 v 1896 4303 a Fr(h)2065 4235 y Fu(\))p Fr(;)44
b(i)28 b Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g(:)g(:)g(:)32
b(;)17 b(n;)300 4460 y Fu(where)1194 4660 y Fr(\036)p
Fu(\()p Fr(x)p Fu(\))28 b(=)g(\(1)21 b Fq(\000)i(j)p
Fr(x)p Fq(j)p Fu(\))p Fr(\037)1933 4676 y Fp([)p Fl(\000)p
Fp(1)p Fo(;)p Fp(1])2121 4660 y Fu(\()p Fr(x)p Fu(\))p
Fr(;)45 b Fq(\0001)28 b Fr(<)f(x)h(<)g Fq(1)p Fr(:)300
4860 y Fu(Here)42 b Fr(\037)600 4875 y Fo(A)699 4860
y Fu(represen)m(ts)i(the)e(c)m(haracteristic)f(function)g(of)g
Fr(A)p Fu(.)71 b(This)42 b(basis)f(has)h(the)g(prop)s(ert)m(y)300
4981 y(that)33 b Fr(f)39 b Fu(=)704 4906 y Fi(P)809 4932
y Fo(n)809 5010 y(i)p Fp(=0)944 4981 y Fr(q)987 4996
y Fo(i)1015 4981 y Fr(\036)1073 4996 y Fo(i)1134 4981
y Fu(if)32 b(and)h(only)g(if)f Fr(f)11 b Fu(\()p Fr(x)1871
4996 y Fo(i)1899 4981 y Fu(\))29 b(=)f Fr(q)2113 4996
y Fo(i)2175 4981 y Fu(for)k(all)f Fr(i)p Fu(.)46 b(Note)33
b(that)g(the)g(supp)s(ort)h(of)e Fr(\036)3713 4996 y
Fo(i)3774 4981 y Fu(is)300 5101 y Fr(I)343 5116 y Fo(i)394
5101 y Fq([)23 b Fr(I)526 5116 y Fo(i)p Fp(+1)677 5101
y Fu(for)33 b Fr(i)c Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)31
b(;)17 b(n)23 b Fq(\000)g Fu(1,)33 b(and)g(that)g(of)g
Fr(\036)2232 5116 y Fp(0)2304 5101 y Fu(and)g Fr(\036)2552
5116 y Fo(n)2632 5101 y Fu(is)g Fr(I)2774 5116 y Fp(1)2847
5101 y Fu(and)g Fr(I)3080 5116 y Fo(n)3127 5101 y Fu(,)g(resp)s(ectiv)m
(ely)-8 b(.)47 b(In)300 5221 y(the)33 b(follo)m(wing,)d(denote)1756
5464 y Fr(f)1804 5479 y Fo(i)1860 5464 y Fu(=)1977 5397
y(1)p 1973 5441 57 4 v 1973 5533 a Fr(h)2056 5329 y Fi(Z)2112
5554 y Fo(I)2143 5564 y Ff(i)2189 5464 y Fr(f)11 b(dm)p
Black 2021 5764 a Fu(20)p Black eop
%%Page: 21 30
21 29 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35
b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410
b Fu(21)p Black 300 274 a(whic)m(h)33 b(is)f(the)h(a)m(v)m(erage)h(v)-5
b(alue)32 b(of)g Fr(f)43 b Fu(o)m(v)m(er)34 b Fr(I)1901
289 y Fo(i)1929 274 y Fu(.)43 b(No)m(w)34 b(de\014ne)1189
563 y Fr(Q)1266 578 y Fo(n)1314 563 y Fr(f)k Fu(=)28
b Fr(f)1552 578 y Fp(1)1591 563 y Fr(\036)1649 578 y
Fp(0)1710 563 y Fu(+)1814 439 y Fo(n)p Fl(\000)p Fp(1)1808
469 y Fi(X)1823 679 y Fo(i)p Fp(=1)1979 496 y Fr(f)2027
511 y Fo(i)2077 496 y Fu(+)22 b Fr(f)2223 511 y Fo(i)p
Fp(+1)p 1979 540 363 4 v 2136 632 a Fu(2)2352 563 y Fr(\036)2410
578 y Fo(i)2460 563 y Fu(+)g Fr(f)2606 578 y Fo(n)2653
563 y Fr(\036)2711 578 y Fo(n)2757 563 y Fr(:)p Black
855 w Fu(\(4.2\))p Black 300 850 a(Let)30 b Fr(\034)514
865 y Fo(i)573 850 y Fu(b)s(e)h(the)g(supp)s(ort)f(of)g
Fr(\036)1395 865 y Fo(i)1453 850 y Fu(for)g Fr(i)e Fu(=)g(0)p
Fr(;)17 b Fu(1)p Fr(;)g(:)g(:)g(:)31 b(;)17 b(n)p Fu(.)43
b(Then)31 b(the)g(ab)s(o)m(v)m(e)g(de\014nition)e(for)h
Fr(Q)3616 865 y Fo(n)3694 850 y Fu(can)300 971 y(also)i(b)s(e)g
(written)h(compactly)f(as)1359 1245 y Fr(Q)1436 1260
y Fo(n)1483 1245 y Fr(f)38 b Fu(=)1723 1121 y Fo(n)1673
1151 y Fi(X)1688 1361 y Fo(i)p Fp(=0)1935 1178 y Fu(1)p
1843 1222 232 4 v 1843 1314 a Fr(m)p Fu(\()p Fr(\034)2008
1329 y Fo(i)2037 1314 y Fu(\))2102 1110 y Fi(Z)2157 1335
y Fo(\034)2188 1345 y Ff(i)2235 1245 y Fr(f)11 b(dm)22
b Fq(\001)g Fr(\036)2560 1260 y Fo(i)2588 1245 y Fr(:)p
Black 1024 w Fu(\(4.3\))p Black 300 1542 a Fm(Remark)54
b(4.1)47 b Fu(The)h(v)m(ersion)f(\(4.3\))g(for)f(the)i(de\014nition)e
(of)h Fr(Q)2737 1557 y Fo(n)2831 1542 y Fu(can)g(b)s(e)g(extended)i(to)
e Fr(L)3800 1506 y Fp(1)300 1662 y Fu(functions)27 b
Fr(f)38 b Fu(de\014ned)28 b(on)f(the)h Fr(d)p Fu(-dimensional)23
b(cub)s(e)28 b([0)p Fr(;)17 b Fu(1])2459 1626 y Fo(d)2499
1662 y Fu(;)29 b(see)f([24])f(for)f(more)h(dev)m(elopmen)m(ts)300
1783 y(along)k(this)h(line.)446 1903 y(It)46 b(w)m(as)g(pro)m(v)m(ed)h
(in)e([16)o(])h(that)f Fr(Q)1720 1918 y Fo(n)1817 1903
y Fu(:)k Fr(L)1959 1867 y Fp(1)1999 1903 y Fu(\(0)p Fr(;)17
b Fu(1\))49 b Fq(!)g Fr(L)2481 1867 y Fp(1)2520 1903
y Fu(\(0)p Fr(;)17 b Fu(1\))45 b(is)g(a)g(Mark)m(o)m(v)i(op)s(erator)d
(of)300 2024 y(\014nite)35 b(rank)h(and)g(lim)1109 2039
y Fo(n)p Fl(!1)1313 2024 y Fq(k)p Fr(Q)1440 2039 y Fo(n)1487
2024 y Fr(f)f Fq(\000)25 b Fr(f)11 b Fq(k)32 b Fu(=)h(0)i(for)h
Fr(f)43 b Fq(2)33 b Fr(L)2415 1987 y Fp(1)2455 2024 y
Fu(\(0)p Fr(;)17 b Fu(1\).)52 b(It)36 b(is)f(also)f(easy)j(to)e(see)i
(that)300 2144 y Fq(k)p Fr(Q)427 2159 y Fo(n)474 2144
y Fr(f)11 b Fq(k)583 2159 y Fl(1)685 2144 y Fq(\024)28
b(k)p Fr(f)11 b Fq(k)949 2159 y Fl(1)1056 2144 y Fu(for)32
b(all)e Fr(f)39 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17
b Fu(1].)446 2264 y(Let)47 b Fr(P)698 2279 y Fo(n)796
2264 y Fu(=)k Fr(Q)1000 2279 y Fo(n)1047 2264 y Fr(P)14
b Fu(.)84 b(Then)47 b Fr(P)1566 2279 y Fo(n)1659 2264
y Fu(is)f(a)g(Mark)m(o)m(v)i(op)s(erator)d(of)h(\014nite)g(dimensional)
e(range,)300 2385 y(and)e(lim)635 2400 y Fo(n)p Fl(!1)840
2385 y Fr(P)903 2400 y Fo(n)949 2385 y Fr(f)56 b Fu(=)44
b Fr(P)14 b(f)52 b Fu(strongly)42 b(for)g(an)m(y)h Fr(f)55
b Fq(2)45 b Fr(L)2370 2349 y Fp(1)2409 2385 y Fu(\(0)p
Fr(;)17 b Fu(1\).)72 b(The)44 b(represen)m(tation)f(of)f(the)300
2505 y(restriction)33 b(of)h Fr(P)944 2520 y Fo(n)1026
2505 y Fu(to)g(\001)1228 2520 y Fo(n)1309 2505 y Fu(under)i(an)m(y)f
(densit)m(y)g(function)f(basis)h(of)f(\001)2932 2520
y Fo(n)3013 2505 y Fu(is)g(giv)m(en)h(b)m(y)g(an)g(\()p
Fr(n)23 b Fu(+)300 2625 y(1\))j Fq(\002)g Fu(\()p Fr(n)g
Fu(+)g(1\))38 b(sto)s(c)m(hastic)h(matrix.)59 b(F)-8
b(rom)36 b(the)j(F)-8 b(rob)s(enius-P)m(erron)38 b(theory)h(of)f
(nonnegativ)m(e)300 2746 y(matrices,)e(there)h(is)e(a)h(\014xed)h
(densit)m(y)g Fr(f)1788 2761 y Fo(n)1871 2746 y Fu(of)e
Fr(P)2048 2761 y Fo(n)2131 2746 y Fu(in)g(\001)2329 2761
y Fo(n)2412 2746 y Fu(\(see)i(also)e([16])h(for)f(a)h(pro)s(of)7
b(\).)53 b(Hence)300 2866 y(the)36 b(Mark)m(o)m(v)i(metho)s(d)d(is)h(a)
f(w)m(ell-p)s(osed)h(n)m(umerical)e(sc)m(heme)k(to)d(calculate)g(an)h
(appro)m(ximate)300 2987 y(\014xed)e(densit)m(y)-8 b(.)300
3107 y Fm(Remark)49 b(4.2)44 b Fu(Although)e(Ulam's)g(metho)s(d)h
(shares)h(the)g(same)f(prop)s(ert)m(y)h(of)f(the)h(Mark)m(o)m(v)300
3227 y(metho)s(d)d(that)h(it)f(also)g(giv)m(es)h(\014nite)f
(dimensional)f(Mark)m(o)m(v)j(op)s(erators)f(for)f(computing)g(ap-)300
3348 y(pro)m(ximate)26 b(\014xed)j(densities,)f(it)e(con)m(v)m(erges)k
(slo)m(wly)-8 b(.)41 b(On)27 b(the)h(other)f(hand,)h(Galerkin's)f(pro)5
b(jec-)300 3468 y(tion)35 b(metho)s(d)g(with)h(piecewise)g(linear)f(or)
g(higher)h(order)g(p)s(olynomials)c(ma)m(y)k(not)g(b)s(e)g(able)f(to)
300 3589 y(calculate)30 b(an)i(appro)m(ximate)f(\014xed)h
Fj(density)g Fu(of)f(a)g(Mark)m(o)m(v)i(op)s(erator)e(since)h(the)g
(appro)m(ximate)300 3709 y(op)s(erator)37 b(of)h(\014nite)f(rank)i(is)e
(not)h(a)g(p)s(ositiv)m(e)f(op)s(erator)g(in)h(general)f(\(see)i([17])f
([14)o(])g(for)g(more)300 3829 y(details)f(on)i(pro)5
b(jection)38 b(metho)s(ds\).)61 b(F)-8 b(rom)37 b(previous)i
(theoretical)e(and)i(n)m(umerical)e(analysis)300 3950
y(of)28 b(the)g(piecewise)h(linear)e(Mark)m(o)m(v)i(\014nite)f(appro)m
(ximations)f(b)m(y)i(suc)m(h)g(authors)g(as)f(Chiu,)h(Ding,)300
4070 y(Du,)i(Hun)m(t,)h(Li,)f(Miller,)e(and)i(Zhou)g(in)g([7)o(])h([16)
o(])f([18])g([24])g([30)o(])h([29)o(],)g(w)m(e)g(see)g(that)f(the)h
(metho)s(d)300 4190 y(of)i(piecewise)i(linear)d(Mark)m(o)m(v)k
(\014nite)d(appro)m(ximations)g(not)g(only)h(shares)h(the)f(nice)g
(prop)s(ert)m(y)300 4311 y(of)f(Ulam's)g(metho)s(d)h(that)f(it)g(pro)s
(duces)i(an)f(appro)m(ximate)f(\014xed)i(densit)m(y)g(rather)f(easily)
-8 b(,)35 b(but)300 4431 y(also)26 b(shares)j(the)e(nice)h(prop)s(ert)m
(y)g(of)e(pro)5 b(jection)27 b(metho)s(ds)g(that)g(it)g(is)f(a)h
(higher)g(order)g(metho)s(d.)300 4552 y(Indeed)32 b(the)e(n)m(umerical)
f(exp)s(erimen)m(ts)i(in)f([16)o(])h(and)f([11])g(ha)m(v)m(e)i(sho)m
(wn)f(that)f(the)h(higher)f(order)300 4672 y(metho)s(d)f(w)m(orks)i(m)m
(uc)m(h)f(faster)g(than)g(Ulam's)f(metho)s(d)g(without)g(signi\014can)m
(tly)g(increasing)g(the)300 4792 y(n)m(umerical)i(w)m(ork.)446
4913 y(Motiv)-5 b(ated)40 b(b)m(y)h(the)f(con)m(v)m(ergence)j(rate)d
(analysis)f(in)g([7])h([18])g([29)o(])g(for)g(piecewise)h(linear)300
5033 y(Mark)m(o)m(v)28 b(appro)m(ximations,)d(no)m(w)i(w)m(e)h(in)m(v)m
(estigate)e(the)g(appro)m(ximation)e(order)j(problem)e(of)h(the)300
5153 y(n)m(umerical)h(metho)s(d.)42 b(The)29 b(original)c(analyses)k
(in)f([7])g(and)h([29)o(])g(ha)m(v)m(e)h(some)e(\015a)m(ws,)j(whic)m(h)
e(lead)300 5274 y(to)k(a)f(comprehensiv)m(e)j(sp)s(ectral)d(analysis)h
(in)f([15])h([13)o(])g([26])g(and)g(a)g(correct)g(error)g(analysis)g
(in)300 5394 y([18])28 b(based)g(on)g(the)g(concept)h(of)f
(quasi-compactness.)42 b(A)28 b(con)m(v)m(ergence)j(order)d(analysis)f
(based)300 5515 y(on)g(appro)m(ximations)e(of)h(con)m(tin)m(uous)h
(functions)g(instead)g(of)f(functions)h(of)f(b)s(ounded)h(v)-5
b(ariation)p Black Black eop
%%Page: 22 31
22 30 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35
b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410
b Fu(22)p Black 300 274 a(as)39 b(giv)m(en)f(in)g([7])h([18)o(])g(w)m
(as)g(\014rst)g(presen)m(ted)i(in)d([30],)i(but)f(it)e(also)h(con)m
(tains)g(some)h(mistak)m(es.)300 395 y(A)i(ma)5 b(jor)40
b(error)h(is)f(that)h(the)g(author)g(though)m(t)g(that)g(the)g
(piecewise)h(linear)d(Mark)m(o)m(v)j(\014nite)300 515
y(appro)m(ximation)47 b(k)m(eeps)k(a)d(piecewise)i(linear)d(function)h
(\014xed)i(lik)m(e)e(a)h(pro)5 b(jection)48 b(metho)s(d,)300
635 y(whic)m(h)g(is)f(wrong.)88 b(The)48 b(fact)f(is)g(that)g(a)g
(Galerkin)f(pro)5 b(jection)47 b(metho)s(d)g(of)g(order)g(ab)s(o)m(v)m
(e)300 756 y(0)40 b(is)f(no)h(longer)f(a)g(Mark)m(o)m(v)j(appro)m
(ximation)37 b(metho)s(d,)k(and)f(the)h(piecewise)f(linear)f(Mark)m(o)m
(v)300 876 y(appro)m(ximation)33 b(metho)s(d)i(is)g(not)h(a)f(pro)5
b(jection)36 b(metho)s(d.)52 b(The)36 b(purp)s(ose)g(of)g(this)f(c)m
(hapter)h(is)300 997 y(to)f(giv)m(e)h(a)f(rigorous)g(mathematical)d
(analysis)j(on)h(the)g(con)m(v)m(ergence)i(order)e(of)f(this)g(metho)s
(d,)300 1117 y(based)43 b(on)f(the)g(theory)h(of)f(appro)m(ximations)e
(of)h(con)m(tin)m(uous)i(functions)f(b)m(y)h(p)s(ositiv)m(e)f(linear)
300 1237 y(op)s(erators)32 b(in)g([10].)446 1358 y(It)24
b(is)e(w)m(ell)h(kno)m(wn)h(that)f(the)h(error)f Fq(k)p
Fr(f)1807 1373 y Fo(n)1857 1358 y Fq(\000)s Fr(f)1996
1322 y Fl(\003)2035 1358 y Fq(k)g Fu(of)g(the)h(appro)m(ximate)e
(\014xed)i(densit)m(y)g Fr(f)3524 1373 y Fo(n)3595 1358
y Fu(to)f(the)300 1478 y(exact)30 b(\014xed)h(densit)m(y)f
Fr(f)1179 1442 y Fl(\003)1247 1478 y Fu(dep)s(ends)h(on)f(the)f(\\lo)s
(cal)e(error")i Fq(k)p Fr(Q)2605 1493 y Fo(n)2652 1478
y Fr(f)2711 1442 y Fl(\003)2766 1478 y Fq(\000)16 b Fr(f)2918
1442 y Fl(\003)2957 1478 y Fq(k)29 b Fu(of)g(the)h(appro)m(ximate)300
1598 y(op)s(erator)c Fr(Q)764 1613 y Fo(n)838 1598 y
Fu(applied)g(to)h(the)g(densit)m(y)h Fr(f)1840 1562 y
Fl(\003)1906 1598 y Fu(\(see)g(equalit)m(y)e(\(4.15\))g(b)s(elo)m(w)h
(or)g([18)o(]\).)42 b(So)27 b(in)f(order)300 1719 y(to)h(obtain)g(a)g
(con)m(v)m(ergence)j(order)e(for)f Fq(k)p Fr(f)1815 1734
y Fo(n)1874 1719 y Fq(\000)12 b Fr(f)2022 1683 y Fl(\003)2062
1719 y Fq(k)p Fu(,)28 b(it)f(is)g(su\016cien)m(t)h(to)g(ha)m(v)m(e)h
(an)e(appro)m(ximation)300 1839 y(order)k(for)f Fq(k)p
Fr(Q)827 1854 y Fo(n)875 1839 y Fr(f)f Fq(\000)19 b Fr(f)11
b Fq(k)p Fu(.)43 b(Since)31 b(w)m(e)h(only)e(consider)h(con)m(tin)m
(uous)h(functions)f Fr(f)42 b Fu(and)31 b(use)h(results)300
1960 y(in)g([10)o(],)h(w)m(e)h(need)f(to)g(study)g(the)g(functions)g
Fr(Q)2050 1975 y Fo(n)2097 1960 y Fr(e)2142 1975 y Fo(i)2171
1960 y Fu(,)f(where)i Fr(e)2557 1975 y Fo(i)2585 1960
y Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(x)2903 1923 y Fo(i)2964
1960 y Fu(for)k Fr(i)c Fu(=)g(0)p Fr(;)17 b Fu(1)p Fr(;)g
Fu(2.)446 2080 y(First)35 b(note)h(that)f Fr(Q)1198 2095
y Fo(n)1246 2080 y Fr(e)1291 2095 y Fp(0)1363 2080 y
Fu(=)e Fr(e)1517 2095 y Fp(0)1557 2080 y Fu(.)52 b(But)36
b(since)g Fr(Q)2152 2095 y Fo(n)2235 2080 y Fu(is)f Fj(not)h
Fu(a)f(Galerkin)g(pro)5 b(jection)35 b(on)m(to)h(\001)3766
2095 y Fo(n)3813 2080 y Fu(,)300 2200 y(in)44 b(general)g
Fr(Q)851 2215 y Fo(n)942 2200 y Fu(do)s(es)h(not)f(map)g(a)g(piecewise)
i(linear)c(function)i(in)g(\001)3000 2215 y Fo(n)3092
2200 y Fu(to)g(itself.)78 b(And)45 b(in)300 2321 y(particular)26
b Fr(Q)822 2336 y Fo(n)897 2321 y Fu(do)s(es)i(not)f(map)g(a)h(linear)e
(function)h(to)g(itself.)41 b(Instead)29 b(w)m(e)f(ha)m(v)m(e)i(the)e
(follo)m(wing)300 2441 y(result.)p Black 300 2603 a Fj(L)-5
b(emma)34 b(4.1.)p Black 48 w Fu(Let)f Fr(f)11 b Fu(\()p
Fr(t)p Fu(\))27 b(=)h Fr(at)23 b Fu(+)f Fr(b)33 b Fu(on)f([0)p
Fr(;)17 b Fu(1].)43 b(Then)1074 2941 y Fr(Q)1151 2956
y Fo(n)1198 2941 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))28
b(=)1499 2737 y Fi(8)1499 2827 y(<)1499 3006 y(:)1639
2781 y Fo(a)p 1639 2797 38 4 v 1640 2854 a Fp(2)1687
2820 y Fu(\()p Fr(t)22 b Fu(+)g Fr(h)p Fu(\))g(+)g Fr(b;)255
b(t)27 b Fq(2)i Fr(I)2617 2835 y Fp(1)1629 2941 y Fr(at)23
b Fu(+)f Fr(b;)513 b(t)27 b Fq(2)i([)2640 2899 y Fo(n)p
Fl(\000)p Fp(1)2640 2966 y Fo(i)p Fp(=2)2777 2941 y Fr(I)2820
2956 y Fo(i)1639 3022 y(a)p 1639 3038 V 1640 3095 a Fp(2)1687
3061 y Fu(\()p Fr(t)22 b Fu(+)g(1)g Fq(\000)h Fr(h)p
Fu(\))f(+)g Fr(b;)84 b(t)27 b Fq(2)i Fr(I)2617 3076 y
Fo(n)2664 3061 y Fr(:)p Black 3639 2941 a Fu(\(4.4\))p
Black 446 3289 a Fm(Pro)s(of.)42 b Fu(F)-8 b(rom)27 b(the)i
(de\014nition)f(of)g Fr(Q)1821 3304 y Fo(n)1896 3289
y Fu(it)g(is)g(ob)m(vious)g(that)h Fr(Q)2717 3304 y Fo(n)2764
3289 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))27 b(=)h Fr(f)11
b Fu(\()p Fr(t)p Fu(\))28 b(for)g Fr(t)g Fq(2)g([)3631
3248 y Fo(n)p Fl(\000)p Fp(1)3631 3314 y Fo(i)p Fp(=2)3769
3289 y Fr(I)3812 3304 y Fo(i)300 3409 y Fu(since)40 b
Fr(f)49 b Fu(is)39 b(linear.)61 b(Since)40 b Fr(Q)1415
3424 y Fo(n)1462 3409 y Fr(f)11 b Fu(\(0\))38 b(=)h(\()p
Fr(f)11 b Fu(\(0\))25 b(+)i Fr(f)11 b Fu(\()p Fr(h)p
Fu(\)\))p Fr(=)p Fu(2)38 b(and)h Fr(Q)2787 3424 y Fo(n)2835
3409 y Fr(f)11 b Fu(\()p Fr(h)p Fu(\))38 b(=)h Fr(f)11
b Fu(\()p Fr(h)p Fu(\),)40 b(and)g(since)300 3530 y Fr(Q)377
3545 y Fo(n)424 3530 y Fr(f)45 b Fu(is)34 b(linear)f(on)h
Fr(I)1070 3545 y Fp(1)1110 3530 y Fu(,)g(w)m(e)i(easily)d(get)i
Fr(Q)1829 3545 y Fo(n)1876 3530 y Fr(f)11 b Fu(\()p Fr(t)p
Fu(\))30 b(=)2193 3491 y Fo(a)p 2193 3507 V 2194 3564
a Fp(2)2240 3530 y Fu(\()p Fr(t)24 b Fu(+)f Fr(h)p Fu(\))g(+)h
Fr(b)34 b Fu(for)g Fr(t)d Fq(2)g Fr(I)3085 3545 y Fp(1)3125
3530 y Fu(.)48 b(The)36 b(expression)300 3650 y(of)c
Fr(Q)488 3665 y Fo(n)535 3650 y Fr(f)44 b Fu(on)32 b
Fr(I)805 3665 y Fo(n)885 3650 y Fu(can)g(b)s(e)h(obtained)f(similarly)
-8 b(.)p 2152 3625 89 4 v 2152 3675 4 50 v 2238 3675
V 2152 3678 89 4 v 446 3770 a(In)38 b(the)g(follo)m(wing)d(let)i
Fr(\013)1372 3734 y Fp(2)1371 3795 y Fo(n)1418 3770 y
Fu(\()p Fr(x)p Fu(\))f(=)g Fr(Q)1774 3785 y Fo(n)1822
3770 y Fu(\(\()p Fr(t)25 b Fq(\000)h Fr(x)p Fu(\))2154
3734 y Fp(2)2194 3770 y Fr(;)17 b(x)p Fu(\))38 b(and)f
Fr(r)2607 3785 y Fo(n)2690 3770 y Fu(=)f(max)p Fq(f)p
Fr(\013)3096 3785 y Fo(n)3143 3770 y Fu(\()p Fr(x)p Fu(\))g(:)g
Fr(x)h Fq(2)g Fu([0)p Fr(;)17 b Fu(1])p Fq(g)p Fu(.)300
3891 y(Com)m(bining)31 b(the)i(ab)s(o)m(v)m(e)g(with)f(\(A.22\))h(in)e
(Lemma)h(A.1)g(\(App)s(endix)h(A\))g(giv)m(es)p Black
300 4053 a Fj(L)-5 b(emma)34 b(4.2.)p Black 48 w Fu(If)f
Fr(f)38 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1],)32
b(then)1443 4273 y Fq(k)p Fr(Q)1570 4288 y Fo(n)1617
4273 y Fr(f)h Fq(\000)22 b Fr(f)11 b Fq(k)1906 4288 y
Fl(1)2008 4273 y Fq(\024)29 b Fu(2)p Fr(w)s Fu(\()p Fr(f)11
b Fu(;)17 b Fr(r)2421 4288 y Fo(n)2466 4273 y Fu(\))p
Fr(;)p Black 1108 w Fu(\(4.5\))p Black 300 4493 a(where)34
b Fr(w)s Fu(\()p Fr(f)5 b(;)17 b Fq(\001)p Fu(\))31 b(is)h(the)h(mo)s
(dulus)f(of)g(con)m(tin)m(uit)m(y)h(of)f Fr(f)43 b Fu(as)33
b(de\014ned)h(in)e(App)s(endix)h(A.)446 4655 y(Using)g(\(A.23\))f(and)g
(Lemma)g(4.1,)g(and)g(noting)g(the)h(fact)f Fr(Q)2679
4670 y Fo(n)2727 4655 y Fr(e)2772 4670 y Fp(0)2839 4655
y Fu(=)27 b Fr(e)2987 4670 y Fp(0)3027 4655 y Fu(,)33
b(w)m(e)g(ha)m(v)m(e)p Black 300 4817 a Fj(L)-5 b(emma)34
b(4.3.)p Black 48 w Fu(If)f Fr(x)28 b Fq(2)g Fu([0)p
Fr(;)17 b Fu(1])32 b(is)g(\014xed)i(and)e(if)g Fr(f)38
b Fq(2)28 b Fr(C)2226 4780 y Fp(1)2266 4817 y Fu([0)p
Fr(;)17 b Fu(1],)32 b(then)949 5092 y Fq(j)p Fr(Q)1054
5107 y Fo(n)1101 5092 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22
b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83
b(\024)1884 5024 y(j)p Fr(f)1971 4988 y Fl(0)1993 5024
y Fu(\()p Fr(x)p Fu(\))p Fq(j)p 1884 5069 269 4 v 1993
5160 a Fu(2)2162 5092 y(\()p Fr(h)22 b Fq(\000)h Fr(x)p
Fu(\))g(+)f Fr(W)2684 5107 y Fo(f)2729 5092 y Fu(\()p
Fr(x)p Fu(\))p Fr(;)45 b(x)28 b Fq(2)g Fr(I)3152 5107
y Fp(1)p Black 3639 5092 a Fu(\(4.6\))p Black 1211 5451
a Fq(j)p Fr(Q)1316 5466 y Fo(n)1363 5451 y Fr(f)11 b
Fu(\()p Fr(x)p Fu(\))23 b Fq(\000)f Fr(f)11 b Fu(\()p
Fr(x)p Fu(\))p Fq(j)83 b(\024)g Fr(W)2228 5466 y Fo(f)2274
5451 y Fu(\()p Fr(x)p Fu(\))p Fr(;)45 b(x)28 b Fq(2)g([)2720
5410 y Fo(n)p Fl(\000)p Fp(1)2720 5477 y Fo(i)p Fp(=2)2857
5451 y Fr(I)2900 5466 y Fo(i)p Black 3639 5451 a Fu(\(4.7\))p
Black Black Black eop
%%Page: 23 32
23 31 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35
b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410
b Fu(23)p Black 861 317 a Fq(j)p Fr(Q)966 332 y Fo(n)1013
317 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)g Fr(f)11
b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)1796 249 y(j)p
Fr(f)1883 213 y Fl(0)1905 249 y Fu(\()p Fr(x)p Fu(\))p
Fq(j)p 1796 294 269 4 v 1906 385 a Fu(2)2074 317 y(\()p
Fr(x)23 b Fq(\000)f Fu(1)g(+)g Fr(h)p Fu(\))h(+)f Fr(W)2765
332 y Fo(f)2810 317 y Fu(\()p Fr(x)p Fu(\))p Fr(;)17
b(x)28 b Fq(2)g Fr(I)3205 332 y Fo(n)3252 317 y Fr(:)p
Black 360 w Fu(\(4.8\))p Black 300 558 a(Here,)33 b Fr(W)649
573 y Fo(f)695 558 y Fu(\()p Fr(x)p Fu(\))28 b(=)f(2)p
Fr(\013)1068 573 y Fo(n)1115 558 y Fu(\()p Fr(x)p Fu(\))p
Fr(w)s Fu(\()p Fr(f)1416 522 y Fl(0)1439 558 y Fu(;)17
b Fr(\013)1545 573 y Fo(n)1592 558 y Fu(\()p Fr(x)p Fu(\)\).)446
716 y(The)34 b(next)f(lemma)e(sho)m(ws)j(that)e Fr(\013)1734
731 y Fo(n)1781 716 y Fu(\()p Fr(x)p Fu(\))h(is)f(simple)f(and)i(only)f
(dep)s(ends)i(on)f Fr(n)p Fu(.)p Black 300 874 a Fj(L)-5
b(emma)34 b(4.4.)p Black 48 w Fr(\013)915 889 y Fo(n)962
874 y Fu(\()p Fr(x)p Fu(\))28 b Fq(\021)g Fr(h=)1331
791 y Fq(p)p 1414 791 49 4 v 83 x Fu(3.)44 b(Hence)33
b Fr(r)1867 889 y Fo(n)1942 874 y Fu(=)28 b Fr(h=)2151
791 y Fq(p)p 2234 791 V 83 x Fu(3)o(.)446 1031 y Fm(Pro)s(of.)44
b Fu(Since)32 b Fr(Q)1124 1046 y Fo(n)1204 1031 y Fu(is)g(linear,)f(b)m
(y)j(Lemma)d(4.1,)954 1242 y Fr(\013)1017 1200 y Fp(2)1016
1266 y Fo(n)1063 1242 y Fu(\()p Fr(x)p Fu(\))84 b(=)f
Fr(Q)1514 1257 y Fo(n)1561 1242 y Fu(\(\()p Fr(t)22 b
Fq(\000)h Fr(x)p Fu(\))1887 1200 y Fp(2)1927 1242 y Fr(;)17
b(x)p Fu(\))27 b(=)h Fr(Q)2272 1257 y Fo(n)2319 1242
y Fu(\()p Fr(t)2392 1200 y Fp(2)2454 1242 y Fq(\000)22
b Fu(2)p Fr(xt)h Fu(+)f Fr(x)2868 1200 y Fp(2)2908 1242
y Fr(;)17 b(x)p Fu(\))1278 1387 y(=)83 b Fr(Q)1514 1402
y Fo(n)1561 1387 y Fu(\()p Fr(t)1634 1346 y Fp(2)1673
1387 y Fr(;)17 b(x)p Fu(\))23 b(+)f Fr(Q)2008 1402 y
Fo(n)2055 1387 y Fu(\()p Fq(\000)p Fu(2)p Fr(xt)h Fu(+)f
Fr(x)2485 1346 y Fp(2)2525 1387 y Fr(;)17 b(x)p Fu(\))1278
1650 y(=)83 b Fr(Q)1514 1665 y Fo(n)1561 1650 y Fu(\()p
Fr(t)1634 1609 y Fp(2)1673 1650 y Fr(;)17 b(x)p Fu(\))23
b(+)1931 1446 y Fi(8)1931 1536 y(<)1931 1715 y(:)2061
1529 y Fq(\000)p Fr(hx)330 b Fu(if)27 b Fr(x)h Fq(2)g
Fr(I)2884 1544 y Fp(1)2061 1650 y Fq(\000)p Fr(x)2193
1613 y Fp(2)2579 1650 y Fu(if)f Fr(x)h Fq(2)g([)2907
1608 y Fo(n)p Fl(\000)p Fp(1)2907 1675 y Fo(i)p Fp(=2)3045
1650 y Fr(I)3088 1665 y Fo(i)2061 1770 y Fq(\000)p Fr(x)p
Fu(\(1)23 b Fq(\000)f Fr(h)p Fu(\))83 b(if)27 b Fr(x)h
Fq(2)g Fr(I)2884 1785 y Fo(n)1278 2017 y Fu(=)83 b Fr(Q)1514
2032 y Fo(n)1561 2017 y Fu(\()p Fr(t)1634 1976 y Fp(2)1673
2017 y Fr(;)17 b(x)p Fu(\))23 b Fq(\000)1938 1892 y Fo(n)p
Fl(\000)p Fp(1)1932 1922 y Fi(X)1947 2132 y Fo(i)p Fp(=1)2076
2017 y Fu(\()p Fr(ih)p Fu(\))2241 1976 y Fp(2)2281 2017
y Fr(\036)2339 2032 y Fo(i)2367 2017 y Fu(\()p Fr(x)p
Fu(\))f Fq(\000)h Fu(\(1)f Fq(\000)g Fr(h)p Fu(\))p Fr(\036)2980
2032 y Fo(n)3027 2017 y Fu(\()p Fr(x)p Fu(\))p Fr(:)300
2315 y Fu(Using)32 b(the)h(de\014nition)f(\(4.3\))g(of)g
Fr(Q)1597 2330 y Fo(n)1644 2315 y Fu(,)h(w)m(e)g(\014nd)g(that)604
2615 y Fr(Q)681 2630 y Fo(n)728 2615 y Fu(\()p Fr(t)801
2574 y Fp(2)840 2615 y Fr(;)17 b(x)p Fu(\))28 b(=)1119
2548 y Fr(h)1175 2512 y Fp(2)p 1119 2592 96 4 v 1142
2684 a Fu(3)1241 2445 y Fi(")1299 2615 y Fr(\036)1357
2630 y Fp(0)1396 2615 y Fu(\()p Fr(x)p Fu(\))23 b(+)1653
2491 y Fo(n)p Fl(\000)p Fp(1)1648 2521 y Fi(X)1662 2731
y Fo(i)p Fp(=1)1791 2615 y Fu(\(3)p Fr(i)1911 2574 y
Fp(2)1973 2615 y Fu(+)f(1\))p Fr(\036)2216 2630 y Fo(i)2244
2615 y Fu(\()p Fr(x)p Fu(\))g(+)2495 2475 y Fi(\022)2578
2548 y Fu(3\(1)g Fq(\000)h Fr(h)p Fu(\))p 2578 2592 352
4 v 2706 2684 a Fr(h)2762 2655 y Fp(2)2962 2615 y Fu(+)f(1)3109
2475 y Fi(\023)3199 2615 y Fr(\036)3257 2630 y Fo(n)3303
2615 y Fu(\()p Fr(x)p Fu(\))3434 2445 y Fi(#)3509 2615
y Fr(:)300 2916 y Fu(Therefore,)34 b(since)1008 2841
y Fi(P)1113 2867 y Fo(n)1113 2945 y(i)p Fp(=0)1248 2916
y Fr(\036)1306 2931 y Fo(i)1334 2916 y Fu(\()p Fr(x)p
Fu(\))28 b Fq(\021)g Fu(1,)300 3220 y Fr(\013)363 3179
y Fp(2)362 3245 y Fo(n)409 3220 y Fu(\()p Fr(x)p Fu(\))83
b(=)792 3153 y Fr(h)848 3117 y Fp(2)p 792 3198 96 4 v
816 3289 a Fu(3)914 3050 y Fi(")972 3220 y Fr(\036)1030
3235 y Fp(0)1070 3220 y Fu(\()p Fr(x)p Fu(\))22 b(+)1327
3096 y Fo(n)p Fl(\000)p Fp(1)1321 3126 y Fi(X)1336 3336
y Fo(i)p Fp(=1)1465 3220 y Fu(\(3)p Fr(i)1585 3179 y
Fp(2)1647 3220 y Fu(+)g(1)f Fq(\000)i Fu(3)p Fr(i)1997
3179 y Fp(2)2037 3220 y Fu(\))p Fr(\036)2133 3235 y Fo(i)2160
3220 y Fu(\()p Fr(x)p Fu(\))g(+)2412 3080 y Fi(\022)2495
3153 y Fu(3\(1)f Fq(\000)g Fr(h)p Fu(\))p 2495 3198 352
4 v 2623 3289 a Fr(h)2679 3260 y Fp(2)2879 3220 y Fu(+)g(1)g
Fq(\000)3157 3153 y Fu(3\(1)g Fq(\000)g Fr(h)p Fu(\))p
3157 3198 V 3285 3289 a Fr(h)3341 3260 y Fp(2)3518 3080
y Fi(\023)3608 3220 y Fr(\036)3666 3235 y Fo(n)3713 3220
y Fu(\()p Fr(x)p Fu(\))3844 3050 y Fi(#)623 3542 y Fu(=)792
3475 y Fr(h)848 3438 y Fp(2)p 792 3519 96 4 v 816 3610
a Fu(3)965 3417 y Fo(n)914 3447 y Fi(X)929 3657 y Fo(i)p
Fp(=0)1075 3542 y Fr(\036)1133 3557 y Fo(i)1161 3542
y Fu(\()p Fr(x)p Fu(\))28 b(=)1433 3475 y Fr(h)1489 3438
y Fp(2)p 1433 3519 V 1457 3610 a Fu(3)1539 3542 y Fr(:)p
1649 3517 89 4 v 1649 3567 4 50 v 1735 3567 V 1649 3570
89 4 v 446 3835 a Fu(The)35 b(follo)m(wing)30 b(t)m(w)m(o)k(theorems)g
(giv)m(e)g(the)f(error)h(of)f(the)g(appro)m(ximation)f(in)g(terms)i(of)
f(the)300 3955 y(uniform)e(norm)h(and)g(the)h Fr(L)1344
3919 y Fp(1)1384 3955 y Fu(-norm,)e(resp)s(ectiv)m(ely)-8
b(.)p Black 300 4113 a Fj(The)j(or)g(em)34 b(4.1.)p Black
48 w Fu(\(i\))d(Let)i Fr(f)39 b Fq(2)28 b Fr(C)7 b Fu([0)p
Fr(;)17 b Fu(1].)42 b(Then)1413 4373 y Fq(k)p Fr(Q)1540
4388 y Fo(n)1587 4373 y Fr(f)32 b Fq(\000)23 b Fr(f)11
b Fq(k)1876 4388 y Fl(1)1978 4373 y Fq(\024)28 b Fu(2)p
Fr(w)s Fu(\()p Fr(f)11 b Fu(;)2392 4305 y Fr(h)p 2355
4350 132 4 v 2355 4370 a Fq(p)p 2438 4370 49 4 v 82 x
Fu(3)2496 4373 y(\))p Fr(:)p Black 1078 w Fu(\(4.9\))p
Black 446 4642 a(\(ii\))31 b(Let)i Fr(f)38 b Fq(2)28
b Fr(C)1041 4606 y Fp(1)1081 4642 y Fu([0)p Fr(;)17 b
Fu(1].)42 b(Then)1095 4908 y Fq(k)p Fr(Q)1222 4923 y
Fo(n)1269 4908 y Fr(f)33 b Fq(\000)23 b Fr(f)11 b Fq(k)1559
4923 y Fl(1)1660 4908 y Fq(\024)1776 4840 y(k)p Fr(f)1885
4804 y Fl(0)1907 4840 y Fq(k)1957 4855 y Fl(1)p 1776
4885 257 4 v 1879 4976 a Fu(2)2042 4908 y Fr(h)22 b Fu(+)2270
4840 y(2)p 2228 4885 132 4 v 2228 4905 a Fq(p)p 2311
4905 49 4 v 82 x Fu(3)2370 4908 y Fr(hw)s Fu(\()p Fr(f)2596
4867 y Fl(0)2618 4908 y Fu(;)2710 4840 y Fr(h)p 2672
4885 132 4 v 2672 4905 a Fq(p)p 2755 4905 49 4 v 82 x
Fu(3)2814 4908 y(\))p Fr(:)p Black 712 w Fu(\(4.10\))p
Black 300 5168 a(F)-8 b(urthermore,)32 b(if)f Fr(f)44
b Fu(is)32 b(constan)m(t)h(on)g Fr(I)1743 5183 y Fp(1)1815
5168 y Fu(and)f Fr(I)2047 5183 y Fo(n)2094 5168 y Fu(,)h(then)1321
5422 y Fq(k)p Fr(Q)1448 5437 y Fo(n)1495 5422 y Fr(f)g
Fq(\000)23 b Fr(f)11 b Fq(k)1785 5437 y Fl(1)1887 5422
y Fq(\024)2043 5355 y Fu(2)p 2002 5399 132 4 v 2002 5419
a Fq(p)p 2085 5419 49 4 v 82 x Fu(3)2144 5422 y Fr(hw)s
Fu(\()p Fr(f)2370 5381 y Fl(0)2392 5422 y Fu(;)2484 5355
y Fr(h)p 2446 5399 132 4 v 2446 5419 a Fq(p)p 2529 5419
49 4 v 82 x Fu(3)2588 5422 y(\))p Fr(:)p Black 938 w
Fu(\(4.11\))p Black Black Black eop
%%Page: 24 33
24 32 bop Black 300 10 a Fk(CHAPTER)34 b(4.)76 b(PIECEWISE)35
b(LINEAR)e(MARK)m(O)m(V)h(APPR)m(O)m(XIMA)-8 b(TION)410
b Fu(24)p Black 446 274 a Fm(Pro)s(of.)43 b Fu(\(i\))31
b(is)g(immediate)e(from)i(Lemmas)g(4.2)g(and)h(4.4.)43
b(\(4.10\))31 b(follo)m(ws)f(from)h(Lemmas)300 395 y(4.3)g(and)h(4.4.)
43 b(If)32 b Fr(f)38 b Fq(2)28 b Fr(C)1194 358 y Fp(1)1234
395 y Fu([0)p Fr(;)17 b Fu(1])31 b(is)g(constan)m(t)i(on)f
Fr(I)2129 410 y Fp(1)2200 395 y Fu(and)g Fr(I)2432 410
y Fo(n)2479 395 y Fu(,)g(then)g(the)h(\014rst)f(term)f(of)h(the)g(righ)
m(t)300 515 y(side)h(of)f(\(4.6\))g(and)g(\(4.8\))g(disapp)s(ears,)h
(so)g(w)m(e)h(ha)m(v)m(e)g(\(4.11\).)p 2705 490 89 4
v 2705 540 4 50 v 2790 540 V 2705 543 89 4 v Black 300
677 a Fj(The)-5 b(or)g(em)34 b(4.2.)p Black 48 w Fu(Let)f
Fr(f)38 b Fq(2)28 b Fr(C)1345 641 y Fp(1)1385 677 y Fu([0)p
Fr(;)17 b Fu(1].)42 b(Then)1123 946 y Fq(k)p Fr(Q)1250
961 y Fo(n)1297 946 y Fr(f)33 b Fq(\000)22 b Fr(f)11
b Fq(k)27 b(\024)i(k)p Fr(f)1828 905 y Fl(0)1850 946
y Fq(k)1900 961 y Fl(1)1975 946 y Fr(h)2031 905 y Fp(2)2093
946 y Fu(+)2242 879 y(2)p 2201 923 132 4 v 2201 943 a
Fq(p)p 2284 943 49 4 v 83 x Fu(3)2342 946 y Fr(hw)s Fu(\()p
Fr(f)2568 905 y Fl(0)2591 946 y Fu(;)2682 879 y Fr(h)p
2645 923 132 4 v 2645 943 a Fq(p)p 2728 943 49 4 v 83
x Fu(3)2786 946 y(\))p Fr(:)p Black 740 w Fu(\(4.12\))p
Black 446 1222 a Fm(Pro)s(of.)42 b Fu(In)m(tegrating)28
b Fr(Q)1368 1237 y Fo(n)1415 1222 y Fr(f)c Fq(\000)13
b Fr(f)40 b Fu(o)m(v)m(er)29 b([0)p Fr(;)17 b Fu(1])27
b(and)i(using)f(Lemmas)f(4.3)h(and)g(4.4,)h(w)m(e)g(obtain)300
1342 y(the)k(error)f(estimate)g(\(4.12\))g(of)g Fr(Q)1567
1357 y Fo(n)1614 1342 y Fr(f)h Fq(\000)23 b Fr(f)43 b
Fu(in)32 b(terms)g(of)g(the)h Fr(L)2616 1306 y Fp(1)2656
1342 y Fu(-norm.)p 3108 1317 89 4 v 3108 1367 4 50 v
3193 1367 V 3108 1370 89 4 v 300 1462 a Fm(Remark)38
b(4.3)c Fu(If)g Fr(f)41 b Fq(2)30 b Fr(C)1264 1426 y
Fo(k)r Fp(+1)1397 1462 y Fu([0)p Fr(;)17 b Fu(1],)34
b(then)g Fr(w)s Fu(\()p Fr(f)2047 1426 y Fp(\()p Fo(k)r
Fp(\))2144 1462 y Fu(;)17 b Fr(r)s Fu(\))29 b(=)h Fr(O)s
Fu(\()p Fr(r)s Fu(\))i([41].)47 b(Th)m(us)36 b(for)d(smo)s(oth)g
Fr(f)45 b Fu(the)300 1583 y(upp)s(er)33 b(b)s(ounds)g(ab)s(o)m(v)m(e)h
(can)f(b)s(e)f(expressed)k(in)c(terms)g(of)g Fr(h)h Fu(only)-8
b(.)446 1703 y(No)m(w)30 b(w)m(e)g(w)m(ould)f(lik)m(e)f(to)h(apply)g
(the)g(ab)s(o)m(v)m(e)h(results)f(to)g(the)g(con)m(v)m(ergence)j(rate)d
(analysis)f(of)300 1824 y(the)38 b(Mark)m(o)m(v)g(metho)s(d)f(for)g
(solving)f(the)h(\014xed)i(densit)m(y)f(problem)e(of)h(the)g(F)-8
b(rob)s(enius-P)m(erron)300 1944 y(op)s(erator)32 b(asso)s(ciated)g
(with)h(Lasota-Y)-8 b(ork)m(e)32 b(class)h(of)f(mappings)f([37].)446
2064 y(Let)39 b Fr(S)45 b Fu(:)38 b([0)p Fr(;)17 b Fu(1])38
b Fq(!)g Fu([0)p Fr(;)17 b Fu(1])38 b(b)s(e)h(a)g(Lasota-Y)-8
b(ork)m(e)39 b(mapping,)g(i.e.,)h Fr(S)k Fu(is)39 b(piecewise)g
Fr(C)3572 2028 y Fp(2)3650 2064 y Fu(with)300 2185 y
Fr(\025)g Fu(=)f(inf)23 b Fq(j)p Fr(S)739 2149 y Fl(0)761
2185 y Fq(j)39 b Fr(>)f Fu(2,)j(and)e(let)f Fr(P)52 b
Fu(:)39 b Fr(L)1649 2149 y Fp(1)1689 2185 y Fu(\(0)p
Fr(;)17 b Fu(1\))37 b Fq(!)i Fr(L)2149 2149 y Fp(1)2188
2185 y Fu(\(0)p Fr(;)17 b Fu(1\))38 b(b)s(e)i(the)f(corresp)s(onding)g
(F)-8 b(rob)s(enius-)300 2305 y(P)m(erron)33 b(op)s(erator.)43
b(Then,)34 b(as)f(pro)m(v)m(ed)h(in)e([37)o(],)h(for)f(an)m(y)h
Fr(f)39 b Fq(2)28 b Fr(L)2673 2269 y Fp(1)2713 2305 y
Fu(\(0)p Fr(;)17 b Fu(1\),)1179 2491 y Fp(1)1142 2521
y Fi(_)1179 2730 y Fp(0)1269 2615 y Fr(P)d(f)38 b Fq(\024)1551
2548 y Fu(2)p 1547 2592 57 4 v 1547 2684 a Fr(\025)1668
2491 y Fp(1)1630 2521 y Fi(_)1668 2730 y Fp(0)1758 2615
y Fr(f)32 b Fu(+)22 b Fr(M)10 b Fq(k)p Fr(f)h Fq(k)p
Fr(;)73 b(M)38 b Fu(is)32 b(a)g(constan)m(t)q Fr(:)446
2922 y Fu(Supp)s(ose)44 b Fr(f)898 2886 y Fl(\003)980
2922 y Fu(is)e(a)g(unique)h(\014xed)h(densit)m(y)g(of)e
Fr(P)14 b Fu(.)73 b(It)43 b(has)g(b)s(een)g(sho)m(wn)h(in)e([18])h
(that)f(if)300 3043 y Fr(f)348 3058 y Fo(n)423 3043 y
Fq(2)28 b Fu(\001)598 3058 y Fo(n)678 3043 y Fu(is)k(the)h
Fr(n)p Fu(-th)f(estimate)g(of)g Fr(f)1720 3007 y Fl(\003)1792
3043 y Fu(via)f(the)i(Mark)m(o)m(v)h(metho)s(d,)e(then)1065
3263 y Fq(k)p Fr(f)1163 3278 y Fo(n)1232 3263 y Fq(\000)23
b Fr(f)1391 3222 y Fl(\003)1430 3263 y Fq(k)1480 3278
y Fo(B)s(V)1625 3263 y Fu(=)28 b Fr(O)s Fu(\()p Fq(k)p
Fr(Q)1972 3278 y Fo(n)2018 3263 y Fr(f)2077 3222 y Fl(\003)2138
3263 y Fq(\000)23 b Fr(f)2297 3222 y Fl(\003)2336 3263
y Fq(k)2386 3278 y Fo(B)s(V)2503 3263 y Fu(\))28 b(=)f
Fr(O)s Fu(\()p Fr(h)p Fu(\))p Fr(;)p Black 682 w Fu(\(4.13\))p
Black 300 3483 a(where)i(the)e(v)-5 b(ariation)25 b(norm)i
Fq(k)p Fr(f)11 b Fq(k)1552 3498 y Fo(B)s(V)1696 3483
y Fq(\021)28 b(k)p Fr(f)11 b Fq(k)g Fu(+)2058 3408 y
Fi(W)2142 3434 y Fp(1)2142 3512 y(0)2198 3483 y Fr(f)g
Fu(.)41 b(In)28 b(other)f(w)m(ords,)j(under)e(the)g Fr(B)5
b(V)21 b Fu(-norm)300 3603 y(the)38 b(error)g(of)f(the)i(appro)m
(ximate)e(solution)f Fr(f)1998 3618 y Fo(n)2083 3603
y Fu(to)i Fr(f)2267 3567 y Fl(\003)2343 3603 y Fu(is)g(of)f(the)i(same)
e(order)h(as)g(that)g(of)g(the)300 3724 y(appro)m(ximation)30
b Fr(Q)1027 3739 y Fo(n)1075 3724 y Fr(f)1134 3687 y
Fl(\003)1205 3724 y Fu(to)i Fr(f)1383 3687 y Fl(\003)1423
3724 y Fu(.)43 b(It)33 b(is)f(unkno)m(wn)i(whether)1367
3944 y Fq(k)p Fr(f)1465 3959 y Fo(n)1534 3944 y Fq(\000)22
b Fr(f)1692 3902 y Fl(\003)1731 3944 y Fq(k)28 b Fu(=)f
Fr(O)s Fu(\()p Fq(k)p Fr(Q)2155 3959 y Fo(n)2202 3944
y Fr(f)2261 3902 y Fl(\003)2322 3944 y Fq(\000)c Fr(f)2481
3902 y Fl(\003)2520 3944 y Fq(k)p Fu(\))p Black 983 w(\(4.14\))p
Black 300 4164 a(for)38 b(the)h(Lasota-Y)-8 b(ork)m(e)39
b(class)g(of)f(mappings)f(or)i(more)f(general)g(piecewise)h(monotonic)e
(ones)300 4284 y(\(it)j(is)g(not)h(true)g(for)f(Ulam's)g(metho)s(d;)k
(see)e([45)o(]\),)h(but)e(n)m(umerical)f(exp)s(erimen)m(ts)h([21])g(ha)
m(v)m(e)300 4404 y(strongly)32 b(indicated)g(so.)44 b(Since)1326
4624 y(\()p Fr(I)30 b Fq(\000)22 b Fr(P)1599 4639 y Fo(n)1646
4624 y Fu(\)\()p Fr(f)1770 4639 y Fo(n)1839 4624 y Fq(\000)h
Fr(f)1998 4583 y Fl(\003)2037 4624 y Fu(\))k(=)h Fr(Q)2283
4639 y Fo(n)2330 4624 y Fr(f)2389 4583 y Fl(\003)2451
4624 y Fq(\000)22 b Fr(f)2609 4583 y Fl(\003)p Black
3591 4624 a Fu(\(4.15\))p Black 300 4854 a(and)35 b(the)g(restriction)f
(of)h Fr(I)d Fq(\000)24 b Fr(P)1484 4869 y Fo(n)1566
4854 y Fu(on)34 b Fr(B)5 b(V)1839 4869 y Fp(0)1911 4854
y Fq(\021)32 b(f)p Fr(f)42 b Fq(2)32 b Fr(B)5 b(V)54
b Fu(:)2507 4774 y Fi(R)2573 4800 y Fp(1)2554 4889 y(0)2629
4854 y Fr(f)11 b(dm)32 b Fu(=)f(0)p Fq(g)k Fu(is)f(in)m(v)m(ertible)g
(for)h Fr(n)300 4974 y Fu(large)c(enough)i([18],)g(w)m(e)g(ha)m(v)m(e)h
(the)f(follo)m(wing)d(error)j(estimate)e(result.)p Black
300 5136 a Fj(The)-5 b(or)g(em)34 b(4.3.)p Black 48 w
Fu(If)e(sup)1157 5160 y Fo(n)1204 5136 y Fq(fk)p Fu(\(\()p
Fr(I)e Fq(\000)22 b Fr(P)1615 5151 y Fo(n)1662 5136 y
Fu(\))p Fq(j)1728 5151 y Fo(B)s(V)1825 5160 y Fg(0)1864
5136 y Fu(\))1902 5100 y Fl(\000)p Fp(1)1996 5136 y Fq(kg)28
b Fr(<)f Fq(1)p Fu(,)33 b(then)g Fq(k)p Fr(f)2707 5151
y Fo(n)2776 5136 y Fq(\000)22 b Fr(f)2934 5100 y Fl(\003)2974
5136 y Fq(k)27 b Fu(=)h Fr(O)s Fu(\()p Fr(h)3327 5100
y Fp(2)3365 5136 y Fu(\).)p Black Black eop
%%Page: 25 34
25 33 bop Black Black Black Black 1714 150 a Fn(Chapter)53
b(5)p Black Black 614 581 a(QUASI-MONTE)h(CARLO)g(ALGORITHM)493
1283 y Fu(The)47 b(main)d(n)m(umerical)g(w)m(ork)j(in)e(Ulam's)g(metho)
s(d)g(is)g(ev)-5 b(aluating)44 b(all)g(the)i(en)m(tries)g(of)300
1403 y(the)i Fr(n)33 b Fq(\002)g Fr(n)47 b Fu(matrix)f
Fr(P)1184 1418 y Fo(n)1279 1403 y Fu(b)m(y)i(form)m(ula)e(\(3.5\))h
(and)h(solving)e(the)i(corresp)s(onding)g(system)g(of)300
1524 y(linear)31 b(equations)i(\(3.6\))g(\()p Fr(P)1343
1539 y Fo(n)1390 1524 y Fu(\))1428 1488 y Fo(T)1483 1524
y Fr(v)f Fu(=)c Fr(v)t Fu(,)33 b(whic)m(h)g(can)g(b)s(e)g(successfully)
i(obtained)d(b)m(y)i(the)f(direct)300 1644 y(iteration)j([19].)59
b(But)39 b(the)f(other)g(n)m(umerical)f(issues)i(should)e(b)s(e)i
(further)f(in)m(v)m(estigated)g(if)f(w)m(e)300 1764 y(w)m(an)m(t)c(to)e
(mak)m(e)h(this)g(metho)s(d)f(a)h(really)e(practical)h(one)h(in)f(ph)m
(ysical)h(applications)e(whic)m(h)i(will)300 1885 y(b)s(e)h(discussed)h
(in)e(this)g(c)m(hapter.)446 2005 y(Although)g(the)h(\()p
Fr(i;)17 b(j)6 b Fu(\))32 b(en)m(try)i(of)e Fr(P)1705
2020 y Fo(n)1784 2005 y Fu(is)g(giv)m(en)g(b)m(y)i(the)f(form)m(ula)d
(\(3.5\))i(or)g(\(3.14\),)g(generally)300 2126 y(sp)s(eaking,)41
b(this)d(is)g(a)h(di\016cult)f(problem)g(since)h(the)g(in)m(v)m(erse)h
(image)d(of)i(a)f(subset)j(under)f(the)300 2246 y(mapping)26
b Fr(S)33 b Fu(is)27 b(hard)g(to)h(get)f(in)g(man)m(y)g(cases,)j(suc)m
(h)f(as)e Fr(S)34 b Fu(do)s(es)27 b(not)h(ha)m(v)m(e)g(an)g(expression)
h(since)300 2366 y Fr(S)38 b Fu(is)31 b(only)g(from)g(some)h(ph)m
(ysical)g(exp)s(erimen)m(ts)g(or)g(the)g(expression)h(of)f
Fr(S)37 b Fu(is)32 b(to)s(o)f(complicated)300 2487 y(to)d(use)g(\(see,)
i(e.g.,)g(examples)d(in)g([1])h(and)g([3]\),)h(esp)s(ecially)e(for)g(m)
m(ulti-dimensional)c(mappings.)300 2607 y(Here)29 b(the)g(idea)f(of)h
(Mon)m(te)g(Carlo)f(approac)m(h)h(is)f(emplo)m(y)m(ed,)i(whic)m(h)f
(has)g(the)g(adv)-5 b(an)m(tage)29 b(of)f(not)300 2728
y(requiring)42 b(explicit)f(ev)-5 b(aluation)41 b(of)h(suc)m(h)j(en)m
(tries)e(of)f(the)h(appro)m(ximate)f(F)-8 b(rob)s(enius-P)m(erron)300
2848 y(op)s(erator)31 b Fr(P)755 2863 y Fo(n)801 2848
y Fu(.)43 b(In)32 b(fact)f(since)h Fr(P)1484 2863 y Fo(n)1562
2848 y Fu(is)f(only)g(an)g(appro)m(ximation)e(to)i Fr(P)14
b Fu(,)31 b(it)f(is)h(b)m(y)h(no)f(means)h(nec-)300 2968
y(essary)f(to)e(ev)-5 b(aluate)29 b(the)h(en)m(tries)h(of)e
Fr(P)1729 2983 y Fo(n)1805 2968 y Fj(exactly)h Fu(if)e(it)h(is)g
(di\016cult)f(to)i(do)f(so.)43 b(Th)m(us)31 b(the)f(Mon)m(te)300
3089 y(Carlo)k(metho)s(d)g(whic)m(h)h(will)d(b)s(e)j(sho)m(wn)h(as)f
(follo)m(ws,)f(is)h(an)f(ideal)f(means)i(for)f(appro)m(ximating)300
3209 y Fr(P)363 3224 y Fo(n)410 3209 y Fu(.)446 3329
y(Considering)d(the)g(one)g(dimensional)e(case,)j(let's)f(rewrite)g
(the)g(en)m(tries)h(of)e(the)h(companion)300 3450 y(matrix)g(of)h
(Ulam's)g(metho)s(d)f(as)1109 3704 y Fr(p)1158 3719 y
Fo(ij)1246 3704 y Fu(=)1360 3637 y Fr(m)p Fu(\()p Fr(I)1526
3652 y Fo(i)1576 3637 y Fq(\\)23 b Fr(S)1731 3601 y Fl(\000)p
Fp(1)1825 3637 y Fu(\()p Fr(I)1906 3652 y Fo(j)1942 3637
y Fu(\)\))p 1360 3681 659 4 v 1573 3772 a Fr(m)p Fu(\()p
Fr(I)1739 3787 y Fo(i)1767 3772 y Fu(\))2056 3704 y(=)2169
3637 y Fr(m)p Fu(\()p Fr(I)2335 3652 y Fo(i)2386 3637
y Fq(\\)g Fr(S)2541 3601 y Fl(\000)p Fp(1)2635 3637 y
Fu(\()p Fr(I)2716 3652 y Fo(j)2752 3637 y Fu(\)\))p 2169
3681 V 2471 3772 a Fr(h)2838 3704 y(:)p Black 774 w Fu(\(5.1\))p
Black 446 3974 a(The)39 b(basic)f(idea)g(of)f(the)i(Mon)m(te)g(Carlo)e
(approac)m(h)i(is)e(that)h(within)f(eac)m(h)i(subin)m(terv)-5
b(al)38 b Fr(I)3812 3989 y Fo(i)300 4095 y Fu(of)e(the)g(partition)e
(of)h([0)p Fr(;)17 b Fu(1])p Fr(;)50 b(N)c Fu(p)s(oin)m(ts)36
b(are)g(selected)h(whic)m(h)g(are)f(called)e Fq(f)p Fr(z)3160
4110 y Fo(i;k)3247 4095 y Fq(g)3297 4059 y Fo(N)3297
4121 y(k)r Fp(=1)3429 4095 y Fu(.)54 b(F)-8 b(or)35 b(an)m(y)300
4215 y(pair)45 b(\()p Fr(i;)17 b(j)6 b Fu(\))47 b(with)f
Fr(i;)17 b(j)57 b Fu(=)51 b(1)p Fr(;)17 b(:)g(:)g(:)32
b(;)17 b(n)p Fu(,)50 b(let)c Fr(q)1914 4230 y Fo(ij)2021
4215 y Fu(b)s(e)h(the)f(n)m(um)m(b)s(er)h(of)f(p)s(oin)m(ts)g
Fr(S)6 b Fu(\()p Fr(z)3299 4230 y Fo(i;k)3386 4215 y
Fu(\))46 b(in)g Fr(I)3641 4230 y Fo(j)3723 4215 y Fu(for)300
4336 y Fr(k)31 b Fu(=)c(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17
b(N)10 b Fu(.)44 b(Then)34 b(w)m(e)f(ha)m(v)m(e)1395
4542 y Fr(q)1438 4557 y Fo(ij)p 1395 4586 104 4 v 1403
4678 a Fr(N)1537 4609 y Fq(\031)1652 4542 y Fr(m)p Fu(\()p
Fr(I)1818 4557 y Fo(i)1869 4542 y Fq(\\)22 b Fr(S)2023
4506 y Fl(\000)p Fp(1)2117 4542 y Fu(\()p Fr(I)2198 4557
y Fo(j)2235 4542 y Fu(\)\))p 1652 4586 659 4 v 1953 4678
a Fr(h)2348 4609 y Fu(=)28 b Fr(p)2501 4624 y Fo(ij)2561
4609 y Fr(:)p Black 1051 w Fu(\(5.2\))p Black 446 4860
a(The)33 b(original)28 b(Mon)m(te)33 b(Carlo)d(metho)s(d)i(\014rst)g
(prop)s(osed)g(in)f([30)o(])h(selected)h(the)f Fr(N)42
b Fu(n)m(um)m(b)s(ers)300 4981 y(randomly)-8 b(.)55 b(That)38
b(is,)g(the)f(p)s(oin)m(ts)g Fr(z)1674 4996 y Fo(i;k)1797
4981 y Fu(are)g(obtained)g(from)f(a)g(random)g(n)m(um)m(b)s(er)i
(generator.)300 5101 y(Numerical)47 b(exp)s(erimen)m(ts)i(indicate)f
(that)h(the)g(resulting)f(error)h(ma)m(y)f(b)s(e)h(relativ)m(ely)f
(large)300 5221 y(compared)c(with)f(the)i(exact)g(Ulam)d(metho)s(d,)k
(that)e(is)g(ev)-5 b(aluating)42 b Fr(p)2970 5236 y Fo(ij)3074
5221 y Fu(exactly)j(b)m(y)f(\(5.1\))g(.)300 5342 y(T)-8
b(o)30 b(get)f(a)h(b)s(etter)g(appro)m(ximation)d(in)i(\(5.2\),)h(the)g
(idea)f(of)g(the)h Fj(quasi-Monte)i(Carlo)f(metho)-5
b(d)29 b Fu(is)300 5462 y(used.)p Black 2021 5764 a(25)p
Black eop
%%Page: 26 35
26 34 bop Black 300 10 a Fk(CHAPTER)34 b(5.)76 b(QUASI-MONTE)34
b(CARLO)e(ALGORITHM)1004 b Fu(26)p Black 446 274 a Fm(Quasi-Mon)m(te)31
b(Carlo)e(metho)s(ds)c Fu(are)h(based)h(on)f(the)g(idea)f(that)g
(random)g(Mon)m(te)i(Carlo)300 395 y(tec)m(hniques)47
b(can)e(often)h(b)s(e)f(impro)m(v)m(ed)g(b)m(y)h(replacing)e(the)h
(underlying)g(source)h(of)f(random)300 515 y(n)m(um)m(b)s(ers)g(with)f
(a)f(more)h(uniformly)e(distributed)h(deterministic)g(sequence,)49
b(and)44 b(leads)g(to)300 635 y(a)d(lo)m(w)m(er)g(discrepancy)i([44)o
(].)69 b(Based)42 b(on)f(this)g(idea,)i(here)f(the)f(test)h(p)s(oin)m
(ts)f Fr(z)3262 650 y Fo(i;k)3389 635 y Fu(are)g(c)m(hosen)300
756 y Fj(deterministic)-5 b(al)5 b(ly)p Fu(.)43 b(In)32
b(other)h(w)m(ords,)h(if)d Fr(I)1887 771 y Fo(i)1943
756 y Fu(=)d([)p Fr(x)2129 771 y Fo(i)p Fl(\000)p Fp(1)2248
756 y Fr(;)17 b(x)2347 771 y Fo(i)p Fl(\000)p Fp(1)2487
756 y Fu(+)22 b Fr(h)p Fu(],)33 b(then)1255 998 y Fr(z)1300
1013 y Fo(i;k)1414 998 y Fu(=)28 b Fr(x)1573 1013 y Fo(i)p
Fl(\000)p Fp(1)1713 998 y Fu(+)1839 930 y Fr(k)p 1821
975 89 4 v 1821 1066 a(N)1920 998 y(h;)44 b(k)31 b Fu(=)d(1)p
Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)31 b(;)17 b(N)5 b(:)p
Black 920 w Fu(\(5.3\))p Black 446 1215 a(Numerical)29
b(results)j(in)e(the)i(last)e(part)h(of)f(the)i(c)m(hapter)f(will)e
(sho)m(w)j(that)f(the)h(quasi-Mon)m(te)300 1336 y(Carlo)f(metho)s(d)g
(is)h(m)m(uc)m(h)g(b)s(etter)g(than)g(the)h(original)28
b(Mon)m(te)33 b(Carlo)e(metho)s(d)g(\(see)i(also)e([20]\).)446
1456 y(Another)43 b(reason)g(wh)m(y)g(the)g(quasi-Mon)m(te)g(Carlo)e
(metho)s(d)h(p)s(erforms)g(b)s(etter)g(than)h(the)300
1576 y(standard)30 b(Mon)m(te)g(Carlo)f(metho)s(d)f(for)h(one)h
(dimensional)d(transformations)h(is)h(the)h(follo)m(wing.)300
1697 y(F)-8 b(rom)21 b(the)i(expression)h(\(5.1\))e(one)h(sees)h(that)e
Fr(p)1992 1712 y Fo(ij)2075 1697 y Fu(is)g(exactly)h(the)g(fraction)e
(of)h(all)f(the)i(p)s(oin)m(ts)f(in)g Fr(I)3812 1712
y Fo(i)300 1817 y Fu(that)g(are)f(mapp)s(ed)h(in)m(to)f
Fr(I)1243 1832 y Fo(j)1301 1817 y Fu(b)m(y)i Fr(S)6 b
Fu(.)39 b(Since)22 b(the)h(one)f(dimensional)d(transformation)h
Fr(S)27 b Fu(considered)300 1938 y(in)22 b(this)g(pap)s(er)h(is)f
(usually)f(a)i(piecewise)g(con)m(tin)m(uous)g(and)g(monotonic)e
(deterministic)f(mapping,)300 2058 y(the)37 b(in)m(v)m(erse)i(image)c
Fr(S)1152 2022 y Fl(\000)p Fp(1)1246 2058 y Fu(\()p Fr(I)1327
2073 y Fo(j)1363 2058 y Fu(\))i(and)g(so)g(the)g(set)h
Fr(I)2128 2073 y Fo(i)2181 2058 y Fq(\\)26 b Fr(S)2339
2022 y Fl(\000)p Fp(1)2433 2058 y Fu(\()p Fr(I)2514 2073
y Fo(j)2550 2058 y Fu(\))37 b(are)g(just)g(the)h(union)e(of)g(sev)m
(eral)300 2178 y(in)m(terv)-5 b(als.)49 b(Th)m(us,)37
b(a)d(go)s(o)s(d)g(estimate)g(of)g Fr(p)1891 2193 y Fo(ij)1986
2178 y Fu(with)h(the)g(Mon)m(te)g(Carlo)f(approac)m(h)h(is)f(c)m(ho)s
(osing)300 2299 y(ev)m(enly)43 b(distributed,)h(not)d(randomly)g
(distributed,)j(test)e(p)s(oin)m(ts)f(from)g Fr(I)3098
2314 y Fo(i)3126 2299 y Fu(.)71 b(This)42 b(giv)m(es)h(the)300
2419 y(idea)32 b(of)g(the)h(quasi-Mon)m(te)g(Carlo)f(metho)s(d)g(that)g
(is)g(adopted)h(here.)600 2539 y(F)-8 b(or)27 b(m)m(ulti-dimensional)c
(cases,)31 b(the)e(basic)f(idea)f(of)h(the)h(quasi-Mon)m(te)f(Carlo)g
(metho)s(d)300 2660 y(is)35 b(similar)d(to)j(the)h(ab)s(o)m(v)m(e.)52
b(With)35 b(the)h(same)f(notation)f(of)h(the)h(last)e(section,)i(let)f
Fr(S)j Fu(:)33 b(\012)g Fq(!)f Fu(\012)300 2780 y(b)s(e)j(a)g
(nonsingular)e(transformation,)h(and)h Fr(T)1991 2795
y Fo(h)2068 2780 y Fu(=)c Fq(f)p Fu(\012)2295 2795 y
Fo(i)2324 2780 y Fq(g)2374 2744 y Fo(n)2374 2805 y(i)p
Fp(=1)2527 2780 y Fu(b)s(e)k(a)f(shap)s(e-regular)h(partition)d(of)300
2901 y(\012)i(with)g(the)h(mesh)f(size)g(c)m(haracterized)h(b)m(y)g
Fr(h)p Fu(.)48 b(Let)35 b(1)2324 2916 y Fo(i)2382 2901
y Fu(=)2577 2861 y Fp(1)p 2498 2878 195 4 v 2498 2935
a Fo(m)p Fp(\(\012)2638 2945 y Ff(i)2665 2935 y Fp(\))2702
2901 y Fr(\037)2763 2916 y Fp(\012)2814 2926 y Ff(i)2879
2901 y Fu(for)e Fr(i)e Fu(=)f(1)p Fr(;)17 b Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(n)p Fu(.)48 b(Then)300 3021 y(the)33 b(en)m(tries)g(of)f
(the)h(companion)e(matrix)g(of)i(Ulam's)e(metho)s(d)h(are)1486
3267 y Fr(p)1535 3282 y Fo(ij)1624 3267 y Fu(=)1737 3200
y Fr(m)p Fu(\(\012)1930 3215 y Fo(i)1981 3200 y Fq(\\)23
b Fr(S)2136 3163 y Fl(\000)p Fp(1)2230 3200 y Fu(\(\012)2338
3215 y Fo(j)2375 3200 y Fu(\)\))p 1737 3244 714 4 v 1964
3335 a Fr(m)p Fu(\(\012)2157 3350 y Fo(i)2186 3335 y
Fu(\))2460 3267 y Fr(:)p Black 1152 w Fu(\(5.4\))p Black
446 3522 a(Ev)m(enly)45 b(distributed)e(p)s(oin)m(ts)h(in)f(\012)1791
3537 y Fo(i)1863 3522 y Fu(are)h(pro)5 b(jected)45 b(whic)m(h)f(are)f
(called)g Fq(f)p Fr(z)3325 3537 y Fo(i;k)3411 3522 y
Fq(g)3461 3486 y Fo(N)3461 3548 y(k)r Fp(=1)3594 3522
y Fu(.)77 b(F)-8 b(or)300 3642 y(an)m(y)35 b(pair)e(\()p
Fr(i;)17 b(j)6 b Fu(\))34 b(with)g Fr(i;)17 b(j)37 b
Fu(=)31 b(1)p Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(n)p Fu(,)34
b(let)g Fr(q)1995 3657 y Fo(ij)2090 3642 y Fu(b)s(e)h(the)g(n)m(um)m(b)
s(er)f(of)g(p)s(oin)m(ts)g Fr(S)6 b Fu(\()p Fr(z)3308
3657 y Fo(i;k)3394 3642 y Fu(\))35 b(in)e(\012)3652 3657
y Fo(j)3723 3642 y Fu(for)300 3763 y Fr(k)e Fu(=)c(1)p
Fr(;)17 b(:)g(:)g(:)32 b(;)17 b(N)10 b Fu(.)44 b(Then)34
b(w)m(e)f(ha)m(v)m(e)1790 3973 y Fr(p)1839 3988 y Fo(ij)1928
3973 y Fq(\031)2043 3905 y Fr(q)2086 3920 y Fo(ij)p 2043
3950 104 4 v 2051 4041 a Fr(N)2156 3973 y(:)p Black 1456
w Fu(\(5.5\))p Black 446 4190 a(In)j(the)g(m)m(ulti-dimensional)31
b(case,)37 b(m)m(uc)m(h)f(more)f(p)s(oin)m(ts)g(in)g(\012)2770
4205 y Fo(i)2834 4190 y Fu(ha)m(v)m(e)i(to)e(b)s(e)g(pro)5
b(jected)37 b(to)300 4311 y(k)m(eep)42 b(the)e(least)g(computation)f
(tolerance.)66 b(This)40 b(means)h(that)f(the)g(pro)s(cess)i(of)d(the)i
(Mon)m(te)300 4431 y(Carlo)27 b(is)h(rather)h(slo)m(w)f(in)g(suc)m(h)i
(cases,)h(and)d(sometimes)g(using)g(only)g(one)h(pro)s(cessor)g(is)f
(imp)s(os-)300 4552 y(sible)g(to)h(implemen)m(t)e(the)i(computation.)41
b(F)-8 b(ortunately)g(,)28 b(from)g(the)h(expression)i(of)d
Fr(p)3440 4567 y Fo(ij)3529 4552 y Fu(in)g(\(5.4\))300
4672 y(w)m(e)35 b(kno)m(wn)g(that)f(the)h(ev)-5 b(aluation)32
b(of)h Fr(p)1769 4687 y Fo(ij)1864 4672 y Fu(is)g(indep)s(enden)m(t)i
(of)f(eac)m(h)h(other.)48 b(Therefore)35 b(paral-)300
4792 y(lel)e(computers)i(can)g(b)s(e)g(used)h(to)e(sp)s(eedup)i(the)f
(calculation)d(pro)s(cess.)51 b(The)35 b(related)g(parallel)300
4913 y(algorithms)30 b(are)i(discussed)j(later.)446 5033
y(Therefore,)c(the)f(quasi-Mon)m(te)g(Carlo)e(metho)s(d)h(is)f(based)i
(on)g(the)f(standard)h(Mon)m(te)g(Carlo)300 5153 y(metho)s(d)37
b(and)g(impro)m(v)m(es)h(the)g(e\016ciency)g(b)m(y)h(pro)5
b(jecting)37 b(uniformly)e(distributed)i(determin-)300
5274 y(istic)d(sequences)k(rather)e(than)f(random)f(n)m(um)m(b)s(ers.)
52 b(The)36 b(term)f(of)g(discrepancy)h(for)f(random)300
5394 y(n)m(um)m(b)s(ers)h(is)f(a)g(measure)h(of)f(the)h(uniformit)m(y)d
(of)i(the)h(n)m(um)m(b)s(ers.)52 b(The)37 b(de\014nition)d(of)h
(discrep-)300 5515 y(ancy)e(is)f(the)h(follo)m(wing.)p
Black Black eop
%%Page: 27 36
27 35 bop Black 300 10 a Fk(CHAPTER)34 b(5.)76 b(QUASI-MONTE)34
b(CARLO)e(ALGORITHM)1004 b Fu(27)p Black Black 300 274
a Fj(De\014nition)34 b(5.1.)p Black 48 w Fu([44)o(])d(Consider)g(a)f
(set)h Fq(f)p Fr(x)1889 289 y Fo(i)1917 274 y Fq(g)f
Fu(of)g Fr(N)41 b Fu(p)s(oin)m(ts)30 b(in)g(the)g Fr(d)p
Fu(-dimensional)d(unit)j(cub)s(e.)300 395 y(The)k(discrepancy)f(of)g
(this)f(set)h(is)1252 702 y Fr(D)1333 717 y Fo(N)1427
702 y Fu(=)28 b(sup)1577 783 y Fo(E)1694 702 y Fq(j)1752
634 y Fu(1)p 1732 679 89 4 v 1732 770 a Fr(N)1888 577
y Fo(N)1847 607 y Fi(X)1853 816 y Fo(n)p Fp(=1)2008 702
y Fr(\037)2069 717 y Fo(E)2128 702 y Fu(\()p Fr(x)2221
717 y Fo(n)2269 702 y Fu(\))22 b Fq(\000)g Fr(m)p Fu(\()p
Fr(E)6 b Fu(\))p Fq(j)p Fr(:)p Black 917 w Fu(\(5.6\))p
Black 300 1009 a(Here)31 b Fr(E)36 b Fu(is)29 b(a)h(sub-rectangle)g(of)
g(the)g(unit)g(cub)s(e,)h Fr(m)p Fu(\()p Fr(E)6 b Fu(\))30
b(is)g(the)g(v)m(olume)g(of)f Fr(E)6 b Fu(,)31 b(and)f(the)h(sup)f(is)
300 1129 y(tak)m(en)k(o)m(v)m(er)f(all)e(suc)m(h)j(sub-rectangles,)f
(and)g Fr(\037)2043 1144 y Fo(E)2135 1129 y Fu(is)f(the)h(c)m
(haracteristic)f(function)g(of)h Fr(E)6 b Fu(.)446 1291
y(A)46 b(uniformly)d(distributed)i(in\014nite)g(sequence)j(of)d(p)s
(oin)m(ts)h(in)e(the)i Fr(d)p Fu(-dimensional)d(unit)300
1412 y(cub)s(e)33 b(is)f(a)h(sequence)i(for)d(whic)m(h)1721
1632 y(lim)1687 1694 y Fo(N)7 b Fl(!1)1908 1632 y Fr(D)1989
1647 y Fo(N)2084 1632 y Fq(!)27 b Fu(0)p Fr(:)p Black
1352 w Fu(\(5.7\))p Black 300 1881 a(The)34 b(exp)s(ected)g(v)-5
b(alue)32 b(of)g(the)h(discrepancy)h(of)e(a)g(random)g(sequence)j
(satis\014es)1434 2175 y Fr(E)6 b Fu(\()p Fr(D)1631 2190
y Fo(N)1698 2175 y Fu(\))27 b(=)h Fr(O)s Fu(\()1983 2016
y Fi(r)p 2082 2016 394 4 v 2092 2108 a Fu(log)16 b(log)h
Fr(N)p 2092 2152 374 4 v 2234 2243 a(N)2475 2175 y Fu(\))p
Fr(:)p Black 1099 w Fu(\(5.8\))p Black 300 2428 a(But)33
b(a)f(quasi-random)f(or)h(lo)m(w)h(discrepancy)h(sequence)h
(satis\014es)e(the)g(condition)1632 2712 y Fr(D)1713
2727 y Fo(N)1808 2712 y Fq(\024)28 b Fr(C)1983 2727 y
Fo(d)2033 2645 y Fu(log)2159 2602 y Fo(d)2216 2645 y
Fr(N)p 2033 2689 272 4 v 2125 2780 a(N)2315 2712 y(:)p
Black 1297 w Fu(\(5.9\))p Black 300 2957 a(Here)k Fr(C)599
2972 y Fo(d)671 2957 y Fu(is)g(a)f(constan)m(t)i(for)e(the)h(sequence,)
j(whic)m(h)d(is)f(indep)s(enden)m(t)i(of)e Fr(N)42 b
Fu(but)32 b(ma)m(y)g(dep)s(end)300 3078 y(on)g(the)h(dimension)f
Fr(d)p Fu(.)446 3198 y(F)-8 b(rom)42 b(the)i(ab)s(o)m(v)m(e)h(form)m
(ulae,)f(it)f(can)h(b)s(e)f(seen)i(that)e(the)h(error)g(b)s(ound)g(for)
f(the)g(quasi-)300 3319 y(Mon)m(te)g(Carlo)e(metho)s(d)g(\(ab)s(out)h
Fr(O)s Fu(\()p Fr(N)1783 3282 y Fl(\000)p Fp(1)1877 3319
y Fu(\)\))g(is)f(m)m(uc)m(h)i(b)s(etter)g(than)f(that)f(for)h(the)h
(standard)300 3439 y(Mon)m(te)33 b(Carlo)f(metho)s(d)g(\(ab)s(out)g
Fr(O)s Fu(\()p Fr(N)1745 3403 y Fl(\000)p Fp(1)p Fo(=)p
Fp(2)1910 3439 y Fu(\)\).)446 3559 y(The)24 b(n)m(umerical)d(implemen)m
(tation)e(of)j(Ulam's)g(metho)s(d)g(com)m(bined)g(with)g(the)h(ab)s(o)m
(v)m(e)g(quasi-)300 3680 y(Mon)m(te)35 b(Carlo)d(approac)m(h)i(giv)m
(es)h(rise)e(to)g(the)i(follo)m(wing)c Fm(quasi-Mon)m(te)39
b(Carlo)f(algorithm)300 3800 y Fu(for)32 b(the)h(computation)e(of)h
(\014xed)i(densities)f(of)f(F)-8 b(rob)s(enius-P)m(erron)32
b(op)s(erators)g([19])h([20)o(]:)p Black 419 4028 a(1.)p
Black 49 w(Let)d Fr(T)773 4043 y Fo(h)846 4028 y Fu(=)d
Fq(f)p Fu(\012)1069 4043 y Fo(i)1098 4028 y Fq(g)1148
3992 y Fo(n)1148 4053 y(i)p Fp(=1)1296 4028 y Fu(b)s(e)j(a)g(shap)s
(e-regular)f(partition)f(of)h(\012)h(with)g(the)g(mesh)h(size)f(c)m
(harac-)544 4149 y(terized)i(b)m(y)h Fr(h)p Fu(.)43 b(F)-8
b(or)32 b(example,)f(in)h(one)g(dimensional)d(cases,)34
b(c)m(ho)s(ose)f Fr(n)f Fu(equal)g(subin)m(ter-)544 4269
y(v)-5 b(als)32 b(of)g(the)h(partition)d(of)i([0)p Fr(;)17
b Fu(1].)p Black 419 4473 a(2.)p Black 49 w(Use)34 b(the)g(quasi-Mon)m
(te)f(Carlo)g(metho)s(d)f(and)i(form)m(ulae)d(\(5.1\))i(to)g(\(5.5\))g
(to)g(ev)-5 b(aluate)32 b(of)544 4593 y(the)h(matrix)e
Fr(P)1092 4608 y Fo(h)1137 4593 y Fu(.)p Black 419 4796
a(3.)p Black 49 w(Select)44 b(a)g(starting)f(nonnegativ)m(e)h(v)m
(ector)h Fr(c)i Fu(=)g(\()p Fr(c)2454 4811 y Fp(1)2493
4796 y Fr(;)17 b(c)2579 4811 y Fp(2)2618 4796 y Fr(;)g
Fq(\001)g(\001)g(\001)32 b Fr(;)17 b(c)2898 4811 y Fo(n)2944
4796 y Fu(\))2982 4760 y Fo(T)3037 4796 y Fu(;)50 b(a)43
b(usual)h(c)m(hoice)g(is)544 4917 y Fr(c)28 b Fu(=)f(\(1)p
Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)30 b Fr(;)17
b Fu(1\))1220 4881 y Fo(T)1275 4917 y Fu(.)p Black 419
5120 a(4.)p Black 49 w(Calculate)31 b Fr(c)1019 5084
y Fl(\003)1087 5120 y Fu(=)c Fr(P)1267 5084 y Fo(T)1253
5146 y(h)1322 5120 y Fr(c)32 b Fu(and)h(the)g(1-norm)e(error)h(Error)h
(=)27 b Fq(k)p Fr(c)2785 5084 y Fl(\003)2847 5120 y Fq(\000)22
b Fr(c)p Fq(k)p Fu(.)p Black 419 5324 a(5.)p Black 49
w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 5287 y Fl(\003)1052
5324 y Fu(and)g(rep)s(eat)f(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e
(Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544
5444 y(tolerance.)p Black Black eop
%%Page: 28 37
28 36 bop Black 300 10 a Fk(CHAPTER)34 b(5.)76 b(QUASI-MONTE)34
b(CARLO)e(ALGORITHM)1004 b Fu(28)p Black Black 419 274
a(6.)p Black 49 w(Let)34 b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e
Fq(k)p Fr(c)p Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470
289 y Fo(h)2545 274 y Fu(=)2651 200 y Fi(P)2756 226 y
Fo(n)2756 303 y(i)p Fp(=1)2891 274 y Fr(c)2933 289 y
Fo(i)2961 274 y Fu(1)3010 289 y Fo(i)3072 274 y Fu(is)f(an)g(appro)m
(ximate)544 395 y(\014xed)g(densit)m(y)-8 b(.)446 623
y(Some)29 b(results)h(of)f(the)g(n)m(umerical)f(exp)s(erimen)m(t)i
(with)e(the)i(quasi-Mon)m(te)g(Carlo)e(algorithm)300
743 y(will)42 b(b)s(e)i(presen)m(ted)i(in)e(Chapter)h(7,)i(and)d(from)f
(there)i(w)m(e)g(can)f(see)h(clearly)f(that)f(the)i(new)300
864 y(algorithm)36 b(dev)m(elop)s(ed)41 b(in)e(this)g(thesis)h(w)m
(orks)h(m)m(uc)m(h)f(more)f(e\016cien)m(tly)h(than)g(the)g(standard)300
984 y(Mon)m(te)33 b(Carlo)f(metho)s(d,)g(as)h(predicted)g(b)m(y)g(the)g
(theoretical)f(analysis)g(in)g(this)g(c)m(hapter.)p Black
Black eop
%%Page: 29 38
29 37 bop Black Black Black Black 1714 150 a Fn(Chapter)53
b(6)p Black Black 1050 581 a(P)-13 b(ARALLEL)53 b(ALGORITHMS)459
1283 y Fu(In)33 b(implemen)m(ting)d(Ulam's)i(metho)s(d,)g(the)i
(quasi-Mon)m(te)f(Carlo)f(metho)s(d)g(studied)h(in)g(the)300
1403 y(previous)j(c)m(hapter)g(has)f(o)m(v)m(ercome)h(the)f(di\016cult)
m(y)g(on)g(the)h(ev)-5 b(aluation)33 b(of)i(the)g(Ulam)e(matrix)300
1524 y(when)26 b(the)f(in)m(v)m(erse)h(image)d(is)h(hard)h(or)f(imp)s
(ossible)e(to)j(obtain.)40 b(But)24 b(an)m(y)i(t)m(yp)s(e)f(of)f(Mon)m
(te)i(Carlo)300 1644 y(approac)m(h)j(has)g(the)g(disadv)-5
b(an)m(tage)28 b(of)g(time)f(consuming.)42 b(F)-8 b(or)27
b(example,)i(if)e(the)i(in)m(terv)-5 b(al)28 b([0)p Fr(;)17
b Fu(1])300 1764 y(is)36 b(divided)g(in)m(to)g(1000)g(subin)m(terv)-5
b(als)36 b(in)g(Ulam's)f(metho)s(d,)i(and)g(if)e(for)h(eac)m(h)i(subin)
m(terv)-5 b(al)36 b(w)m(e)300 1885 y(c)m(ho)s(ose)42
b(1000)d(test)j(p)s(oin)m(ts)e(for)g(the)h(Mon)m(te)h(Carlo)e
(computation,)h(then)g(the)g(ev)-5 b(aluation)39 b(of)300
2005 y(all)e(the)i(1000)26 b Fq(\002)h Fu(1000)37 b(=)i(1000000)e(en)m
(tries)j(of)e(the)i(corresp)s(onding)f(Ulam)e(matrix)g(requires)300
2126 y(ab)s(out)42 b(1000000)28 b Fq(\002)i Fu(1000)44
b(=)h(1000000000)e(=)i(10)2180 2089 y Fp(9)2262 2126
y Fu(mapping)c(ev)-5 b(aluations)41 b(alone,)k(whic)m(h)e(is)300
2246 y(time)32 b(exp)s(ensiv)m(e.)47 b(If)33 b(the)h(transformation)d
(is)h(m)m(ulti-dimensional,)d(the)k(resulting)f(n)m(umerical)300
2366 y(w)m(ork)37 b(of)g(the)g(mapping)e(ev)-5 b(aluation)34
b(from)i(the)h(Mon)m(te)g(Carlo)f(approac)m(h)h(is)f(v)m(ery)i(time)d
(con-)300 2487 y(suming.)42 b(Therefore,)33 b(for)e(high)f(dimensional)
f(transformations,)h(it)g(is)h(v)m(ery)i(di\016cult)d(or)h(ev)m(en)300
2607 y(imp)s(ossible)36 b(for)h(a)h(single)f(computer)h(to)g(\014nish)g
(the)h(n)m(umerical)d(w)m(ork)j(within)e(a)h(reasonable)300
2728 y(time.)k(Ho)m(w)m(ev)m(er,)34 b(in)e(ph)m(ysical)g(applications)e
(the)i(dimension)f Fr(d)g Fu(of)h(the)g(transformation)e(ma)m(y)300
2848 y(b)s(e)39 b(v)m(ery)h(large.)61 b(F)-8 b(or)38
b(example,)h(in)f(coupled)h(mapping)e(lattices,)j(whic)m(h)f(ha)m(v)m
(e)h(b)s(een)f(widely)300 2968 y(used)25 b(to)f(mo)s(del)f(the)h(v)-5
b(arious)24 b(t)m(yp)s(es)i(of)d(spatiotemp)s(oral)f(c)m(haos)j
(arising)d(in)i(spatially)e(extended)300 3089 y(systems,)34
b(w)m(e)g(are)e(in)m(terested)i(in)e(a)g(one)h(dimensional)d(arra)m(y)j
(of)f(the)h(form)1161 3326 y Fr(x)1216 3285 y Fo(t)p
Fp(+1)1216 3352 y Fo(i)1363 3326 y Fu(=)28 b(\(1)22 b
Fq(\000)g Fr(\017)p Fu(\))p Fr(f)11 b Fu(\()p Fr(x)1904
3285 y Fo(t)1904 3351 y(i)1935 3326 y Fu(\))22 b(+)2107
3259 y Fr(\017)p 2103 3303 49 4 v 2103 3395 a Fu(2)2161
3326 y([)p Fr(f)11 b Fu(\()p Fr(x)2340 3285 y Fo(t)2340
3351 y(i)p Fl(\000)p Fp(1)2459 3326 y Fu(\))22 b(+)g
Fr(f)11 b Fu(\()p Fr(x)2769 3285 y Fo(t)2769 3351 y(i)p
Fp(+1)2887 3326 y Fu(\)])p Fr(;)300 3572 y Fu(where)46
b Fr(f)56 b Fu(is)45 b(a)g(one)g(dimensional)e(mapping,)k
Fr(t)e Fu(is)g(the)g(discrete)h(time,)h Fr(i)i Fu(=)g(1)p
Fr(;)17 b Fu(2)p Fr(;)g(:)g(:)g(:)32 b(;)17 b(d)44 b
Fu(is)300 3692 y(a)f(lattice)f(site,)k(and)d Fr(\017)j
Fq(2)g Fu(\(0)p Fr(;)17 b Fu(1\))43 b(is)f(the)i(coupling)e(parameter)h
([9].)75 b(Note)43 b(that)g(the)h(ab)s(o)m(v)m(e)300
3813 y(expressions)g(de\014ne)f(an)f Fr(d)p Fu(-dimensional)c(mapping.)
71 b(T)-8 b(o)42 b(study)h(the)f(statistical)e(prop)s(erties)300
3933 y(of)d(the)h(system)g(one)g(should)g(b)s(e)f(able)g(to)g(compute)h
(a)f(\014xed)i(densit)m(y)f(of)f(the)h(corresp)s(onding)300
4053 y(F)-8 b(rob)s(enius-P)m(erron)38 b(op)s(erator.)58
b(In)38 b(t)m(ypical)f(situations)g(w)m(e)i(are)f(dealing)e(with)i
(systems)h(of)e(a)300 4174 y(large)27 b(spatial)g(extension,)j(for)d
(example)h Fr(d)g Fu(ma)m(y)g(b)s(e)h(as)f(big)f(as)i(10)2724
4137 y Fp(6)2763 4174 y Fu(.)42 b(Then)29 b(the)g(corresp)s(onding)300
4294 y(n)m(um)m(b)s(er)35 b(of)g(the)g(mapping)e(ev)-5
b(aluations)34 b(with)g(the)i(Mon)m(te)f(Carlo)f(approac)m(h)i(ma)m(y)e
(b)s(e)h(ab)s(out)300 4414 y(\(1000)9 b Fq(\002)g Fu(1000\))863
4378 y Fp(10)933 4355 y Fg(6)979 4414 y Fq(\002)g Fu(10)1163
4378 y Fp(3)1229 4414 y Fu(=)28 b(10)1431 4378 y Fp(6000003)1682
4414 y Fu(.)41 b(Th)m(us,)29 b(ev)m(en)e(a)f(curren)m(t)h(sup)s
(ercomputer)g(cannot)f(\014nish)300 4535 y(the)33 b(n)m(umerical)e(w)m
(ork)j(within)d(the)i(required)g(time.)446 4655 y(F)-8
b(ortunately)28 b(from)f(the)h(expression)i(\(3.5\),)e(w)m(e)h
(immediately)c(see)30 b(that)e(the)g(ev)-5 b(aluation)26
b(of)300 4776 y(the)k(en)m(tries)h(of)f Fr(P)947 4791
y Fo(n)1023 4776 y Fu(is)g Fj(indep)-5 b(endent)31 b(of)f
Fu(eac)m(h)h(other.)42 b(Therefore)31 b(the)g(parallel)c(computers)k
(can)300 4896 y(b)s(e)k(used)i(to)d(do)h(the)h(Mon)m(te)g(Carlo)e(ev)-5
b(aluation)33 b(to)i(reduce)i(the)e(total)f(computational)e(time.)300
5016 y(Because)e(of)f(the)g(errors)g(from)f(the)h(Mon)m(te)h(Carlo)e
(ev)-5 b(aluation,)28 b(the)h(resulting)f(appro)m(ximation)300
5137 y(of)i(the)h(Ulam)e(matrix)h(is)g(not)h(exactly)g(sto)s(c)m
(hastic.)43 b(Hence)32 b(in)e(our)h(algorithm,)d(after)i(forming)300
5257 y(the)g(Ulam)f(matrix)f(n)m(umerically)-8 b(,)29
b(w)m(e)i(normalize)c(its)j(ro)m(ws)h(to)e(mak)m(e)i(it)d(a)i(sto)s(c)m
(hastic)g(one.)43 b(As)300 5377 y(w)m(e)e(men)m(tioned)e(in)g(Chapter)i
(3,)g(this)f(matrix)e(can)i(b)s(e)g(view)m(ed)h(as)f(a)f(transition)f
(matrix)g(for)300 5498 y(a)e(Mark)m(o)m(v)i(c)m(hain.)54
b(So)36 b(from)f(the)i(theory)f(and)h(metho)s(ds)f(of)g(Mark)m(o)m(v)h
(c)m(hains)g([32)o(],)h(a)d(simple)p Black 2021 5764
a(29)p Black eop
%%Page: 30 39
30 38 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8
b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(30)p Black 300 274
a(iteration)39 b(of)i(the)h(matrix)d(will)g(usually)i(giv)m(e)g(an)g
(accurate)h(\014xed)h(densit)m(y)f(in)e(man)m(y)h(cases,)300
395 y(suc)m(h)34 b(as)f(when)h Fr(S)k Fu(is)32 b(ergo)s(dic)g(\(see)h
(some)g(argumen)m(ts)f(in)g([29])g(in)g(this)h(direction\).)446
515 y(Based)40 b(on)e(the)i(ab)s(o)m(v)m(e)f(computational)d
(consideration,)j(w)m(e)h(are)f(ready)g(to)f(prop)s(ose)i(the)300
635 y(follo)m(wing)e(t)m(w)m(o)k(parallel)c(algorithms)g(for)i
(calculating)e(a)j(\014xed)h(densit)m(y)f(of)g(the)g(F)-8
b(rob)s(enius-)300 756 y(P)m(erron)37 b(op)s(erator)e
Fr(P)14 b Fu(.)54 b(The)37 b(\014rst)f(one)h(computes)f(the)h(Ulam)d
(matrix)h(with)h(m)m(ulti-pro)s(cessor)300 876 y(and)f(calculates)f
(the)i(appro)m(ximate)e(\014xed)i(densit)m(y)g(with)e(a)h(single)f(pro)
s(cessor)i(via)e(the)h(direct)300 997 y(iteration)h(sc)m(heme.)59
b(In)38 b(the)g(second)h(algorithm)34 b(the)k(computation)e(of)h(the)h
(\014xed)h(densit)m(y)f(is)300 1117 y(also)32 b(parallelized.)446
1237 y(Supp)s(ose)46 b Fr(p)f Fu(pro)s(cessors)h(are)e(used)i(to)f
(compute)f(the)h(matrix)f Fr(P)2933 1252 y Fo(n)3024
1237 y Fu(in)g(Ulam's)f(metho)s(d.)300 1358 y(Cho)s(ose)29
b(the)h(n)m(um)m(b)s(er)f Fr(n)g Fu(of)f(the)i(partitions)d(to)h(b)s(e)
h Fr(n)f Fu(=)g Fr(pr)s Fu(.)41 b(Then)30 b(the)g(ro)m(w)f(or)f(column)
g(based)300 1478 y(strip)41 b(partition)f(metho)s(d)h(is)g(emplo)m(y)m
(ed)h(to)g(manipulate)d(the)k Fr(pr)31 b Fq(\002)d Fr(pr)45
b Fu(matrix)40 b(b)m(y)j(using)e Fr(p)300 1598 y Fu(pro)s(cessors.)46
b(That)33 b(is,)f(eac)m(h)i(pro)s(cessor)g(computes)f
Fr(r)j Fu(ro)m(ws)d(or)g(columns)f(of)g(the)h(matrix,)f(and)300
1719 y(eac)m(h)h(en)m(try)h(of)e(the)h(matrix)e(is)h(calculated)g(b)m
(y)i(using)e(the)h(quasi-Mon)m(te)g(Carlo)e(metho)s(d.)446
1839 y(The)37 b(idea)e(of)g(the)i(\014rst)f(parallel)d(algorithm)f(is)k
(that,)g(after)f(all)f(the)i(en)m(tries)h(of)e(eac)m(h)i(ro)m(w)300
1960 y(or)30 b(column)e(are)i(calculated,)g(they)h(are)f(sen)m(t)h(to)f
(the)g(\014rst)g(pro)s(cessor)h(for)f(the)g(computation)e(of)300
2080 y(the)33 b(\014xed)h(densit)m(y)f(function)f(b)m(y)i(the)f(direct)
f(iteration)f(metho)s(d)h([19)o(].)446 2200 y(Com)m(bining)h(Ulam's)g
(metho)s(d)h(and)h(the)f(quasi-Mon)m(te)h(Carlo)f(approac)m(h)g(for)g
(computing)300 2321 y(a)d(\014xed)h(densit)m(y)g(of)e(the)h(F)-8
b(rob)s(enius-P)m(erron)31 b(op)s(erator,)g(the)g(\014rst)h(parallel)c
(algorithm)g(can)j(b)s(e)300 2441 y(describ)s(ed)i(as)g(follo)m(ws:)300
2645 y Fm(Ulam's)k(Matrix)g(P)m(arallel)e(Algorithm)f(\(UMP)-9
b(A\):)p Black 419 2873 a Fu(1.)p Black 49 w(Let)46 b
Fr(T)789 2888 y Fo(h)884 2873 y Fu(=)j Fq(f)p Fu(\012)1129
2888 y Fo(i)1158 2873 y Fq(g)1208 2837 y Fo(n)1208 2897
y(i)p Fp(=1)1372 2873 y Fu(b)s(e)c(a)h(shap)s(e-regular)f(partition)e
(of)i(\012.)83 b(F)-8 b(or)45 b(example,)k(in)c(one)544
2993 y(dimensional)40 b(cases,)46 b(c)m(ho)s(ose)d Fr(n)g
Fu(equal)f(subin)m(terv)-5 b(als)42 b(of)g(the)h(partition)d(of)i([0)p
Fr(;)17 b Fu(1])42 b(and)544 3114 y(select)33 b Fr(p)f
Fu(pro)s(cessors)i(for)e(the)h(computation.)p Black 419
3317 a(2.)p Black 49 w(Use)i(the)f(quasi-Mon)m(te)h(Carlo)e(metho)s(d)g
(and)h(form)m(ula)e(\(5.1\))i Fq(\030)g Fu(\(5.5\))g(to)g(p)s(erform)f
(the)544 3437 y(parallel)e(ev)-5 b(aluation)31 b(of)i(the)h(matrix)e
Fr(P)2023 3452 y Fo(h)2068 3437 y Fu(.)46 b(Then)35 b(send)g(all)c(the)
j(en)m(tries)g Fr(p)3288 3452 y Fo(ij)3382 3437 y Fu(to)f(the)h
(\014rst)544 3558 y(pro)s(cessor)f(and)g(set)g(all)e(the)i(other)g(pro)
s(cessors)h(idle.)p Black 419 3761 a(3.)p Black 49 w(In)26
b(the)h(\014rst)f(pro)s(cessor,)j(select)d(a)g(starting)f(nonnegativ)m
(e)h(v)m(ector)h Fr(c)h Fu(=)g(\()p Fr(c)3230 3776 y
Fp(1)3269 3761 y Fr(;)17 b(c)3355 3776 y Fp(2)3394 3761
y Fr(;)g Fq(\001)g(\001)g(\001)31 b Fr(;)17 b(c)3673
3776 y Fo(n)3720 3761 y Fu(\))3758 3725 y Fo(T)3813 3761
y Fu(;)544 3882 y(a)32 b(usual)g(c)m(hoice)h(is)f Fr(c)c
Fu(=)g(\(1)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g(\001)30
b Fr(;)17 b Fu(1\))1945 3845 y Fo(T)1999 3882 y Fu(.)p
Black 419 4085 a(4.)p Black 49 w(Calculate)31 b Fr(c)1019
4049 y Fl(\003)1087 4085 y Fu(=)c Fr(P)1267 4049 y Fo(T)1253
4111 y(h)1322 4085 y Fr(c)32 b Fu(and)h(the)g(1-norm)e(error)h(Error)h
(=)27 b Fq(k)p Fr(c)2785 4049 y Fl(\003)2847 4085 y Fq(\000)22
b Fr(c)p Fq(k)p Fu(.)p Black 419 4288 a(5.)p Black 49
w(Let)41 b Fr(c)i Fu(=)f Fr(c)972 4252 y Fl(\003)1052
4288 y Fu(and)g(rep)s(eat)f(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e
(Error)h Fr(<)h(\017)p Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544
4409 y(tolerance.)p Black 419 4612 a(6.)p Black 49 w(Let)34
b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p
Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 4627 y Fo(h)2545
4612 y Fu(=)2651 4537 y Fi(P)2756 4564 y Fo(n)2756 4641
y(i)p Fp(=1)2891 4612 y Fr(c)2933 4627 y Fo(i)2961 4612
y Fu(1)3010 4627 y Fo(i)3072 4612 y Fu(is)f(an)g(appro)m(ximate)544
4733 y(\014xed)g(densit)m(y)-8 b(.)446 4961 y(In)25 b(the)g(parallel)c
(algorithm)g(implemen)m(tation,)i(w)m(e)j(emplo)m(y)e(the)g
(distributed)g(\(h)m(yp)s(ercub)s(e\))300 5081 y(net)m(w)m(ork)33
b(arc)m(hitecture.)44 b(The)32 b(ab)s(o)m(v)m(e)g(all-to-one)d(accum)m
(ulation)g(pro)s(cedure)k(can)f(b)s(e)f(referred)300
5202 y(to)h(Program)g(3.1)g(of)g([35].)446 5322 y(Let)e
Fr(t)653 5337 y Fo(s)720 5322 y Fu(b)s(e)g(the)g(startup)g(time)f(whic)
m(h)h(is)f(the)i(time)d(required)i(to)g(handle)f(a)h(message)g(at)g
(the)300 5442 y(sending)h(pro)s(cessor,)h(and)f(let)f
Fr(t)1465 5457 y Fo(w)1553 5442 y Fu(b)s(e)h(the)g(p)s(er-w)m(ord)g
(transfer)g(time.)42 b(In)31 b(the)g(comm)m(unication,)p
Black Black eop
%%Page: 31 40
31 39 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8
b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(31)p Black 300 274
a(the)27 b(n)m(um)m(b)s(er)h(of)e(data)h(in)f(the)i Fr(i)p
Fu(th)f(transformation)e(is)h Fr(n)p Fu(\()p Fr(r)s Fu(2)2500
238 y Fo(i)2539 274 y Fu(+)11 b(1\).)41 b(Then)28 b(the)f(comm)m
(unication)300 395 y(time)k(in)h(the)h(algorithm)c(should)k(b)s(e)706
703 y Fr(T)763 718 y Fo(comm)985 703 y Fu(=)1097 578
y Fo(d)p Fl(\000)p Fp(1)1089 608 y Fi(X)1103 818 y Fo(i)p
Fp(=0)1232 703 y Fu(\()p Fr(t)1305 718 y Fo(s)1365 703
y Fu(+)22 b Fr(t)1498 718 y Fo(w)1554 703 y Fr(n)p Fu(\()p
Fr(r)s Fu(2)1746 661 y Fo(i)1796 703 y Fu(+)g(1\)\))28
b(=)f(\()p Fr(t)2223 718 y Fo(s)2282 703 y Fu(+)22 b
Fr(t)2415 718 y Fo(w)2472 703 y Fr(n)p Fu(\))p Fr(l)r(og)2693
718 y Fp(2)2733 703 y Fr(p)g Fu(+)g Fr(t)2937 718 y Fo(w)2993
703 y Fr(n)3051 661 y Fp(2)3091 703 y Fu(\(1)g Fq(\000)3310
635 y Fu(1)p 3310 680 49 4 v 3310 771 a Fr(p)3368 703
y Fu(\))p Fr(:)206 b Fu(\(6.1\))446 1005 y(Let)30 b Fr(t)653
1020 y Fo(mc)780 1005 y Fu(b)s(e)g(the)g(Mon)m(te)g(Carlo)f
(computation)f(time)g(for)h(eac)m(h)i(elemen)m(t)e Fr(p)3192
1020 y Fo(ij)3282 1005 y Fu(of)g(the)h(matrix)300 1125
y Fr(P)363 1140 y Fo(n)442 1125 y Fu(\(5.1\))i Fq(\030)h
Fu(\(5.5\).)43 b(Then)34 b(the)f(parallel)d(computation)h(time)g
(should)i(b)s(e)1570 1405 y Fr(T)1627 1420 y Fo(comp)1821
1405 y Fu(=)28 b Fr(r)s(nt)2065 1420 y Fo(mc)2190 1405
y Fu(=)2303 1337 y Fr(n)2361 1301 y Fp(2)p 2303 1382
98 4 v 2328 1473 a Fr(p)2411 1405 y(t)2446 1420 y Fo(mc)2543
1405 y Fr(:)1069 b Fu(\(6.2\))446 1669 y(In)30 b(the)f(\014xed)h
(densit)m(y)g(v)m(ector)g(computation,)e(let's)h(denote)g(the)h(n)m(um)
m(b)s(er)f(of)g(the)g(iteration)300 1790 y(is)35 b Fr(M)46
b Fu(and)36 b(the)g(time)e(for)h(the)h(pro)s(duct)f(of)g(t)m(w)m(o)h(n)
m(um)m(b)s(ers)h(is)e Fr(t)2655 1805 y Fo(pr)r(od)2799
1790 y Fu(.)52 b(F)-8 b(or)35 b(eac)m(h)h(iteration,)f(the)300
1910 y(time)c(of)h(the)h(\014xed)h(densit)m(y)g(v)m(ector)f
(computation)e(is)1759 2130 y Fr(T)1816 2145 y Fo(v)r(ect)1974
2130 y Fu(=)c Fr(n)2135 2089 y Fp(2)2175 2130 y Fr(t)2210
2145 y Fo(pr)r(od)2354 2130 y Fr(:)1258 b Fu(\(6.3\))300
2350 y(Then)34 b(the)f(total)e(time)g(of)h(the)h(Ulam)e(matrix)g
(parallel)f(computation)h(is)300 2624 y Fr(T)357 2639
y Fo(par)r(a)533 2624 y Fu(=)d Fr(T)694 2639 y Fo(comp)883
2624 y Fu(+)22 b Fr(T)1038 2639 y Fo(comm)1254 2624 y
Fu(+)g Fr(M)10 b(T)1513 2639 y Fo(v)r(ect)1671 2624 y
Fu(=)1785 2556 y Fr(n)1843 2520 y Fp(2)p 1785 2601 V
1809 2692 a Fr(p)1892 2624 y Fu(\()p Fr(t)1965 2639 y
Fo(mc)2085 2624 y Fu(+)22 b Fr(t)2218 2639 y Fo(w)2275
2624 y Fu(\()p Fr(p)g Fq(\000)g Fu(1\)\))g(+)g(\()p Fr(t)2801
2639 y Fo(s)2860 2624 y Fu(+)g Fr(t)2993 2639 y Fo(w)3050
2624 y Fr(n)p Fu(\))p Fr(l)r(og)3271 2639 y Fp(2)3310
2624 y Fr(p)h Fu(+)f Fr(M)10 b(n)3642 2583 y Fp(2)3682
2624 y Fr(t)3717 2639 y Fo(pr)r(od)3861 2624 y Fr(:)3639
2804 y Fu(\(6.4\))446 3017 y(The)35 b(UMP)-8 b(A)35 b(should)g(sp)s
(eedup)g(the)g(matrix)e(ev)-5 b(aluation)32 b(pro)s(cess,)k(but)e(as)h
(w)m(e)g(describ)s(ed)300 3138 y(ab)s(o)m(v)m(e,)k(it)c(con)m(tains)i
(a)f(sequen)m(tial)h(part)g(with)f(whic)m(h)h(the)g(\014xed)h(densit)m
(y)g(appro)m(ximation)c(is)300 3258 y(calculated)24 b(b)m(y)h(the)g
(iteration)e(metho)s(d.)40 b(Th)m(us,)28 b(while)c(the)h(\014rst)g(pro)
s(cessor)h(do)s(es)f(the)g(iteration)300 3378 y(pro)s(cess,)38
b(other)f(pro)s(cessors)h(are)e(set)h(idle.)53 b(This)36
b(ma)m(y)g(not)g(b)s(e)h(v)m(ery)h(e\016cien)m(t)f(in)e(the)i(actual)
300 3499 y(computation.)446 3619 y(Therefore,)k(w)m(e)f(prop)s(ose)e(a)
g(complete)g(parallel)e(algorithm)f(whic)m(h)j(is)g(comp)s(osed)h(of)f
(the)300 3740 y(parallel)28 b(computation)h(of)h(the)h(matrix)e
Fr(P)1865 3755 y Fo(n)1912 3740 y Fu(,)i(whic)m(h)g(is)g(the)g(same)f
(as)h(ab)s(o)m(v)m(e,)h(and)f(the)g(parallel)300 3860
y(computation)i(of)h(the)i(\014xed)f(densit)m(y)h Fr(f)1779
3875 y Fo(n)1861 3860 y Fu(of)e(the)h(appro)m(ximate)f(F)-8
b(rob)s(enius-P)m(erron)35 b(op)s(erator)300 3980 y Fr(P)363
3995 y Fo(n)410 3980 y Fu(.)300 4184 y Fm(Completely)g(P)m(arallel)g
(Algorithm)g(\(CP)-9 b(A\):)p Black 419 4412 a Fu(1.)p
Black 49 w(Let)46 b Fr(T)789 4427 y Fo(h)884 4412 y Fu(=)j
Fq(f)p Fu(\012)1129 4427 y Fo(i)1158 4412 y Fq(g)1208
4376 y Fo(n)1208 4437 y(i)p Fp(=1)1372 4412 y Fu(b)s(e)c(a)h(shap)s
(e-regular)f(partition)e(of)i(\012.)83 b(F)-8 b(or)45
b(example,)k(in)c(one)544 4532 y(dimensional)40 b(cases,)46
b(c)m(ho)s(ose)d Fr(n)g Fu(equal)f(subin)m(terv)-5 b(als)42
b(of)g(the)h(partition)d(of)i([0)p Fr(;)17 b Fu(1])42
b(and)544 4653 y(select)33 b Fr(p)f Fu(pro)s(cessors)i(for)e(the)h
(computation.)p Black 419 4856 a(2.)p Black 49 w(Use)f(the)f(quasi-Mon)
m(te)g(Carlo)f(metho)s(d)g(and)h(form)m(ulas)e(\(5.1\))i
Fq(\030)g Fu(\(5.5\))f(to)h(p)s(erform)f(the)544 4977
y(parallel)g(ev)-5 b(aluation)30 b(of)j(the)g(matrix)e
Fr(P)2019 4992 y Fo(h)2063 4977 y Fu(.)p Black 419 5180
a(3.)p Black 49 w(F)-8 b(or)22 b(the)h Fr(i)p Fu(th)h(pro)s(cessor,)i
(whic)m(h)d(computes)h Fr(r)h Fu(columns)e(\(denoted)h(as)f
Fr(P)3166 5195 y Fo(hi)3235 5180 y Fu(\))g(of)f(the)h(matrix)544
5300 y Fr(P)607 5315 y Fo(h)652 5300 y Fu(,)32 b(select)g(a)g(starting)
f(nonnegativ)m(e)i(v)m(ector)g Fr(c)27 b Fu(=)h(\()p
Fr(c)2507 5315 y Fp(1)2546 5300 y Fr(;)17 b(c)2632 5315
y Fp(2)2671 5300 y Fr(;)g Fq(\001)g(\001)g(\001)32 b
Fr(;)17 b(c)2951 5315 y Fo(n)2997 5300 y Fu(\))3035 5264
y Fo(T)3090 5300 y Fu(;)32 b(a)g(usual)g(c)m(hoice)g(is)544
5421 y Fr(c)c Fu(=)f(\(1)p Fr(;)17 b Fu(1)p Fr(;)g Fq(\001)g(\001)g
(\001)30 b Fr(;)17 b Fu(1\))1220 5385 y Fo(T)1275 5421
y Fu(.)43 b(Here,)34 b Fr(r)c Fu(=)e Fr(n=p)p Fu(.)p
Black Black eop
%%Page: 32 41
32 40 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8
b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(32)p Black Black
419 274 a(4.)p Black 49 w(Calculate)36 b Fr(c)1024 238
y Fl(\003)1024 299 y Fo(i)1098 274 y Fu(=)f Fr(P)1286
238 y Fo(T)1272 300 y(hi)1341 274 y Fr(c)p Fu(.)57 b(Then)38
b(all-to-all)31 b(broadcast)38 b(the)f(v)m(ector)h Fr(c)3081
238 y Fl(\003)3081 299 y Fo(i)3158 274 y Fu(\()p Fr(i)d
Fu(=)g(1)p Fr(;)17 b Fu(2)p Fr(;)g Fq(\001)g(\001)g(\001)30
b Fr(;)17 b(p)p Fu(\))544 395 y(and)31 b(comp)s(ose)g(the)g
Fr(n)19 b Fq(\002)g Fu(1)30 b(v)m(ector)i Fr(d)p Fu(.)43
b(Compute)31 b(the)g(1-norm)e(error)i(Error)g(=)c Fq(k)p
Fr(c)3567 358 y Fl(\003)3625 395 y Fq(\000)19 b Fr(c)p
Fq(k)p Fu(.)p Black 419 593 a(5.)p Black 49 w(Let)41
b Fr(c)i Fu(=)f Fr(c)972 557 y Fl(\003)1052 593 y Fu(and)g(rep)s(eat)f
(the)h(ab)s(o)m(v)m(e)g(step)g(un)m(til)e(Error)h Fr(<)h(\017)p
Fu(,)i(where)e Fr(\017)g Fu(is)e(a)h(desired)544 714
y(tolerance.)p Black 419 912 a(6.)p Black 49 w(Let)34
b Fr(c)g Fu(b)s(e)g(normalized)e(so)j(that)e Fq(k)p Fr(c)p
Fq(k)d Fu(=)g(1.)48 b(Then)35 b Fr(f)2470 927 y Fo(h)2545
912 y Fu(=)2651 838 y Fi(P)2756 864 y Fo(n)2756 941 y(i)p
Fp(=1)2891 912 y Fr(c)2933 927 y Fo(i)2961 912 y Fu(1)3010
927 y Fo(i)3072 912 y Fu(is)f(an)g(appro)m(ximate)544
1033 y(\014xed)g(densit)m(y)-8 b(.)446 1242 y(No)m(w)45
b(w)m(e)h(w)m(ould)e(lik)m(e)f(to)h(\014nd)h(the)g(parallel)d(time)h
(form)m(ula)f(for)i(the)h(CP)-8 b(A.)45 b(The)g(same)300
1362 y(analysis)28 b(as)i(for)e(the)i(UMP)-8 b(A)29 b(sho)m(ws)i(that)e
(the)g(time)f(of)h(the)g(parallel)d(matrix)i(computation)f(is)1570
1619 y Fr(T)1641 1555 y Fh(0)1627 1644 y Fo(comp)1821
1619 y Fu(=)h Fr(r)s(nt)2065 1634 y Fo(mc)2190 1619 y
Fu(=)2303 1552 y Fr(n)2361 1516 y Fp(2)p 2303 1597 98
4 v 2328 1688 a Fr(p)2411 1619 y(t)2446 1634 y Fo(mc)2543
1619 y Fr(:)1069 b Fu(\(6.5\))300 1868 y(And)33 b(similarly)c(w)m(e)34
b(can)e(\014nd)h(that)g(the)g(time)e(of)h(the)h(parallel)d(\014xed)k(v)
m(ector)f(computation)e(is)1541 2125 y Fr(T)1612 2060
y Fh(0)1598 2149 y Fo(v)r(ect)1756 2125 y Fu(=)d Fr(r)s(nt)2000
2140 y Fo(pr)r(od)2171 2125 y Fu(=)2285 2057 y Fr(n)2343
2021 y Fp(2)p 2285 2102 V 2309 2193 a Fr(p)2392 2125
y(t)2427 2140 y Fo(pr)r(od)2571 2125 y Fr(:)1041 b Fu(\(6.6\))446
2373 y(F)-8 b(or)27 b(the)h(all-to-all)22 b(comm)m(unication)j(of)i
(the)h(v)m(ector)g(data)g(in)e(the)i(net)m(w)m(ork,)i(the)e(lo)s(op)e
(time)300 2493 y(is)32 b Fr(d)22 b Fq(\000)h Fu(1.)44
b(F)-8 b(or)32 b(the)h Fr(i)p Fu(-th)g(comm)m(unication,)d(the)j
(length)g(of)f(the)h(data)f(is)h(1)22 b(+)g Fr(r)s Fu(2)3264
2457 y Fo(i)3291 2493 y Fu(,)33 b(so)g(the)g(total)300
2614 y(comm)m(unication)d(time)h(is)731 2890 y Fr(T)802
2825 y Fh(0)788 2914 y Fo(comm)1010 2890 y Fu(=)1114
2761 y Fo(l)q(og)1204 2770 y Fg(2)1238 2761 y Fo(p)p
Fl(\000)p Fp(1)1167 2795 y Fi(X)1181 3005 y Fo(i)p Fp(=0)1363
2890 y Fu(\()p Fr(t)1436 2905 y Fo(s)1495 2890 y Fu(+)22
b Fr(t)1628 2905 y Fo(w)1685 2890 y Fu(\(1)g(+)g Fr(r)s
Fu(2)1988 2848 y Fo(i)2016 2890 y Fu(\)\))27 b(=)h(\()p
Fr(t)2296 2905 y Fo(s)2355 2890 y Fu(+)22 b Fr(t)2488
2905 y Fo(w)2545 2890 y Fu(\))p Fr(l)r(og)2708 2905 y
Fp(2)2747 2890 y Fr(p)g Fu(+)g Fr(t)2951 2905 y Fo(w)3008
2890 y Fr(n)p Fu(\(1)g Fq(\000)3285 2822 y Fu(1)p 3285
2867 49 4 v 3285 2958 a Fr(p)3343 2890 y Fu(\))p Fr(:)231
b Fu(\(6.7\))300 3175 y(Therefore)34 b(the)f(total)e(time)g(of)h(the)h
(CP)-8 b(A)33 b(is)300 3413 y Fr(T)371 3348 y Fh(0)357
3438 y Fo(par)r(a)533 3413 y Fu(=)28 b Fr(T)708 3348
y Fh(0)694 3438 y Fo(comp)883 3413 y Fu(+)22 b Fr(M)10
b Fu(\()p Fr(T)1194 3348 y Fh(0)1180 3438 y Fo(v)r(ect)1333
3413 y Fu(+)22 b Fr(T)1502 3348 y Fh(0)1488 3438 y Fo(comm)1681
3413 y Fu(\))28 b(=)1861 3346 y Fr(n)1919 3309 y Fp(2)p
1861 3390 98 4 v 1885 3481 a Fr(p)1968 3413 y(t)2003
3428 y Fo(mc)2123 3413 y Fu(+)22 b Fr(M)10 b Fu(\()2373
3346 y Fr(n)2431 3309 y Fp(2)p 2373 3390 V 2398 3481
a Fr(p)2481 3413 y(t)2516 3428 y Fo(pr)r(od)2682 3413
y Fu(+)22 b(\()p Fr(t)2853 3428 y Fo(s)2912 3413 y Fu(+)g
Fr(t)3045 3428 y Fo(w)3102 3413 y Fu(\))p Fr(l)r(og)3265
3428 y Fp(2)3304 3413 y Fr(p)h Fu(+)f Fr(t)3509 3428
y Fo(w)3565 3413 y Fr(n)p Fu(\(1)g Fq(\000)3842 3346
y Fu(1)p 3842 3390 49 4 v 3842 3481 a Fr(p)3901 3413
y Fu(\)\))p Fr(:)3639 3593 y Fu(\(6.8\))446 3790 y(No)m(w)34
b(w)m(e)g(in)m(tro)s(duce)f(some)f(p)s(erformance)h(metrics)f(for)h
(the)g(parallel)d(system.)46 b(A)33 b(parallel)300 3910
y(system)f(is)e(the)h(com)m(bination)e(of)h(the)h(parallel)d(algorithm)
g(and)i(the)i(parallel)c(arc)m(hitecture)j(on)300 4031
y(whic)m(h)40 b(it)e(is)h(implemen)m(ted.)63 b(The)40
b Fj(p)-5 b(ar)g(al)5 b(lel)40 b(run)i(time)k Fu(is)39
b(the)h(time)e(that)h(elapses)h(from)f(the)300 4151 y(momen)m(t)29
b(that)i(the)g(parallel)c(computation)i(starts)i(to)f(the)h(momen)m(t)e
(that)i(the)f(last)g(pro)s(cessor)300 4271 y(\014nishes)37
b(the)g(execution.)57 b(The)37 b Fj(sp)-5 b(e)g(e)g(dup)38
b Fr(s)e Fu(is)g(de\014ned)i(as)f(the)g(ratio)e(of)h(the)h(serial)e
(run)i(time)300 4392 y Fr(T)357 4407 y Fo(seq)496 4392
y Fu(of)e(the)h(b)s(est)g(sequen)m(tial)f(algorithm)e(for)h(solving)h
(a)g(problem)f(to)h(the)h(time)e Fr(T)3423 4407 y Fo(par)r(a)3607
4392 y Fu(tak)m(en)300 4512 y(b)m(y)f(the)g(parallel)d(algorithm)g(to)i
(solv)m(e)h(the)g(same)f(problem)g(on)g Fr(p)h Fu(pro)s(cessors,)1772
4758 y Fr(s)28 b Fu(=)1982 4691 y Fr(T)2039 4706 y Fo(seq)p
1959 4735 206 4 v 1959 4827 a Fr(T)2016 4842 y Fo(par)r(a)2175
4758 y Fr(:)p Black 1437 w Fu(\(6.9\))p Black 300 5015
a(The)41 b Fj(e\016ciency)g Fr(E)46 b Fu(of)39 b(a)h(parallel)d(system)
k(is)e(a)h(measure)g(of)g(the)g(fraction)f(of)h(the)g(time)e(for)300
5135 y(whic)m(h)31 b(a)f(pro)s(cessor)i(is)e(emplo)m(y)m(ed,)h(and)g
(it)e(is)h(de\014ned)i(as)f(the)g(ratio)e(of)h(the)h(sp)s(eedup)h
Fr(s)e Fu(to)h(the)300 5256 y(n)m(um)m(b)s(er)i(of)f(pro)s(cessors)i
Fr(p)p Fu(,)1834 5477 y Fr(E)g Fu(=)2055 5409 y Fr(s)p
2054 5454 49 4 v 2054 5545 a(p)2113 5477 y(:)p Black
1451 w Fu(\(6.10\))p Black Black Black eop
%%Page: 33 42
33 41 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8
b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(33)p Black 300 274
a(The)39 b Fj(c)-5 b(ost)39 b Fr(C)44 b Fu(of)37 b(solving)g(a)g
(problem)g(on)g(a)g(parallel)e(system)k(is)e(de\014ned)i(as)f(the)g
(pro)s(duct)f(of)300 395 y(the)d(parallel)e(time)g(and)i(the)g(n)m(um)m
(b)s(er)h(of)e(pro)s(cessors)j(used,)f(that)f(is,)g Fr(C)j
Fu(=)29 b Fr(pT)3246 410 y Fo(par)r(a)3395 395 y Fu(.)48
b(The)34 b(cost)300 515 y(re\015ects)f(the)f(sum)f(of)g(the)h(time)e
(that)i(eac)m(h)g(pro)s(cessor)g(sp)s(ends)h(solving)e(the)h(problem.)
42 b(Hence)300 635 y(w)m(e)34 b(ha)m(v)m(e)1659 879 y
Fr(E)f Fu(=)1925 811 y Fr(T)1982 826 y Fo(seq)p 1878
856 255 4 v 1878 947 a Fr(pT)1984 962 y Fo(par)r(a)2170
879 y Fu(=)2284 811 y Fr(T)2341 826 y Fo(seq)p 2284 856
161 4 v 2325 947 a Fr(C)2454 879 y(:)1110 b Fu(\(6.11\))300
1152 y(This)33 b(form)m(ula)d(means)j(that)f(the)h(e\016ciency)h
Fr(E)39 b Fu(is)32 b(in)m(v)m(ersely)i(prop)s(ortional)c(to)i(the)h
(cost)g Fr(C)7 b Fu(.)446 1272 y(F)-8 b(or)31 b(the)h(Ulam)e(matrix)g
(parallel)f(computation,)h(the)i(time)e(of)h(the)h(b)s(est)g(sequen)m
(tial)g(algo-)300 1393 y(rithm)f(is)1124 1613 y Fr(T)1181
1628 y Fo(seq)1312 1613 y Fu(=)d Fr(n)1474 1572 y Fp(2)1514
1613 y Fr(t)1549 1628 y Fo(mc)1668 1613 y Fu(+)22 b Fr(M)10
b(t)1905 1628 y Fo(pr)r(od)2050 1613 y Fr(n)2108 1572
y Fp(2)2175 1613 y Fu(=)28 b Fr(n)2337 1572 y Fp(2)2377
1613 y Fu(\()p Fr(t)2450 1628 y Fo(mc)2569 1613 y Fu(+)22
b Fr(M)10 b(t)2806 1628 y Fo(pr)r(od)2951 1613 y Fu(\))p
Fr(:)575 b Fu(\(6.12\))300 1833 y(So)32 b(considering)g(\(6.4\))g(and)h
(\(6.12\),)f(the)h(sp)s(eedup)h(of)e(the)h(UMP)-8 b(A)34
b(is)614 2112 y Fr(s)28 b Fu(=)824 2045 y Fr(T)881 2060
y Fo(seq)p 801 2089 206 4 v 801 2180 a Fr(T)858 2195
y Fo(par)r(a)1045 2112 y Fu(=)1861 2045 y Fr(pn)1968
2009 y Fp(2)2008 2045 y Fu(\()p Fr(t)2081 2060 y Fo(mc)2200
2045 y Fu(+)22 b Fr(M)10 b(t)2437 2060 y Fo(pr)r(od)2582
2045 y Fu(\))p 1158 2089 2165 4 v 1158 2180 a Fr(n)1216
2152 y Fp(2)1256 2180 y Fu(\()p Fr(t)1329 2195 y Fo(mc)1448
2180 y Fu(+)22 b Fr(t)1581 2195 y Fo(w)1638 2180 y Fu(\()p
Fr(p)g Fq(\000)h Fu(1\)\))f(+)g(\()p Fr(t)2165 2195 y
Fo(s)2224 2180 y Fu(+)g Fr(nt)2415 2195 y Fo(w)2472 2180
y Fu(\))p Fr(pl)r(og)2684 2195 y Fp(2)2723 2180 y Fr(p)g
Fu(+)g Fr(pn)2999 2152 y Fp(2)3039 2180 y Fr(M)10 b(t)3178
2195 y Fo(pr)r(od)3333 2112 y Fr(:)p Black 231 w Fu(\(6.13\))p
Black 300 2385 a(The)34 b(e\016ciency)g(of)e(the)h(UMP)-8
b(A)33 b(is)677 2659 y Fr(E)g Fu(=)897 2592 y Fr(s)p
896 2636 49 4 v 896 2727 a(p)982 2659 y Fu(=)1823 2592
y Fr(n)1881 2555 y Fp(2)1921 2592 y Fu(\()p Fr(t)1994
2607 y Fo(mc)2113 2592 y Fu(+)22 b Fr(M)10 b(t)2350 2607
y Fo(pr)r(od)2495 2592 y Fu(\))p 1096 2636 2165 4 v 1096
2727 a Fr(n)1154 2699 y Fp(2)1194 2727 y Fu(\()p Fr(t)1267
2742 y Fo(mc)1386 2727 y Fu(+)22 b Fr(t)1519 2742 y Fo(w)1576
2727 y Fu(\()p Fr(p)g Fq(\000)h Fu(1\)\))e(+)h(\()p Fr(t)2102
2742 y Fo(s)2161 2727 y Fu(+)g Fr(nt)2352 2742 y Fo(w)2409
2727 y Fu(\))p Fr(pl)r(og)2621 2742 y Fp(2)2661 2727
y Fr(p)g Fu(+)g Fr(pn)2937 2699 y Fp(2)2976 2727 y Fr(M)10
b(t)3115 2742 y Fo(pr)r(od)3270 2659 y Fr(:)p Black 294
w Fu(\(6.14\))p Black 300 2932 a(If)33 b Fr(n)f Fu(is)g(k)m(ept)i
(\014xed,)g(then)f(w)m(e)h(can)f(get)f(the)h(relation)e(b)s(et)m(w)m
(een)k Fr(E)j Fu(and)33 b Fr(p)f Fu(as)h(follo)m(ws.)758
3206 y Fr(E)6 b Fu(\()p Fr(p)p Fu(\))83 b(=)1937 3139
y Fr(n)1995 3102 y Fp(2)2035 3139 y Fu(\()p Fr(t)2108
3154 y Fo(mc)2228 3139 y Fu(+)22 b Fr(M)10 b(t)2465 3154
y Fo(pr)r(od)2609 3139 y Fu(\))p 1213 3183 2159 4 v 1213
3274 a Fr(pl)r(og)1387 3289 y Fp(2)1426 3274 y Fr(p)p
Fu(\()p Fr(t)1548 3289 y Fo(s)1607 3274 y Fu(+)23 b Fr(nt)1799
3289 y Fo(w)1856 3274 y Fu(\))f(+)g Fr(pn)2121 3246 y
Fp(2)2160 3274 y Fu(\()p Fr(t)2233 3289 y Fo(w)2312 3274
y Fu(+)g Fr(M)10 b(t)2549 3289 y Fo(pr)r(od)2694 3274
y Fu(\))22 b(+)g Fr(n)2910 3246 y Fp(2)2950 3274 y Fu(\()p
Fr(t)3023 3289 y Fo(mc)3142 3274 y Fq(\000)h Fr(t)3277
3289 y Fo(w)3334 3274 y Fu(\))1044 3471 y(=)1554 3403
y Fr(K)1637 3418 y Fo(n)p 1213 3448 811 4 v 1213 3539
a Fr(pl)r(og)1387 3554 y Fp(2)1426 3539 y Fr(p)g Fu(+)f
Fr(pK)1735 3505 y Fp(1)1728 3567 y Fo(d)1796 3539 y Fu(+)g
Fr(K)1984 3505 y Fp(2)1977 3567 y Fo(d)2034 3471 y Fr(;)300
3744 y Fu(where)31 b(a)e(series)h(of)g Fr(K)7 b Fu(s)30
b(are)f(di\013eren)m(t)h(constan)m(ts.)44 b(F)-8 b(rom)28
b(the)i(form)m(ula)e(w)m(e)j(can)f(de\014nitely)f(sa)m(y)300
3864 y(that)j(for)g(the)h(UMP)-8 b(A,)34 b(when)g Fr(p)e
Fu(increases,)i Fr(E)k Fu(will)31 b(decrease.)446 3985
y(If)i Fr(p)f Fu(is)g(k)m(ept)i(\014xed,)g(w)m(e)g(can)e(get)h(the)g
(relation)e(b)s(et)m(w)m(een)j Fr(E)39 b Fu(and)33 b
Fr(n)f Fu(as)h(follo)m(ws.)706 4259 y Fr(E)6 b Fu(\()p
Fr(n)p Fu(\))84 b(=)1942 4191 y Fr(n)2000 4155 y Fp(2)2040
4191 y Fu(\()p Fr(t)2113 4206 y Fo(mc)2232 4191 y Fu(+)22
b Fr(M)10 b(t)2469 4206 y Fo(pr)r(od)2614 4191 y Fu(\))p
1171 4236 2254 4 v 1171 4327 a Fr(n)1229 4298 y Fp(2)1268
4327 y Fu(\()p Fr(t)1341 4342 y Fo(mc)1461 4327 y Fu(+)22
b Fr(M)10 b(pt)1747 4342 y Fo(pr)r(od)1914 4327 y Fu(+)22
b Fr(t)2047 4342 y Fo(w)2103 4327 y Fu(\()p Fr(p)g Fq(\000)h
Fu(1\)\))f(+)g Fr(nt)2650 4342 y Fo(w)2707 4327 y Fr(pl)r(og)2881
4342 y Fp(2)2920 4327 y Fr(p)g Fu(+)g Fr(t)3124 4342
y Fo(s)3161 4327 y Fr(pl)r(og)3335 4342 y Fp(2)3375 4327
y Fr(p)1002 4534 y Fu(=)1391 4467 y Fr(n)1449 4431 y
Fp(2)1488 4467 y Fr(E)1560 4482 y Fo(u)p 1171 4511 656
4 v 1171 4603 a Fr(n)1229 4574 y Fp(2)1290 4603 y Fu(+)g
Fr(nK)1536 4568 y Fp(1)1529 4630 y Fo(d)1598 4603 y Fu(+)g
Fr(K)1786 4568 y Fp(2)1779 4630 y Fo(d)1836 4534 y Fr(:)300
4807 y Fu(F)-8 b(rom)45 b(the)i(form)m(ula)e(w)m(e)i(kno)m(w)h(that)e
(with)g(the)h(increase)g(of)f Fr(n)p Fu(,)k(the)d(e\016ciency)h
Fr(E)53 b Fu(in)46 b(the)300 4928 y(UMP)-8 b(A)39 b(will)d(sho)m(w)k(a)
e(complicated)f(b)s(eha)m(vior.)60 b(That)39 b(means)f(that)h
Fr(E)44 b Fu(ma)m(y)38 b(decrease,)k(and)300 5048 y(also)47
b(under)h(some)g(conditions)f(it)g(will)e(increase)j(dep)s(ending)g(on)
g(the)g(parameters)g(of)g(the)300 5169 y(parallel)30
b(computers.)44 b(When)33 b Fr(n)g Fu(go)s(es)g(to)f(in\014nit)m(y)-8
b(,)32 b Fr(E)38 b Fu(will)31 b(approac)m(h)i(a)f(constan)m(t)1293
5431 y Fr(E)1365 5446 y Fo(u)1438 5431 y Fu(=)1829 5364
y Fr(t)1864 5379 y Fo(mc)1984 5364 y Fu(+)22 b Fr(M)10
b(t)2221 5379 y Fo(pr)r(od)p 1551 5408 1093 4 v 1551
5500 a Fr(t)1586 5515 y Fo(mc)1706 5500 y Fu(+)22 b Fr(M)10
b(pt)1992 5515 y Fo(pr)r(od)2159 5500 y Fu(+)22 b Fr(t)2292
5515 y Fo(w)2349 5500 y Fu(\()p Fr(p)g Fq(\000)g Fu(1\))2654
5431 y Fr(:)p Black 910 w Fu(\(6.15\))p Black Black Black
eop
%%Page: 34 43
34 42 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8
b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(34)p Black 446 274
a(No)m(w)42 b(w)m(e)g(tak)m(e)g(a)f(lo)s(ok)f(at)h(the)h(equation)e
(\(6.15\).)69 b(When)42 b(the)g(pro)s(cessor)g(n)m(um)m(b)s(er)f
Fr(p)g Fu(is)300 395 y(1,)i Fr(E)491 410 y Fo(u)577 395
y Fu(is)e(1.)69 b(The)42 b(larger)e Fr(p)h Fu(is,)i(the)e(smaller)e
Fr(E)2142 410 y Fo(u)2228 395 y Fu(will)g(b)s(e.)69 b(If)41
b Fr(p)g Fu(go)s(es)h(to)e(in\014nit)m(y)-8 b(,)43 b
Fr(E)3602 410 y Fo(u)3688 395 y Fu(will)300 515 y(approac)m(h)d(0.)62
b(This)40 b(is)e(b)s(ecause)j(with)d(the)i(UMP)-8 b(A)40
b(the)f(parallel)e(time)g Fr(T)3116 530 y Fo(par)r(a)3304
515 y Fu(of)i(\(6.4\))f(con-)300 635 y(tains)31 b(a)g(sequen)m(tial)g
(part)h Fr(M)10 b(n)1445 599 y Fp(2)1485 635 y Fr(t)1520
650 y Fo(pr)r(od)1696 635 y Fu(whic)m(h)31 b(will)e(de\014nitely)j
(degrade)g(the)f(e\016ciency)i(when)g Fr(n)300 756 y
Fu(increases.)44 b(Numerical)28 b(exp)s(erimen)m(ts)i(in)g(the)g(next)h
(c)m(hapter)g(will)d(illustrate)g(this)h(conclusion.)446
876 y(F)-8 b(rom)31 b Fr(T)759 891 y Fo(par)r(a)941 876
y Fu(of)h(equation)g(\(6.4\),)g(w)m(e)i(obtain)d(the)i(cost)g(of)f(the)
h(UMP)-8 b(A)34 b(is)594 1096 y Fr(C)h Fu(=)27 b Fr(pT)908
1111 y Fo(par)r(a)1085 1096 y Fu(=)g Fr(n)1246 1055 y
Fp(2)1286 1096 y Fu(\()p Fr(t)1359 1111 y Fo(mc)1478
1096 y Fu(+)22 b Fr(t)1611 1111 y Fo(w)1668 1096 y Fu(\()p
Fr(p)g Fq(\000)h Fu(1\)\))f(+)g(\()p Fr(t)2195 1111 y
Fo(s)2254 1096 y Fu(+)g Fr(nt)2445 1111 y Fo(w)2502 1096
y Fu(\))p Fr(pl)r(og)2714 1111 y Fp(2)2753 1096 y Fr(p)g
Fu(+)g Fr(pn)3029 1055 y Fp(2)3069 1096 y Fr(M)10 b(t)3208
1111 y Fo(pr)r(od)3353 1096 y Fr(:)p Black 211 w Fu(\(6.16\))p
Black 446 1316 a(W)-8 b(e)40 b(no)m(w)h(analyze)f(the)g(complete)f
(parallel)e(algorithm)f(\(CP)-8 b(A\).)41 b(The)g(time)d(of)h(the)h(b)s
(est)300 1437 y(sequen)m(tial)33 b(algorithm)c(is)j(the)h(same)g(as)f
(\(6.12\),)g(that)h(is,)1124 1657 y Fr(T)1195 1592 y
Fh(0)1181 1681 y Fo(seq)1312 1657 y Fu(=)28 b Fr(n)1474
1615 y Fp(2)1514 1657 y Fr(t)1549 1672 y Fo(mc)1668 1657
y Fu(+)22 b Fr(M)10 b(t)1905 1672 y Fo(pr)r(od)2050 1657
y Fr(n)2108 1615 y Fp(2)2175 1657 y Fu(=)28 b Fr(n)2337
1615 y Fp(2)2377 1657 y Fu(\()p Fr(t)2450 1672 y Fo(mc)2569
1657 y Fu(+)22 b Fr(M)10 b(t)2806 1672 y Fo(pr)r(od)2951
1657 y Fu(\))p Fr(:)575 b Fu(\(6.17\))300 1877 y(Considering)32
b(\(6.8\))g(and)h(\(6.17\),)f(the)h(sp)s(eedup)h(of)e(the)h(CP)-8
b(A)33 b(is)f(obtained)g(as)559 2173 y Fr(s)605 2109
y Fh(0)659 2173 y Fu(=)795 2097 y Fr(T)866 2037 y Fh(0)852
2121 y Fo(seq)p 772 2150 206 4 v 772 2241 a Fr(T)843
2194 y Fh(0)829 2266 y Fo(par)r(a)1016 2173 y Fu(=)1874
2106 y Fr(pn)1981 2070 y Fp(2)2021 2106 y Fu(\()p Fr(t)2094
2121 y Fo(mc)2213 2106 y Fu(+)22 b Fr(M)10 b(t)2450 2121
y Fo(pr)r(od)2595 2106 y Fu(\))p 1129 2150 2250 4 v 1129
2241 a Fr(n)1187 2213 y Fp(2)1227 2241 y Fr(t)1262 2256
y Fo(mc)1381 2241 y Fu(+)22 b Fr(M)10 b(n)1641 2213 y
Fp(2)1682 2241 y Fr(t)1717 2256 y Fo(pr)r(od)1883 2241
y Fu(+)22 b Fr(M)10 b Fu(\()p Fr(t)2158 2256 y Fo(s)2218
2241 y Fu(+)22 b Fr(t)2351 2256 y Fo(w)2408 2241 y Fu(\))p
Fr(pl)r(og)2620 2256 y Fp(2)2659 2241 y Fr(p)g Fu(+)g
Fr(t)2863 2256 y Fo(w)2920 2241 y Fr(M)10 b Fu(\()p Fr(p)23
b Fq(\000)f Fu(1\))p Fr(n)3388 2173 y(:)p Black 176 w
Fu(\(6.18\))p Black 300 2456 a(The)34 b(e\016ciency)g(is)620
2738 y Fr(E)698 2673 y Fh(0)752 2738 y Fu(=)866 2671
y Fr(s)912 2611 y Fh(0)p 866 2715 73 4 v 878 2806 a Fr(p)976
2738 y Fu(=)1848 2671 y Fr(n)1906 2634 y Fp(2)1946 2671
y Fu(\()p Fr(t)2019 2686 y Fo(mc)2138 2671 y Fu(+)22
b Fr(M)10 b(t)2375 2686 y Fo(pr)r(od)2520 2671 y Fu(\))p
1089 2715 2228 4 v 1089 2806 a Fr(n)1147 2778 y Fp(2)1187
2806 y Fu(\()p Fr(t)1260 2821 y Fo(mc)1380 2806 y Fu(+)22
b Fr(M)10 b(t)1617 2821 y Fo(pr)r(od)1762 2806 y Fu(\))22
b(+)g Fr(M)10 b Fu(\()p Fr(t)2097 2821 y Fo(s)2156 2806
y Fu(+)22 b Fr(t)2289 2821 y Fo(w)2346 2806 y Fu(\))p
Fr(pl)r(og)2558 2821 y Fp(2)2597 2806 y Fr(p)h Fu(+)f
Fr(t)2802 2821 y Fo(w)2858 2806 y Fr(M)10 b Fu(\()p Fr(p)23
b Fq(\000)g Fu(1\))p Fr(n)3327 2738 y(:)p Black 237 w
Fu(\(6.19\))p Black 300 3015 a(If)33 b Fr(n)f Fu(is)g(k)m(ept)i
(\014xed,)g(w)m(e)g(can)e(get)h(the)g(relation)e(b)s(et)m(w)m(een)j
Fr(E)2531 2979 y Fl(0)2587 3015 y Fu(and)f Fr(p)f Fu(as)h(follo)m(ws.)
647 3289 y Fr(E)725 3248 y Fl(0)749 3289 y Fu(\()p Fr(p)p
Fu(\))82 b(=)1949 3221 y Fr(n)2007 3185 y Fp(2)2047 3221
y Fu(\()p Fr(t)2120 3236 y Fo(mc)2239 3221 y Fu(+)22
b Fr(M)10 b(t)2476 3236 y Fo(pr)r(od)2621 3221 y Fu(\))p
1125 3266 2358 4 v 1125 3357 a Fr(pl)r(og)1299 3372 y
Fp(2)1339 3357 y Fr(pM)g Fu(\()p Fr(t)1565 3372 y Fo(s)1624
3357 y Fu(+)22 b Fr(t)1757 3372 y Fo(w)1814 3357 y Fu(\))g(+)g
Fr(pt)2056 3372 y Fo(w)2113 3357 y Fr(M)10 b(n)23 b Fu(+)f
Fr(n)2454 3328 y Fp(2)2494 3357 y Fu(\()p Fr(t)2567 3372
y Fo(mc)2686 3357 y Fu(+)g Fr(M)10 b(t)2923 3372 y Fo(pr)r(od)3068
3357 y Fu(\))22 b Fq(\000)h Fr(t)3263 3372 y Fo(w)3320
3357 y Fr(M)10 b(n)956 3554 y Fu(=)1469 3486 y Fr(K)1552
3501 y Fo(d)p 1125 3531 811 4 v 1125 3622 a Fr(pl)r(og)1299
3637 y Fp(2)1339 3622 y Fr(p)22 b Fu(+)g Fr(pK)1647 3588
y Fp(1)1640 3650 y Fo(d)1708 3622 y Fu(+)g Fr(K)1896
3588 y Fp(2)1889 3650 y Fo(d)1946 3554 y Fr(:)300 3831
y Fu(F)-8 b(rom)25 b(the)h(form)m(ula)f(w)m(e)i(also)e(kno)m(w)i(that)f
(for)g(the)h(CP)-8 b(A,)27 b(when)g Fr(p)f Fu(increases,)j
Fr(E)3233 3795 y Fl(0)3282 3831 y Fu(will)24 b(decrease.)300
3951 y(If)33 b Fr(p)f Fu(is)g(k)m(ept)i(\014xed,)g(w)m(e)f(can)g(get)g
(the)g(relation)d(b)s(et)m(w)m(een)35 b Fr(E)2522 3915
y Fl(0)2578 3951 y Fu(and)e Fr(n)f Fu(as)h(follo)m(ws.)708
4225 y Fr(E)786 4184 y Fl(0)809 4225 y Fu(\()p Fr(n)p
Fu(\))83 b(=)1954 4157 y Fr(n)2012 4121 y Fp(2)2051 4157
y Fu(\()p Fr(t)2124 4172 y Fo(mc)2244 4157 y Fu(+)22
b Fr(M)10 b(t)2481 4172 y Fo(pr)r(od)2626 4157 y Fu(\))p
1195 4202 2228 4 v 1195 4293 a Fr(n)1253 4264 y Fp(2)1293
4293 y Fu(\()p Fr(t)1366 4308 y Fo(mc)1485 4293 y Fu(+)22
b Fr(M)10 b(t)1722 4308 y Fo(pr)r(od)1867 4293 y Fu(\))22
b(+)g Fr(nt)2118 4308 y Fo(w)2175 4293 y Fr(M)10 b Fu(\()p
Fr(p)23 b Fq(\000)g Fu(1\))e(+)h Fr(M)10 b Fu(\()p Fr(t)2872
4308 y Fo(s)2932 4293 y Fu(+)22 b Fr(t)3065 4308 y Fo(w)3122
4293 y Fu(\))p Fr(pl)r(og)3334 4308 y Fp(2)3373 4293
y Fr(p)1026 4501 y Fu(=)1474 4433 y Fr(n)1532 4397 y
Fp(2)p 1195 4478 656 4 v 1195 4569 a Fr(n)1253 4540 y
Fp(2)1315 4569 y Fu(+)g Fr(nK)1561 4535 y Fp(1)1554 4597
y Fo(d)1623 4569 y Fu(+)g Fr(K)1811 4535 y Fp(2)1804
4597 y Fo(d)1860 4501 y Fr(:)300 4792 y Fu(So)34 b(w)m(e)h(can)f(see)h
(that)e(with)g(the)i(increase)f(of)f(the)i(problem)d(size)i
Fr(n)p Fu(,)g(the)h(e\016ciency)g Fr(E)3532 4732 y Fh(0)3592
4792 y Fu(of)f(the)300 4912 y(CP)-8 b(A)40 b(will)d(also)h(exhibit)h
(complicated)f(prop)s(erties)h(dep)s(ending)g(on)h(the)f(parameters)h
(of)f(the)300 5033 y(parallel)30 b(computers.)44 b(When)33
b Fr(n)g Fu(go)s(es)g(to)f(in\014nit)m(y)-8 b(,)32 b
Fr(E)2299 4973 y Fh(0)2358 5033 y Fu(will)e Fj(eventual)5
b(ly)35 b(incr)-5 b(e)g(ase)66 b Fu(to)33 b(1.)446 5153
y(According)g(to)f(\(6.8\),)g(w)m(e)i(get)e(the)h(cost)g(of)f(the)h(CP)
-8 b(A)34 b(is)550 5373 y Fr(C)627 5308 y Fh(0)681 5373
y Fu(=)27 b Fr(pT)904 5308 y Fh(0)890 5398 y Fo(par)r(a)1066
5373 y Fu(=)h Fr(n)1228 5332 y Fp(2)1268 5373 y Fu(\()p
Fr(t)1341 5388 y Fo(mc)1460 5373 y Fu(+)22 b Fr(M)10
b(t)1697 5388 y Fo(pr)r(od)1842 5373 y Fu(\))22 b(+)g
Fr(M)10 b Fu(\()p Fr(t)2177 5388 y Fo(s)2237 5373 y Fu(+)22
b Fr(t)2370 5388 y Fo(w)2427 5373 y Fu(\))p Fr(pl)r(og)2639
5388 y Fp(2)2678 5373 y Fr(p)g Fu(+)g Fr(t)2882 5388
y Fo(w)2939 5373 y Fr(M)10 b(n)p Fu(\()p Fr(p)23 b Fq(\000)g
Fu(1\))p Fr(:)p Black 166 w Fu(\(6.20\))p Black Black
Black eop
%%Page: 35 44
35 43 bop Black 300 10 a Fk(CHAPTER)34 b(6.)76 b(P)-8
b(ARALLEL)33 b(ALGORITHMS)1528 b Fu(35)p Black 446 274
a(Finally)30 b(w)m(e)k(compare)e(the)h(p)s(erformance)f(of)g(the)h(t)m
(w)m(o)g(parallel)d(algorithms.)41 b(Comparing)300 395
y(\(6.16\))32 b(and)g(\(6.20\),)g(in)g(most)g(cases,)i(if)e(it)f(is)h
(true)h(that)381 615 y(\()p Fr(p)22 b Fq(\000)h Fu(1\))p
Fr(n)p Fu(\()p Fr(t)808 630 y Fo(w)864 615 y Fu(\()p
Fr(n)g Fq(\000)f Fr(M)10 b Fu(\))23 b(+)f Fr(t)1380 630
y Fo(pr)r(od)1524 615 y Fr(nM)10 b Fu(\))23 b(+)f(\()p
Fr(t)1918 630 y Fo(w)1975 615 y Fu(\()p Fr(n)h Fq(\000)f
Fu(1\))g Fq(\000)h Fu(\()p Fr(t)2475 630 y Fo(w)2554
615 y Fu(+)f Fr(t)2687 630 y Fo(s)2724 615 y Fu(\)\()p
Fr(M)32 b Fq(\000)23 b Fu(1\)\))p Fr(pl)r(og)3325 630
y Fp(2)3364 615 y Fr(p)k(>)h Fu(0)p Black -2 w(\(6.21\))p
Black 300 835 a(w)m(e)48 b(can)e(obtain)g Fr(C)58 b(>)52
b(C)1301 775 y Fh(0)1327 835 y Fu(.)85 b(This)47 b(means)g(that)f(the)h
(cost)g(of)f(the)h(Ulam)e(matrix)g(parallel)300 955 y(algorithm)22
b(\(UMP)-8 b(A\))25 b(is)g(greater)g(than)g(the)g(cost)g(of)g(the)g
(complete)f(parallel)f(algorithm)e(\(CP)-8 b(A\))300
1075 y(in)28 b(most)h(cases.)44 b(Therefore,)31 b(the)e(CP)-8
b(A)30 b(is)f(more)f(e\016cien)m(t)i(than)g(the)f(UMP)-8
b(A,)30 b(whic)m(h)g(will)d(also)300 1196 y(b)s(e)33
b(sho)m(wn)h(from)d(the)i(n)m(umerical)e(results)i(in)f(the)h(next)g(c)
m(hapter.)446 1316 y(In)38 b(summary)-8 b(,)38 b(when)g(the)g(n)m(um)m
(b)s(er)g(of)f(pro)s(cessors)i Fr(p)e Fu(increases,)j(the)d
(e\016ciency)i(of)e(b)s(oth)300 1437 y(the)h(UMP)-8 b(A)38
b(and)f(the)g(CP)-8 b(A)38 b(is)f(decreasing.)57 b(When)38
b(the)g(n)m(um)m(b)s(er)g Fr(n)f Fu(of)g(sub-in)m(terv)-5
b(als)36 b(from)300 1557 y(the)c(partition)e(of)i([0)p
Fr(;)17 b Fu(1])31 b(increases,)j(the)e(e\016ciency)h
Fr(E)38 b Fu(of)32 b(the)g(CP)-8 b(A)33 b(will)d(ev)m(en)m(tually)i
(increase)300 1677 y(to)i(1.)47 b(Mean)m(while,)35 b(the)f(e\016ciency)
i Fr(E)k Fu(of)33 b(the)i(UMP)-8 b(A)35 b(will)d(ev)m(en)m(tually)i
(decrease)i(to)e(a)f(small)300 1798 y(constan)m(t)28
b(as)g Fr(n)g Fu(increases)g(\(supp)s(ose)h Fr(p)e Fu(is)g(large\).)41
b(In)28 b(most)f(cases,)j(the)e(CP)-8 b(A)28 b(will)d(outp)s(erform)300
1918 y(the)45 b(UMP)-8 b(A.)46 b(In)f(the)h(next)f(c)m(hapter,)k(w)m(e)
d(will)d(apply)h(our)h(parallel)d(algorithms)g(to)j(a)f(test)300
2038 y(mapping)32 b(and)h(also)g(to)g(the)h(computation)d(of)i(the)h
(probabilit)m(y)d(densit)m(y)k(function)e(\(PDF\))f(of)300
2159 y(the)27 b(Digital)d(Phase-Lo)s(c)m(k)m(ed)29 b(Lo)s(op)d
(\(DPLL\))g(in)h(electronics,)h(and)f(the)g(p)s(erformance)g(analysis)
300 2279 y(of)32 b(the)h(algorithms)d(will)g(b)s(e)j(presen)m(ted,)i
(to)s(o.)p Black Black eop
%%Page: 36 45
36 44 bop Black Black Black Black 1714 150 a Fn(Chapter)53
b(7)p Black Black 1168 581 a(NUMERICAL)h(RESUL)-13 b(TS)488
1283 y Fu(In)44 b(this)g(c)m(hapter)h(w)m(e)g(presen)m(t)g(some)f(n)m
(umerical)e(results)i(for)g(three)g(one)g(dimensional)300
1403 y(transformations)37 b(with)i(Ulam's)f(metho)s(d.)62
b(F)-8 b(or)38 b(the)i(purp)s(ose)g(of)e(comparison)g(on)h(the)g(p)s
(er-)300 1524 y(formance)34 b(of)g(our)h(new)h(quasi-Mon)m(te)f(Carlo)f
(algorithm,)e(w)m(e)k(also)d(include)i(the)g(exp)s(erimen)m(t)300
1644 y(results)i(from)e(the)j(original)33 b(Mon)m(te)k(Carlo)f
(algorithm)e(prop)s(osed)j(b)m(y)g(Hun)m(t)h(in)e([30)o(].)56
b(T)-8 b(o)37 b(see)300 1764 y(ho)m(w)45 b(w)m(ell)e(our)g(quasi-Mon)m
(te)i(Carlo)e(metho)s(d)g(appro)m(ximates)g(the)i(Ulam)d(matrix,)j(for)
f(the)300 1885 y(logistic)d(mo)s(del)g Fr(S)6 b Fu(\()p
Fr(x)p Fu(\))46 b(=)g(4)p Fr(x)p Fu(\(1)29 b Fq(\000)h
Fr(x)p Fu(\),)46 b(since)e(the)g(in)m(v)m(erse)g(image)e(of)h(a)g
(subset)h(under)g Fr(S)49 b Fu(is)300 2005 y(relativ)m(ely)44
b(easy)i(to)e(\014nd)h(analytically)-8 b(,)45 b(w)m(e)h(use)g(the)f
(analytic)f(expression)i(of)e(the)i(in)m(v)m(erse)300
2126 y(mappings)34 b(of)h(eac)m(h)i(monotonic)d(branc)m(h)i(of)f(the)h
(mappings)f(to)g(ev)-5 b(aluate)35 b(the)h(Ulam)d(matrix)300
2246 y Fj(exactly)p Fu(.)41 b(And)26 b(w)m(e)g(compare)f(the)h
(resulting)f Fr(L)2005 2210 y Fp(1)2045 2246 y Fu(-error)f(of)h(the)h
(appro)m(ximate)f(densit)m(y)h(from)e(this)300 2366 y(exact)32
b(Ulam)e(metho)s(d)h(with)g(that)g(from)g(our)g(quasi-Mon)m(te)h(Carlo)
e(metho)s(d.)43 b(F)-8 b(or)31 b(the)h(second)300 2487
y(transformation)42 b Fr(S)1036 2502 y Fp(2)1120 2487
y Fu(b)s(elo)m(w)j(w)m(e)h(also)d(include)h(the)h(error)g(from)e(the)i
(exact)h(Ulam)d(metho)s(d)300 2607 y(obtained)33 b(from)f([16)o(])h
(\(also)g(included)f(in)h([30)o(])h(for)e(the)i(comparison)e(of)g(Hun)m
(t's)j(Mon)m(te)f(Carlo)300 2728 y(algorithm)c(with)j(the)h(exact)h
(Ulam)c(metho)s(d\))i(to)g(compare)g(with)g(the)h(error)f(with)h(the)f
(quasi-)300 2848 y(Mon)m(te)h(Carlo)f(algorithm.)43 b(In)34
b(addition,)e(for)i(the)g(third)e(transformation)g Fr(S)3182
2863 y Fp(3)3255 2848 y Fu(b)s(elo)m(w)h(w)m(e)i(also)300
2968 y(presen)m(t)44 b(the)f(n)m(umerical)e(results)i(from)e(the)i(t)m
(w)m(o)h(parallel)39 b(algorithms)h(from)i(the)g(previous)300
3089 y(c)m(hapter)33 b(and)f(compare)f(their)g(p)s(erformance)g(on)h
(di\013eren)m(t)g(n)m(um)m(b)s(ers)h(of)e(pro)s(cessors.)45
b(Finally)300 3209 y(w)m(e)c(apply)f(our)g(parallel)d(algorithms)g(to)j
(an)g(applied)f(problem)g(in)g(electronics)h(to)g(end)g(this)300
3329 y(c)m(hapter.)p Black Black 517 3600 a Fm(7.1)113
b(Numerical)35 b(Results)h(from)h(the)g(Quasi-Mon)m(te)i(Carlo)d
(Approac)m(h)458 3819 y Fu(The)d(one)g(dimensional)d(test)j(mappings)f
(are)547 4092 y Fr(S)607 4107 y Fp(1)646 4092 y Fu(\()p
Fr(x)p Fu(\))83 b(=)1019 3951 y Fi(\032)1135 4031 y Fu(0)249
b(if)54 b Fr(x)28 b Fu(=)g(0)1135 4151 y Fq(f)1197 4112
y Fp(1)p 1195 4128 40 4 v 1195 4185 a Fo(x)1245 4151
y Fq(g)138 b Fu(if)54 b Fr(x)28 b Fq(6)p Fu(=)g(0)p Fr(;)547
4388 y(S)607 4403 y Fp(2)646 4388 y Fu(\()p Fr(x)p Fu(\))83
b(=)1019 4248 y Fi(\022)1102 4321 y Fu(1)p 1102 4365
49 4 v 1102 4457 a(8)1183 4388 y Fq(\000)23 b Fu(2)p
Fq(j)p Fr(x)f Fq(\000)1547 4321 y Fu(1)p 1547 4365 V
1547 4457 a(2)1605 4388 y Fq(j)1633 4347 y Fp(3)1672
4248 y Fi(\023)1746 4270 y Fp(1)p Fo(=)p Fp(3)1878 4388
y Fu(+)1986 4321 y(1)p 1986 4365 V 1986 4457 a(2)2045
4388 y Fr(;)547 4690 y(S)607 4705 y Fp(3)646 4690 y Fu(\()p
Fr(x)p Fu(\))83 b(=)1019 4520 y Fi(\()1180 4574 y Fp(1)p
1151 4591 95 4 v 1151 4601 a Fl(p)p 1210 4601 36 3 v
55 x Fp(2)1277 4614 y Fq(\000)1377 4531 y(p)p 1460 4531
49 4 v 83 x Fu(2)o Fq(j)1546 4574 y Fp(1)p 1546 4591
36 4 v 1546 4648 a(2)1614 4614 y Fq(\000)22 b Fr(x)p
Fq(j)654 b Fu(if)54 b Fr(x)28 b Fq(2)g Fu([0)p Fr(;)2898
4574 y Fp(1)p 2869 4591 95 4 v 2869 4601 a Fl(p)p 2928
4601 36 3 v 55 x Fp(8)2973 4614 y Fu(])22 b Fq([)h Fu([1)f
Fq(\000)3348 4574 y Fp(1)p 3318 4591 95 4 v 3318 4601
a Fl(p)p 3377 4601 36 3 v 55 x Fp(8)3422 4614 y Fr(;)17
b Fu(1])1141 4757 y(1)22 b Fq(\000)1351 4718 y Fp(1)p
1321 4734 95 4 v 1321 4744 a Fl(p)p 1380 4744 36 3 v
55 x Fp(2)1425 4672 y Fi(p)p 1525 4672 787 4 v 85 x Fu(1)g
Fq(\000)h Fu(\(1)e Fq(\000)i(j)p Fu(1)f Fq(\000)g Fu(2)p
Fr(x)p Fq(j)p Fu(\))2272 4729 y Fp(2)2450 4757 y Fu(if)54
b Fr(x)28 b Fq(2)g Fu([)2806 4718 y Fp(1)p 2776 4734
95 4 v 2776 4744 a Fl(p)p 2835 4744 36 3 v 55 x Fp(8)2881
4757 y Fr(;)17 b Fu(1)k Fq(\000)3134 4718 y Fp(1)p 3105
4734 95 4 v 3105 4744 a Fl(p)p 3164 4744 36 3 v 55 x
Fp(8)3209 4757 y Fu(])p Fr(:)300 4998 y(S)360 5013 y
Fp(1)439 4998 y Fu(is)40 b(called)e(the)j(Gaussian)e(transformation)f
(in)h(whic)m(h)i Fq(f)p Fr(a)p Fq(g)e Fu(is)h(the)g(fractional)e(part)h
(of)h Fr(a)p Fu(,)300 5118 y(and)29 b Fr(S)546 5133 y
Fp(2)615 5118 y Fu(and)g Fr(S)861 5133 y Fp(3)930 5118
y Fu(are)g(the)h(test)g(examples)f Fr(\034)1900 5133
y Fp(1)1969 5118 y Fu(and)g Fr(\034)2197 5133 y Fp(2)2266
5118 y Fu(resp)s(ectiv)m(ely)h(in)f([30)o(].)43 b(The)30
b(unique)g(\014xed)p Black 2021 5764 a(36)p Black eop
%%Page: 37 46
37 45 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(37)p Black 300 274 a(densities)33
b(of)f Fr(S)868 289 y Fo(i)928 274 y Fu(are)h(giv)m(en)g(b)m(y)1508
533 y Fr(f)1567 492 y Fl(\003)1556 558 y Fp(1)1606 533
y Fu(\()p Fr(x)p Fu(\))84 b(=)2038 466 y(1)p 1989 510
147 4 v 1989 601 a(ln)16 b(2)2244 466 y(1)p 2156 510
225 4 v 2156 601 a(1)22 b(+)g Fr(x)2390 533 y(;)1508
803 y(f)1567 762 y Fl(\003)1556 828 y Fp(2)1606 803 y
Fu(\()p Fr(x)p Fu(\))84 b(=)e(12)2094 663 y Fi(\022)2167
803 y Fr(x)23 b Fq(\000)2354 736 y Fu(1)p 2354 780 49
4 v 2354 872 a(2)2413 663 y Fi(\023)2486 685 y Fp(2)2542
803 y Fr(;)1508 1006 y(f)1567 965 y Fl(\003)1556 1030
y Fp(3)1606 1006 y Fu(\()p Fr(x)p Fu(\))84 b(=)e(2\(1)22
b Fq(\000)h(j)p Fu(1)e Fq(\000)i Fu(2)p Fr(x)p Fq(j)p
Fu(\))p Fr(:)446 1226 y Fu(The)33 b(exp)s(erimen)m(ts)f(for)f(the)h
(computation)f(w)m(ere)i(made)e(on)g(an)h(SA)m(G)g(P)m(en)m(tium)f(Pro)
h(com-)300 1346 y(puter)37 b(of)e(the)i(Departmen)m(t)f(of)f(Computer)i
(Science)g(and)f(Statistics)f(of)h(USM)h(with)f Fr(C)43
b Fu(co)s(de)300 1467 y(\(see)34 b(App)s(endix)f(B\).)446
1587 y(First)j(w)m(e)i(use)g(di\013eren)m(t)f(n)m(um)m(b)s(ers)h(of)e
Fr(N)47 b Fu(for)37 b(the)g(quasi-Mon)m(te)g(Carlo)f(metho)s(d)g(for)h
(the)300 1707 y(logistic)42 b(mo)s(del)g(and)i(the)g(mapping)f
Fr(S)1797 1722 y Fp(2)1880 1707 y Fu(to)h(test)g(whic)m(h)h(n)m(um)m(b)
s(er)f(is)g(the)g(b)s(est)h(among)e(the)300 1828 y(c)m(hoice)33
b(for)e(the)i(n)m(um)m(b)s(er)g(of)f(\\uniform)e(sampling)g(p)s(oin)m
(ts")i(within)f(eac)m(h)i(sub-in)m(terv)-5 b(al)32 b(of)g(the)300
1948 y(partition)c(of)i(the)g(in)m(terv)-5 b(al)29 b([0)p
Fr(;)17 b Fu(1].)42 b(Then)31 b(w)m(e)g(use)g(this)f(n)m(um)m(b)s(er)g
(in)g(our)g(exp)s(erimen)m(ts)g(with)g(all)300 2069 y(the)j(test)g
(mappings)f(and)g(the)h(application)d(problem.)446 2189
y(T)-8 b(able)31 b(7.1)g(and)h(T)-8 b(able)31 b(7.2)g(giv)m(e)g(the)h
(errors)f(and)h(the)g(computational)c(time)i(\(in)h(millisec-)300
2309 y(onds\))i(with)f(the)g(QMC)h(for)f Fr(N)38 b Fu(=)28
b(500,)j Fr(N)39 b Fu(=)27 b(1000,)32 b(and)g Fr(N)38
b Fu(=)28 b(1500,)j(for)h(the)h(logistic)d(mo)s(del)300
2430 y Fr(S)6 b Fu(\()p Fr(x)p Fu(\))28 b(=)f(4)p Fr(x)p
Fu(\(1)22 b Fq(\000)h Fr(x)p Fu(\))33 b(and)g Fr(S)1317
2445 y Fp(2)1356 2430 y Fu(,)g(resp)s(ectiv)m(ely)-8
b(.)p Black Black Black 691 2574 2759 4 v 689 2695 4
121 v 693 2695 V 744 2658 a Fm(n)p 939 2695 V 939 2695
V 369 w Fr(N)38 b Fu(=)27 b(500)p 1774 2695 V 1774 2695
V 445 w Fr(N)38 b Fu(=)27 b(1000)p 2609 2695 V 2609 2695
V 420 w Fr(N)38 b Fu(=)28 b(1500)p 3444 2695 V 3448 2695
V 940 2698 2509 4 v 689 2815 4 121 v 693 2815 V 939 2815
V 1104 2779 a(Err)p 1408 2815 V 213 w(T\(ms\))p 1774
2815 V 214 w(Err)p 2243 2815 V 214 w(T\(ms\))p 2609 2815
V 213 w(Err)p 3078 2815 V 214 w(T\(ms\))p 3444 2815 V
3448 2815 V 691 2818 2759 4 v 689 2939 4 121 v 693 2939
V 744 2902 a(16)p 939 2939 V 148 w(2.463E-1)p 1408 2939
V 183 w(40)p 1774 2939 V 183 w(2.450E-1)p 2243 2939 V
183 w(60)p 2609 2939 V 183 w(2.441E-1)p 3078 2939 V 183
w(80)p 3444 2939 V 3448 2939 V 691 2942 2759 4 v 689
3062 4 121 v 693 3062 V 744 3026 a(32)p 939 3062 V 148
w(1.941E-1)p 1408 3062 V 158 w(130)p 1774 3062 V 159
w(1.936E-1)p 2243 3062 V 159 w(220)p 2609 3062 V 158
w(1.935E-1)p 3078 3062 V 159 w(320)p 3444 3062 V 3448
3062 V 691 3066 2759 4 v 689 3186 4 121 v 693 3186 V
744 3150 a(64)p 939 3186 V 148 w(1.495E-1)p 1408 3186
V 158 w(520)p 1774 3186 V 159 w(1.478E-1)p 2243 3186
V 159 w(860)p 2609 3186 V 158 w(1.472E-1)p 3078 3186
V 134 w(1290)p 3444 3186 V 3448 3186 V 691 3189 2759
4 v 689 3310 4 121 v 693 3310 V 744 3274 a(128)p 939
3310 V 99 w(1.136E-1)p 1408 3310 V 134 w(2080)p 1774
3310 V 134 w(1.129E-1)p 2243 3310 V 134 w(3480)p 2609
3310 V 134 w(1.127E-1)p 3078 3310 V 134 w(5150)p 3444
3310 V 3448 3310 V 691 3313 2759 4 v 689 3433 4 121 v
693 3433 V 744 3397 a(256)p 939 3433 V 99 w(8.398E-2)p
1408 3433 V 134 w(8310)p 1774 3433 V 134 w(8.345E-2)p
2243 3433 V 110 w(13860)p 2609 3433 V 109 w(8.314E-2)p
3078 3433 V 110 w(20500)p 3444 3433 V 3448 3433 V 691
3437 2759 4 v Black 804 3607 a(T)-8 b(able)32 b(7.1:)43
b Fr(L)1333 3571 y Fp(1)1406 3607 y Fu(error/time)31
b(comparison)g(for)h(the)h(logistic)d(mo)s(del)p Black
Black Black Black Black 678 3976 2785 4 v 676 4096 4
121 v 680 4096 V 731 4060 a Fm(n)p 925 4096 V 925 4096
V 368 w Fr(N)39 b Fu(=)27 b(500)p 1760 4096 V 1760 4096
V 444 w Fr(N)38 b Fu(=)28 b(1000)p 2596 4096 V 2596 4096
V 433 w Fr(N)38 b Fu(=)28 b(1500)p 3457 4096 V 3461 4096
V 927 4099 2536 4 v 676 4216 4 121 v 680 4216 V 925 4216
V 1091 4180 a(Err)p 1395 4216 V 213 w(T\(ms\))p 1760
4216 V 214 w(Err)p 2230 4216 V 213 w(T\(ms\))p 2596 4216
V 214 w(Err)p 3065 4216 V 227 w(T\(ms\))p 3457 4216 V
3461 4216 V 678 4220 2785 4 v 676 4340 4 121 v 680 4340
V 731 4304 a(16)p 925 4340 V 148 w(1.022E-1)p 1395 4340
V 158 w(170)p 1760 4340 V 159 w(1.025E-1)p 2230 4340
V 158 w(340)p 2596 4340 V 159 w(1.026E-1)p 3065 4340
V 172 w(500)p 3457 4340 V 3461 4340 V 678 4343 2785 4
v 676 4464 4 121 v 680 4464 V 731 4428 a(32)p 925 4464
V 148 w(5.258E-2)p 1395 4464 V 158 w(670)p 1760 4464
V 159 w(5.264E-2)p 2230 4464 V 134 w(1360)p 2596 4464
V 134 w(5.266E-2)p 3065 4464 V 147 w(2020)p 3457 4464
V 3461 4464 V 678 4467 2785 4 v 676 4588 4 121 v 680
4588 V 731 4551 a(64)p 925 4588 V 148 w(2.606E-2)p 1395
4588 V 134 w(2710)p 1760 4588 V 134 w(2.582E-2)p 2230
4588 V 134 w(5380)p 2596 4588 V 134 w(2.575E-2)p 3065
4588 V 147 w(8060)p 3457 4588 V 3461 4588 V 678 4591
2785 4 v 676 4711 4 121 v 680 4711 V 731 4675 a(128)p
925 4711 V 99 w(1.359E-2)p 1395 4711 V 109 w(10760)p
1760 4711 V 110 w(1.344E-2)p 2230 4711 V 110 w(21520)p
2596 4711 V 109 w(1.344E-2)p 3065 4711 V 123 w(32210)p
3457 4711 V 3461 4711 V 678 4715 2785 4 v 676 4835 4
121 v 680 4835 V 731 4799 a(256)p 925 4835 V 99 w(7.300E-3)p
1395 4835 V 109 w(43020)p 1760 4835 V 110 w(6.644E-3)p
2230 4835 V 110 w(85890)p 2596 4835 V 109 w(6.570E-3)p
3065 4835 V 99 w(128840)p 3457 4835 V 3461 4835 V 678
4838 2785 4 v Black 1149 5009 a(T)-8 b(able)32 b(7.2:)43
b Fr(L)1678 4972 y Fp(1)1750 5009 y Fu(error/time)31
b(comparison)h(for)g Fr(S)2952 5024 y Fp(2)p Black Black
446 5353 a Fu(F)-8 b(rom)40 b(the)h(t)m(w)m(o)h(tables)f(w)m(e)h(see)h
(that)d(if)g Fr(N)52 b Fu(is)41 b(only)f(500,)j(although)d(the)h(time)f
(sp)s(en)m(t)i(is)300 5473 y(not)c(large,)h(the)g Fr(L)992
5437 y Fp(1)1031 5473 y Fu(-error)f(is)g(relativ)m(ely)f(large.)60
b(When)39 b Fr(N)48 b Fu(=)37 b(1500,)i(it)e(is)h(m)m(uc)m(h)h(more)e
(time)p Black Black eop
%%Page: 38 47
38 46 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(38)p Black 300 274 a(consuming,)39
b(while)e(the)h(the)h(error)f(is)f(basically)f(ab)s(out)i(the)g(same)g
(as)g(that)g(for)g Fr(N)47 b Fu(=)37 b(1000.)300 395
y(Th)m(us,)30 b(in)c(our)h(n)m(umerical)e(exp)s(erimen)m(ts)j(w)m(e)g
(exclusiv)m(ely)g(c)m(ho)s(ose)f Fr(N)39 b Fu(=)27 b(1000,)g(whic)m(h)h
(w)m(as)g(also)300 515 y(used)34 b(b)m(y)f(Hun)m(t)g(in)f(the)h(pap)s
(er)g([30].)446 635 y(In)27 b(the)h(follo)m(wing)c(table,)j(T)-8
b(able)27 b(7.3,)g Fr(n)g Fu(denotes)i(the)e(n)m(um)m(b)s(er)g(of)f
(the)i(equal)e(sub-in)m(terv)-5 b(als)300 756 y(of)27
b(the)g(partition)e(of)i([0)p Fr(;)17 b Fu(1].)41 b(The)28
b Fr(L)1600 720 y Fp(1)1639 756 y Fu(-errors)f(of)g(the)g(computed)h
(\014xed)g(densit)m(y)g Fr(f)3265 771 y Fo(n)3339 756
y Fu(to)f(the)g(exact)300 876 y(\014xed)35 b(densit)m(y)f
Fr(f)933 840 y Fl(\003)1006 876 y Fu(from)f(the)h(original)c(Mon)m(te)
35 b(Carlo)d(metho)s(d)h(\(MC\))i(and)e(the)i(quasi-Mon)m(te)300
997 y(Carlo)25 b(metho)s(d)h(\(QMC\))h(with)g Fr(N)38
b Fu(=)27 b(1000)f(p)s(oin)m(ts)g(c)m(hosen)i(in)e(eac)m(h)h(sub-in)m
(terv)-5 b(al)26 b(is)g(presen)m(ted)300 1117 y(in)32
b(the)h(table.)p Black Black Black 535 1233 3070 4 v
533 1353 4 121 v 537 1353 V 588 1317 a Fm(n)p 783 1353
V 783 1353 V 554 w Fr(S)1264 1332 y Fp(1)p 1722 1353
V 1722 1353 V 2143 1317 a Fr(S)2203 1332 y Fp(2)p 2661
1353 V 2661 1353 V 3082 1317 a Fr(S)3142 1332 y Fp(3)p
3600 1353 V 3604 1353 V 785 1356 2821 4 v 533 1473 4
121 v 537 1473 V 783 1473 V 939 1437 a Fu(MC)p 1252 1473
V 273 w(QMC)p 1722 1473 V 272 w(MC)p 2191 1473 V 273
w(QMC)p 2661 1473 V 272 w(MC)p 3130 1473 V 273 w(QMC)p
3600 1473 V 3604 1473 V 535 1477 3070 4 v 533 1597 4
121 v 537 1597 V 588 1561 a(16)p 783 1597 V 148 w(2.172E-2)p
1252 1597 V 99 w(1.354E-2)p 1722 1597 V 98 w(1.172E-1)p
2191 1597 V 99 w(1.025E-1)p 2661 1597 V 98 w(8.576E-2)p
3130 1597 V 99 w(7.289E-2)p 3600 1597 V 3604 1597 V 535
1600 3070 4 v 533 1721 4 121 v 537 1721 V 588 1685 a(32)p
783 1721 V 148 w(2.106E-2)p 1252 1721 V 99 w(8.470E-3)p
1722 1721 V 98 w(6.122E-2)p 2191 1721 V 99 w(5.264E-2)p
2661 1721 V 98 w(4.290E-2)p 3130 1721 V 99 w(3.826E-2)p
3600 1721 V 3604 1721 V 535 1724 3070 4 v 533 1844 4
121 v 537 1844 V 588 1808 a(64)p 783 1844 V 148 w(2.279E-2)p
1252 1844 V 99 w(6.789E-3)p 1722 1844 V 98 w(3.603E-2)p
2191 1844 V 99 w(2.581E-2)p 2661 1844 V 98 w(3.470E-2)p
3130 1844 V 99 w(1.788E-2)p 3600 1844 V 3604 1844 V 535
1848 3070 4 v 533 1968 4 121 v 537 1968 V 588 1932 a(128)p
783 1968 V 99 w(2.465E-2)p 1252 1968 V 99 w(7.164E-4)p
1722 1968 V 98 w(3.682E-2)p 2191 1968 V 99 w(1.344E-2)p
2661 1968 V 98 w(3.520E-2)p 3130 1968 V 99 w(8.640E-3)p
3600 1968 V 3604 1968 V 535 1971 3070 4 v 533 2092 4
121 v 537 2092 V 588 2056 a(256)p 783 2092 V 99 w(2.483E-2)p
1252 2092 V 99 w(6.725E-4)p 1722 2092 V 98 w(3.389E-2)p
2191 2092 V 99 w(6.644E-3)p 2661 2092 V 98 w(2.702E-2)p
3130 2092 V 99 w(4.475E-3)p 3600 2092 V 3604 2092 V 535
2095 3070 4 v Black 876 2265 a(T)-8 b(able)32 b(7.3:)43
b Fr(L)1405 2229 y Fp(1)1477 2265 y Fu(error)33 b(comparisons)f(of)g
(the)h(QMC)g(to)f(the)h(MC)p Black Black 446 2625 a(The)k(results)f(of)
g(the)g(MC)h(for)e Fr(S)1657 2640 y Fp(2)1732 2625 y
Fu(and)h Fr(S)1985 2640 y Fp(3)2061 2625 y Fu(are)g(similar)c(to)k
(those)g(in)f([30].)53 b(Ho)m(w)m(ev)m(er,)40 b(the)300
2746 y(QMC)27 b(giv)m(es)g(m)m(uc)m(h)f(smaller)f(errors)h(than)h(the)f
(MC)h(with)f(the)h(increasing)e(n)m(um)m(b)s(er)i(of)f(the)h(sub-)300
2866 y(in)m(terv)-5 b(als.)56 b(F)-8 b(or)36 b(the)h(mapping)f
Fr(S)1559 2881 y Fp(1)1598 2866 y Fu(,)i(the)f(computational)e(error)h
(with)h(the)g(MC)h(is)e(vibrating,)300 2987 y(but)d(the)g(error)f(with)
g(the)h(QMC)h(is)e(decreasing)h(quic)m(kly)-8 b(.)446
3107 y(Wh)m(y)49 b(do)s(es)f(not)f(the)h(standard)g(Mon)m(te)g(Carlo)e
(p)s(erform)h(w)m(ell)f(for)h Fr(S)3143 3122 y Fp(1)3183
3107 y Fu(?)88 b(Because)49 b(the)300 3227 y(Gaussian)43
b(transformation)e(has)i(in\014nitely)f(man)m(y)h(branc)m(hes)i(in)e
(an)m(y)g(neigh)m(b)s(orho)s(o)s(d)f(of)h(0,)300 3348
y(the)29 b(deriv)-5 b(ativ)m(e)28 b Fr(S)973 3312 y Fl(0)967
3372 y Fp(1)1006 3348 y Fu(\()p Fr(x)p Fu(\))h(is)f(v)m(ery)i(large)d
(as)h Fr(x)h Fu(is)f(near)h(0)f(\(when)h Fr(x)g Fu(approac)m(hes)h(0,)f
(the)f(deriv)-5 b(ativ)m(e)300 3468 y(go)s(es)41 b(to)h(in\014nit)m
(y\).)69 b(W)-8 b(e)42 b(kno)m(w)g(that)g(the)f(larger)g(the)h(deriv)-5
b(ativ)m(e,)43 b(the)f(more)e(sensitiv)m(e)j(the)300
3589 y(iterates)30 b(dep)s(end)g(on)g(the)g(initial)c(conditions,)k
(whic)m(h)g(is)f(the)h(basic)g(idea)f(b)s(ehind)h(the)g(concept)300
3709 y(of)47 b(Ly)m(apuno)m(v)i(exp)s(onen)m(ts)h([50].)88
b(Th)m(us,)53 b(when)c(the)f(n)m(um)m(b)s(er)g(of)f(the)h(partitions)e
(of)i([0)p Fr(;)17 b Fu(1])300 3829 y(is)41 b(increasing,)h(due)g(to)f
(the)g(v)m(ery)i(large)c(deriv)-5 b(ativ)m(e)41 b(v)-5
b(alues)41 b(of)g(the)g(mapping)f(for)g(the)i(sub-)300
3950 y(in)m(terv)-5 b(als)47 b(near)h(0,)k(w)m(e)d(cannot)f(exp)s(ect)i
(the)e(randomly)f(c)m(hosen)i(n)m(um)m(b)s(ers)g(in)f(the)g(Mon)m(te)
300 4070 y(Carlo)29 b(metho)s(d)h(can)h(e\013ectiv)m(ely)g(ev)-5
b(aluate)30 b(the)h(Ulam)e(matrix)g(in)g(Ulam's)h(metho)s(d.)42
b(In)31 b(other)300 4190 y(w)m(ords,)36 b(the)e(resulting)f(accum)m
(ulated)h(error)g(ma)m(y)g(not)f(b)s(e)i(smaller)d(for)h(\014ner)i
(partitions.)46 b(On)300 4311 y(the)28 b(other)f(hand,)h(the)g
(quasi-Mon)m(te)f(Carlo)g(metho)s(d)f(is)h(based)h(on)f(the)g
(deterministic)f(pro)s(cess)300 4431 y(of)g(c)m(ho)s(osing)h(the)g
(uniform)e(sampling)f(p)s(oin)m(ts)j(with)f(eac)m(h)i(sub-in)m(terv)-5
b(al.)40 b(So)27 b(ev)m(en)h(for)e(the)i(sub-)300 4552
y(in)m(terv)-5 b(als)29 b(near)h(0,)h(the)f(error)g(can)g(b)s(e)g
(e\013ectiv)m(ely)h(con)m(trolled)e(from)g(the)h(O\()p
Fr(N)3214 4515 y Fl(\000)p Fp(1)3309 4552 y Fu(\))g(complexit)m(y)300
4672 y(of)k(the)i(quasi-Mon)m(te)f(Carlo)f(metho)s(d)g([44].)50
b(This)35 b(explains)g(wh)m(y)h(for)f Fr(S)3021 4687
y Fp(1)3060 4672 y Fu(,)h(the)f(MC)h(fails)d(but)300
4792 y(the)k(QMC)f(w)m(orks)i(w)m(ell.)54 b(The)37 b(ab)s(o)m(v)m(e)g
(n)m(umerical)e(results)h(also)f(con\014rm)h(the)h(conclusion.)54
b(A)300 4913 y(more)39 b(detailed)f(list)g(of)h(the)h(errors)f(with)g
(the)h Fr(M)10 b(C)47 b Fu(for)39 b Fr(S)2513 4928 y
Fp(1)2592 4913 y Fu(is)f(Figure)h(7.1)g(for)g Fr(n)g
Fu(from)f(4)h(to)300 5033 y(1024.)446 5153 y(No)m(w)j(w)m(e)f(compare)f
(the)h(p)s(erformance)g(of)f(the)h(MC,)g(the)g(QMC,)h(and)e(the)h
(exact)h(Ulam)300 5274 y(metho)s(d)28 b(for)g(the)h(logistic)d(mo)s
(del)h(and)h Fr(S)1818 5289 y Fp(2)1858 5274 y Fu(.)42
b(T)-8 b(able)28 b(7.4)g(sho)m(ws)i(the)f Fr(L)2850 5238
y Fp(1)2919 5274 y Fu(error)f(and)h(the)g(time)e(\(in)300
5394 y(milliseconds\))34 b(comparisons)i(of)h(the)g(exact)g(Ulam)e
(metho)s(d)i(in)f(Chapter)h(3)g(with)f(the)h(QMC)300
5515 y(and)f(the)f(MC)i(for)d(the)i(logistic)d(mo)s(del)h
Fr(S)6 b Fu(\()p Fr(x)p Fu(\))33 b(=)f(4)p Fr(x)p Fu(\(1)24
b Fq(\000)h Fr(x)p Fu(\).)52 b(And)36 b(T)-8 b(able)35
b(7.5)g(only)g(lists)g(the)p Black Black eop
%%Page: 39 48
39 47 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(39)p Black Black Black Black
720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/s1.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Sat Jul  1 01:13:50 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
684 360 M
63 0 V
2649 0 R
-63 0 V
612 360 M
(0) Rshow
684 562 M
63 0 V
2649 0 R
-63 0 V
612 562 M
(0.005) Rshow
684 763 M
63 0 V
2649 0 R
-63 0 V
612 763 M
(0.01) Rshow
684 965 M
63 0 V
2649 0 R
-63 0 V
612 965 M
(0.015) Rshow
684 1166 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.02) Rshow
684 1368 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.025) Rshow
684 1570 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.03) Rshow
684 1771 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.035) Rshow
684 1973 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.04) Rshow
684 2174 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.045) Rshow
684 2376 M
63 0 V
2649 0 R
-63 0 V
-2721 0 R
(0.05) Rshow
684 360 M
0 63 V
0 1953 R
0 -63 V
684 240 M
(2) Cshow
1023 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
1362 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
1701 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(5) Cshow
2040 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(6) Cshow
2379 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(7) Cshow
2718 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(8) Cshow
3057 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(9) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(10) Cshow
1.000 UL
LTb
684 360 M
2712 0 V
0 2016 V
-2712 0 V
684 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(L1 error) Cshow
grestore
2040 60 M
(i \(n=2^i\) ) Cshow
1.000 UL
LT0
2829 2253 M
(MC for S1) Rshow
2901 2253 M
351 0 V
684 2217 M
339 -603 V
339 -378 V
339 -27 V
339 70 V
339 75 V
339 7 V
339 165 V
339 -77 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 1133 2268 a(Figure)31 b(7.1:)43 b
Fr(L)1701 2232 y Fp(1)1774 2268 y Fu(error)32 b(with)g(c)m(hange)i(of)e
Fr(n)h Fu(for)f Fr(S)2968 2283 y Fp(1)p Black Black 300
2661 a Fu(errors.)51 b(Because)36 b(the)f(in)m(v)-5 b(arian)m(t)34
b(densit)m(y)i(for)e(the)h(logistic)e(mo)s(del)g Fr(S)40
b Fu(is)35 b(un)m(b)s(ounded)h(near)f(0)300 2781 y(and)j(1,)h(the)f
(error)g(is)f(relativ)m(ely)f(large)h(ev)m(en)j(for)d(the)h(exact)h
(Ulam)d(metho)s(d)h(if)f(the)j(n)m(um)m(b)s(er)300 2902
y Fr(n)h Fu(of)f(the)h(partition)d(of)i([0)p Fr(;)17
b Fu(1])39 b(is)g(not)g(big)g(enough.)65 b(F)-8 b(rom)38
b(the)i(t)m(w)m(o)g(tables)f(w)m(e)i(see)f(that)g(in)300
3022 y(implemen)m(ting)23 b(the)j(quasi-Mon)m(te)g(Carlo)f(metho)s(d,)h
(the)g(errors)g(are)g(almost)e(as)i(small)d(as)j(those)300
3143 y(from)38 b(the)h(exact)h(Ulam)d(metho)s(d)h(in)g(whic)m(h)i(the)f
(en)m(tries)h(of)e(the)h(matrix)f Fr(P)3182 3158 y Fo(n)3267
3143 y Fu(are)h(ev)-5 b(aluated)300 3263 y(exactly)33
b(b)m(y)g(the)g(form)m(ula)e(\(3.5\).)446 3383 y(Here)g(w)m(e)g(p)s
(oin)m(t)e(out)g(again)g(that,)h(since)g(the)g(exact)h(ev)-5
b(aluation)28 b(of)h(the)h(en)m(tries)h(of)e(Ulam's)300
3504 y(matrix)h Fr(P)679 3519 y Fo(n)757 3504 y Fu(is)h(imp)s(ossible)e
(for)i(most)g(applied)f(problems)g(due)i(to)f(the)h(fact)f(in)g(suc)m
(h)i(cases)g(the)300 3624 y(the)d(in)m(v)m(erse)g(image)e(of)g(a)h
(subset)i(under)f(the)g(mapping)d Fr(S)35 b Fu(can)30
b(not)f(b)s(e)g(obtained)g(analytically)300 3744 y(\(e.g.,)38
b Fr(S)k Fu(do)s(es)37 b(not)g(ha)m(v)m(e)h(an)e(expression)i(or)e(the)
h(the)g(expression)h(of)e Fr(S)43 b Fu(is)36 b(to)s(o)g(complicated)300
3865 y(to)e(use\),)h(the)f(only)g(w)m(a)m(y)h(to)e(ev)-5
b(aluate)34 b(the)g(Ulam)e(matrix)h(appro)m(ximately)f(is)i(via)f(the)h
(Mon)m(te)300 3985 y(Carlo)g(approac)m(h.)52 b(Of)35
b(course,)i(for)e(one)g(dimensional)e(mappings)h(as)i(simple)d(as)j
(the)f(logistic)300 4106 y(mo)s(del,)j(the)h(exact)h(Ulam)c(metho)s(d)i
(the)h(most)f(time)f(e\016cien)m(t,)k(and)e(it)e(is)h(not)g(necessary)j
(to)300 4226 y(adopt)26 b(the)h(Mon)m(te)g(Carlo)e(approac)m(h)i(since)
f(the)h(exact)g(ev)-5 b(aluation)25 b(of)g(the)i(matrix)e(is)h(p)s
(ossible.)p Black Black 713 4496 a Fm(7.2)112 b(Numerical)35
b(Results)i(from)g(the)g(P)m(arallel)e(Computation)456
4716 y Fu(No)m(w)c(w)m(e)h(presen)m(t)h(the)e(n)m(umerical)f(results)h
(from)f(the)h(parallel)d(quasi-Mon)m(te)j(Carlo)f(algo-)300
4836 y(rithms)d(to)i(the)g(mapping)e Fr(S)1342 4851 y
Fp(3)1381 4836 y Fu(.)42 b(The)30 b(parallel)c(algorithms)g(w)m(ere)k
(implemen)m(ted)d(on)h(the)h(Wiglaf)300 4956 y(parallel)34
b(computer)i(at)g(USM)h(and)f(on)g(the)h(Sw)m(eetgum)g(at)f(the)h
(MCSR,)g(b)m(y)g(using)f(the)h(MPI)300 5077 y(\(Message)d(P)m(assing)f
(In)m(terface\))h(pac)m(k)-5 b(age)33 b([46)o(])g(with)f(C)h(co)s(de)g
(\(see)h(App)s(endix)f(B\).)p Black Black eop
%%Page: 40 49
40 48 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(40)p Black Black Black Black
640 178 2861 4 v 638 298 4 121 v 642 298 V 693 262 a
Fm(n)p 936 298 V 936 298 V 460 w(Exact)p 1772 298 V 1772
298 V 614 w(MC)p 2633 298 V 2633 298 V 633 w(QMC)p 3495
298 V 3499 298 V 938 302 2563 4 v 638 419 4 121 v 642
419 V 936 419 V 1102 383 a Fu(Err)p 1406 419 V 213 w(T\(ms\))p
1772 419 V 214 w(Err)p 2241 419 V 227 w(T\(ms\))p 2633
419 V 227 w(Err)p 3103 419 V 227 w(T\(ms\))p 3495 419
V 3499 419 V 640 422 2861 4 v 638 542 4 121 v 642 542
V 693 506 a(16)p 936 542 V 197 w(2.420E-1)p 1406 542
V 207 w(0)p 1772 542 V 208 w(2.615E-1)p 2241 542 V 196
w(70)p 2633 542 V 197 w(2.450E-1)p 3103 542 V 196 w(60)p
3495 542 V 3499 542 V 640 546 2861 4 v 638 666 4 121
v 642 666 V 693 630 a(32)p 936 666 V 197 w(1.935E-1)p
1406 666 V 207 w(0)p 1772 666 V 208 w(2.007E-1)p 2241
666 V 172 w(270)p 2633 666 V 172 w(1.936E-1)p 3103 666
V 171 w(220)p 3495 666 V 3499 666 V 640 669 2861 4 v
638 790 4 121 v 642 790 V 693 754 a(64)p 936 790 V 197
w(1.464E-1)p 1406 790 V 183 w(10)p 1772 790 V 183 w(1.486E-1)p
2241 790 V 147 w(1060)p 2633 790 V 148 w(1.478E-1)p 3103
790 V 171 w(860)p 3495 790 V 3499 790 V 640 793 2861
4 v 638 914 4 121 v 642 914 V 693 877 a(128)p 936 914
V 148 w(1.122E-1)p 1406 914 V 183 w(60)p 1772 914 V 183
w(1.195E-1)p 2241 914 V 147 w(4200)p 2633 914 V 148 w(1.129E-1)p
3103 914 V 147 w(3480)p 3495 914 V 3499 914 V 640 917
2861 4 v 638 1037 4 121 v 642 1037 V 693 1001 a(256)p
936 1037 V 148 w(8.290E-2)p 1406 1037 V 158 w(330)p 1772
1037 V 159 w(8.856E-2)p 2241 1037 V 123 w(16670)p 2633
1037 V 123 w(8.345E-2)p 3103 1037 V 123 w(13860)p 3495
1037 V 3499 1037 V 640 1041 2861 4 v 638 1161 4 121 v
642 1161 V 693 1125 a(512)p 936 1161 V 148 w(6.280E-2)p
1406 1161 V 134 w(1280)p 1772 1161 V 134 w(7.284E-2)p
2241 1161 V 123 w(66450)p 2633 1161 V 123 w(6.323E-2)p
3103 1161 V 123 w(55850)p 3495 1161 V 3499 1161 V 640
1164 2861 4 v 638 1285 4 121 v 642 1285 V 693 1249 a(1024)p
936 1285 V 99 w(4.580E-2)p 1406 1285 V 134 w(6510)p 1772
1285 V 134 w(6.301E-2)p 2241 1285 V 99 w(265540)p 2633
1285 V 98 w(4.621E-2)p 3103 1285 V 98 w(223540)p 3495
1285 V 3499 1285 V 640 1288 2861 4 v Black 340 1458 a(T)-8
b(able)32 b(7.4:)43 b Fr(L)869 1422 y Fp(1)942 1458 y
Fu(error/time)31 b(comparison)g(of)h(QMC,)h(MC,)h(and)e(Exact)i(for)e
(logistic)e(mo)s(del)p Black Black Black Black Black
1239 1694 1662 4 v 1237 1814 4 121 v 1241 1814 V 1293
1778 a Fr(n)p 1487 1814 V 249 w Fu(Exact)p 1957 1814
V 266 w(MC)p 2426 1814 V 273 w(QMC)p 2896 1814 V 2900
1814 V 1239 1818 1662 4 v 1237 1938 4 121 v 1241 1938
V 1293 1902 a(16)p 1487 1938 V 148 w(1.027E-1)p 1957
1938 V 98 w(1.172E-1)p 2426 1938 V 99 w(1.025E-1)p 2896
1938 V 2900 1938 V 1239 1941 1662 4 v 1237 2062 4 121
v 1241 2062 V 1293 2026 a(32)p 1487 2062 V 148 w(5.257E-2)p
1957 2062 V 98 w(6.122E-2)p 2426 2062 V 99 w(5.264E-2)p
2896 2062 V 2900 2062 V 1239 2065 1662 4 v 1237 2186
4 121 v 1241 2186 V 1293 2149 a(64)p 1487 2186 V 148
w(2.564E-2)p 1957 2186 V 98 w(3.603E-2)p 2426 2186 V
99 w(2.581E-2)p 2896 2186 V 2900 2186 V 1239 2189 1662
4 v 1237 2309 4 121 v 1241 2309 V 1293 2273 a(128)p 1487
2309 V 99 w(1.337E-2)p 1957 2309 V 98 w(3.682E-2)p 2426
2309 V 99 w(1.344E-2)p 2896 2309 V 2900 2309 V 1239 2313
1662 4 v 1237 2433 4 121 v 1241 2433 V 1293 2397 a(256)p
1487 2433 V 99 w(6.450E-3)p 1957 2433 V 98 w(3.389E-2)p
2426 2433 V 99 w(6.644E-3)p 2896 2433 V 2900 2433 V 1239
2436 1662 4 v Black 720 2607 a(T)-8 b(able)32 b(7.5:)43
b Fr(L)1249 2570 y Fp(1)1322 2607 y Fu(error)32 b(comparison)g(of)g
(QMC,)h(MC,)g(and)g(Exact)h(for)e Fr(S)3381 2622 y Fp(2)p
Black Black Black Black 1170 2999 a Fm(7.2.1)150 b(Numerical)35
b(Results)h(on)i(Wiglaf)476 3184 y Fu(Wiglaf)f(is)i(the)g(USM)h(Beo)m
(wulf)f(Cluster)h(with)f(32)g(P)m(en)m(tium)g(I)s(I)g(pro)s(cessors)i
(whic)m(h)f(run)300 3305 y(LAM)g(6.3.1/MPI)g(2)f(C++/R)m(OMIO)h(of)f
(Univ)m(ersit)m(y)h(of)f(Notre)h(Dame.)63 b(The)40 b(compiler)e(w)m(e)
300 3425 y(used)43 b(is)e Fr(hcc)h Fu(with)f(the)h(optimizing)c
(compilation)g(option)j(-O3.)69 b(The)43 b(no)s(de)f(con\014guration)
300 3545 y(of)36 b(Wiglaf)e(is:)51 b(233)36 b(MHz)h(CPU)g(sp)s(eed,)i
(256)d(MB)h(memory)-8 b(,)36 b(4)h(GB)f(hard)g(disk,)i(and)f(3COM)300
3666 y(3c905)32 b(10/100)f(PCI)j(Ethernet)f(with)g(Ba)m(y)g(Net)m(w)m
(orks)h(350T)f(F)-8 b(ast)32 b(Ethernet)i(Switc)m(h.)446
3786 y(In)25 b(the)g(exp)s(erimen)m(ts,)i(all)22 b(times)i(rep)s(orted)
g(here)h(are)g(the)g(b)s(est)g(ones)g(of)f(3)g(to)g(5)g(runs.)42
b(In)25 b(the)300 3906 y(follo)m(wing)i(tables)j(and)g(\014gures,)h
Fr(p)f Fu(represen)m(ts)i(the)e(n)m(um)m(b)s(er)g(of)g(w)m(orking)f
(parallel)e(pro)s(cessors.)300 4027 y Fr(T)58 b Fu(means)44
b(the)h(computation)e(time)g(in)h(seconds.)80 b Fr(s)45
b Fu(is)e(the)i(sp)s(eedup,)k(and)c(the)g(e\016ciency)300
4147 y(is)f(denoted)h(b)m(y)g Fr(E)6 b Fu(.)79 b(All)43
b(the)h(data)g(are)g(rounded)i(o\013)e(to)f(the)i(second)h(decimal)c
(place.)79 b(In)300 4268 y(the)32 b(quasi-Mon)m(te)f(Carlo)f
(computation,)g(1000)g(sampling)f(n)m(um)m(b)s(ers)j(are)f(used,)i
(that)e(is,)g(eac)m(h)300 4388 y(partition)h([)p Fr(ih;)17
b Fu(\()p Fr(i)23 b Fu(+)g(1\))p Fr(h)p Fu(])34 b(\()p
Fr(i)c Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g Fu(2)p Fr(;)g
Fq(\001)g(\001)g(\001)30 b Fr(;)17 b(n)23 b Fq(\000)g
Fu(1\))34 b(of)f([0)p Fr(;)17 b Fu(1])33 b(is)h(ev)m(enly)h(re-divided)
e(in)m(to)g(1000)300 4508 y(sub-in)m(terv)-5 b(als,)32
b(where)i Fr(h)28 b Fu(=)f(1)p Fr(=n)p Fu(.)446 4629
y(W)-8 b(e)36 b(discuss)h(the)f(p)s(erformances)g(of)f(the)h(UMP)-8
b(A)36 b(and)g(the)g(CP)-8 b(A)36 b(on)g(the)g(Wiglaf.)50
b(T)-8 b(able)300 4749 y(7.6)31 b(sho)m(ws)i(the)f(computation)e(time)g
(\(in)g(seconds\),)k(sp)s(eedup,)f(and)f(e\016ciency)g(of)f(the)h(UMP)
-8 b(A)300 4870 y(and)33 b(the)g(CP)-8 b(A)33 b(for)f(the)h(test)g
(mapping)e Fr(S)1860 4885 y Fp(3)1900 4870 y Fu(.)446
4990 y(F)-8 b(rom)32 b(the)h(results)g(it)f(is)h(easy)h(to)e(\014nd)i
(that)e(the)i(computation)d(time)h(of)g(the)h(CP)-8 b(A)34
b(is)f(less)300 5110 y(than)40 b(that)g(of)f(the)h(UMP)-8
b(A)41 b(for)e(the)i(same)e(problem)g(size)h Fr(n)g Fu(\(the)g(n)m(um)m
(b)s(er)h(of)e(subin)m(terv)-5 b(als)300 5231 y(from)30
b(the)i(partition)d(of)h([0)p Fr(;)17 b Fu(1]\).)43 b(Th)m(us)32
b(the)g(CP)-8 b(A)32 b(is)f(faster)g(than)g(the)h(UMP)-8
b(A)32 b(with)f(the)g(same)300 5351 y(problem.)446 5471
y(Figure)24 b(7.2)h(and)g(Figure)e(7.3)i(sho)m(w)h(the)f(e\016ciency)h
(of)f(the)g(UMP)-8 b(A)26 b(and)f(CP)-8 b(A)25 b(with)g(resp)s(ect)p
Black Black eop
%%Page: 41 50
41 49 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(41)p Black Black Black Black
782 178 2576 4 v 780 298 4 121 v 784 298 V 835 262 a
Fm(n)p 1030 298 V 1030 298 V 592 w(UMP)-9 b(A)p 2290
298 V 2290 298 V 873 w(CP)g(A)p 3353 298 V 3357 298 V
782 302 2576 4 v 780 422 4 121 v 784 422 V 1030 422 V
1105 386 a Fr(p)p 1227 422 V 164 w(T)14 b Fu(\()p Fr(s)p
Fu(\))p 1597 422 V 226 w Fr(s)p 1919 422 V 206 w(E)6
b Fu(\(\045\))p 2290 422 V 157 w Fr(T)14 b Fu(\()p Fr(s)p
Fu(\))p 2660 422 V 226 w Fr(s)p 2982 422 V 206 w(E)6
b Fu(\(\045\))p 3353 422 V 3357 422 V 1031 425 2327 4
v 780 542 4 121 v 784 542 V 1030 542 V 1106 506 a(1)p
1227 542 V 148 w(29.22)p 1597 542 V 147 w(1.00)p 1919
542 V 124 w(100.00)p 2290 542 V 123 w(26.27)p 2660 542
V 147 w(1.00)p 2982 542 V 124 w(100.00)p 3353 542 V 3357
542 V 1031 546 2327 4 v 780 663 4 121 v 784 663 V 1030
663 V 1106 627 a(2)p 1227 663 V 148 w(15.93)p 1597 663
V 147 w(1.83)p 1919 663 V 148 w(91.71)p 2290 663 V 148
w(13.63)p 2660 663 V 147 w(1.93)p 2982 663 V 148 w(96.37)p
3353 663 V 3357 663 V 1031 666 2327 4 v 780 783 4 121
v 784 783 V 835 747 a(128)p 1030 783 V 124 w(4)p 1227
783 V 172 w(8.11)p 1597 783 V 172 w(3.60)p 1919 783 V
148 w(90.07)p 2290 783 V 172 w(6.85)p 2660 783 V 172
w(3.84)p 2982 783 V 148 w(95.88)p 3353 783 V 3357 783
V 1031 786 2327 4 v 780 904 4 121 v 784 904 V 1030 904
V 1106 867 a(8)p 1227 904 V 197 w(4.1)p 1597 904 V 196
w(7.13)p 1919 904 V 148 w(89.09)p 2290 904 V 172 w(3.44)p
2660 904 V 172 w(7.64)p 2982 904 V 148 w(95.46)p 3353
904 V 3357 904 V 1031 907 2327 4 v 780 1024 4 121 v 784
1024 V 1030 1024 V 1081 988 a(16)p 1227 1024 V 148 w(2.09)p
1597 1024 V 148 w(13.98)p 1919 1024 V 123 w(87.38)p 2290
1024 V 172 w(1.74)p 2660 1024 V 148 w(15.10)p 2982 1024
V 123 w(94.36)p 3353 1024 V 3357 1024 V 1031 1027 2327
4 v 780 1144 4 121 v 784 1144 V 1030 1144 V 1081 1108
a(32)p 1227 1144 V 148 w(1.09)p 1597 1144 V 148 w(26.81)p
1919 1144 V 123 w(83.77)p 2290 1144 V 172 w(1.09)p 2660
1144 V 148 w(24.10)p 2982 1144 V 123 w(75.32)p 3353 1144
V 3357 1144 V 782 1148 2576 4 v 780 1268 4 121 v 784
1268 V 1030 1268 V 1106 1232 a(1)p 1227 1268 V 123 w(116.93)p
1597 1268 V 123 w(1.00)p 1919 1268 V 124 w(100.00)p 2290
1268 V 98 w(105.08)p 2660 1268 V 123 w(1.00)p 2982 1268
V 124 w(100.00)p 3353 1268 V 3357 1268 V 1031 1271 2327
4 v 780 1388 4 121 v 784 1388 V 1030 1388 V 1106 1352
a(2)p 1227 1388 V 148 w(63.76)p 1597 1388 V 147 w(1.83)p
1919 1388 V 148 w(91.70)p 2290 1388 V 172 w(54.5)p 2660
1388 V 172 w(1.93)p 2982 1388 V 148 w(96.40)p 3353 1388
V 3357 1388 V 1031 1392 2327 4 v 780 1509 4 121 v 784
1509 V 835 1473 a(256)p 1030 1509 V 124 w(4)p 1227 1509
V 148 w(32.53)p 1597 1509 V 147 w(3.59)p 1919 1509 V
148 w(89.86)p 2290 1509 V 148 w(27.31)p 2660 1509 V 147
w(3.85)p 2982 1509 V 148 w(96.19)p 3353 1509 V 3357 1509
V 1031 1512 2327 4 v 780 1629 4 121 v 784 1629 V 1030
1629 V 1106 1593 a(8)p 1227 1629 V 148 w(16.43)p 1597
1629 V 147 w(7.12)p 1919 1629 V 148 w(88.96)p 2290 1629
V 148 w(13.71)p 2660 1629 V 147 w(7.66)p 2982 1629 V
148 w(95.81)p 3353 1629 V 3357 1629 V 1031 1632 2327
4 v 780 1750 4 121 v 784 1750 V 1030 1750 V 1081 1713
a(16)p 1227 1750 V 148 w(8.37)p 1597 1750 V 148 w(13.97)p
1919 1750 V 123 w(87.31)p 2290 1750 V 172 w(6.87)p 2660
1750 V 148 w(15.30)p 2982 1750 V 123 w(95.60)p 3353 1750
V 3357 1750 V 1031 1753 2327 4 v 780 1870 4 121 v 784
1870 V 1030 1870 V 1081 1834 a(32)p 1227 1870 V 148 w(4.37)p
1597 1870 V 148 w(26.76)p 1919 1870 V 123 w(83.62)p 2290
1870 V 172 w(3.67)p 2660 1870 V 148 w(28.63)p 2982 1870
V 123 w(89.50)p 3353 1870 V 3357 1870 V 782 1873 2576
4 v 780 1994 4 121 v 784 1994 V 1030 1994 V 1106 1958
a(1)p 1227 1994 V 123 w(467.85)p 1597 1994 V 123 w(1.00)p
1919 1994 V 186 w(100)p 2290 1994 V 161 w(420.59)p 2660
1994 V 123 w(1.00)p 2982 1994 V 124 w(100.00)p 3353 1994
V 3357 1994 V 1031 1997 2327 4 v 780 2114 4 121 v 784
2114 V 1030 2114 V 1106 2078 a(2)p 1227 2114 V 123 w(255.27)p
1597 2114 V 123 w(1.83)p 1919 2114 V 148 w(91.64)p 2290
2114 V 123 w(217.74)p 2660 2114 V 123 w(1.93)p 2982 2114
V 148 w(96.58)p 3353 2114 V 3357 2114 V 1031 2117 2327
4 v 780 2234 4 121 v 784 2234 V 835 2198 a(512)p 1030
2234 V 124 w(4)p 1227 2234 V 123 w(130.12)p 1597 2234
V 123 w(3.60)p 1919 2234 V 148 w(89.89)p 2290 2234 V
123 w(109.26)p 2660 2234 V 123 w(3.85)p 2982 2234 V 148
w(96.24)p 3353 2234 V 3357 2234 V 1031 2238 2327 4 v
780 2355 4 121 v 784 2355 V 1030 2355 V 1106 2319 a(8)p
1227 2355 V 148 w(66.04)p 1597 2355 V 147 w(7.08)p 1919
2355 V 148 w(88.55)p 2290 2355 V 148 w(54.69)p 2660 2355
V 147 w(7.69)p 2982 2355 V 148 w(96.13)p 3353 2355 V
3357 2355 V 1031 2358 2327 4 v 780 2475 4 121 v 784 2475
V 1030 2475 V 1081 2439 a(16)p 1227 2475 V 124 w(33.66)p
1597 2475 V 123 w(13.90)p 1919 2475 V 123 w(86.87)p 2290
2475 V 148 w(27.43)p 2660 2475 V 123 w(15.33)p 2982 2475
V 123 w(95.83)p 3353 2475 V 3357 2475 V 1031 2478 2327
4 v 780 2596 4 121 v 784 2596 V 1030 2596 V 1081 2559
a(32)p 1227 2596 V 124 w(17.58)p 1597 2596 V 123 w(26.61)p
1919 2596 V 123 w(83.16)p 2290 2596 V 148 w(13.98)p 2660
2596 V 123 w(30.09)p 2982 2596 V 123 w(94.02)p 3353 2596
V 3357 2596 V 782 2599 2576 4 v Black 760 2759 a(T)-8
b(able)32 b(7.6:)43 b(P)m(erformance)33 b(of)f(UMP)-8
b(A)34 b(and)e(CP)-8 b(A)34 b(for)e Fr(S)2859 2774 y
Fp(3)2931 2759 y Fu(on)g(Wiglaf)p Black Black 300 3152
a(to)g Fr(p)h Fu(and)f Fr(n)h Fu(on)g(Wiglaf)d(resp)s(ectiv)m(ely)-8
b(.)446 3273 y(The)25 b(ab)s(o)m(v)m(e)f(results)g(sho)m(w)g(that,)h
(when)g(the)f(pro)s(cessor)g(n)m(um)m(b)s(er)g Fr(p)f
Fu(increases,)j(the)e(sp)s(eedup)300 3393 y Fr(s)h Fu(of)g(b)s(oth)g
(the)h(UMP)-8 b(A)26 b(and)f(the)h(CP)-8 b(A)26 b(will)d(also)i
(increase;)j(the)e(computation)d(time)h Fr(T)39 b Fu(of)25
b(b)s(oth)300 3513 y(will)c(decrease;)28 b(the)c(e\016ciency)h
Fr(E)k Fu(of)23 b(b)s(oth)h(will)d(decrease.)42 b(With)23
b(the)g(increase)h(of)f(the)h(problem)300 3634 y(size)j
Fr(n)p Fu(,)h(the)f(e\016ciency)i Fr(E)k Fu(of)26 b(the)h(UMP)-8
b(A)28 b(will)c(decrease,)30 b(while)c Fr(E)33 b Fu(of)26
b(the)h(CP)-8 b(A)28 b(will)c(increase.)300 3754 y(When)34
b Fr(n)29 b Fu(=)f(512)k(the)i(p)s(erformance)e(\(computation)g(time,)g
(sp)s(eedup,)i(and)g(e\016ciency\))g(of)f(the)300 3875
y(CP)-8 b(A)29 b(is)e(m)m(uc)m(h)h(b)s(etter)h(than)e(the)i(p)s
(erformance)e(of)h(the)g(UMP)-8 b(A.)29 b(Therefore)f(w)m(e)h(can)f
(conclude)300 3995 y(that)k(the)h(CP)-8 b(A)34 b(outp)s(erforms)e(the)h
(UMP)-8 b(A)33 b(when)h Fr(n)e Fu(is)h(large.)446 4115
y(Here)k(the)g(e\016ciency)h Fr(E)43 b Fu(of)36 b(the)h(UMP)-8
b(A)37 b(decreases)h(with)f(the)f(increase)h(of)f(the)h(problem)300
4236 y(size)g Fr(n)h Fu(b)s(ecause)g(of)f(the)g(sequen)m(tial)h(part)f
(of)f(the)i(algorithm.)54 b(This)37 b(means)g(that)g(when)i(the)300
4356 y(problem)26 b(size)g Fr(n)h Fu(increases,)i(the)e(single)f(pro)s
(cessor)i(in)e(whic)m(h)h(the)g(\014xed)h(densit)m(y)g(is)e(calculated)
300 4477 y(has)g(to)f(tak)m(e)i(more)d(time)h(to)g(do)g(the)h(job)g
(while)e(other)i(pro)s(cessors)h(are)f(set)g(idle.)40
b(Therefore)27 b(the)300 4597 y(total)i(computation)g(time)h(for)g(the)
h(UMP)-8 b(A)31 b(will)e(increase)i(and)g(the)g(e\016ciency)h(will)c
(decrease.)446 4717 y(Figure)44 b(7.3)h(also)f(indicates)g(that,)k
(when)e(the)f(n)m(um)m(b)s(er)h Fr(p)f Fu(of)f(the)h(pro)s(cessors)i
(is)d(small)300 4838 y(\()p Fr(p)34 b(<)g Fu(16\),)j(the)g(e\016ciency)
h(of)e(the)h(CP)-8 b(A)37 b(do)s(es)g(not)f(c)m(hange)h(to)s(o)f(m)m
(uc)m(h)h(with)f(resp)s(ect)h(to)g(the)300 4958 y(problem)j(size)h
Fr(n)p Fu(.)68 b(But)41 b(when)h(the)g(n)m(um)m(b)s(er)f
Fr(p)g Fu(of)f(the)i(pro)s(cessors)g(is)e(large)g(\()p
Fr(p)i Fq(\025)g Fu(16\),)h(the)300 5078 y(increase)c(of)f(the)h
(problem)f(size)h Fr(n)f Fu(will)f(lead)h(to)g(the)h(increase)g(of)f
(the)h(e\016ciency)i(eviden)m(tly)-8 b(.)300 5199 y(This)27
b(is)f(b)s(ecause)i(when)g Fr(p)f Fu(is)f(small,)g(there)h(is)f(not)h
(to)s(o)f(m)m(uc)m(h)h(comm)m(unication)e(in)g(the)j(parallel)300
5319 y(computation.)42 b(In)32 b(this)f(case,)h(the)g(e\016ciency)h
(will)d(not)h(c)m(hange)h(v)m(ery)i(m)m(uc)m(h)e(if)e(the)i(c)m(hange)g
(of)300 5440 y Fr(n)j Fu(is)f(not)g(to)s(o)g(m)m(uc)m(h.)50
b(But)35 b(when)g Fr(p)g Fu(is)f(large,)g(the)h(pro)s(cessors)h(comm)m
(unicate)d(a)i(lot)e(and)i(the)p Black Black eop
%%Page: 42 51
42 50 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(42)p Black Black Black Black
720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/u.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Wed Jul  5 17:20:39 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(80) Rshow
540 864 M
63 0 V
2793 0 R
-63 0 V
468 864 M
(85) Rshow
540 1368 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 1872 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(95) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
1111 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
2825 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(5) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 2376 M
571 -835 V
571 -166 V
572 -99 V
571 -172 V
3396 740 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 2376 M
571 -837 V
571 -185 V
572 -91 V
571 -166 V
3396 725 L
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 2376 M
571 -843 V
571 -176 V
572 -135 V
571 -169 V
3396 679 L
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 1029 2268 a(Figure)32 b(7.2:)43 b(E\016ciency)34
b(of)e(UMP)-8 b(A)33 b(for)f Fr(S)2621 2283 y Fp(3)2693
2268 y Fu(on)h(Wiglaf)p Black Black Black Black Black
720 4385 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/c.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Wed Jul  5 15:23:45 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(70) Rshow
540 648 M
63 0 V
2793 0 R
-63 0 V
468 648 M
(75) Rshow
540 936 M
63 0 V
2793 0 R
-63 0 V
468 936 M
(80) Rshow
540 1224 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(85) Rshow
540 1512 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 1800 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(95) Rshow
540 2088 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(105) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
1111 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
2825 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(5) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 2088 M
571 -209 V
571 -29 V
572 -24 V
571 -63 V
3396 666 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 2088 M
571 -207 V
571 -12 V
572 -23 V
571 -12 V
571 -352 V
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 2088 M
571 -197 V
571 -20 V
572 -6 V
571 -17 V
571 -105 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 1075 4588 a(Figure)f(7.3:)43 b(E\016ciency)34
b(of)e(CP)-8 b(A)33 b(for)f Fr(S)2575 4603 y Fp(3)2647
4588 y Fu(on)h(Wiglaf)p Black Black 300 4981 a(e\016ciency)h(will)c(b)s
(e)j(degraded)g(if)f(the)h(problem)e(size)i Fr(n)g Fu(is)f(small.)p
Black Black eop
%%Page: 43 52
43 51 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(43)p Black Black Black 1083
274 a Fm(7.2.2)149 b(Numerical)36 b(Results)g(on)i(Sw)m(eetgum)451
459 y Fu(Let's)27 b(discuss)g(the)f(p)s(erformances)g(of)g(the)g(UMP)-8
b(A)27 b(and)f(the)g(CP)-8 b(A)27 b(running)f(on)g(the)g(Sw)m(eet-)300
579 y(gum)33 b(at)g(the)i(MCSR)f(\(Mississippi)f(Cen)m(ter)i(of)e(Sup)s
(ercomputing)g(Researc)m(h\).)49 b(Sw)m(eetgum)34 b(is)300
700 y(an)44 b(Origin)d(2000)i(sup)s(ercomputer)h(equipp)s(ed)h(with)e
(sixt)m(y-four)h(R12000)e(pro)s(cessing)i(units)300 820
y(\(CPUs\))29 b(and)e(16)g(gigab)m(ytes)g(of)g(memory)-8
b(.)41 b(The)28 b(CPU)h(clo)s(c)m(k)e(sp)s(eed)i(is)d(300)h(MHz.)43
b(The)28 b(Origin)300 941 y(2000)39 b(runs)i(the)g(IRIX)f(op)s(erating)
f(system.)67 b(IRIX)40 b(is)g(a)g(UNIX-deriv)m(ed)h(op)s(erating)e
(system)300 1061 y(with)32 b(SGI)h(extensions.)44 b(The)34
b(compiler)d(w)m(e)i(used)h(is)e(cc)h(with)f(optimization)d(option)j
(-O3.)446 1181 y(The)37 b(computation)c(time)h Fr(T)14
b Fu(\()p Fr(s)p Fu(\),)36 b(the)g(sp)s(eedup)h Fr(s)p
Fu(,)f(and)f(the)h(e\016ciency)h Fr(E)k Fu(of)35 b(the)h(UMP)-8
b(A)300 1302 y(and)33 b(the)g(CP)-8 b(A)33 b(for)f(the)h(mapping)e
Fr(S)1670 1317 y Fp(3)1742 1302 y Fu(on)i(the)g(Sw)m(eetgum)g(is)f(sho)
m(wn)i(in)e(T)-8 b(able)32 b(7.7.)p Black Black Black
855 1441 2430 4 v 853 1561 4 121 v 857 1561 V 908 1525
a Fm(n)p 1103 1561 V 1103 1561 V 544 w(UMP)-9 b(A)p 2266
1561 V 2266 1561 V 799 w(CP)g(A)p 3280 1561 V 3284 1561
V 855 1564 2430 4 v 853 1685 4 121 v 857 1685 V 1103
1685 V 1179 1649 a Fr(p)p 1300 1685 V 138 w(T)14 b Fu(\()p
Fr(s)p Fu(\))p 1622 1685 V 178 w Fr(s)p 1895 1685 V 181
w(E)6 b Fu(\(\045\))p 2266 1685 V 133 w Fr(T)14 b Fu(\()p
Fr(s)p Fu(\))p 2587 1685 V 202 w Fr(s)p 2909 1685 V 206
w(E)6 b Fu(\(\045\))p 3280 1685 V 3284 1685 V 1105 1688
2181 4 v 853 1805 4 121 v 857 1805 V 1103 1805 V 1179
1769 a(1)p 1300 1805 V 148 w(4.87)p 1622 1805 V 123 w(1.00)p
1895 1805 V 99 w(100.00)p 2266 1805 V 123 w(4.49)p 2587
1805 V 148 w(1.00)p 2909 1805 V 124 w(100.00)p 3280 1805
V 3284 1805 V 1105 1808 2181 4 v 853 1925 4 121 v 857
1925 V 1103 1925 V 1179 1889 a(2)p 1300 1925 V 148 w(2.61)p
1622 1925 V 123 w(1.87)p 1895 1925 V 124 w(93.30)p 2266
1925 V 147 w(2.39)p 2587 1925 V 148 w(1.88)p 2909 1925
V 148 w(93.93)p 3280 1925 V 3284 1925 V 1105 1929 2181
4 v 853 2046 4 121 v 857 2046 V 908 2010 a(128)p 1103
2046 V 124 w(4)p 1300 2046 V 148 w(1.71)p 1622 2046 V
123 w(2.85)p 1895 2046 V 124 w(71.20)p 2266 2046 V 147
w(1.76)p 2587 2046 V 148 w(2.55)p 2909 2046 V 148 w(63.78)p
3280 2046 V 3284 2046 V 1105 2049 2181 4 v 853 2166 4
121 v 857 2166 V 1103 2166 V 1179 2130 a(8)p 1300 2166
V 148 w(1.69)p 1622 2166 V 123 w(2.88)p 1895 2166 V 124
w(36.02)p 2266 2166 V 147 w(2.72)p 2587 2166 V 148 w(1.65)p
2909 2166 V 148 w(20.63)p 3280 2166 V 3284 2166 V 1105
2170 2181 4 v 853 2287 4 121 v 857 2287 V 1103 2287 V
1154 2250 a(16)p 1300 2287 V 100 w(10.64)p 1622 2287
V 98 w(0.46)p 1895 2287 V 148 w(2.86)p 2266 2287 V 148
w(17.64)p 2587 2287 V 123 w(0.25)p 2909 2287 V 172 w(1.59)p
3280 2287 V 3284 2287 V 855 2290 2430 4 v 853 2410 4
121 v 857 2410 V 1103 2410 V 1179 2374 a(1)p 1300 2410
V 124 w(19.04)p 1622 2410 V 98 w(1.00)p 1895 2410 V 99
w(100.00)p 2266 2410 V 99 w(18.53)p 2587 2410 V 123 w(1.00)p
2909 2410 V 124 w(100.00)p 3280 2410 V 3284 2410 V 1105
2414 2181 4 v 853 2531 4 121 v 857 2531 V 1103 2531 V
1179 2495 a(2)p 1300 2531 V 148 w(9.89)p 1622 2531 V
123 w(1.93)p 1895 2531 V 124 w(96.26)p 2266 2531 V 123
w(10.20)p 2587 2531 V 123 w(1.82)p 2909 2531 V 148 w(90.83)p
3280 2531 V 3284 2531 V 1105 2534 2181 4 v 853 2651 4
121 v 857 2651 V 908 2615 a(256)p 1103 2651 V 124 w(4)p
1300 2651 V 148 w(5.27)p 1622 2651 V 123 w(3.61)p 1895
2651 V 124 w(90.32)p 2266 2651 V 147 w(5.49)p 2587 2651
V 148 w(3.38)p 2909 2651 V 148 w(84.38)p 3280 2651 V
3284 2651 V 1105 2654 2181 4 v 853 2771 4 121 v 857 2771
V 1103 2771 V 1179 2735 a(8)p 1300 2771 V 172 w(3.6)p
1622 2771 V 148 w(5.29)p 1895 2771 V 124 w(66.11)p 2266
2771 V 147 w(6.40)p 2587 2771 V 124 w(2.901)p 2909 2771
V 123 w(36.19)p 3280 2771 V 3284 2771 V 1105 2775 2181
4 v 853 2892 4 121 v 857 2892 V 1103 2892 V 1154 2856
a(16)p 1300 2892 V 100 w(11.25)p 1622 2892 V 98 w(1.69)p
1895 2892 V 124 w(10.58)p 2266 2892 V 123 w(13.85)p 2587
2892 V 123 w(1.34)p 2909 2892 V 172 w(8.36)p 3280 2892
V 3284 2892 V 855 2895 2430 4 v 853 3015 4 121 v 857
3015 V 1103 3015 V 1179 2979 a(1)p 1300 3015 V 124 w(77.32)p
1622 3015 V 98 w(1.00)p 1895 3015 V 99 w(100.00)p 2266
3015 V 99 w(77.19)p 2587 3015 V 123 w(1.00)p 2909 3015
V 124 w(100.00)p 3280 3015 V 3284 3015 V 1105 3019 2181
4 v 853 3136 4 121 v 857 3136 V 1103 3136 V 1179 3100
a(2)p 1300 3136 V 124 w(40.69)p 1622 3136 V 98 w(1.90)p
1895 3136 V 124 w(95.01)p 2266 3136 V 123 w(39.02)p 2587
3136 V 123 w(1.98)p 2909 3136 V 148 w(98.91)p 3280 3136
V 3284 3136 V 1105 3139 2181 4 v 853 3256 4 121 v 857
3256 V 908 3220 a(512)p 1103 3256 V 124 w(4)p 1300 3256
V 124 w(21.41)p 1622 3256 V 98 w(3.61)p 1895 3256 V 124
w(90.28)p 2266 3256 V 123 w(21.92)p 2587 3256 V 123 w(3.52)p
2909 3256 V 148 w(88.04)p 3280 3256 V 3284 3256 V 1105
3260 2181 4 v 853 3377 4 121 v 857 3377 V 1103 3377 V
1179 3341 a(8)p 1300 3377 V 124 w(12.93)p 1622 3377 V
98 w(5.98)p 1895 3377 V 124 w(74.75)p 2266 3377 V 123
w(12.82)p 2587 3377 V 123 w(6.02)p 2909 3377 V 148 w(75.26)p
3280 3377 V 3284 3377 V 1105 3380 2181 4 v 853 3497 4
121 v 857 3497 V 1103 3497 V 1154 3461 a(16)p 1300 3497
V 100 w(21.61)p 1622 3497 V 98 w(3.58)p 1895 3497 V 124
w(22.36)p 2266 3497 V 123 w(15.65)p 2587 3497 V 123 w(4.93)p
2909 3497 V 148 w(30.83)p 3280 3497 V 3284 3497 V 855
3500 2430 4 v Black 685 3661 a(T)-8 b(able)32 b(7.7:)44
b(P)m(erformance)32 b(of)h(UMP)-8 b(A)33 b(and)g(CP)-8
b(A)33 b(for)f Fr(S)2784 3676 y Fp(3)2856 3661 y Fu(on)g(Sw)m(eetgum)p
Black Black 446 4005 a(T)-8 b(able)38 b(7.7)h(sho)m(ws)h(that,)g(when)f
Fr(p)f Fu(=)f(16,)j(the)f(computational)d(time)h(on)h(the)h(Sw)m
(eetgum)300 4126 y(is)i(large.)68 b(This)41 b(is)g(b)s(ecause)h(in)f
(the)g(Sw)m(eetgum,)j(there)e(are)f(to)s(o)g(man)m(y)g(jobs)g(running)g
(and)300 4246 y(the)k(comm)m(unication)c(costs)46 b(a)d(lot)g(if)g(the)
i(parallel)c(w)m(orking)k(pro)s(cessor)g(n)m(um)m(b)s(er)f(is)g(large.)
300 4367 y(Comparing)33 b(this)i(table)f(with)g(T)-8
b(able)35 b(7.6)f(for)h(the)g(Wiglaf,)e(the)i(p)s(erformance)g(of)f(Sw)
m(eetgum)300 4487 y(is)e(b)s(etter)h(than)g(that)f(of)g(the)h(Wiglaf)d
(if)i Fr(p)g Fu(is)g(small.)446 4607 y(Figure)k(7.4)g(and)h(Figure)f
(7.5)g(sho)m(w)i(the)f(e\016ciency)h(of)e(the)h(UMP)-8
b(A)38 b(and)f(the)g(CP)-8 b(A)37 b(with)300 4728 y(di\013eren)m(t)c
Fr(n)p Fu(.)446 4848 y(The)43 b(ab)s(o)m(v)m(e)g(results)f(indicate)e
(that,)k(with)e(the)g(increase)g(of)f Fr(p)p Fu(,)k(the)d(e\016ciency)h
(of)e(b)s(oth)300 4968 y(UMP)-8 b(A)41 b(and)g(the)g(CP)-8
b(A)42 b(will)c(decrease.)69 b(When)42 b Fr(n)f Fu(increases,)j(the)d
(e\016ciency)h(of)e(b)s(oth)g(will)300 5089 y(increase)33
b(in)f(most)g(cases.)45 b(This)33 b(is)f(di\013eren)m(t)h(from)f(the)h
(situation)e(of)h(the)h(UMP)-8 b(A)34 b(on)e(Wiglaf)300
5209 y(where)k(the)f(e\016ciency)i(decreases)g(with)d(the)h(increase)h
(of)e Fr(n)p Fu(.)50 b(Because)37 b(Sw)m(eetgum)e(is)g(a)f(h)m(uge)300
5330 y(memory)d(and)i(fast)f(CPU)h(sup)s(ercomputer,)g(when)h
Fr(n)e Fu(is)g(not)g(to)s(o)g(large,)f(the)i(sequen)m(tial)f(part)300
5450 y(of)g(the)h(UMP)-8 b(A)34 b(do)s(es)f(not)f(tak)m(e)h(to)s(o)f(m)
m(uc)m(h)h(computation)e(time.)p Black Black eop
%%Page: 44 53
44 52 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(44)p Black Black Black Black
720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/us.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Tue Jul  4 23:17:22 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 543 M
63 0 V
2793 0 R
-63 0 V
468 543 M
(10) Rshow
540 747 M
63 0 V
2793 0 R
-63 0 V
468 747 M
(20) Rshow
540 951 M
63 0 V
2793 0 R
-63 0 V
468 951 M
(30) Rshow
540 1154 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(40) Rshow
540 1358 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(50) Rshow
540 1561 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(60) Rshow
540 1765 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(70) Rshow
540 1969 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(80) Rshow
540 2172 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
897 360 M
0 63 V
0 1953 R
0 -63 V
897 240 M
(0.5) Cshow
1254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1611 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1.5) Cshow
1968 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2325 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2.5) Cshow
2682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
3039 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3.5) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 2376 M
714 -137 V
714 -449 V
714 -717 V
3396 398 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 2376 M
714 -76 V
714 -121 V
714 -493 V
3396 555 L
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 2376 M
714 -102 V
714 -96 V
714 -316 V
3396 795 L
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 955 2268 a(Figure)31 b(7.4:)43 b(E\016ciency)34
b(of)f(UMP)-8 b(A)33 b(for)f Fr(S)2547 2283 y Fp(3)2619
2268 y Fu(on)g(Sw)m(eetgum)p Black Black Black Black
Black 720 4385 a @beginspecial 50 @llx 50 @lly 230 @urx
176 @ury 3240 @rwi @setspecial
%%BeginDocument: pic/cs.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Tue Jul  4 23:20:13 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 543 M
63 0 V
2793 0 R
-63 0 V
468 543 M
(10) Rshow
540 747 M
63 0 V
2793 0 R
-63 0 V
468 747 M
(20) Rshow
540 951 M
63 0 V
2793 0 R
-63 0 V
468 951 M
(30) Rshow
540 1154 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(40) Rshow
540 1358 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(50) Rshow
540 1561 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(60) Rshow
540 1765 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(70) Rshow
540 1969 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(80) Rshow
540 2172 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
897 360 M
0 63 V
0 1953 R
0 -63 V
897 240 M
(0.5) Cshow
1254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1611 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1.5) Cshow
1968 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2325 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2.5) Cshow
2682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
3039 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3.5) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 2376 M
714 -124 V
714 -614 V
2682 760 L
3396 372 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 2376 M
714 -187 V
714 -131 V
714 -981 V
3396 510 L
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 2376 M
714 -22 V
714 -222 V
714 -260 V
3396 967 L
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 1001 4588 a(Figure)f(7.5:)43 b(E\016ciency)34
b(of)f(CP)-8 b(A)33 b(for)f Fr(S)2501 4603 y Fp(3)2573
4588 y Fu(on)g(Sw)m(eetgum)p Black Black 446 4981 a(Comparing)d(the)i
(CP)-8 b(A)31 b(with)g(the)f(UMP)-8 b(A,)32 b(the)f(e\016ciency)h(of)e
(the)h(CP)-8 b(A)31 b(impro)m(v)m(es)g(b)s(etter)300
5102 y(than)e(the)f(e\016ciency)i(of)e(the)h(UMP)-8 b(A)29
b(when)h Fr(n)f Fu(increases.)43 b(This)28 b(is)g(b)s(ecause)i(when)g
Fr(n)e Fu(b)s(ecomes)300 5222 y(large,)33 b(the)g(sequen)m(tial)h(part)
f(of)g(the)h(UMP)-8 b(A)34 b(will)d(b)s(egin)h(taking)h(more)g(time,)f
(so)h(the)h(UMP)-8 b(A)300 5342 y(will)31 b(not)j(impro)m(v)m(e)f(to)s
(o)g(m)m(uc)m(h.)48 b(But)33 b(the)h(CP)-8 b(A)35 b(do)s(es.)47
b(This)34 b(is)f(nearly)h(the)g(same)f(conclusion)300
5463 y(as)g(that)f(made)g(on)h(Wiglaf.)p Black Black
eop
%%Page: 45 54
45 53 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(45)p Black 446 274 a(F)-8 b(urthermore,)41
b(from)e(T)-8 b(able)39 b(7.6)g(on)h(Wiglaf)e(and)h(T)-8
b(able)40 b(7.7)f(on)h(Sw)m(eetgum,)i(when)f(w)m(e)300
395 y(run)e(a)f(single)f(pro)s(cessor)j(\()p Fr(p)d Fu(=)h(1)g(with)g
(no)h(comm)m(unication\),)e(Sw)m(eetgum)i(runs)h(nearly)e(six)300
515 y(times)e(faster)h(than)g(Wiglaf.)53 b(F)-8 b(rom)36
b(T)-8 b(able)36 b(7.6)g(on)h(Wiglaf,)f(and)h(T)-8 b(able)36
b(7.7)g(on)h(Sw)m(eetgum,)300 635 y(when)44 b Fr(p)i
Fu(=)f(2,)h(the)d(sp)s(eedup)i(and)e(e\016ciency)h(on)f(Sw)m(eetgum)h
(are)f(greater)g(than)g(those)h(on)300 756 y(Wiglaf.)c(When)31
b Fr(p)d Fu(=)f(8,)j(the)h(comparison)d(of)i(the)g(e\016ciency)h(c)m
(hange)g(on)f(the)g(Wiglaf)e(and)i(the)300 876 y(Sw)m(eetgum)d(with)f
Fr(n)g Fu(is)g(sho)m(wn)i(in)d(Figure)g(7.6.)41 b(The)27
b(results)g(indicate)e(that)h(when)h Fr(n)g Fu(increases,)300
997 y(the)37 b(p)s(erformance)g(impro)m(v)m(emen)m(t)f(of)h(the)g(UMP)
-8 b(A)37 b(on)g(Sw)m(eetgum)h(is)e(m)m(uc)m(h)h(b)s(etter)h(and)f(the)
300 1117 y(e\016ciency)f(on)f(Sw)m(eetgum)h(will)c(approac)m(h)k(the)f
(e\016ciency)h(on)f(the)h(Wiglaf)c(while)i(Sw)m(eetgum)300
1237 y(is)27 b(six)h(times)f(faster)h(than)f(Wiglaf)f(for)h(the)h
(sequen)m(tial)g(computation.)40 b(The)29 b(same)f(results)g(can)300
1358 y(b)s(e)34 b(obtained)f(for)g(the)h(CP)-8 b(A.)34
b(This)g(means)f(that)g(with)g(the)h(increase)g(of)f
Fr(n)p Fu(,)h(the)g(p)s(erformance)300 1478 y(on)e(Sw)m(eetgum)h(will)d
(impro)m(v)m(e)i(m)m(uc)m(h)h(b)s(etter)f(and)g(the)h(parallel)c
(computation)i(on)h(Sw)m(eetgum)300 1598 y(will)e(b)s(e)j(m)m(uc)m(h)g
(faster)g(than)g(that)f(on)g(Wiglaf.)p Black Black Black
720 3624 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/sw1.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: sw1.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu Jul  6 18:30:26 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(30) Rshow
540 648 M
63 0 V
2793 0 R
-63 0 V
468 648 M
(40) Rshow
540 936 M
63 0 V
2793 0 R
-63 0 V
468 936 M
(50) Rshow
540 1224 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(60) Rshow
540 1512 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(70) Rshow
540 1800 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(80) Rshow
540 2088 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(7) Cshow
1254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(7.5) Cshow
1968 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(8) Cshow
2682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(8.5) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(9) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(k \(n=2^k\) ) Cshow
1.000 UL
LT0
2829 2253 M
(Sweetgum ) Rshow
2901 2253 M
351 0 V
540 533 M
1428 867 V
1428 249 V
1.000 UL
LT1
2829 2133 M
(Wiglaf) Rshow
2901 2133 M
351 0 V
540 2062 M
1428 -4 V
1428 -12 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 445 3827 a(Figure)g(7.6:)43 b(E\016ciency)34
b(comparison)d(of)h(UMP)-8 b(A)34 b(for)e Fr(S)2553 3842
y Fp(3)2625 3827 y Fu(on)g(Sw)m(eetgum)h(and)g(Wiglaf)p
Black Black 446 4172 a(W)-8 b(e)30 b(need)g(to)f(men)m(tion)f(that)g
(the)i(data)f(on)g(Sw)m(eetgum)g(seem)h(not)f(so)g(smo)s(oth)f(as)h
(those)h(on)300 4292 y(Wiglaf.)59 b(This)39 b(is)f(b)s(ecause)i(Sw)m
(eetgum)f(is)f(a)g(sup)s(ercomputer)h(and)g(it)f(has)g(to)s(o)g(man)m
(y)h(users)300 4413 y(and)34 b(jobs)g(running)f(on)g(it)g(all)f(the)i
(time.)45 b(But)34 b(since)g(w)m(e)h(run)f(b)s(enc)m(hmarks)h(on)e
(Wiglaf)f(to)h(do)300 4533 y(the)i(exp)s(erimen)m(ts,)g(so)f(the)h
(data)e(obtained)h(on)g(Wiglaf)e(is)i(v)m(ery)h(smo)s(oth)f(and)g(also)
f(it)g(should)300 4654 y(b)s(e)g(more)f(reliable.)p Black
Black 1046 5024 a Fm(7.3)113 b(An)37 b(Applied)f(Computational)g
(Problem)484 5243 y Fu(W)-8 b(e)43 b(include)e(an)i(application)c
(problem)j(to)f(end)i(this)f(c)m(hapter.)74 b(This)43
b(computational)300 5363 y(problem)31 b(has)h(an)g(origin)e(in)h(the)i
(pap)s(er)f([48)o(],)g(in)g(whic)m(h)g(the)h(authors)f(used)h(a)f(v)m
(ery)h(primitiv)m(e)300 5483 y(n)m(umerical)40 b(sc)m(heme)j(to)e
(\014nd)h(a)f(probabilit)m(y)f(densit)m(y)i(function)f(\(PDF\))g(asso)s
(ciated)g(with)g(a)p Black Black eop
%%Page: 46 55
46 54 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(46)p Black 300 274 a(c)m(haotic)36
b(system)i(for)e(a)g(so-called)f(digital)f(phase-lo)s(c)m(k)m(ed)j(lo)s
(op)e(\(DPLL\))i(in)e(electronics)i(\(see)300 395 y([49])i(for)g
(detail)e(on)j(the)f(sub)5 b(ject\).)66 b(It)39 b(w)m(as)h(men)m
(tioned)f(there)h(that)g(some)f(non-parametric)300 515
y(n)m(umerical)j(metho)s(ds)h(used)i(in)e(engineering)f(to)h(compute)h
(PDFs)f(are)h(based)g(on)f(the)h(time)300 635 y(resp)s(onse)29
b(of)d(the)i(ob)5 b(jectiv)m(e)28 b(system)g(and)g(the)f(metho)s(ds)g
(need)i(a)d(long)g(sequence)k(of)d(input)g(and)300 756
y(output)39 b(sample)g(signals)f(as)h(the)h(time)e(resp)s(onses.)65
b(With)39 b(the)g(recursion)h(of)f(the)g(resp)s(onse,)300
876 y(the)c(n)m(umerical)f(estimation)f(inevitably)g(con)m(tains)i
(accum)m(ulated)g(inaccuracies)g(in)f(the)h(form)300
997 y(of)d(erroneous)i(\015uctuations.)446 1117 y(T)-8
b(o)41 b(impro)m(v)m(e)f(the)h(non-parametric)e(metho)s(ds,)k(the)e
(authors)g(of)f([48)o(])h(prop)s(osed)g(a)f(PDF)300 1237
y(estimation)32 b(algorithm)f(based)j(on)g(the)h(statistical)c(study)36
b(of)d(the)h(systems,)i(whic)m(h)f(basically)300 1358
y(consists)44 b(of)f(the)h(n)m(umerical)e(iteration)f(of)i(the)h(F)-8
b(rob)s(enius)43 b(-P)m(erron)h(op)s(erator)f([49)o(].)76
b(F)-8 b(rom)300 1478 y(Chapter)35 b(2)f(w)m(e)i(see)g(that,)e(for)g(a)
g(one)h(dimensional)d(mapping)h Fr(S)k Fu(:)31 b([)p
Fr(a;)17 b(b)p Fu(])31 b Fq(!)g Fu([)p Fr(a;)17 b(b)p
Fu(],)35 b(the)g(corre-)300 1598 y(sp)s(onding)c(F)-8
b(rob)s(enius-P)m(erron)31 b(op)s(erator)f(has)i(the)f(explicit)f
(expression)j(\(2.9\).)42 b(Let)31 b Fr(S)37 b Fu(ha)m(v)m(e)c
Fr(k)300 1719 y Fu(monotonic)e(pieces)i Fr(S)1119 1734
y Fp(1)1159 1719 y Fr(;)17 b(S)1263 1734 y Fp(2)1302
1719 y Fr(;)g(:)g(:)g(:)32 b(;)17 b(S)1597 1734 y Fo(k)1640
1719 y Fu(.)43 b(Then)34 b(the)f(form)m(ula)d(\(2.9\))i(has)h(the)g
(form)1347 2032 y Fr(P)14 b(f)d Fu(\()p Fr(x)p Fu(\))27
b(=)1798 1908 y Fo(k)1745 1938 y Fi(X)1805 2148 y Fo(i)1906
2032 y Fq(j)1944 1965 y Fr(dS)2061 1929 y Fl(\000)p Fp(1)2154
1965 y Fu(\()p Fr(x)p Fu(\))p 1944 2009 343 4 v 2061
2101 a Fr(dx)2295 2032 y Fq(j)p Fr(f)11 b Fu(\()p Fr(S)2486
1991 y Fl(\000)p Fp(1)2480 2058 y Fo(i)2580 2032 y Fu(\()p
Fr(x)p Fu(\)\))p Fr(;)863 b Fu(\(7.1\))300 2350 y(where)34
b Fr(S)648 2308 y Fl(\000)p Fp(1)642 2375 y Fo(i)774
2350 y Fu(is)f(the)g(in)m(v)m(erse)h(mapping)d(of)h Fr(S)1936
2365 y Fo(i)1964 2350 y Fu(.)446 2536 y(The)e(\\n)m(umerical)c(op)s
(erator)i(function)g(ev)-5 b(aluation)26 b(algorithm")f(used)k(in)f
([48])g(to)g(compute)300 2657 y(the)33 b(PDF)f(can)h(b)s(e)g(describ)s
(ed)g(as)g(follo)m(ws.)p Black 419 2885 a(1.)p Black
49 w(Cho)s(ose)e(an)g(initial)c(PDF)j Fr(f)1578 2900
y Fp(0)1618 2885 y Fu(\()p Fr(x)p Fu(\))h(whic)m(h)g(describ)s(es)h
(the)f(system's)i(state)e(at)f(time)g Fr(i)e Fu(=)f(0.)p
Black 419 3088 a(2.)p Black 49 w(Select)j Fr(N)41 b Fu(arbitrary)30
b(p)s(oin)m(ts)g Fr(x)1701 3103 y Fp(1)1741 3088 y Fr(;)17
b(x)1840 3103 y Fp(2)1879 3088 y Fr(;)g Fq(\001)g(\001)g(\001)31
b Fr(;)17 b(x)2171 3103 y Fo(N)2269 3088 y Fu(in)30 b(the)g(domain)f
(of)h Fr(S)6 b Fu(,)31 b(and)f(compute)h(the)544 3209
y(function)h(v)-5 b(alues)32 b(of)h Fr(f)1376 3224 y
Fp(1)1443 3209 y Fu(=)27 b Fr(P)14 b(f)1671 3224 y Fp(0)1743
3209 y Fu(at)32 b(eac)m(h)h(p)s(oin)m(t)f Fr(x)2391 3224
y Fo(i)2452 3209 y Fu(from)g(the)h(expression)g(\(7.1\).)p
Black 419 3412 a(3.)p Black 49 w(Rep)s(eat)e(the)g(last)e(step)j(to)e
(obtain)g(further)h(ev)m(olv)m(ed)h(PDFs)e(un)m(til)g(the)h(computed)f
(PDF)544 3533 y(is)i(accurate)h(enough)g(b)m(y)h(some)e(criterion.)446
3761 y(The)k(authors)e(guessed)i(that)e(in)g(the)g(case)h(of)f(the)h
(dynamical)d(system)j(whic)m(h)g(exhibits)f(a)300 3881
y(stationary)25 b(b)s(eha)m(vior,)i(under)f(the)h(iteration)c(of)i(the)
i(asso)s(ciated)e(F)-8 b(rob)s(enius-P)m(erron)26 b(op)s(erator)300
4002 y(expression)k(\(7.1\),)f(a)g(priori)d(PDF)j(of)f(the)h(state)g
(will)e(con)m(v)m(erge)j(to)f(the)g(stationary)f(PDF)g(with)300
4122 y(the)f(rate)g(b)s(eing)f(determined)h(b)m(y)g(the)h(prop)s
(erties)e(of)h(the)g(system.)42 b(Unfortunately)27 b(no)g(further)300
4242 y(w)m(ork)j(has)g(b)s(een)h(done)f(ab)s(out)f(suc)m(h)i(statemen)m
(ts,)g(and)e(it)g(is)g(in)g(general)g(not)g(guaran)m(teed)h(that)300
4363 y(the)j(iterates)f(of)g(F)-8 b(rob)s(enius-P)m(erron)33
b(op)s(erators)f(will)e(con)m(v)m(erge)35 b([36)o(].)446
4483 y(Th)m(us,)52 b(the)47 b(\\op)s(erator)e(function)h(ev)-5
b(aluation)45 b(metho)s(d")h(in)f([48])i(has)g(sev)m(eral)g(ob)m(vious)
300 4604 y(limitations.)55 b(First,)38 b(the)g(expression)h(\(7.1\))e
(ma)m(y)h(b)s(e)f(to)s(o)g(complicated)f(for)i(the)g(ev)-5
b(aluation)300 4724 y(since)39 b(it)e(in)m(v)m(olv)m(es)j(the)f(in)m(v)
m(erse)h(mappings)d(of)h(the)h(monotonic)e(branc)m(hes)j(of)e(the)h
(mapping.)300 4844 y(F)-8 b(urthermore,)30 b(if)e(the)i(initial)c(PDF)j
Fr(f)1702 4859 y Fp(0)1771 4844 y Fu(is)g(c)m(hosen)i(inappropriately)
-8 b(,)29 b(the)h(calculation)d(pro)s(cess)300 4965 y(can)34
b(b)s(e)h(time-consuming)c(or)j(div)m(erge.)48 b(Also)34
b(it)f(will)e(b)s(e)j(v)m(ery)i(di\016cult)d(to)h(use)h(this)f(metho)s
(d)300 5085 y(in)e(m)m(ulti-dimensional)27 b(cases.)446
5205 y(W)-8 b(e)36 b(kno)m(w)g(that)f(the)g(PDF)g(computation)e(of)i
(the)g(DPLL)g(is)f(just)i(to)e(compute)h(the)h(\014xed)300
5326 y(densit)m(y)e(of)f(the)g(F)-8 b(rob)s(enius-P)m(erron)33
b(op)s(erator)f(asso)s(ciated)h(with)g(the)g(DPLL.)g(F)-8
b(rom)32 b(our)h(dis-)300 5446 y(cussion)j(in)f(the)i(previous)f(c)m
(hapters,)i(it)d(is)g(ob)m(vious)h(to)g(see)h(that)e(the)h(parallel)e
(quasi-Mon)m(te)p Black Black eop
%%Page: 47 56
47 55 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(47)p Black 300 274 a(Carlo)29
b(metho)s(d)g(that)h(w)m(e)h(ha)m(v)m(e)h(dev)m(elop)s(ed)f(is)e(an)h
(ideal)f(to)s(ol)f(for)i(the)g(fast)g(and)g(e\016cien)m(t)h(com-)300
395 y(putation)j(of)h(a)g(PDF)g(for)g(the)h(DPLL.)f(The)i(ab)s(o)m(v)m
(e)f(shortages)g(with)f(the)h(op)s(erator)e(function)300
515 y(ev)-5 b(aluation)34 b(metho)s(d)g(are)i(no)f(longer)g(presen)m(t)
i(with)e(our)g(new)h(metho)s(d)f(b)s(ecause)i(\014rstly)-8
b(,)36 b(our)300 635 y(algorithm)d(do)s(es)j(not)g(need)h(a)f(priori)e
(PDF)i(to)f(start)h(with,)h(secondly)-8 b(,)38 b(the)e(parallel)e
(compu-)300 756 y(tation)d(can)h(solv)m(e)h(the)g(time)e(cost)h
(problem)f(pro)s(duced)i(b)m(y)g(m)m(ulti-dimensional)28
b(mo)s(dels,)j(and)300 876 y(lastly)-8 b(,)30 b(the)h(new)h(algorithm)
27 b(do)s(es)k(not)g(need)h(to)e(construct)i(the)f(F)-8
b(rob)s(enius-P)m(erron)31 b(op)s(erator)300 997 y(equation)39
b(explicitly)e(and)j(the)f(quasi-Mon)m(te)h(Carlo)e(metho)s(d)h(w)m
(orks)h(for)f(the)h(mo)s(del)d(m)m(uc)m(h)300 1117 y(more)32
b(e\016cien)m(tly)-8 b(.)446 1320 y(No)m(w)29 b(w)m(e)g(consider)g(a)e
(t)m(ypical)h(dynamical)e(equation)i(of)g(the)g(\014rst)h(order)f(DPLL)
g(as)g(follo)m(ws)300 1441 y([49].)1104 1705 y Fr(x)1159
1720 y Fo(i)p Fp(+1)1306 1705 y Fu(=)f Fr(f)11 b Fu(\()p
Fr(x)1561 1720 y Fo(i)1589 1705 y Fu(\))28 b(=)g(\()p
Fr(x)1852 1720 y Fo(i)1902 1705 y Fu(+)2230 1638 y(8)p
Fr(:)p Fu(5)p 2010 1682 564 4 v 2010 1773 a(1)22 b(+)g(0)p
Fr(:)p Fu(25)p Fr(sinx)2545 1788 y Fo(i)2584 1705 y Fu(\)\(mo)s(d)15
b(2)p Fr(\031)t Fu(\))p Fr(:)603 b Fu(\(7.2\))300 1966
y(The)44 b(graph)e(of)g(the)h(\014rst)g(order)g(DPLL)g(is)f(sho)m(wn)i
(in)e(Figure)f(7.7.)73 b(F)-8 b(rom)42 b(the)h(expression)300
2086 y(\(7.2\))33 b(of)h(the)g(DPLL,)g(w)m(e)h(kno)m(w)g(that)f(the)g
(in)m(v)m(erse)h(image)e(of)g(a)h(subset)h(of)f([0)p
Fr(;)17 b Fu(2)p Fr(\031)t Fu(])33 b(under)i(the)300
2206 y(mapping)27 b(is)h(imp)s(ossible)e(to)h(\014nd)i(analytically)-8
b(.)39 b(So)28 b(w)m(e)i(ha)m(v)m(e)f(to)f(use)i(the)e(quasi-Mon)m(te)h
(Carlo)300 2327 y(approac)m(h)k(to)f(ev)-5 b(aluate)32
b(the)h(Ulam)e(matrix)g Fr(P)2032 2342 y Fo(n)2079 2327
y Fu(.)p Black Black Black 720 4352 a @beginspecial 50
@llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial
%%BeginDocument: pic/dpll.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: dpll.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Sat May 13 19:09:03 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
276 240 M
63 0 V
3057 0 R
-63 0 V
204 240 M
(0) Rshow
276 580 M
63 0 V
3057 0 R
-63 0 V
204 580 M
(1) Rshow
276 920 M
63 0 V
3057 0 R
-63 0 V
204 920 M
(2) Rshow
276 1260 M
63 0 V
3057 0 R
-63 0 V
-3129 0 R
(3) Rshow
276 1600 M
63 0 V
3057 0 R
-63 0 V
-3129 0 R
(4) Rshow
276 1940 M
63 0 V
3057 0 R
-63 0 V
-3129 0 R
(5) Rshow
276 2280 M
63 0 V
3057 0 R
-63 0 V
-3129 0 R
(6) Rshow
276 240 M
0 63 V
0 2073 R
0 -63 V
276 120 M
(0) Cshow
773 240 M
0 63 V
0 2073 R
0 -63 V
773 120 M
(1) Cshow
1269 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(2) Cshow
1766 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(3) Cshow
2262 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(4) Cshow
2759 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(5) Cshow
3255 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(6) Cshow
1.000 UL
LTb
276 240 M
3120 0 V
0 2136 V
-3120 0 V
276 240 L
1.000 UL
LT0
2829 2253 M
(DPLL) Rshow
3076 2253 Pnt
276 994 Pnt
279 991 Pnt
282 989 Pnt
285 986 Pnt
288 984 Pnt
292 982 Pnt
295 979 Pnt
298 977 Pnt
301 975 Pnt
304 973 Pnt
307 970 Pnt
310 968 Pnt
313 966 Pnt
317 964 Pnt
320 961 Pnt
323 959 Pnt
326 957 Pnt
329 955 Pnt
332 953 Pnt
335 951 Pnt
338 949 Pnt
341 946 Pnt
345 944 Pnt
348 942 Pnt
351 940 Pnt
354 938 Pnt
357 936 Pnt
360 934 Pnt
363 932 Pnt
366 930 Pnt
370 928 Pnt
373 926 Pnt
376 925 Pnt
379 923 Pnt
382 921 Pnt
385 919 Pnt
388 917 Pnt
391 915 Pnt
395 913 Pnt
398 912 Pnt
401 910 Pnt
404 908 Pnt
407 906 Pnt
410 905 Pnt
413 903 Pnt
416 901 Pnt
420 900 Pnt
423 898 Pnt
426 896 Pnt
429 895 Pnt
432 893 Pnt
435 892 Pnt
438 890 Pnt
441 889 Pnt
444 887 Pnt
448 886 Pnt
451 884 Pnt
454 883 Pnt
457 881 Pnt
460 880 Pnt
463 878 Pnt
466 877 Pnt
469 875 Pnt
473 874 Pnt
476 873 Pnt
479 871 Pnt
482 870 Pnt
485 869 Pnt
488 868 Pnt
491 866 Pnt
494 865 Pnt
498 864 Pnt
501 863 Pnt
504 862 Pnt
507 860 Pnt
510 859 Pnt
513 858 Pnt
516 857 Pnt
519 856 Pnt
522 855 Pnt
526 854 Pnt
529 853 Pnt
532 852 Pnt
535 851 Pnt
538 850 Pnt
541 849 Pnt
544 848 Pnt
547 847 Pnt
551 846 Pnt
554 845 Pnt
557 845 Pnt
560 844 Pnt
563 843 Pnt
566 842 Pnt
569 841 Pnt
572 841 Pnt
576 840 Pnt
579 839 Pnt
582 838 Pnt
585 838 Pnt
588 837 Pnt
591 836 Pnt
594 836 Pnt
597 835 Pnt
601 835 Pnt
604 834 Pnt
607 833 Pnt
610 833 Pnt
613 832 Pnt
616 832 Pnt
619 831 Pnt
622 831 Pnt
625 831 Pnt
629 830 Pnt
632 830 Pnt
635 829 Pnt
638 829 Pnt
641 829 Pnt
644 828 Pnt
647 828 Pnt
650 828 Pnt
654 827 Pnt
657 827 Pnt
660 827 Pnt
663 827 Pnt
666 827 Pnt
669 826 Pnt
672 826 Pnt
675 826 Pnt
678 826 Pnt
682 826 Pnt
685 826 Pnt
688 826 Pnt
691 826 Pnt
694 826 Pnt
697 826 Pnt
700 826 Pnt
703 826 Pnt
707 826 Pnt
710 826 Pnt
713 826 Pnt
716 826 Pnt
719 826 Pnt
722 826 Pnt
725 826 Pnt
728 827 Pnt
731 827 Pnt
735 827 Pnt
738 827 Pnt
741 828 Pnt
744 828 Pnt
747 828 Pnt
750 829 Pnt
753 829 Pnt
756 829 Pnt
760 830 Pnt
763 830 Pnt
766 830 Pnt
769 831 Pnt
772 831 Pnt
775 832 Pnt
778 832 Pnt
781 833 Pnt
785 833 Pnt
788 834 Pnt
791 834 Pnt
794 835 Pnt
797 836 Pnt
800 836 Pnt
803 837 Pnt
806 837 Pnt
810 838 Pnt
813 839 Pnt
816 840 Pnt
819 840 Pnt
822 841 Pnt
825 842 Pnt
828 843 Pnt
831 843 Pnt
834 844 Pnt
838 845 Pnt
841 846 Pnt
844 847 Pnt
847 848 Pnt
850 849 Pnt
853 850 Pnt
856 850 Pnt
859 851 Pnt
863 852 Pnt
866 853 Pnt
869 854 Pnt
872 856 Pnt
875 857 Pnt
878 858 Pnt
881 859 Pnt
884 860 Pnt
888 861 Pnt
891 862 Pnt
894 863 Pnt
897 865 Pnt
900 866 Pnt
903 867 Pnt
906 868 Pnt
909 869 Pnt
912 871 Pnt
916 872 Pnt
919 873 Pnt
922 875 Pnt
925 876 Pnt
928 877 Pnt
931 879 Pnt
934 880 Pnt
937 882 Pnt
941 883 Pnt
944 885 Pnt
947 886 Pnt
950 888 Pnt
953 889 Pnt
956 891 Pnt
959 892 Pnt
962 894 Pnt
966 895 Pnt
969 897 Pnt
972 899 Pnt
975 900 Pnt
978 902 Pnt
981 904 Pnt
984 905 Pnt
987 907 Pnt
990 909 Pnt
994 911 Pnt
997 912 Pnt
1000 914 Pnt
1003 916 Pnt
1006 918 Pnt
1009 920 Pnt
1012 922 Pnt
1015 923 Pnt
1019 925 Pnt
1022 927 Pnt
1025 929 Pnt
1028 931 Pnt
1031 933 Pnt
1034 935 Pnt
1037 937 Pnt
1040 939 Pnt
1044 941 Pnt
1047 943 Pnt
1050 945 Pnt
1053 948 Pnt
1056 950 Pnt
1059 952 Pnt
1062 954 Pnt
1065 956 Pnt
1068 958 Pnt
1072 961 Pnt
1075 963 Pnt
1078 965 Pnt
1081 967 Pnt
1084 970 Pnt
1087 972 Pnt
1090 974 Pnt
1093 977 Pnt
1097 979 Pnt
1100 981 Pnt
1103 984 Pnt
1106 986 Pnt
1109 989 Pnt
1112 991 Pnt
1115 994 Pnt
1118 996 Pnt
1121 999 Pnt
1125 1001 Pnt
1128 1004 Pnt
1131 1006 Pnt
1134 1009 Pnt
1137 1011 Pnt
1140 1014 Pnt
1143 1017 Pnt
1146 1019 Pnt
1150 1022 Pnt
1153 1025 Pnt
1156 1027 Pnt
1159 1030 Pnt
1162 1033 Pnt
1165 1036 Pnt
1168 1038 Pnt
1171 1041 Pnt
1175 1044 Pnt
1178 1047 Pnt
1181 1050 Pnt
1184 1053 Pnt
1187 1056 Pnt
1190 1058 Pnt
1193 1061 Pnt
1196 1064 Pnt
1200 1067 Pnt
1203 1070 Pnt
1206 1073 Pnt
1209 1076 Pnt
1212 1079 Pnt
1215 1082 Pnt
1218 1086 Pnt
1221 1089 Pnt
1224 1092 Pnt
1228 1095 Pnt
1231 1098 Pnt
1234 1101 Pnt
1237 1104 Pnt
1240 1108 Pnt
1243 1111 Pnt
1246 1114 Pnt
1249 1117 Pnt
1253 1121 Pnt
1256 1124 Pnt
1259 1127 Pnt
1262 1131 Pnt
1265 1134 Pnt
1268 1137 Pnt
1271 1141 Pnt
1274 1144 Pnt
1278 1148 Pnt
1281 1151 Pnt
1284 1154 Pnt
1287 1158 Pnt
1290 1161 Pnt
1293 1165 Pnt
1296 1168 Pnt
1299 1172 Pnt
1302 1176 Pnt
1306 1179 Pnt
1309 1183 Pnt
1312 1186 Pnt
1315 1190 Pnt
1318 1194 Pnt
1321 1197 Pnt
1324 1201 Pnt
1327 1205 Pnt
1331 1209 Pnt
1334 1212 Pnt
1337 1216 Pnt
1340 1220 Pnt
1343 1224 Pnt
1346 1228 Pnt
1349 1232 Pnt
1352 1235 Pnt
1356 1239 Pnt
1359 1243 Pnt
1362 1247 Pnt
1365 1251 Pnt
1368 1255 Pnt
1371 1259 Pnt
1374 1263 Pnt
1377 1267 Pnt
1380 1271 Pnt
1384 1275 Pnt
1387 1279 Pnt
1390 1283 Pnt
1393 1288 Pnt
1396 1292 Pnt
1399 1296 Pnt
1402 1300 Pnt
1405 1304 Pnt
1409 1308 Pnt
1412 1313 Pnt
1415 1317 Pnt
1418 1321 Pnt
1421 1326 Pnt
1424 1330 Pnt
1427 1334 Pnt
1430 1338 Pnt
1434 1343 Pnt
1437 1347 Pnt
1440 1352 Pnt
1443 1356 Pnt
1446 1361 Pnt
1449 1365 Pnt
1452 1369 Pnt
1455 1374 Pnt
1458 1379 Pnt
1462 1383 Pnt
1465 1388 Pnt
1468 1392 Pnt
1471 1397 Pnt
1474 1401 Pnt
1477 1406 Pnt
1480 1411 Pnt
1483 1415 Pnt
1487 1420 Pnt
1490 1425 Pnt
1493 1429 Pnt
1496 1434 Pnt
1499 1439 Pnt
1502 1444 Pnt
1505 1449 Pnt
1508 1453 Pnt
1511 1458 Pnt
1515 1463 Pnt
1518 1468 Pnt
1521 1473 Pnt
1524 1478 Pnt
1527 1483 Pnt
1530 1488 Pnt
1533 1493 Pnt
1536 1498 Pnt
1540 1503 Pnt
1543 1508 Pnt
1546 1513 Pnt
1549 1518 Pnt
1552 1523 Pnt
1555 1528 Pnt
1558 1533 Pnt
1561 1538 Pnt
1565 1543 Pnt
1568 1549 Pnt
1571 1554 Pnt
1574 1559 Pnt
1577 1564 Pnt
1580 1570 Pnt
1583 1575 Pnt
1586 1580 Pnt
1590 1585 Pnt
1593 1591 Pnt
1596 1596 Pnt
1599 1601 Pnt
1602 1607 Pnt
1605 1612 Pnt
1608 1618 Pnt
1611 1623 Pnt
1614 1629 Pnt
1618 1634 Pnt
1621 1640 Pnt
1624 1645 Pnt
1627 1651 Pnt
1630 1656 Pnt
1633 1662 Pnt
1636 1667 Pnt
1639 1673 Pnt
1643 1679 Pnt
1646 1684 Pnt
1649 1690 Pnt
1652 1696 Pnt
1655 1701 Pnt
1658 1707 Pnt
1661 1713 Pnt
1664 1719 Pnt
1668 1724 Pnt
1671 1730 Pnt
1674 1736 Pnt
1677 1742 Pnt
1680 1748 Pnt
1683 1753 Pnt
1686 1759 Pnt
1689 1765 Pnt
1692 1771 Pnt
1696 1777 Pnt
1699 1783 Pnt
1702 1789 Pnt
1705 1795 Pnt
1708 1801 Pnt
1711 1807 Pnt
1714 1813 Pnt
1717 1819 Pnt
1721 1825 Pnt
1724 1831 Pnt
1727 1837 Pnt
1730 1844 Pnt
1733 1850 Pnt
1736 1856 Pnt
1739 1862 Pnt
1742 1868 Pnt
1746 1874 Pnt
1749 1881 Pnt
1752 1887 Pnt
1755 1893 Pnt
1758 1899 Pnt
1761 1906 Pnt
1764 1912 Pnt
1767 1918 Pnt
1770 1925 Pnt
1774 1931 Pnt
1777 1937 Pnt
1780 1944 Pnt
1783 1950 Pnt
1786 1957 Pnt
1789 1963 Pnt
1792 1970 Pnt
1795 1976 Pnt
1799 1983 Pnt
1802 1989 Pnt
1805 1996 Pnt
1808 2002 Pnt
1811 2009 Pnt
1814 2015 Pnt
1817 2022 Pnt
1820 2028 Pnt
1824 2035 Pnt
1827 2042 Pnt
1830 2048 Pnt
1833 2055 Pnt
1836 2062 Pnt
1839 2068 Pnt
1842 2075 Pnt
1845 2082 Pnt
1848 2088 Pnt
1852 2095 Pnt
1855 2102 Pnt
1858 2109 Pnt
1861 2115 Pnt
1864 2122 Pnt
1867 2129 Pnt
1870 2136 Pnt
1873 2143 Pnt
1877 2150 Pnt
1880 2156 Pnt
1883 2163 Pnt
1886 2170 Pnt
1889 2177 Pnt
1892 2184 Pnt
1895 2191 Pnt
1898 2198 Pnt
1902 2205 Pnt
1905 2212 Pnt
1908 2219 Pnt
1911 2226 Pnt
1914 2233 Pnt
1917 2240 Pnt
1920 2247 Pnt
1923 2254 Pnt
1926 2261 Pnt
1930 2268 Pnt
1933 2275 Pnt
1936 2282 Pnt
1939 2289 Pnt
1942 2296 Pnt
1945 2303 Pnt
1948 2310 Pnt
1951 2317 Pnt
1955 2324 Pnt
1958 2332 Pnt
1961 2339 Pnt
1964 2346 Pnt
1967 2353 Pnt
1970 2360 Pnt
1973 2367 Pnt
1976 2374 Pnt
1980 246 Pnt
1983 253 Pnt
1986 260 Pnt
1989 267 Pnt
1992 274 Pnt
1995 282 Pnt
1998 289 Pnt
2001 296 Pnt
2004 303 Pnt
2008 310 Pnt
2011 318 Pnt
2014 325 Pnt
2017 332 Pnt
2020 339 Pnt
2023 347 Pnt
2026 354 Pnt
2029 361 Pnt
2033 368 Pnt
2036 376 Pnt
2039 383 Pnt
2042 390 Pnt
2045 398 Pnt
2048 405 Pnt
2051 412 Pnt
2054 419 Pnt
2058 427 Pnt
2061 434 Pnt
2064 441 Pnt
2067 448 Pnt
2070 456 Pnt
2073 463 Pnt
2076 470 Pnt
2079 478 Pnt
2082 485 Pnt
2086 492 Pnt
2089 499 Pnt
2092 507 Pnt
2095 514 Pnt
2098 521 Pnt
2101 529 Pnt
2104 536 Pnt
2107 543 Pnt
2111 550 Pnt
2114 558 Pnt
2117 565 Pnt
2120 572 Pnt
2123 579 Pnt
2126 587 Pnt
2129 594 Pnt
2132 601 Pnt
2136 608 Pnt
2139 615 Pnt
2142 623 Pnt
2145 630 Pnt
2148 637 Pnt
2151 644 Pnt
2154 651 Pnt
2157 658 Pnt
2160 666 Pnt
2164 673 Pnt
2167 680 Pnt
2170 687 Pnt
2173 694 Pnt
2176 701 Pnt
2179 708 Pnt
2182 715 Pnt
2185 722 Pnt
2189 730 Pnt
2192 737 Pnt
2195 744 Pnt
2198 751 Pnt
2201 758 Pnt
2204 765 Pnt
2207 772 Pnt
2210 779 Pnt
2214 785 Pnt
2217 792 Pnt
2220 799 Pnt
2223 806 Pnt
2226 813 Pnt
2229 820 Pnt
2232 827 Pnt
2235 834 Pnt
2238 840 Pnt
2242 847 Pnt
2245 854 Pnt
2248 861 Pnt
2251 868 Pnt
2254 874 Pnt
2257 881 Pnt
2260 888 Pnt
2263 894 Pnt
2267 901 Pnt
2270 908 Pnt
2273 914 Pnt
2276 921 Pnt
2279 927 Pnt
2282 934 Pnt
2285 940 Pnt
2288 947 Pnt
2292 953 Pnt
2295 960 Pnt
2298 966 Pnt
2301 972 Pnt
2304 979 Pnt
2307 985 Pnt
2310 991 Pnt
2313 997 Pnt
2316 1004 Pnt
2320 1010 Pnt
2323 1016 Pnt
2326 1022 Pnt
2329 1028 Pnt
2332 1034 Pnt
2335 1041 Pnt
2338 1047 Pnt
2341 1053 Pnt
2345 1059 Pnt
2348 1064 Pnt
2351 1070 Pnt
2354 1076 Pnt
2357 1082 Pnt
2360 1088 Pnt
2363 1094 Pnt
2366 1099 Pnt
2370 1105 Pnt
2373 1111 Pnt
2376 1116 Pnt
2379 1122 Pnt
2382 1128 Pnt
2385 1133 Pnt
2388 1139 Pnt
2391 1144 Pnt
2394 1149 Pnt
2398 1155 Pnt
2401 1160 Pnt
2404 1165 Pnt
2407 1171 Pnt
2410 1176 Pnt
2413 1181 Pnt
2416 1186 Pnt
2419 1191 Pnt
2423 1196 Pnt
2426 1202 Pnt
2429 1207 Pnt
2432 1211 Pnt
2435 1216 Pnt
2438 1221 Pnt
2441 1226 Pnt
2444 1231 Pnt
2448 1236 Pnt
2451 1240 Pnt
2454 1245 Pnt
2457 1250 Pnt
2460 1254 Pnt
2463 1259 Pnt
2466 1263 Pnt
2469 1268 Pnt
2472 1272 Pnt
2476 1276 Pnt
2479 1281 Pnt
2482 1285 Pnt
2485 1289 Pnt
2488 1293 Pnt
2491 1297 Pnt
2494 1302 Pnt
2497 1306 Pnt
2501 1310 Pnt
2504 1313 Pnt
2507 1317 Pnt
2510 1321 Pnt
2513 1325 Pnt
2516 1329 Pnt
2519 1332 Pnt
2522 1336 Pnt
2526 1340 Pnt
2529 1343 Pnt
2532 1347 Pnt
2535 1350 Pnt
2538 1354 Pnt
2541 1357 Pnt
2544 1360 Pnt
2547 1364 Pnt
2550 1367 Pnt
2554 1370 Pnt
2557 1373 Pnt
2560 1376 Pnt
2563 1379 Pnt
2566 1382 Pnt
2569 1385 Pnt
2572 1388 Pnt
2575 1391 Pnt
2579 1394 Pnt
2582 1396 Pnt
2585 1399 Pnt
2588 1402 Pnt
2591 1404 Pnt
2594 1407 Pnt
2597 1409 Pnt
2600 1412 Pnt
2604 1414 Pnt
2607 1416 Pnt
2610 1418 Pnt
2613 1421 Pnt
2616 1423 Pnt
2619 1425 Pnt
2622 1427 Pnt
2625 1429 Pnt
2628 1431 Pnt
2632 1433 Pnt
2635 1435 Pnt
2638 1437 Pnt
2641 1438 Pnt
2644 1440 Pnt
2647 1442 Pnt
2650 1443 Pnt
2653 1445 Pnt
2657 1446 Pnt
2660 1448 Pnt
2663 1449 Pnt
2666 1451 Pnt
2669 1452 Pnt
2672 1453 Pnt
2675 1454 Pnt
2678 1455 Pnt
2682 1457 Pnt
2685 1458 Pnt
2688 1459 Pnt
2691 1460 Pnt
2694 1460 Pnt
2697 1461 Pnt
2700 1462 Pnt
2703 1463 Pnt
2706 1464 Pnt
2710 1464 Pnt
2713 1465 Pnt
2716 1465 Pnt
2719 1466 Pnt
2722 1466 Pnt
2725 1467 Pnt
2728 1467 Pnt
2731 1468 Pnt
2735 1468 Pnt
2738 1468 Pnt
2741 1468 Pnt
2744 1468 Pnt
2747 1469 Pnt
2750 1469 Pnt
2753 1469 Pnt
2756 1469 Pnt
2760 1469 Pnt
2763 1468 Pnt
2766 1468 Pnt
2769 1468 Pnt
2772 1468 Pnt
2775 1467 Pnt
2778 1467 Pnt
2781 1467 Pnt
2784 1466 Pnt
2788 1466 Pnt
2791 1465 Pnt
2794 1465 Pnt
2797 1464 Pnt
2800 1464 Pnt
2803 1463 Pnt
2806 1462 Pnt
2809 1461 Pnt
2813 1461 Pnt
2816 1460 Pnt
2819 1459 Pnt
2822 1458 Pnt
2825 1457 Pnt
2828 1456 Pnt
2831 1455 Pnt
2834 1454 Pnt
2838 1453 Pnt
2841 1452 Pnt
2844 1450 Pnt
2847 1449 Pnt
2850 1448 Pnt
2853 1447 Pnt
2856 1445 Pnt
2859 1444 Pnt
2862 1443 Pnt
2866 1441 Pnt
2869 1440 Pnt
2872 1438 Pnt
2875 1437 Pnt
2878 1435 Pnt
2881 1433 Pnt
2884 1432 Pnt
2887 1430 Pnt
2891 1428 Pnt
2894 1427 Pnt
2897 1425 Pnt
2900 1423 Pnt
2903 1421 Pnt
2906 1420 Pnt
2909 1418 Pnt
2912 1416 Pnt
2916 1414 Pnt
2919 1412 Pnt
2922 1410 Pnt
2925 1408 Pnt
2928 1406 Pnt
2931 1404 Pnt
2934 1402 Pnt
2937 1400 Pnt
2940 1397 Pnt
2944 1395 Pnt
2947 1393 Pnt
2950 1391 Pnt
2953 1389 Pnt
2956 1386 Pnt
2959 1384 Pnt
2962 1382 Pnt
2965 1379 Pnt
2969 1377 Pnt
2972 1375 Pnt
2975 1372 Pnt
2978 1370 Pnt
2981 1367 Pnt
2984 1365 Pnt
2987 1362 Pnt
2990 1360 Pnt
2994 1357 Pnt
2997 1355 Pnt
3000 1352 Pnt
3003 1350 Pnt
3006 1347 Pnt
3009 1345 Pnt
3012 1342 Pnt
3015 1339 Pnt
3018 1337 Pnt
3022 1334 Pnt
3025 1331 Pnt
3028 1329 Pnt
3031 1326 Pnt
3034 1323 Pnt
3037 1320 Pnt
3040 1318 Pnt
3043 1315 Pnt
3047 1312 Pnt
3050 1309 Pnt
3053 1306 Pnt
3056 1304 Pnt
3059 1301 Pnt
3062 1298 Pnt
3065 1295 Pnt
3068 1292 Pnt
3072 1289 Pnt
3075 1286 Pnt
3078 1284 Pnt
3081 1281 Pnt
3084 1278 Pnt
3087 1275 Pnt
3090 1272 Pnt
3093 1269 Pnt
3096 1266 Pnt
3100 1263 Pnt
3103 1260 Pnt
3106 1257 Pnt
3109 1254 Pnt
3112 1251 Pnt
3115 1248 Pnt
3118 1245 Pnt
3121 1242 Pnt
3125 1239 Pnt
3128 1236 Pnt
3131 1233 Pnt
3134 1230 Pnt
3137 1227 Pnt
3140 1224 Pnt
3143 1221 Pnt
3146 1218 Pnt
3150 1215 Pnt
3153 1212 Pnt
3156 1209 Pnt
3159 1206 Pnt
3162 1203 Pnt
3165 1200 Pnt
3168 1197 Pnt
3171 1194 Pnt
3174 1191 Pnt
3178 1188 Pnt
3181 1185 Pnt
3184 1182 Pnt
3187 1179 Pnt
3190 1176 Pnt
3193 1173 Pnt
3196 1170 Pnt
3199 1167 Pnt
3203 1164 Pnt
3206 1161 Pnt
3209 1158 Pnt
3212 1155 Pnt
3215 1152 Pnt
3218 1149 Pnt
3221 1146 Pnt
3224 1143 Pnt
3228 1141 Pnt
3231 1138 Pnt
3234 1135 Pnt
3237 1132 Pnt
3240 1129 Pnt
3243 1126 Pnt
3246 1123 Pnt
3249 1120 Pnt
3253 1117 Pnt
3256 1114 Pnt
3259 1111 Pnt
3262 1108 Pnt
3265 1105 Pnt
3268 1103 Pnt
3271 1100 Pnt
3274 1097 Pnt
3277 1094 Pnt
3281 1091 Pnt
3284 1088 Pnt
3287 1086 Pnt
3290 1083 Pnt
3293 1080 Pnt
3296 1077 Pnt
3299 1074 Pnt
3302 1072 Pnt
3306 1069 Pnt
3309 1066 Pnt
3312 1063 Pnt
3315 1061 Pnt
3318 1058 Pnt
3321 1055 Pnt
3324 1052 Pnt
3327 1050 Pnt
3330 1047 Pnt
3334 1044 Pnt
3337 1042 Pnt
3340 1039 Pnt
3343 1036 Pnt
3346 1034 Pnt
3349 1031 Pnt
3352 1029 Pnt
3355 1026 Pnt
3359 1023 Pnt
3362 1021 Pnt
3365 1018 Pnt
3368 1016 Pnt
3371 1013 Pnt
3374 1011 Pnt
3377 1008 Pnt
3380 1006 Pnt
3384 1003 Pnt
3387 1001 Pnt
3390 998 Pnt
3393 996 Pnt
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 1377 4556 a(Figure)h(7.7:)43 b(The)33
b(graph)g(of)f(DPLL)p Black Black Black Black 935 5040
a Fm(7.3.1)112 b(Numerical)35 b(Results)i(for)g(DPLL)h(on)f(Wiglaf)486
5224 y Fu(W)-8 b(e)44 b(discuss)g(the)f(PDF)g(computation)f(of)g(the)i
(DPLL)e(with)h(the)h(completely)e(parallel)300 5345 y(algorithm)j(\(CP)
-8 b(A\))50 b(compared)e(with)g(the)h(Ulam's)f(matrix)f(parallel)f
(algorithm)f(\(UMP)-8 b(A\))300 5465 y(implemen)m(ted)26
b(on)h(the)g(USM)h(Wiglaf)d(parallel)f(computers.)42
b(The)28 b(computer)f(program)f(source)p Black Black
eop
%%Page: 48 57
48 56 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(48)p Black 300 274 a(co)s(de)33
b(in)f(C)h(is)g(attac)m(hed)g(in)f(App)s(endix)h(B,)g(whic)m(h)g(can)h
(also)d(b)s(e)i(used)h(for)e(a)h(general)f(purp)s(ose)300
395 y(of)h(computing)e(in)m(v)-5 b(arian)m(t)32 b(measures)i(after)f(a)
g(minor)e(revision.)44 b(In)34 b(the)f(follo)m(wing)e(tables)i(the)300
515 y(notations)f(ha)m(v)m(e)i(the)f(same)f(meaning)f(as)i(ab)s(o)m(v)m
(e.)446 635 y(T)-8 b(able)30 b(7.8)g(sho)m(ws)i(the)e(computation)f
(time)g Fr(T)14 b Fu(\()p Fr(s)p Fu(\),)30 b(the)h(sp)s(eedup)h
Fr(s)p Fu(,)e(and)h(the)f(e\016ciency)i Fr(E)300 756
y Fu(of)g(the)g(UMP)-8 b(A)33 b(and)g(the)f(CP)-8 b(A)33
b(on)f(Wiglaf)e(in)i(the)g(case)h(of)f(the)h(problem)e(size)h
Fr(n)g Fu(is)g(128,)g(256,)300 876 y(and)h(512.)p Black
Black Black 782 996 2576 4 v 780 1116 4 121 v 784 1116
V 835 1080 a Fm(n)p 1030 1116 V 1030 1116 V 592 w(UMP)-9
b(A)p 2290 1116 V 2290 1116 V 873 w(CP)g(A)p 3353 1116
V 3357 1116 V 782 1119 2576 4 v 780 1240 4 121 v 784
1240 V 1030 1240 V 1105 1204 a Fr(p)p 1227 1240 V 164
w(T)14 b Fu(\()p Fr(s)p Fu(\))p 1597 1240 V 226 w Fr(s)p
1919 1240 V 206 w(E)6 b Fu(\(\045\))p 2290 1240 V 157
w Fr(T)14 b Fu(\()p Fr(s)p Fu(\))p 2660 1240 V 226 w
Fr(s)p 2982 1240 V 206 w(E)6 b Fu(\(\045\))p 3353 1240
V 3357 1240 V 1031 1243 2327 4 v 780 1360 4 121 v 784
1360 V 1030 1360 V 1106 1324 a(1)p 1227 1360 V 148 w(52.24)p
1597 1360 V 147 w(1.00)p 1919 1360 V 124 w(100.00)p 2290
1360 V 123 w(52.34)p 2660 1360 V 147 w(1.00)p 2982 1360
V 124 w(100.00)p 3353 1360 V 3357 1360 V 1031 1364 2327
4 v 780 1481 4 121 v 784 1481 V 1030 1481 V 1106 1444
a(2)p 1227 1481 V 148 w(26.18)p 1597 1481 V 147 w(1.99)p
1919 1481 V 148 w(99.77)p 2290 1481 V 172 w(26.6)p 2660
1481 V 172 w(1.97)p 2982 1481 V 148 w(98.38)p 3353 1481
V 3357 1481 V 1031 1484 2327 4 v 780 1601 4 121 v 784
1601 V 835 1565 a(128)p 1030 1601 V 124 w(4)p 1227 1601
V 148 w(13.15)p 1597 1601 V 147 w(3.97)p 1919 1601 V
148 w(99.32)p 2290 1601 V 148 w(13.46)p 2660 1601 V 147
w(3.89)p 2982 1601 V 148 w(97.21)p 3353 1601 V 3357 1601
V 1031 1604 2327 4 v 780 1721 4 121 v 784 1721 V 1030
1721 V 1106 1685 a(8)p 1227 1721 V 172 w(6.59)p 1597
1721 V 172 w(7.93)p 1919 1721 V 148 w(99.09)p 2290 1721
V 172 w(6.78)p 2660 1721 V 172 w(7.72)p 2982 1721 V 148
w(96.50)p 3353 1721 V 3357 1721 V 1031 1725 2327 4 v
780 1842 4 121 v 784 1842 V 1030 1842 V 1081 1806 a(16)p
1227 1842 V 148 w(3.32)p 1597 1842 V 148 w(15.73)p 1919
1842 V 123 w(98.34)p 2290 1842 V 197 w(3.5)p 2660 1842
V 172 w(14.95)p 2982 1842 V 123 w(93.46)p 3353 1842 V
3357 1842 V 1031 1845 2327 4 v 780 1962 4 121 v 784 1962
V 1030 1962 V 1081 1926 a(32)p 1227 1962 V 148 w(1.72)p
1597 1962 V 148 w(30.37)p 1919 1962 V 123 w(94.91)p 2290
1962 V 172 w(2.13)p 2660 1962 V 148 w(24.57)p 2982 1962
V 123 w(76.79)p 3353 1962 V 3357 1962 V 782 1965 2576
4 v 780 2086 4 121 v 784 2086 V 1030 2086 V 1106 2050
a(1)p 1227 2086 V 123 w(208.83)p 1597 2086 V 123 w(1.00)p
1919 2086 V 124 w(100.00)p 2290 2086 V 98 w(203.46)p
2660 2086 V 123 w(1.00)p 2982 2086 V 124 w(100.00)p 3353
2086 V 3357 2086 V 1031 2089 2327 4 v 780 2206 4 121
v 784 2206 V 1030 2206 V 1106 2170 a(2)p 1227 2206 V
123 w(104.76)p 1597 2206 V 123 w(1.99)p 1919 2206 V 148
w(99.67)p 2290 2206 V 148 w(103.2)p 2660 2206 V 147 w(1.97)p
2982 2206 V 148 w(98.58)p 3353 2206 V 3357 2206 V 1031
2209 2327 4 v 780 2327 4 121 v 784 2327 V 835 2290 a(256)p
1030 2327 V 124 w(4)p 1227 2327 V 148 w(52.76)p 1597
2327 V 147 w(3.96)p 1919 2327 V 148 w(98.95)p 2290 2327
V 148 w(52.25)p 2660 2327 V 147 w(3.89)p 2982 2327 V
148 w(97.35)p 3353 2327 V 3357 2327 V 1031 2330 2327
4 v 780 2447 4 121 v 784 2447 V 1030 2447 V 1106 2411
a(8)p 1227 2447 V 148 w(26.39)p 1597 2447 V 147 w(7.91)p
1919 2447 V 148 w(98.92)p 2290 2447 V 148 w(26.14)p 2660
2447 V 147 w(7.78)p 2982 2447 V 148 w(97.29)p 3353 2447
V 3357 2447 V 1031 2450 2327 4 v 780 2567 4 121 v 784
2567 V 1030 2567 V 1081 2531 a(16)p 1227 2567 V 148 w(13.3)p
1597 2567 V 148 w(15.70)p 1919 2567 V 123 w(98.13)p 2290
2567 V 148 w(13.13)p 2660 2567 V 123 w(15.50)p 2982 2567
V 123 w(96.85)p 3353 2567 V 3357 2567 V 1031 2571 2327
4 v 780 2688 4 121 v 784 2688 V 1030 2688 V 1081 2652
a(32)p 1227 2688 V 148 w(6.89)p 1597 2688 V 148 w(30.31)p
1919 2688 V 123 w(94.71)p 2290 2688 V 172 w(7.37)p 2660
2688 V 148 w(27.61)p 2982 2688 V 123 w(86.27)p 3353 2688
V 3357 2688 V 782 2691 2576 4 v 780 2811 4 121 v 784
2811 V 1030 2811 V 1106 2775 a(1)p 1227 2811 V 123 w(835.16)p
1597 2811 V 123 w(1.00)p 1919 2811 V 124 w(100.00)p 2290
2811 V 123 w(831.2)p 2660 2811 V 147 w(1.00)p 2982 2811
V 124 w(100.00)p 3353 2811 V 3357 2811 V 1031 2815 2327
4 v 780 2932 4 121 v 784 2932 V 1030 2932 V 1106 2896
a(2)p 1227 2932 V 123 w(419.44)p 1597 2932 V 123 w(1.99)p
1919 2932 V 148 w(99.56)p 2290 2932 V 148 w(416.1)p 2660
2932 V 147 w(2.00)p 2982 2932 V 148 w(99.88)p 3353 2932
V 3357 2932 V 1031 2935 2327 4 v 780 3052 4 121 v 784
3052 V 835 3016 a(512)p 1030 3052 V 124 w(4)p 1227 3052
V 123 w(211.58)p 1597 3052 V 123 w(3.95)p 1919 3052 V
148 w(98.68)p 2290 3052 V 148 w(208.8)p 2660 3052 V 147
w(3.98)p 2982 3052 V 148 w(99.52)p 3353 3052 V 3357 3052
V 1031 3055 2327 4 v 780 3173 4 121 v 784 3173 V 1030
3173 V 1106 3136 a(8)p 1227 3173 V 123 w(105.86)p 1597
3173 V 123 w(7.89)p 1919 3173 V 148 w(98.62)p 2290 3173
V 148 w(104.4)p 2660 3173 V 147 w(7.96)p 2982 3173 V
148 w(99.52)p 3353 3173 V 3357 3173 V 1031 3176 2327
4 v 780 3293 4 121 v 784 3293 V 1030 3293 V 1081 3257
a(16)p 1227 3293 V 124 w(53.52)p 1597 3293 V 123 w(15.60)p
1919 3293 V 123 w(97.53)p 2290 3293 V 148 w(52.43)p 2660
3293 V 123 w(15.85)p 2982 3293 V 123 w(99.08)p 3353 3293
V 3357 3293 V 1031 3296 2327 4 v 780 3413 4 121 v 784
3413 V 1030 3413 V 1081 3377 a(32)p 1227 3413 V 124 w(27.59)p
1597 3413 V 123 w(30.27)p 1919 3413 V 123 w(94.60)p 2290
3413 V 148 w(27.08)p 2660 3413 V 123 w(30.69)p 2982 3413
V 123 w(95.92)p 3353 3413 V 3357 3413 V 782 3417 2576
4 v Black 678 3577 a(T)-8 b(able)32 b(7.8:)43 b(P)m(erformance)33
b(of)f(UMP)-8 b(A)34 b(and)f(CP)-8 b(A)33 b(for)f(DPLL)g(on)h(Wiglaf)p
Black Black 446 3941 a(F)-8 b(rom)25 b(the)h(results)g(w)m(e)h(see)g
(that)f(when)h(the)f(pro)s(cessor)h(n)m(um)m(b)s(er)f
Fr(p)g Fu(increases,)i(the)e(sp)s(eedup)300 4061 y(of)e(b)s(oth)g(the)h
(UMP)-8 b(A)25 b(and)f(the)h(CP)-8 b(A)25 b(will)d(increase)i(and)h
(the)g(e\016ciency)g(of)f(b)s(oth)g(will)e(decrease.)300
4182 y(When)34 b(the)g(problem)e(size)i Fr(n)g Fu(increases,)g(the)g
(CP)-8 b(A)35 b(tak)m(es)f(less)g(computation)e(time)g(than)i(the)300
4302 y(UMP)-8 b(A.)37 b(This)f(is)g(b)s(ecause)h(when)g(the)f(problem)f
(size)h Fr(n)h Fu(increases,)g(the)g(single)e(pro)s(cessor)i(in)300
4423 y(whic)m(h)e(the)h(\014xed)g(densit)m(y)g(is)e(calculated)g(has)h
(to)g(tak)m(e)g(more)f(time)g(to)g(do)h(the)g(computation)300
4543 y(while)j(other)h(pro)s(cessors)h(are)e(just)h(set)h(idle.)60
b(Therefore)40 b(the)f(total)e(computation)g(time)g(for)300
4663 y(the)f(UMP)-8 b(A)37 b(will)c(increase.)53 b(Th)m(us,)38
b(the)e(CP)-8 b(A)37 b(is)e(faster)h(than)g(that)f(of)g(the)h(UMP)-8
b(A)37 b(when)g Fr(n)300 4784 y Fu(is)32 b(large,)g(as)g(is)h(the)g
(case)g(for)f Fr(S)1465 4799 y Fp(3)1504 4784 y Fu(.)446
4904 y(T)-8 b(o)35 b(get)g(more)f(information)d(ab)s(out)j(the)h(p)s
(erformance)f(of)g(the)i(t)m(w)m(o)f(algorithms,)d(w)m(e)k(giv)m(e)300
5024 y(Figure)d(7.8)h(and)h(Figure)e(7.9)h(to)g(sho)m(w)i(the)f
(e\016ciency)h(comparison)d(of)h(the)h(UMP)-8 b(A)35
b(and)g(the)300 5145 y(CP)-8 b(A)31 b(with)e(the)h(c)m(hange)h(of)f
Fr(p)f Fu(and)h Fr(n)p Fu(.)43 b(Comparing)29 b(the)h(t)m(w)m(o)g
(pictures,)h(w)m(e)g(see)g(that)f(with)g(the)300 5265
y(increase)j(of)g Fr(n)p Fu(,)g(the)g(e\016ciency)h Fr(E)39
b Fu(of)32 b(the)i(UMP)-8 b(A)33 b(will)e(b)s(e)i(decreasing)g(but)g
(the)g(e\016ciency)h(of)300 5386 y(the)h(CP)-8 b(A)35
b(will)c(b)s(e)k(increasing.)47 b(Therefore)35 b(the)g(CP)-8
b(A)35 b(de\014nitely)f(outp)s(erforms)f(the)i(UMP)-8
b(A,)300 5506 y(the)29 b(same)f(conclusion)g(as)g(w)m(e)i(made)e
(earlier.)40 b(Moreo)m(v)m(er,)31 b(comparing)c(the)h(t)m(w)m(o)h
(pictures)g(with)p Black Black eop
%%Page: 49 58
49 57 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(49)p Black 300 274 a(Figure)32
b(7.2)h(and)h(Figure)e(7.3)h(for)g Fr(S)1633 289 y Fp(3)1673
274 y Fu(,)g(w)m(e)i(see)f(that)g(the)f(p)s(erformance)g(of)g(the)h
(UMP)-8 b(A)34 b(or)g(the)300 395 y(CP)-8 b(A)38 b(do)s(es)f(not)g(v)-5
b(ary)38 b(m)m(uc)m(h)f(with)g(the)g(di\013eren)m(t)h(mappings,)f(and)g
(this)g(sho)m(ws)h(a)f(relativ)m(ely)300 515 y(stable)22
b(c)m(haracteristics.)41 b(Therefore)24 b(all)c(the)j(other)g
(conclusions)g(for)f(DPLL)g(should)g(b)s(e)h(similar)300
635 y(to)32 b(those)h(for)g Fr(S)884 650 y Fp(3)923 635
y Fu(.)p Black Black Black 720 2646 a @beginspecial 50
@llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial
%%BeginDocument: pic/wdu.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Wed Jul  5 17:15:56 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(90) Rshow
540 629 M
63 0 V
2793 0 R
-63 0 V
468 629 M
(92) Rshow
540 898 M
63 0 V
2793 0 R
-63 0 V
468 898 M
(94) Rshow
540 1166 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(96) Rshow
540 1435 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(98) Rshow
540 1704 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 1973 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(102) Rshow
540 2242 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(104) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
1111 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
2825 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(5) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 1704 M
571 -31 V
571 -61 V
572 -30 V
571 -101 V
571 -461 V
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 1704 M
571 -44 V
571 -97 V
572 -5 V
571 -105 V
3396 994 L
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 1704 M
571 -60 V
571 -117 V
572 -9 V
571 -146 V
3396 978 L
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 948 2849 a(Figure)e(7.8:)43 b(E\016ciency)34
b(of)e(UMP)-8 b(A)34 b(for)e(DPLL)g(on)h(Wiglaf)p Black
Black Black Black Black 720 5078 a @beginspecial 50 @llx
50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial
%%BeginDocument: pic/wdc.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Wed Jul  5 15:36:50 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(75) Rshow
540 648 M
63 0 V
2793 0 R
-63 0 V
468 648 M
(80) Rshow
540 936 M
63 0 V
2793 0 R
-63 0 V
468 936 M
(85) Rshow
540 1224 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 1512 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(95) Rshow
540 1800 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 2088 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(105) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(110) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
1111 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
2825 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(5) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 1800 M
571 -93 V
571 -67 V
572 -42 V
571 -174 V
3396 463 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 1800 M
571 -82 V
571 -71 V
572 -3 V
571 -26 V
571 -609 V
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 1800 M
571 -7 V
571 -21 V
572 0 V
571 -25 V
571 -182 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 910 5282 a(Figure)e(7.9:)43 b(E\016ciency)34
b(of)e(the)h(CP)-8 b(A)34 b(for)e(DPLL)g(on)h(Wiglaf)p
Black Black Black Black eop
%%Page: 50 59
50 58 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(50)p Black Black Black 847
274 a Fm(7.3.2)113 b(Numerical)35 b(Results)h(for)i(DPLL)f(on)h(Sw)m
(eetgum)470 459 y Fu(T)-8 b(able)37 b(7.9)g(sho)m(ws)h(the)g
(computation)e(time)f Fr(T)14 b Fu(\()p Fr(s)p Fu(\),)38
b(the)g(sp)s(eedup)g Fr(s)p Fu(,)h(and)e(the)h(e\016ciency)300
579 y Fr(E)h Fu(of)32 b(the)h(UMP)-8 b(A)34 b(and)f(the)g(CP)-8
b(A)34 b(for)e(the)i(DPLL)e(on)h(Sw)m(eetgum.)45 b(Figure)32
b(7.10)g(and)h(Figure)300 700 y(7.11)26 b(sho)m(w)j(the)e(e\016ciency)i
(of)e(the)g(UMP)-8 b(A)28 b(and)f(the)h(CP)-8 b(A)28
b(on)f(Sw)m(eetgum)h(with)e(the)i(pro)s(cessor)300 820
y(n)m(um)m(b)s(er)33 b Fr(p)f Fu(and)h(the)g(problem)e(size)i
Fr(n)p Fu(.)p Black Black Black 855 959 2430 4 v 853
1079 4 121 v 857 1079 V 908 1043 a Fm(n)p 1103 1079 V
1103 1079 V 568 w(UMP)-9 b(A)p 2314 1079 V 2314 1079
V 799 w(CP)g(A)p 3280 1079 V 3284 1079 V 855 1083 2430
4 v 853 1203 4 121 v 857 1203 V 1103 1203 V 1179 1167
a Fr(p)p 1300 1203 V 163 w(T)14 b Fu(\()p Fr(s)p Fu(\))p
1671 1203 V 202 w Fr(s)p 1944 1203 V 181 w(E)6 b Fu(\(\045\))p
2314 1203 V 133 w Fr(T)14 b Fu(\()p Fr(s)p Fu(\))p 2636
1203 V 177 w Fr(s)p 2909 1203 V 182 w(E)6 b Fu(\(\045\))p
3280 1203 V 3284 1203 V 1105 1206 2181 4 v 853 1324 4
121 v 857 1324 V 1103 1324 V 1179 1287 a(1)p 1300 1324
V 172 w(8.23)p 1671 1324 V 148 w(1.00)p 1944 1324 V 99
w(100.00)p 2314 1324 V 123 w(7.81)p 2636 1324 V 124 w(1.00)p
2909 1324 V 99 w(100.00)p 3280 1324 V 3284 1324 V 1105
1327 2181 4 v 853 1444 4 121 v 857 1444 V 1103 1444 V
1179 1408 a(2)p 1300 1444 V 172 w(4.81)p 1671 1444 V
148 w(1.71)p 1944 1444 V 124 w(85.55)p 2314 1444 V 147
w(4.28)p 2636 1444 V 124 w(1.82)p 2909 1444 V 123 w(91.24)p
3280 1444 V 3284 1444 V 1105 1447 2181 4 v 853 1564 4
121 v 857 1564 V 908 1528 a(128)p 1103 1564 V 124 w(4)p
1300 1564 V 172 w(2.73)p 1671 1564 V 148 w(3.01)p 1944
1564 V 124 w(75.37)p 2314 1564 V 147 w(2.97)p 2636 1564
V 124 w(2.63)p 2909 1564 V 123 w(65.74)p 3280 1564 V
3284 1564 V 1105 1568 2181 4 v 853 1685 4 121 v 857 1685
V 1103 1685 V 1179 1649 a(8)p 1300 1685 V 172 w(2.63)p
1671 1685 V 148 w(3.13)p 1944 1685 V 124 w(39.12)p 2314
1685 V 147 w(3.56)p 2636 1685 V 124 w(2.19)p 2909 1685
V 123 w(27.42)p 3280 1685 V 3284 1685 V 1105 1688 2181
4 v 853 1805 4 121 v 857 1805 V 1103 1805 V 1154 1769
a(16)p 1300 1805 V 124 w(10.58)p 1671 1805 V 123 w(0.78)p
1944 1805 V 148 w(4.86)p 2314 1805 V 148 w(14.61)p 2636
1805 V 99 w(0.54)p 2909 1805 V 147 w(3.34)p 3280 1805
V 3284 1805 V 855 1808 2430 4 v 853 1929 4 121 v 857
1929 V 1103 1929 V 1179 1893 a(1)p 1300 1929 V 148 w(33.18)p
1671 1929 V 123 w(1.00)p 1944 1929 V 99 w(100.00)p 2314
1929 V 99 w(32.97)p 2636 1929 V 99 w(1.00)p 2909 1929
V 99 w(100.00)p 3280 1929 V 3284 1929 V 1105 1932 2181
4 v 853 2049 4 121 v 857 2049 V 1103 2049 V 1179 2013
a(2)p 1300 2049 V 148 w(17.46)p 1671 2049 V 123 w(1.90)p
1944 2049 V 124 w(95.02)p 2314 2049 V 123 w(17.12)p 2636
2049 V 99 w(1.93)p 2909 2049 V 123 w(96.29)p 3280 2049
V 3284 2049 V 1105 2052 2181 4 v 853 2170 4 121 v 857
2170 V 908 2133 a(256)p 1103 2170 V 124 w(4)p 1300 2170
V 148 w(10.11)p 1671 2170 V 123 w(3.28)p 1944 2170 V
124 w(82.05)p 2314 2170 V 172 w(9.3)p 2636 2170 V 148
w(3.55)p 2909 2170 V 123 w(88.63)p 3280 2170 V 3284 2170
V 1105 2173 2181 4 v 853 2290 4 121 v 857 2290 V 1103
2290 V 1179 2254 a(8)p 1300 2290 V 172 w(6.36)p 1671
2290 V 148 w(5.22)p 1944 2290 V 124 w(65.21)p 2314 2290
V 147 w(7.87)p 2636 2290 V 124 w(4.19)p 2909 2290 V 123
w(52.37)p 3280 2290 V 3284 2290 V 1105 2293 2181 4 v
853 2410 4 121 v 857 2410 V 1103 2410 V 1154 2374 a(16)p
1300 2410 V 124 w(12.47)p 1671 2410 V 123 w(2.66)p 1944
2410 V 124 w(16.63)p 2314 2410 V 123 w(15.12)p 2636 2410
V 99 w(2.18)p 2909 2410 V 123 w(13.63)p 3280 2410 V 3284
2410 V 855 2414 2430 4 v 853 2534 4 121 v 857 2534 V
1103 2534 V 1179 2498 a(1)p 1300 2534 V 124 w(136.81)p
1671 2534 V 98 w(1.00)p 1944 2534 V 99 w(100.00)p 2314
2534 V 99 w(135.4)p 2636 2534 V 99 w(1.00)p 2909 2534
V 99 w(100.00)p 3280 2534 V 3284 2534 V 1105 2537 2181
4 v 853 2654 4 121 v 857 2654 V 1103 2654 V 1179 2618
a(2)p 1300 2654 V 148 w(69.51)p 1671 2654 V 123 w(1.97)p
1944 2654 V 124 w(98.41)p 2314 2654 V 123 w(68.12)p 2636
2654 V 99 w(1.99)p 2909 2654 V 123 w(99.38)p 3280 2654
V 3284 2654 V 1105 2658 2181 4 v 853 2775 4 121 v 857
2775 V 908 2739 a(512)p 1103 2775 V 124 w(4)p 1300 2775
V 148 w(36.59)p 1671 2775 V 123 w(3.74)p 1944 2775 V
124 w(93.48)p 2314 2775 V 123 w(37.40)p 2636 2775 V 99
w(3.62)p 2909 2775 V 123 w(90.51)p 3280 2775 V 3284 2775
V 1105 2778 2181 4 v 853 2895 4 121 v 857 2895 V 1103
2895 V 1179 2859 a(8)p 1300 2895 V 148 w(23.07)p 1671
2895 V 123 w(5.93)p 1944 2895 V 124 w(74.13)p 2314 2895
V 123 w(22.10)p 2636 2895 V 99 w(6.13)p 2909 2895 V 123
w(76.58)p 3280 2895 V 3284 2895 V 1105 2898 2181 4 v
853 3015 4 121 v 857 3015 V 1103 3015 V 1154 2979 a(16)p
1300 3015 V 124 w(26.93)p 1671 3015 V 123 w(5.08)p 1944
3015 V 124 w(31.75)p 2314 3015 V 123 w(25.47)p 2636 3015
V 99 w(5.32)p 2909 3015 V 123 w(33.23)p 3280 3015 V 3284
3015 V 855 3019 2430 4 v Black 603 3179 a(T)-8 b(able)33
b(7.9:)43 b(P)m(erformance)33 b(of)f(UMP)-8 b(A)33 b(and)g(CP)-8
b(A)33 b(for)f(DPLL)h(on)f(Sw)m(eetgum)p Black Black
446 3524 a(F)-8 b(rom)22 b(the)i(results,)i(when)f Fr(p)f
Fu(increases,)i(the)e(e\016ciency)h(of)e(b)s(oth)h(the)g(UMP)-8
b(A)24 b(and)g(the)g(CP)-8 b(A)300 3644 y(will)37 b(decrease.)64
b(When)40 b Fr(n)f Fu(increases,)j(the)e(e\016ciency)g(of)f(b)s(oth)f
(will)f(increase,)k(whic)m(h)f(is)f(the)300 3765 y(same)26
b(conclusion)f(as)h(in)f(the)h(case)h(of)e(the)i(test)f(mapping)e
Fr(S)2487 3780 y Fp(3)2553 3765 y Fu(on)h(Sw)m(eetgum.)42
b(This)26 b(is)g(di\013eren)m(t)300 3885 y(from)33 b(the)j(situation)d
(of)h(the)h(UMP)-8 b(A)36 b(on)e(Wiglaf)f(where)j(the)f(e\016ciency)h
(decreases)h(with)e(the)300 4005 y(increase)g(of)f Fr(n)p
Fu(.)50 b(Because)37 b(Sw)m(eetgum)e(is)f(a)h(h)m(uge)g(memory)f(and)h
(fast)f(CPU)i(sup)s(ercomputer,)300 4126 y(when)g Fr(n)g
Fu(is)e(not)i(to)s(o)e(large,)h(the)g(sequen)m(tial)h(part)f(of)g(the)g
(UMP)-8 b(A)36 b(do)s(es)g(not)f(tak)m(e)h(to)s(o)e(m)m(uc)m(h)300
4246 y(computation)d(time.)446 4367 y(Comparing)42 b(these)i(results)f
(for)g(DPLL)g(on)f(Sw)m(eetgum)i(and)f(the)h(e\016ciency)g(for)f
Fr(S)3655 4382 y Fp(3)3737 4367 y Fu(on)300 4487 y(Sw)m(eetgum\(Figure)
30 b(7.4)g(and)g(Figure)f(7.5\),)h(w)m(e)h(can)g(conclude)f(that)g(the)
h(CP)-8 b(A)31 b(or)f(the)g(UMP)-8 b(A)300 4607 y(p)s(erform)32
b(similarly)d(with)j(di\013eren)m(t)h(mappings)f(in)g(Sw)m(eetgum.)45
b(Th)m(us)34 b(all)c(the)k(other)f(conclu-)300 4728 y(sions)g(for)f
(DPLL)g(on)g(Sw)m(eetgum)i(are)e(the)h(similar)d(to)i(that)g(for)g
Fr(S)2773 4743 y Fp(3)2845 4728 y Fu(on)h(Sw)m(eetgum.)446
4848 y(If)28 b(w)m(e)i(compare)d(T)-8 b(able)28 b(7.9)g(on)g(Sw)m
(eetgum)h(with)f(T)-8 b(able)28 b(7.8)f(on)h(Wiglaf,)f(w)m(e)i(deduce)h
(that,)300 4968 y(when)i Fr(p)27 b Fu(=)h(1,)j(the)g(computation)e
(time)g(on)i(Sw)m(eetgum)h(is)e(ab)s(out)g(six)h(times)e(faster)i(than)
g(that)300 5089 y(on)43 b(Wiglaf,)g(the)h(same)e(conclusion)h(as)g
(that)g(made)f(for)g Fr(S)2557 5104 y Fp(3)2597 5089
y Fu(.)74 b(When)44 b Fr(p)f Fu(is)f(large,)j(with)e(the)300
5209 y(increase)32 b(of)g Fr(n)p Fu(,)g(the)g(p)s(erformance)g(on)g(Sw)
m(eetgum)g(will)e(impro)m(v)m(e)i(m)m(uc)m(h)g(b)s(etter.)44
b(Figure)31 b(7.12)300 5330 y(sho)m(ws)j(that)d(the)i(e\016ciency)g(c)m
(hange)g(of)f(the)g(UMP)-8 b(A)33 b(for)e(the)i(DPLL)f(with)f(the)i
(increase)f(of)g Fr(n)300 5450 y Fu(on)26 b(Sw)m(eetgum)g(and)g
(Wiglaf,)f(when)i Fr(p)g Fu(=)h(8.)41 b(The)26 b(picture)g(sho)m(ws)h
(that)f(when)h Fr(n)e Fu(increases,)k(the)p Black Black
eop
%%Page: 51 60
51 59 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(51)p Black Black Black Black
720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/sdu.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu Jul  6 17:13:40 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(0) Rshow
540 763 M
63 0 V
2793 0 R
-63 0 V
468 763 M
(20) Rshow
540 1166 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(40) Rshow
540 1570 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(60) Rshow
540 1973 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(80) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
897 360 M
0 63 V
0 1953 R
0 -63 V
897 240 M
(0.5) Cshow
1254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1611 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1.5) Cshow
1968 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2325 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2.5) Cshow
2682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
3039 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3.5) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 2376 M
714 -291 V
714 -206 V
714 -730 V
3396 458 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 2376 M
714 -100 V
714 -262 V
714 -339 V
3396 695 L
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 2376 M
714 -32 V
714 -100 V
714 -390 V
714 -854 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 849 2268 a(Figure)31 b(7.10:)43 b(E\016ciency)34
b(of)e(UMP)-8 b(A)34 b(for)e(DPLL)g(on)g(Sw)m(eetgum)p
Black Black Black Black Black 720 4385 a @beginspecial
50 @llx 50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial
%%BeginDocument: pic/sdc.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: q.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Wed Jul  5 23:28:31 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(0) Rshow
540 763 M
63 0 V
2793 0 R
-63 0 V
468 763 M
(20) Rshow
540 1166 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(40) Rshow
540 1570 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(60) Rshow
540 1973 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(80) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(0) Cshow
897 360 M
0 63 V
0 1953 R
0 -63 V
897 240 M
(0.5) Cshow
1254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1) Cshow
1611 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(1.5) Cshow
1968 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2) Cshow
2325 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(2.5) Cshow
2682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3) Cshow
3039 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(3.5) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(4) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(L \(p=2^L\) ) Cshow
1.000 UL
LT0
2829 2253 M
(n=128) Rshow
2901 2253 M
351 0 V
540 2376 M
714 -177 V
714 -514 V
2682 913 L
3396 427 L
1.000 UL
LT1
2829 2133 M
(n=256) Rshow
2901 2133 M
351 0 V
540 2376 M
714 -75 V
714 -154 V
714 -731 V
3396 635 L
1.000 UL
LT2
2829 2013 M
(n=512) Rshow
2901 2013 M
351 0 V
540 2376 M
714 -12 V
714 -179 V
714 -281 V
714 -874 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 895 4588 a(Figure)f(7.11:)43 b(E\016ciency)34
b(of)e(CP)-8 b(A)34 b(for)e(DPLL)g(on)g(Sw)m(eetgum)p
Black Black 300 4981 a(e\016ciency)j(on)e(Sw)m(eetgum)h(will)d(approac)
m(h)j(that)f(on)g(Wiglaf)e(while)i(the)g(Sw)m(eetgum)h(is)f(nearly)300
5102 y(six)i(times)g(faster)g(than)h(Wiglaf)d(for)h(the)i(sequen)m
(tial)f(computation.)51 b(The)36 b(same)f(results)h(can)300
5222 y(b)s(e)30 b(obtained)g(for)f(the)i(CP)-8 b(A.)31
b(Therefore,)g(when)h Fr(n)e Fu(is)f(large,)h(the)h(p)s(erformance)e
(impro)m(v)m(emen)m(t)300 5342 y(on)k(Sw)m(eetgum)i(is)d(m)m(uc)m(h)i
(b)s(etter)g(and)g(Sw)m(eetgum)g(will)d(b)s(e)j(v)m(ery)h(faster)e
(than)h(Wiglaf.)44 b(So)33 b(w)m(e)300 5463 y(will)d(prefer)j(to)g(use)
g(the)g(Sw)m(eetgum)g(if)f(the)h(problem)e(size)i Fr(n)g
Fu(is)f(v)m(ery)i(large.)p Black Black eop
%%Page: 52 61
52 60 bop Black 300 10 a Fk(CHAPTER)34 b(7.)76 b(NUMERICAL)34
b(RESUL)-8 b(TS)1678 b Fu(52)p Black Black Black Black
720 2065 a @beginspecial 50 @llx 50 @lly 230 @urx 176
@ury 3240 @rwi @setspecial
%%BeginDocument: pic/sw2.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: sw2.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Thu Jul  6 18:35:49 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
540 360 M
63 0 V
2793 0 R
-63 0 V
468 360 M
(30) Rshow
540 648 M
63 0 V
2793 0 R
-63 0 V
468 648 M
(40) Rshow
540 936 M
63 0 V
2793 0 R
-63 0 V
468 936 M
(50) Rshow
540 1224 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(60) Rshow
540 1512 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(70) Rshow
540 1800 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(80) Rshow
540 2088 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(90) Rshow
540 2376 M
63 0 V
2793 0 R
-63 0 V
-2865 0 R
(100) Rshow
540 360 M
0 63 V
0 1953 R
0 -63 V
540 240 M
(7) Cshow
1254 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(7.5) Cshow
1968 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(8) Cshow
2682 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(8.5) Cshow
3396 360 M
0 63 V
0 1953 R
0 -63 V
0 -2073 R
(9) Cshow
1.000 UL
LTb
540 360 M
2856 0 V
0 2016 V
-2856 0 V
540 360 L
120 1368 M
currentpoint gsave translate 90 rotate 0 0 M
(E) Cshow
grestore
1968 60 M
(k \(n=2^k\) ) Cshow
1.000 UL
LT0
2829 2253 M
(Sweetgum ) Rshow
2901 2253 M
351 0 V
540 623 M
1428 751 V
1428 257 V
1.000 UL
LT1
2829 2133 M
(Wiglaf) Rshow
2901 2133 M
351 0 V
540 2350 M
1428 -5 V
1428 -9 V
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 325 2268 a(Figure)32 b(7.12:)43 b(E\016ciency)34
b(Comparison)d(of)h(UMP)-8 b(A)34 b(for)e(DPLL)g(on)h(Sw)m(eetgum)g
(and)g(Wiglaf)p Black Black 446 2661 a(Finally)-8 b(,)38
b(Figure)g(7.13)g(giv)m(es)h(the)g(graph)g(of)f(the)h(probabilit)m(y)e
(densit)m(y)i(function)g(\(PDF\))300 2781 y(of)f(the)h(\014rst)g(order)
g(DPLL)f(obtained)g(from)f(the)i(completely)e(parallel)f(algorithm)f
(with)k(the)300 2902 y(partition)c(n)m(um)m(b)s(er)i
Fr(n)e Fu(=)g(4096)g(of)i([0)p Fr(;)17 b Fu(1].)55 b(Comparing)35
b(with)i(the)g(results)g(in)f([49],)i(it)e(can)h(b)s(e)300
3022 y(seen)d(that)e(the)g(parallel)e(quasi-Mon)m(te)j(Carlo)e
(algorithm)e(is)j(v)m(ery)i(con)m(v)m(enien)m(t)g(and)e(e\016cien)m(t.)
p Black Black Black 720 5048 a @beginspecial 50 @llx
50 @lly 230 @urx 176 @ury 3240 @rwi @setspecial
%%BeginDocument: pic/dpllden.ps
%!PS-Adobe-2.0 EPSF-2.0
%%Title: dpllden.ps
%%Creator: gnuplot 3.7 patchlevel 0
%%CreationDate: Sat May 13 19:12:17 2000
%%DocumentFonts: (atend)
%%BoundingBox: 50 50 230 176
%%Orientation: Portrait
%%EndComments
/gnudict 256 dict def
gnudict begin
/Color false def
/Solid false def
/gnulinewidth 5.000 def
/userlinewidth gnulinewidth def
/vshift -40 def
/dl {10 mul} def
/hpt_ 31.5 def
/vpt_ 31.5 def
/hpt hpt_ def
/vpt vpt_ def
/M {moveto} bind def
/L {lineto} bind def
/R {rmoveto} bind def
/V {rlineto} bind def
/vpt2 vpt 2 mul def
/hpt2 hpt 2 mul def
/Lshow { currentpoint stroke M
  0 vshift R show } def
/Rshow { currentpoint stroke M
  dup stringwidth pop neg vshift R show } def
/Cshow { currentpoint stroke M
  dup stringwidth pop -2 div vshift R show } def
/UP { dup vpt_ mul /vpt exch def hpt_ mul /hpt exch def
  /hpt2 hpt 2 mul def /vpt2 vpt 2 mul def } def
/DL { Color {setrgbcolor Solid {pop []} if 0 setdash }
 {pop pop pop Solid {pop []} if 0 setdash} ifelse } def
/BL { stroke gnulinewidth 2 mul setlinewidth } def
/AL { stroke gnulinewidth 2 div setlinewidth } def
/UL { gnulinewidth mul /userlinewidth exch def } def
/PL { stroke userlinewidth setlinewidth } def
/LTb { BL [] 0 0 0 DL } def
/LTa { AL [1 dl 2 dl] 0 setdash 0 0 0 setrgbcolor } def
/LT0 { PL [] 1 0 0 DL } def
/LT1 { PL [4 dl 2 dl] 0 1 0 DL } def
/LT2 { PL [2 dl 3 dl] 0 0 1 DL } def
/LT3 { PL [1 dl 1.5 dl] 1 0 1 DL } def
/LT4 { PL [5 dl 2 dl 1 dl 2 dl] 0 1 1 DL } def
/LT5 { PL [4 dl 3 dl 1 dl 3 dl] 1 1 0 DL } def
/LT6 { PL [2 dl 2 dl 2 dl 4 dl] 0 0 0 DL } def
/LT7 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 1 0.3 0 DL } def
/LT8 { PL [2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 2 dl 4 dl] 0.5 0.5 0.5 DL } def
/Pnt { stroke [] 0 setdash
   gsave 1 setlinecap M 0 0 V stroke grestore } def
/Dia { stroke [] 0 setdash 2 copy vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke
  Pnt } def
/Pls { stroke [] 0 setdash vpt sub M 0 vpt2 V
  currentpoint stroke M
  hpt neg vpt neg R hpt2 0 V stroke
  } def
/Box { stroke [] 0 setdash 2 copy exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke
  Pnt } def
/Crs { stroke [] 0 setdash exch hpt sub exch vpt add M
  hpt2 vpt2 neg V currentpoint stroke M
  hpt2 neg 0 R hpt2 vpt2 V stroke } def
/TriU { stroke [] 0 setdash 2 copy vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke
  Pnt  } def
/Star { 2 copy Pls Crs } def
/BoxF { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V  hpt2 0 V  0 vpt2 V
  hpt2 neg 0 V  closepath fill } def
/TriUF { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath fill } def
/TriD { stroke [] 0 setdash 2 copy vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke
  Pnt  } def
/TriDF { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath fill} def
/DiaF { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath fill } def
/Pent { stroke [] 0 setdash 2 copy gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore Pnt } def
/PentF { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath fill grestore } def
/Circle { stroke [] 0 setdash 2 copy
  hpt 0 360 arc stroke Pnt } def
/CircleF { stroke [] 0 setdash hpt 0 360 arc fill } def
/C0 { BL [] 0 setdash 2 copy moveto vpt 90 450  arc } bind def
/C1 { BL [] 0 setdash 2 copy        moveto
       2 copy  vpt 0 90 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C2 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C3 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C4 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C5 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 90 arc
       2 copy moveto
       2 copy  vpt 180 270 arc closepath fill
               vpt 0 360 arc } bind def
/C6 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 90 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C7 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 0 270 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C8 { BL [] 0 setdash 2 copy moveto
      2 copy vpt 270 360 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C9 { BL [] 0 setdash 2 copy moveto
      2 copy  vpt 270 450 arc closepath fill
              vpt 0 360 arc closepath } bind def
/C10 { BL [] 0 setdash 2 copy 2 copy moveto vpt 270 360 arc closepath fill
       2 copy moveto
       2 copy vpt 90 180 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C11 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 0 180 arc closepath fill
       2 copy moveto
       2 copy  vpt 270 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C12 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C13 { BL [] 0 setdash  2 copy moveto
       2 copy  vpt 0 90 arc closepath fill
       2 copy moveto
       2 copy  vpt 180 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/C14 { BL [] 0 setdash 2 copy moveto
       2 copy  vpt 90 360 arc closepath fill
               vpt 0 360 arc } bind def
/C15 { BL [] 0 setdash 2 copy vpt 0 360 arc closepath fill
               vpt 0 360 arc closepath } bind def
/Rec   { newpath 4 2 roll moveto 1 index 0 rlineto 0 exch rlineto
       neg 0 rlineto closepath } bind def
/Square { dup Rec } bind def
/Bsquare { vpt sub exch vpt sub exch vpt2 Square } bind def
/S0 { BL [] 0 setdash 2 copy moveto 0 vpt rlineto BL Bsquare } bind def
/S1 { BL [] 0 setdash 2 copy vpt Square fill Bsquare } bind def
/S2 { BL [] 0 setdash 2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S3 { BL [] 0 setdash 2 copy exch vpt sub exch vpt2 vpt Rec fill Bsquare } bind def
/S4 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S5 { BL [] 0 setdash 2 copy 2 copy vpt Square fill
       exch vpt sub exch vpt sub vpt Square fill Bsquare } bind def
/S6 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S7 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt vpt2 Rec fill
       2 copy vpt Square fill
       Bsquare } bind def
/S8 { BL [] 0 setdash 2 copy vpt sub vpt Square fill Bsquare } bind def
/S9 { BL [] 0 setdash 2 copy vpt sub vpt vpt2 Rec fill Bsquare } bind def
/S10 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt Square fill
       Bsquare } bind def
/S11 { BL [] 0 setdash 2 copy vpt sub vpt Square fill 2 copy exch vpt sub exch vpt2 vpt Rec fill
       Bsquare } bind def
/S12 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill Bsquare } bind def
/S13 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy vpt Square fill Bsquare } bind def
/S14 { BL [] 0 setdash 2 copy exch vpt sub exch vpt sub vpt2 vpt Rec fill
       2 copy exch vpt sub exch vpt Square fill Bsquare } bind def
/S15 { BL [] 0 setdash 2 copy Bsquare fill Bsquare } bind def
/D0 { gsave translate 45 rotate 0 0 S0 stroke grestore } bind def
/D1 { gsave translate 45 rotate 0 0 S1 stroke grestore } bind def
/D2 { gsave translate 45 rotate 0 0 S2 stroke grestore } bind def
/D3 { gsave translate 45 rotate 0 0 S3 stroke grestore } bind def
/D4 { gsave translate 45 rotate 0 0 S4 stroke grestore } bind def
/D5 { gsave translate 45 rotate 0 0 S5 stroke grestore } bind def
/D6 { gsave translate 45 rotate 0 0 S6 stroke grestore } bind def
/D7 { gsave translate 45 rotate 0 0 S7 stroke grestore } bind def
/D8 { gsave translate 45 rotate 0 0 S8 stroke grestore } bind def
/D9 { gsave translate 45 rotate 0 0 S9 stroke grestore } bind def
/D10 { gsave translate 45 rotate 0 0 S10 stroke grestore } bind def
/D11 { gsave translate 45 rotate 0 0 S11 stroke grestore } bind def
/D12 { gsave translate 45 rotate 0 0 S12 stroke grestore } bind def
/D13 { gsave translate 45 rotate 0 0 S13 stroke grestore } bind def
/D14 { gsave translate 45 rotate 0 0 S14 stroke grestore } bind def
/D15 { gsave translate 45 rotate 0 0 S15 stroke grestore } bind def
/DiaE { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V closepath stroke } def
/BoxE { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V closepath stroke } def
/TriUE { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V closepath stroke } def
/TriDE { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V closepath stroke } def
/PentE { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  closepath stroke grestore } def
/CircE { stroke [] 0 setdash 
  hpt 0 360 arc stroke } def
/Opaque { gsave closepath 1 setgray fill grestore 0 setgray closepath } def
/DiaW { stroke [] 0 setdash vpt add M
  hpt neg vpt neg V hpt vpt neg V
  hpt vpt V hpt neg vpt V Opaque stroke } def
/BoxW { stroke [] 0 setdash exch hpt sub exch vpt add M
  0 vpt2 neg V hpt2 0 V 0 vpt2 V
  hpt2 neg 0 V Opaque stroke } def
/TriUW { stroke [] 0 setdash vpt 1.12 mul add M
  hpt neg vpt -1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt 1.62 mul V Opaque stroke } def
/TriDW { stroke [] 0 setdash vpt 1.12 mul sub M
  hpt neg vpt 1.62 mul V
  hpt 2 mul 0 V
  hpt neg vpt -1.62 mul V Opaque stroke } def
/PentW { stroke [] 0 setdash gsave
  translate 0 hpt M 4 {72 rotate 0 hpt L} repeat
  Opaque stroke grestore } def
/CircW { stroke [] 0 setdash 
  hpt 0 360 arc Opaque stroke } def
/BoxFill { gsave Rec 1 setgray fill grestore } def
end
%%EndProlog
gnudict begin
gsave
50 50 translate
0.050 0.050 scale
0 setgray
newpath
(Helvetica) findfont 120 scalefont setfont
1.000 UL
LTb
420 240 M
63 0 V
2913 0 R
-63 0 V
348 240 M
(0) Rshow
420 507 M
63 0 V
2913 0 R
-63 0 V
348 507 M
(0.5) Rshow
420 774 M
63 0 V
2913 0 R
-63 0 V
348 774 M
(1) Rshow
420 1041 M
63 0 V
2913 0 R
-63 0 V
-2985 0 R
(1.5) Rshow
420 1308 M
63 0 V
2913 0 R
-63 0 V
-2985 0 R
(2) Rshow
420 1575 M
63 0 V
2913 0 R
-63 0 V
-2985 0 R
(2.5) Rshow
420 1842 M
63 0 V
2913 0 R
-63 0 V
-2985 0 R
(3) Rshow
420 2109 M
63 0 V
2913 0 R
-63 0 V
-2985 0 R
(3.5) Rshow
420 2376 M
63 0 V
2913 0 R
-63 0 V
-2985 0 R
(4) Rshow
420 240 M
0 63 V
0 2073 R
0 -63 V
420 120 M
(0) Cshow
894 240 M
0 63 V
0 2073 R
0 -63 V
894 120 M
(1) Cshow
1367 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(2) Cshow
1841 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(3) Cshow
2315 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(4) Cshow
2788 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(5) Cshow
3262 240 M
0 63 V
0 2073 R
0 -63 V
0 -2193 R
(6) Cshow
1.000 UL
LTb
420 240 M
2976 0 V
0 2136 V
-2976 0 V
420 240 L
1.000 UL
LT0
2829 2253 M
(PDF for DPLL with n=4096) Rshow
3076 2253 Pnt
421 551 Pnt
421 551 Pnt
422 550 Pnt
423 551 Pnt
424 551 Pnt
424 550 Pnt
425 552 Pnt
426 551 Pnt
427 552 Pnt
427 551 Pnt
428 552 Pnt
429 551 Pnt
429 552 Pnt
430 552 Pnt
431 553 Pnt
432 552 Pnt
432 552 Pnt
433 553 Pnt
434 552 Pnt
435 553 Pnt
435 554 Pnt
436 553 Pnt
437 553 Pnt
437 554 Pnt
438 555 Pnt
439 554 Pnt
440 555 Pnt
440 555 Pnt
441 555 Pnt
442 555 Pnt
443 556 Pnt
443 555 Pnt
444 555 Pnt
445 556 Pnt
445 556 Pnt
446 556 Pnt
447 556 Pnt
448 556 Pnt
448 556 Pnt
449 555 Pnt
450 557 Pnt
451 557 Pnt
451 557 Pnt
452 558 Pnt
453 558 Pnt
453 558 Pnt
454 557 Pnt
455 559 Pnt
456 559 Pnt
456 559 Pnt
457 559 Pnt
458 560 Pnt
459 560 Pnt
459 559 Pnt
460 560 Pnt
461 560 Pnt
461 559 Pnt
462 561 Pnt
463 560 Pnt
464 561 Pnt
464 561 Pnt
465 562 Pnt
466 561 Pnt
467 562 Pnt
467 561 Pnt
468 562 Pnt
469 562 Pnt
469 563 Pnt
470 564 Pnt
471 563 Pnt
472 565 Pnt
472 564 Pnt
473 564 Pnt
474 564 Pnt
474 566 Pnt
475 565 Pnt
476 565 Pnt
477 565 Pnt
477 567 Pnt
478 565 Pnt
479 567 Pnt
480 567 Pnt
480 567 Pnt
481 568 Pnt
482 568 Pnt
482 568 Pnt
483 570 Pnt
484 570 Pnt
485 570 Pnt
485 570 Pnt
486 571 Pnt
487 571 Pnt
488 571 Pnt
488 571 Pnt
489 571 Pnt
490 572 Pnt
490 572 Pnt
491 574 Pnt
492 574 Pnt
493 574 Pnt
493 575 Pnt
494 574 Pnt
495 575 Pnt
496 576 Pnt
496 577 Pnt
497 577 Pnt
498 576 Pnt
498 579 Pnt
499 579 Pnt
500 577 Pnt
501 579 Pnt
501 580 Pnt
502 579 Pnt
503 580 Pnt
504 582 Pnt
504 581 Pnt
505 582 Pnt
506 583 Pnt
506 585 Pnt
507 584 Pnt
508 585 Pnt
509 585 Pnt
509 587 Pnt
510 585 Pnt
511 589 Pnt
512 588 Pnt
512 589 Pnt
513 591 Pnt
514 593 Pnt
514 594 Pnt
515 594 Pnt
516 595 Pnt
517 596 Pnt
517 595 Pnt
518 598 Pnt
519 600 Pnt
520 599 Pnt
520 599 Pnt
521 600 Pnt
522 602 Pnt
522 601 Pnt
523 603 Pnt
524 603 Pnt
525 605 Pnt
525 605 Pnt
526 606 Pnt
527 606 Pnt
528 607 Pnt
528 609 Pnt
529 609 Pnt
530 609 Pnt
530 613 Pnt
531 614 Pnt
532 614 Pnt
533 615 Pnt
533 615 Pnt
534 615 Pnt
535 614 Pnt
536 620 Pnt
536 620 Pnt
537 620 Pnt
538 621 Pnt
538 621 Pnt
539 621 Pnt
540 626 Pnt
541 634 Pnt
541 634 Pnt
542 634 Pnt
543 638 Pnt
544 639 Pnt
544 639 Pnt
545 645 Pnt
546 649 Pnt
546 648 Pnt
547 652 Pnt
548 661 Pnt
549 661 Pnt
549 659 Pnt
550 668 Pnt
551 669 Pnt
552 669 Pnt
552 674 Pnt
553 684 Pnt
554 684 Pnt
554 682 Pnt
555 687 Pnt
556 686 Pnt
557 687 Pnt
557 690 Pnt
558 690 Pnt
559 691 Pnt
559 691 Pnt
560 699 Pnt
561 697 Pnt
562 699 Pnt
562 700 Pnt
563 702 Pnt
564 700 Pnt
565 705 Pnt
565 706 Pnt
566 708 Pnt
567 706 Pnt
567 711 Pnt
568 710 Pnt
569 711 Pnt
570 718 Pnt
570 723 Pnt
571 725 Pnt
572 725 Pnt
573 731 Pnt
573 733 Pnt
574 731 Pnt
575 737 Pnt
575 740 Pnt
576 738 Pnt
577 741 Pnt
578 746 Pnt
578 745 Pnt
579 746 Pnt
580 765 Pnt
581 766 Pnt
581 765 Pnt
582 800 Pnt
583 819 Pnt
583 821 Pnt
584 821 Pnt
585 825 Pnt
586 825 Pnt
586 825 Pnt
587 847 Pnt
588 853 Pnt
589 850 Pnt
589 855 Pnt
590 860 Pnt
591 860 Pnt
591 864 Pnt
592 927 Pnt
593 927 Pnt
594 927 Pnt
594 936 Pnt
595 938 Pnt
596 938 Pnt
597 944 Pnt
597 961 Pnt
598 961 Pnt
599 961 Pnt
599 967 Pnt
600 968 Pnt
601 968 Pnt
602 843 Pnt
602 691 Pnt
603 691 Pnt
604 689 Pnt
605 660 Pnt
605 661 Pnt
606 661 Pnt
607 626 Pnt
607 606 Pnt
608 606 Pnt
609 605 Pnt
610 602 Pnt
610 602 Pnt
611 602 Pnt
612 600 Pnt
613 601 Pnt
613 601 Pnt
614 601 Pnt
615 602 Pnt
615 602 Pnt
616 601 Pnt
617 602 Pnt
618 602 Pnt
618 602 Pnt
619 603 Pnt
620 602 Pnt
621 603 Pnt
621 604 Pnt
622 605 Pnt
623 604 Pnt
623 605 Pnt
624 605 Pnt
625 605 Pnt
626 603 Pnt
626 606 Pnt
627 607 Pnt
628 607 Pnt
629 606 Pnt
629 609 Pnt
630 609 Pnt
631 608 Pnt
631 610 Pnt
632 611 Pnt
633 610 Pnt
634 612 Pnt
634 614 Pnt
635 613 Pnt
636 614 Pnt
637 616 Pnt
637 616 Pnt
638 617 Pnt
639 617 Pnt
639 619 Pnt
640 619 Pnt
641 618 Pnt
642 622 Pnt
642 621 Pnt
643 622 Pnt
644 624 Pnt
645 624 Pnt
645 625 Pnt
646 625 Pnt
647 628 Pnt
647 627 Pnt
648 628 Pnt
649 630 Pnt
650 632 Pnt
650 631 Pnt
651 633 Pnt
652 633 Pnt
653 635 Pnt
653 635 Pnt
654 638 Pnt
655 639 Pnt
655 638 Pnt
656 640 Pnt
657 642 Pnt
658 641 Pnt
658 643 Pnt
659 645 Pnt
660 647 Pnt
660 645 Pnt
661 650 Pnt
662 650 Pnt
663 651 Pnt
663 651 Pnt
664 656 Pnt
665 654 Pnt
666 654 Pnt
666 661 Pnt
667 660 Pnt
668 661 Pnt
668 663 Pnt
669 667 Pnt
670 666 Pnt
671 667 Pnt
671 674 Pnt
672 673 Pnt
673 674 Pnt
674 677 Pnt
674 679 Pnt
675 681 Pnt
676 682 Pnt
676 689 Pnt
677 687 Pnt
678 687 Pnt
679 695 Pnt
679 695 Pnt
680 696 Pnt
681 699 Pnt
682 704 Pnt
682 706 Pnt
683 705 Pnt
684 713 Pnt
684 715 Pnt
685 713 Pnt
686 720 Pnt
687 725 Pnt
687 723 Pnt
688 728 Pnt
689 735 Pnt
690 735 Pnt
690 737 Pnt
691 745 Pnt
692 747 Pnt
692 748 Pnt
693 753 Pnt
694 762 Pnt
695 764 Pnt
695 762 Pnt
696 777 Pnt
697 779 Pnt
698 777 Pnt
698 789 Pnt
699 798 Pnt
700 796 Pnt
700 801 Pnt
701 822 Pnt
702 820 Pnt
703 820 Pnt
703 844 Pnt
704 848 Pnt
705 848 Pnt
706 861 Pnt
706 885 Pnt
707 883 Pnt
708 883 Pnt
708 926 Pnt
709 926 Pnt
710 926 Pnt
711 960 Pnt
711 983 Pnt
712 983 Pnt
713 998 Pnt
714 1063 Pnt
714 1063 Pnt
715 1065 Pnt
716 1156 Pnt
716 1188 Pnt
717 1191 Pnt
718 1267 Pnt
719 1426 Pnt
719 1430 Pnt
720 1426 Pnt
721 2316 Pnt
723 1696 Pnt
724 1032 Pnt
724 1035 Pnt
725 964 Pnt
726 368 Pnt
727 369 Pnt
727 368 Pnt
728 368 Pnt
729 369 Pnt
730 368 Pnt
730 368 Pnt
731 369 Pnt
732 368 Pnt
732 368 Pnt
733 369 Pnt
734 368 Pnt
735 368 Pnt
735 368 Pnt
736 368 Pnt
737 368 Pnt
737 368 Pnt
738 367 Pnt
739 368 Pnt
740 367 Pnt
740 367 Pnt
741 368 Pnt
742 367 Pnt
743 367 Pnt
743 367 Pnt
744 367 Pnt
745 367 Pnt
745 367 Pnt
746 367 Pnt
747 367 Pnt
748 367 Pnt
748 366 Pnt
749 367 Pnt
750 366 Pnt
751 367 Pnt
751 367 Pnt
752 367 Pnt
753 366 Pnt
753 366 Pnt
754 366 Pnt
755 366 Pnt
756 365 Pnt
756 366 Pnt
757 365 Pnt
758 366 Pnt
759 365 Pnt
759 366 Pnt
760 365 Pnt
761 365 Pnt
761 366 Pnt
762 365 Pnt
763 366 Pnt
764 365 Pnt
764 366 Pnt
765 365 Pnt
766 365 Pnt
767 365 Pnt
767 365 Pnt
768 365 Pnt
769 365 Pnt
769 365 Pnt
770 364 Pnt
771 364 Pnt
772 364 Pnt
772 364 Pnt
773 364 Pnt
774 364 Pnt
775 364 Pnt
775 364 Pnt
776 364 Pnt
777 364 Pnt
777 364 Pnt
778 363 Pnt
779 364 Pnt
780 364 Pnt
780 363 Pnt
781 364 Pnt
782 363 Pnt
783 363 Pnt
783 363 Pnt
784 363 Pnt
785 363 Pnt
785 363 Pnt
786 363 Pnt
787 363 Pnt
788 362 Pnt
788 362 Pnt
789 362 Pnt
790 362 Pnt
791 362 Pnt
791 362 Pnt
792 362 Pnt
793 362 Pnt
793 361 Pnt
794 362 Pnt
795 361 Pnt
796 361 Pnt
796 361 Pnt
797 361 Pnt
798 361 Pnt
799 361 Pnt
799 361 Pnt
800 361 Pnt
801 361 Pnt
801 360 Pnt
802 361 Pnt
803 361 Pnt
804 361 Pnt
804 361 Pnt
805 360 Pnt
806 360 Pnt
807 360 Pnt
807 360 Pnt
808 360 Pnt
809 360 Pnt
809 360 Pnt
810 360 Pnt
811 360 Pnt
812 360 Pnt
812 360 Pnt
813 360 Pnt
814 359 Pnt
815 360 Pnt
815 359 Pnt
816 359 Pnt
817 359 Pnt
817 359 Pnt
818 359 Pnt
819 359 Pnt
820 359 Pnt
820 359 Pnt
821 359 Pnt
822 359 Pnt
823 358 Pnt
823 358 Pnt
824 358 Pnt
825 358 Pnt
825 358 Pnt
826 358 Pnt
827 358 Pnt
828 358 Pnt
828 358 Pnt
829 358 Pnt
830 358 Pnt
831 359 Pnt
831 358 Pnt
832 358 Pnt
833 358 Pnt
833 358 Pnt
834 358 Pnt
835 358 Pnt
836 358 Pnt
836 358 Pnt
837 358 Pnt
838 358 Pnt
839 358 Pnt
839 358 Pnt
840 357 Pnt
841 357 Pnt
841 357 Pnt
842 357 Pnt
843 357 Pnt
844 357 Pnt
844 357 Pnt
845 357 Pnt
846 357 Pnt
846 357 Pnt
847 357 Pnt
848 357 Pnt
849 357 Pnt
849 356 Pnt
850 356 Pnt
851 357 Pnt
852 356 Pnt
852 357 Pnt
853 356 Pnt
854 356 Pnt
854 356 Pnt
855 356 Pnt
856 356 Pnt
857 356 Pnt
857 356 Pnt
858 356 Pnt
859 356 Pnt
860 356 Pnt
860 356 Pnt
861 356 Pnt
862 356 Pnt
862 356 Pnt
863 356 Pnt
864 356 Pnt
865 356 Pnt
865 355 Pnt
866 356 Pnt
867 356 Pnt
868 356 Pnt
868 355 Pnt
869 355 Pnt
870 355 Pnt
870 355 Pnt
871 356 Pnt
872 356 Pnt
873 356 Pnt
873 356 Pnt
874 355 Pnt
875 355 Pnt
876 355 Pnt
876 355 Pnt
877 355 Pnt
878 355 Pnt
878 355 Pnt
879 355 Pnt
880 355 Pnt
881 355 Pnt
881 355 Pnt
882 355 Pnt
883 355 Pnt
884 355 Pnt
884 355 Pnt
885 355 Pnt
886 355 Pnt
886 356 Pnt
887 355 Pnt
888 355 Pnt
889 355 Pnt
889 355 Pnt
890 355 Pnt
891 355 Pnt
892 355 Pnt
892 355 Pnt
893 355 Pnt
894 355 Pnt
894 355 Pnt
895 355 Pnt
896 355 Pnt
897 355 Pnt
897 355 Pnt
898 355 Pnt
899 354 Pnt
900 354 Pnt
900 355 Pnt
901 355 Pnt
902 355 Pnt
902 355 Pnt
903 355 Pnt
904 356 Pnt
905 356 Pnt
905 356 Pnt
906 356 Pnt
907 356 Pnt
908 356 Pnt
908 357 Pnt
909 357 Pnt
910 357 Pnt
910 357 Pnt
911 356 Pnt
912 357 Pnt
913 357 Pnt
913 356 Pnt
914 357 Pnt
915 357 Pnt
916 356 Pnt
916 357 Pnt
917 357 Pnt
918 357 Pnt
918 356 Pnt
919 357 Pnt
920 357 Pnt
921 357 Pnt
921 356 Pnt
922 356 Pnt
923 356 Pnt
923 357 Pnt
924 357 Pnt
925 357 Pnt
926 356 Pnt
926 356 Pnt
927 356 Pnt
928 356 Pnt
929 356 Pnt
929 356 Pnt
930 356 Pnt
931 356 Pnt
931 356 Pnt
932 356 Pnt
933 356 Pnt
934 356 Pnt
934 356 Pnt
935 356 Pnt
936 356 Pnt
937 356 Pnt
937 356 Pnt
938 356 Pnt
939 356 Pnt
939 356 Pnt
940 355 Pnt
941 356 Pnt
942 355 Pnt
942 356 Pnt
943 355 Pnt
944 356 Pnt
945 355 Pnt
945 356 Pnt
946 355 Pnt
947 356 Pnt
947 355 Pnt
948 355 Pnt
949 355 Pnt
950 355 Pnt
950 354 Pnt
951 354 Pnt
952 354 Pnt
953 354 Pnt
953 354 Pnt
954 354 Pnt
955 354 Pnt
955 354 Pnt
956 354 Pnt
957 354 Pnt
958 354 Pnt
958 354 Pnt
959 354 Pnt
960 353 Pnt
961 353 Pnt
961 353 Pnt
962 353 Pnt
963 353 Pnt
963 353 Pnt
964 353 Pnt
965 353 Pnt
966 353 Pnt
966 353 Pnt
967 353 Pnt
968 353 Pnt
969 353 Pnt
969 353 Pnt
970 353 Pnt
971 353 Pnt
971 353 Pnt
972 353 Pnt
973 352 Pnt
974 352 Pnt
974 353 Pnt
975 353 Pnt
976 353 Pnt
977 352 Pnt
977 352 Pnt
978 352 Pnt
979 352 Pnt
979 352 Pnt
980 351 Pnt
981 352 Pnt
982 352 Pnt
982 351 Pnt
983 352 Pnt
984 352 Pnt
985 352 Pnt
985 352 Pnt
986 352 Pnt
987 352 Pnt
987 352 Pnt
988 352 Pnt
989 352 Pnt
990 352 Pnt
990 352 Pnt
991 352 Pnt
992 352 Pnt
993 352 Pnt
993 352 Pnt
994 351 Pnt
995 351 Pnt
995 351 Pnt
996 351 Pnt
997 351 Pnt
998 351 Pnt
998 351 Pnt
999 351 Pnt
1000 351 Pnt
1001 351 Pnt
1001 351 Pnt
1002 350 Pnt
1003 350 Pnt
1003 351 Pnt
1004 350 Pnt
1005 351 Pnt
1006 350 Pnt
1006 350 Pnt
1007 350 Pnt
1008 350 Pnt
1009 350 Pnt
1009 350 Pnt
1010 350 Pnt
1011 350 Pnt
1011 350 Pnt
1012 350 Pnt
1013 350 Pnt
1014 350 Pnt
1014 350 Pnt
1015 350 Pnt
1016 350 Pnt
1017 350 Pnt
1017 350 Pnt
1018 350 Pnt
1019 350 Pnt
1019 350 Pnt
1020 350 Pnt
1021 349 Pnt
1022 350 Pnt
1022 349 Pnt
1023 349 Pnt
1024 349 Pnt
1025 349 Pnt
1025 349 Pnt
1026 349 Pnt
1027 349 Pnt
1027 349 Pnt
1028 349 Pnt
1029 349 Pnt
1030 349 Pnt
1030 349 Pnt
1031 349 Pnt
1032 348 Pnt
1032 349 Pnt
1033 348 Pnt
1034 348 Pnt
1035 348 Pnt
1035 348 Pnt
1036 348 Pnt
1037 348 Pnt
1038 348 Pnt
1038 348 Pnt
1039 348 Pnt
1040 348 Pnt
1040 348 Pnt
1041 348 Pnt
1042 348 Pnt
1043 348 Pnt
1043 348 Pnt
1044 348 Pnt
1045 348 Pnt
1046 348 Pnt
1046 348 Pnt
1047 348 Pnt
1048 348 Pnt
1048 348 Pnt
1049 348 Pnt
1050 347 Pnt
1051 348 Pnt
1051 347 Pnt
1052 348 Pnt
1053 347 Pnt
1054 348 Pnt
1054 347 Pnt
1055 347 Pnt
1056 347 Pnt
1056 347 Pnt
1057 347 Pnt
1058 347 Pnt
1059 347 Pnt
1059 347 Pnt
1060 348 Pnt
1061 348 Pnt
1062 348 Pnt
1062 348 Pnt
1063 348 Pnt
1064 348 Pnt
1064 349 Pnt
1065 349 Pnt
1066 349 Pnt
1067 349 Pnt
1067 349 Pnt
1068 349 Pnt
1069 349 Pnt
1070 349 Pnt
1070 349 Pnt
1071 349 Pnt
1072 349 Pnt
1072 349 Pnt
1073 349 Pnt
1074 349 Pnt
1075 349 Pnt
1075 349 Pnt
1076 349 Pnt
1077 348 Pnt
1078 348 Pnt
1078 348 Pnt
1079 348 Pnt
1080 348 Pnt
1080 348 Pnt
1081 348 Pnt
1082 348 Pnt
1083 348 Pnt
1083 348 Pnt
1084 349 Pnt
1085 349 Pnt
1086 349 Pnt
1086 348 Pnt
1087 348 Pnt
1088 349 Pnt
1088 349 Pnt
1089 349 Pnt
1090 349 Pnt
1091 350 Pnt
1091 349 Pnt
1092 350 Pnt
1093 349 Pnt
1094 350 Pnt
1094 349 Pnt
1095 350 Pnt
1096 350 Pnt
1096 350 Pnt
1097 350 Pnt
1098 350 Pnt
1099 350 Pnt
1099 350 Pnt
1100 350 Pnt
1101 350 Pnt
1102 350 Pnt
1102 350 Pnt
1103 350 Pnt
1104 350 Pnt
1104 350 Pnt
1105 350 Pnt
1106 350 Pnt
1107 350 Pnt
1107 350 Pnt
1108 349 Pnt
1109 349 Pnt
1109 350 Pnt
1110 350 Pnt
1111 350 Pnt
1112 350 Pnt
1112 350 Pnt
1113 350 Pnt
1114 350 Pnt
1115 350 Pnt
1115 349 Pnt
1116 350 Pnt
1117 350 Pnt
1117 350 Pnt
1118 350 Pnt
1119 350 Pnt
1120 350 Pnt
1120 350 Pnt
1121 350 Pnt
1122 350 Pnt
1123 350 Pnt
1123 350 Pnt
1124 350 Pnt
1125 350 Pnt
1125 350 Pnt
1126 350 Pnt
1127 350 Pnt
1128 350 Pnt
1128 350 Pnt
1129 350 Pnt
1130 349 Pnt
1131 350 Pnt
1131 350 Pnt
1132 349 Pnt
1133 349 Pnt
1133 349 Pnt
1134 350 Pnt
1135 350 Pnt
1136 350 Pnt
1136 350 Pnt
1137 349 Pnt
1138 349 Pnt
1139 349 Pnt
1139 349 Pnt
1140 349 Pnt
1141 350 Pnt
1141 349 Pnt
1142 349 Pnt
1143 349 Pnt
1144 349 Pnt
1144 350 Pnt
1145 349 Pnt
1146 349 Pnt
1147 349 Pnt
1147 349 Pnt
1148 349 Pnt
1149 349 Pnt
1149 349 Pnt
1150 349 Pnt
1151 349 Pnt
1152 349 Pnt
1152 349 Pnt
1153 349 Pnt
1154 349 Pnt
1155 349 Pnt
1155 349 Pnt
1156 349 Pnt
1157 349 Pnt
1157 349 Pnt
1158 349 Pnt
1159 349 Pnt
1160 349 Pnt
1160 349 Pnt
1161 349 Pnt
1162 349 Pnt
1163 349 Pnt
1163 349 Pnt
1164 349 Pnt
1165 349 Pnt
1165 349 Pnt
1166 349 Pnt
1167 349 Pnt
1168 349 Pnt
1168 349 Pnt
1169 349 Pnt
1170 349 Pnt
1171 349 Pnt
1171 349 Pnt
1172 349 Pnt
1173 349 Pnt
1173 349 Pnt
1174 349 Pnt
1175 349 Pnt
1176 348 Pnt
1176 349 Pnt
1177 349 Pnt
1178 349 Pnt
1179 349 Pnt
1179 349 Pnt
1180 349 Pnt
1181 349 Pnt
1181 349 Pnt
1182 349 Pnt
1183 349 Pnt
1184 349 Pnt
1184 348 Pnt
1185 349 Pnt
1186 348 Pnt
1186 348 Pnt
1187 349 Pnt
1188 348 Pnt
1189 349 Pnt
1189 348 Pnt
1190 349 Pnt
1191 348 Pnt
1192 348 Pnt
1192 348 Pnt
1193 348 Pnt
1194 348 Pnt
1195 348 Pnt
1195 348 Pnt
1196 348 Pnt
1197 348 Pnt
1197 348 Pnt
1198 348 Pnt
1199 349 Pnt
1200 348 Pnt
1200 348 Pnt
1201 349 Pnt
1202 348 Pnt
1203 349 Pnt
1203 348 Pnt
1204 349 Pnt
1205 348 Pnt
1205 348 Pnt
1206 348 Pnt
1207 348 Pnt
1208 348 Pnt
1208 348 Pnt
1209 348 Pnt
1210 348 Pnt
1211 348 Pnt
1211 349 Pnt
1212 348 Pnt
1213 348 Pnt
1213 348 Pnt
1214 348 Pnt
1215 348 Pnt
1216 348 Pnt
1216 348 Pnt
1217 348 Pnt
1218 348 Pnt
1218 348 Pnt
1219 348 Pnt
1220 348 Pnt
1221 348 Pnt
1221 348 Pnt
1222 348 Pnt
1223 348 Pnt
1224 348 Pnt
1224 348 Pnt
1225 347 Pnt
1226 347 Pnt
1226 348 Pnt
1227 348 Pnt
1228 348 Pnt
1229 347 Pnt
1229 348 Pnt
1230 348 Pnt
1231 348 Pnt
1232 348 Pnt
1232 348 Pnt
1233 348 Pnt
1234 348 Pnt
1234 348 Pnt
1235 348 Pnt
1236 347 Pnt
1239 2320 Pnt
1240 2082 Pnt
1240 1916 Pnt
1241 1791 Pnt
1242 1693 Pnt
1242 1612 Pnt
1243 1544 Pnt
1244 1487 Pnt
1245 1437 Pnt
1245 1392 Pnt
1246 1356 Pnt
1247 1326 Pnt
1248 1299 Pnt
1248 1271 Pnt
1249 1243 Pnt
1250 1771 Pnt
1258 2283 Pnt
1258 2199 Pnt
1259 2125 Pnt
1260 2063 Pnt
1261 2007 Pnt
1261 1955 Pnt
1262 1908 Pnt
1263 1862 Pnt
1264 1824 Pnt
1264 1789 Pnt
1265 1751 Pnt
1266 1718 Pnt
1266 1690 Pnt
1267 1659 Pnt
1268 1631 Pnt
1269 1607 Pnt
1269 1585 Pnt
1270 1558 Pnt
1271 1539 Pnt
1272 1518 Pnt
1272 1496 Pnt
1273 1479 Pnt
1274 1461 Pnt
1274 1444 Pnt
1275 1429 Pnt
1276 1412 Pnt
1277 1400 Pnt
1277 1386 Pnt
1278 1372 Pnt
1279 1358 Pnt
1280 1346 Pnt
1280 1337 Pnt
1281 1322 Pnt
1282 1312 Pnt
1282 1301 Pnt
1283 1291 Pnt
1284 1280 Pnt
1285 1268 Pnt
1285 1260 Pnt
1286 1249 Pnt
1287 1241 Pnt
1288 1231 Pnt
1288 1224 Pnt
1289 1213 Pnt
1290 1207 Pnt
1290 1198 Pnt
1291 1191 Pnt
1292 1184 Pnt
1293 1177 Pnt
1293 1168 Pnt
1294 1164 Pnt
1295 1158 Pnt
1295 1153 Pnt
1296 1146 Pnt
1297 1140 Pnt
1298 1135 Pnt
1298 1130 Pnt
1299 1125 Pnt
1300 1121 Pnt
1301 1115 Pnt
1301 1109 Pnt
1302 1107 Pnt
1303 1104 Pnt
1303 1105 Pnt
1304 1112 Pnt
1305 1167 Pnt
1306 1179 Pnt
1306 1210 Pnt
1307 1218 Pnt
1308 1450 Pnt
1309 1634 Pnt
1309 1624 Pnt
1310 1611 Pnt
1311 1598 Pnt
1311 1567 Pnt
1312 1556 Pnt
1313 1542 Pnt
1314 1530 Pnt
1314 1472 Pnt
1315 1423 Pnt
1316 1413 Pnt
1317 1399 Pnt
1317 1392 Pnt
1318 1357 Pnt
1319 1347 Pnt
1319 1338 Pnt
1320 1334 Pnt
1321 1312 Pnt
1322 1252 Pnt
1322 1244 Pnt
1323 1219 Pnt
1324 1209 Pnt
1325 1203 Pnt
1325 1193 Pnt
1326 1190 Pnt
1327 1179 Pnt
1327 1176 Pnt
1328 1166 Pnt
1329 1159 Pnt
1330 1151 Pnt
1330 1138 Pnt
1331 1130 Pnt
1332 1126 Pnt
1333 1120 Pnt
1333 1115 Pnt
1334 1108 Pnt
1335 1103 Pnt
1335 1099 Pnt
1336 1094 Pnt
1337 1091 Pnt
1338 1081 Pnt
1338 1077 Pnt
1339 1073 Pnt
1340 1068 Pnt
1341 1063 Pnt
1341 1060 Pnt
1342 1055 Pnt
1343 1054 Pnt
1343 1038 Pnt
1344 1032 Pnt
1345 1029 Pnt
1346 1017 Pnt
1346 1015 Pnt
1347 1008 Pnt
1348 997 Pnt
1349 996 Pnt
1349 986 Pnt
1350 979 Pnt
1351 975 Pnt
1351 970 Pnt
1352 966 Pnt
1353 962 Pnt
1354 950 Pnt
1354 945 Pnt
1355 943 Pnt
1356 939 Pnt
1357 938 Pnt
1357 933 Pnt
1358 928 Pnt
1359 927 Pnt
1359 926 Pnt
1360 923 Pnt
1361 921 Pnt
1362 917 Pnt
1362 913 Pnt
1363 911 Pnt
1364 907 Pnt
1365 904 Pnt
1365 903 Pnt
1366 900 Pnt
1367 897 Pnt
1367 896 Pnt
1368 891 Pnt
1369 890 Pnt
1370 887 Pnt
1370 885 Pnt
1371 884 Pnt
1372 881 Pnt
1373 877 Pnt
1373 876 Pnt
1374 873 Pnt
1375 871 Pnt
1375 869 Pnt
1376 866 Pnt
1377 862 Pnt
1378 859 Pnt
1378 858 Pnt
1379 854 Pnt
1380 853 Pnt
1381 851 Pnt
1381 850 Pnt
1382 848 Pnt
1383 846 Pnt
1383 843 Pnt
1384 841 Pnt
1385 840 Pnt
1386 838 Pnt
1386 835 Pnt
1387 835 Pnt
1388 832 Pnt
1389 831 Pnt
1389 830 Pnt
1390 829 Pnt
1391 826 Pnt
1391 826 Pnt
1392 824 Pnt
1393 822 Pnt
1394 820 Pnt
1394 819 Pnt
1395 817 Pnt
1396 816 Pnt
1397 816 Pnt
1397 812 Pnt
1398 811 Pnt
1399 809 Pnt
1399 808 Pnt
1400 807 Pnt
1401 806 Pnt
1402 804 Pnt
1402 803 Pnt
1403 802 Pnt
1404 801 Pnt
1404 800 Pnt
1405 798 Pnt
1406 797 Pnt
1407 796 Pnt
1407 794 Pnt
1408 793 Pnt
1409 792 Pnt
1410 790 Pnt
1410 790 Pnt
1411 787 Pnt
1412 786 Pnt
1412 786 Pnt
1413 785 Pnt
1414 783 Pnt
1415 782 Pnt
1415 782 Pnt
1416 781 Pnt
1417 780 Pnt
1418 778 Pnt
1418 777 Pnt
1419 776 Pnt
1420 775 Pnt
1420 774 Pnt
1421 773 Pnt
1422 773 Pnt
1423 772 Pnt
1423 770 Pnt
1424 769 Pnt
1425 768 Pnt
1426 767 Pnt
1426 766 Pnt
1427 765 Pnt
1428 763 Pnt
1428 762 Pnt
1429 762 Pnt
1430 761 Pnt
1431 760 Pnt
1431 759 Pnt
1432 758 Pnt
1433 757 Pnt
1434 755 Pnt
1434 755 Pnt
1435 754 Pnt
1436 755 Pnt
1436 753 Pnt
1437 752 Pnt
1438 750 Pnt
1439 749 Pnt
1439 748 Pnt
1440 747 Pnt
1441 747 Pnt
1442 746 Pnt
1442 745 Pnt
1443 745 Pnt
1444 744 Pnt
1444 743 Pnt
1445 743 Pnt
1446 743 Pnt
1447 741 Pnt
1447 741 Pnt
1448 740 Pnt
1449 738 Pnt
1450 737 Pnt
1450 737 Pnt
1451 735 Pnt
1452 734 Pnt
1452 733 Pnt
1453 732 Pnt
1454 732 Pnt
1455 731 Pnt
1455 727 Pnt
1456 728 Pnt
1457 727 Pnt
1458 726 Pnt
1458 726 Pnt
1459 726 Pnt
1460 724 Pnt
1460 723 Pnt
1461 722 Pnt
1462 722 Pnt
1463 720 Pnt
1463 720 Pnt
1464 719 Pnt
1465 720 Pnt
1466 718 Pnt
1466 717 Pnt
1467 717 Pnt
1468 717 Pnt
1468 715 Pnt
1469 716 Pnt
1470 715 Pnt
1471 714 Pnt
1471 712 Pnt
1472 712 Pnt
1473 711 Pnt
1474 711 Pnt
1474 710 Pnt
1475 710 Pnt
1476 709 Pnt
1476 709 Pnt
1477 708 Pnt
1478 708 Pnt
1479 707 Pnt
1479 706 Pnt
1480 706 Pnt
1481 705 Pnt
1481 705 Pnt
1482 704 Pnt
1483 703 Pnt
1484 703 Pnt
1484 702 Pnt
1485 701 Pnt
1486 700 Pnt
1487 701 Pnt
1487 699 Pnt
1488 698 Pnt
1492 2318 Pnt
1492 2121 Pnt
1493 2011 Pnt
1494 1921 Pnt
1495 1847 Pnt
1495 1785 Pnt
1496 1726 Pnt
1497 1673 Pnt
1497 1637 Pnt
1498 1600 Pnt
1499 1568 Pnt
1500 1539 Pnt
1500 1508 Pnt
1501 1488 Pnt
1502 1468 Pnt
1503 1451 Pnt
1503 1431 Pnt
1504 1410 Pnt
1505 1749 Pnt
1513 2353 Pnt
1514 2284 Pnt
1515 2211 Pnt
1516 2158 Pnt
1516 2113 Pnt
1517 2069 Pnt
1518 2029 Pnt
1519 1985 Pnt
1519 1953 Pnt
1520 1925 Pnt
1521 1895 Pnt
1521 1862 Pnt
1522 1835 Pnt
1523 1814 Pnt
1524 1791 Pnt
1524 1768 Pnt
1525 1741 Pnt
1526 1724 Pnt
1527 1705 Pnt
1527 1689 Pnt
1528 1666 Pnt
1529 1649 Pnt
1529 1637 Pnt
1530 1623 Pnt
1531 1603 Pnt
1532 1589 Pnt
1532 1578 Pnt
1533 1565 Pnt
1534 1550 Pnt
1535 1537 Pnt
1535 1525 Pnt
1536 1516 Pnt
1537 1505 Pnt
1537 1492 Pnt
1538 1484 Pnt
1539 1475 Pnt
1540 1466 Pnt
1540 1456 Pnt
1541 1447 Pnt
1542 1438 Pnt
1543 1430 Pnt
1543 1421 Pnt
1544 1414 Pnt
1545 1407 Pnt
1545 1398 Pnt
1546 1390 Pnt
1547 1384 Pnt
1548 1377 Pnt
1548 1370 Pnt
1549 1361 Pnt
1550 1355 Pnt
1551 1348 Pnt
1551 1343 Pnt
1552 1335 Pnt
1553 1330 Pnt
1553 1324 Pnt
1554 1317 Pnt
1555 1312 Pnt
1556 1306 Pnt
1556 1300 Pnt
1557 1297 Pnt
1558 1289 Pnt
1559 1285 Pnt
1559 1281 Pnt
1560 1275 Pnt
1561 1271 Pnt
1561 1265 Pnt
1562 1260 Pnt
1563 1257 Pnt
1564 1253 Pnt
1564 1249 Pnt
1565 1246 Pnt
1566 1240 Pnt
1567 1238 Pnt
1567 1232 Pnt
1568 1231 Pnt
1569 1227 Pnt
1569 1223 Pnt
1570 1220 Pnt
1571 1216 Pnt
1572 1213 Pnt
1572 1209 Pnt
1573 1204 Pnt
1574 1203 Pnt
1575 1201 Pnt
1575 1199 Pnt
1576 1199 Pnt
1577 1202 Pnt
1577 1210 Pnt
1578 1241 Pnt
1579 1247 Pnt
1580 1256 Pnt
1580 1270 Pnt
1581 1273 Pnt
1582 1362 Pnt
1583 1453 Pnt
1583 1566 Pnt
1584 1558 Pnt
1585 1555 Pnt
1585 1545 Pnt
1586 1536 Pnt
1587 1524 Pnt
1588 1510 Pnt
1588 1502 Pnt
1589 1495 Pnt
1590 1489 Pnt
1590 1481 Pnt
1591 1450 Pnt
1592 1428 Pnt
1593 1403 Pnt
1593 1396 Pnt
1594 1390 Pnt
1595 1384 Pnt
1596 1378 Pnt
1596 1364 Pnt
1597 1352 Pnt
1598 1344 Pnt
1598 1339 Pnt
1599 1336 Pnt
1600 1333 Pnt
1601 1320 Pnt
1601 1302 Pnt
1602 1275 Pnt
1603 1272 Pnt
1604 1263 Pnt
1604 1253 Pnt
1605 1247 Pnt
1606 1245 Pnt
1606 1245 Pnt
1607 1239 Pnt
1608 1235 Pnt
1609 1234 Pnt
1609 1227 Pnt
1610 1226 Pnt
1611 1222 Pnt
1612 1216 Pnt
1612 1213 Pnt
1613 1209 Pnt
1614 1203 Pnt
1614 1197 Pnt
1615 1192 Pnt
1616 1188 Pnt
1617 1186 Pnt
1617 1183 Pnt
1618 1179 Pnt
1619 1177 Pnt
1620 1174 Pnt
1620 1170 Pnt
1621 1167 Pnt
1622 1165 Pnt
1622 1164 Pnt
1623 1160 Pnt
1624 1159 Pnt
1625 1157 Pnt
1625 1159 Pnt
1626 1159 Pnt
1627 1157 Pnt
1628 1154 Pnt
1628 1167 Pnt
1629 1172 Pnt
1630 1173 Pnt
1630 1171 Pnt
1631 1170 Pnt
1632 1166 Pnt
1633 1165 Pnt
1633 1164 Pnt
1634 1155 Pnt
1635 1151 Pnt
1636 1147 Pnt
1636 1145 Pnt
1637 1142 Pnt
1638 1136 Pnt
1638 1137 Pnt
1639 1136 Pnt
1640 1132 Pnt
1641 1126 Pnt
1641 1123 Pnt
1642 1122 Pnt
1643 1118 Pnt
1644 1115 Pnt
1644 1109 Pnt
1645 1108 Pnt
1646 1107 Pnt
1646 1104 Pnt
1647 1101 Pnt
1648 1110 Pnt
1649 1117 Pnt
1649 1113 Pnt
1650 1107 Pnt
1651 1111 Pnt
1652 1119 Pnt
1652 1125 Pnt
1653 1122 Pnt
1654 1121 Pnt
1654 1121 Pnt
1655 1122 Pnt
1656 1121 Pnt
1657 1117 Pnt
1657 1118 Pnt
1658 1116 Pnt
1659 1115 Pnt
1660 1113 Pnt
1660 1111 Pnt
1661 1111 Pnt
1662 1110 Pnt
1662 1109 Pnt
1663 1106 Pnt
1664 1106 Pnt
1665 1104 Pnt
1665 1104 Pnt
1666 1103 Pnt
1667 1100 Pnt
1667 1099 Pnt
1668 1097 Pnt
1669 1096 Pnt
1670 1095 Pnt
1670 1092 Pnt
1671 1104 Pnt
1672 1104 Pnt
1673 1102 Pnt
1673 1103 Pnt
1674 1108 Pnt
1675 1111 Pnt
1675 1113 Pnt
1676 1113 Pnt
1677 1113 Pnt
1678 1115 Pnt
1678 1116 Pnt
1679 1114 Pnt
1680 1111 Pnt
1681 1111 Pnt
1681 1112 Pnt
1682 1110 Pnt
1683 1108 Pnt
1683 1107 Pnt
1684 1107 Pnt
1685 1104 Pnt
1686 1104 Pnt
1686 1100 Pnt
1687 1100 Pnt
1688 1099 Pnt
1689 1099 Pnt
1689 1098 Pnt
1690 1096 Pnt
1691 1097 Pnt
1692 1094 Pnt
1692 1093 Pnt
1693 1092 Pnt
1694 1091 Pnt
1694 1083 Pnt
1695 1080 Pnt
1696 1077 Pnt
1697 1077 Pnt
1697 1059 Pnt
1698 1047 Pnt
1699 1037 Pnt
1699 1037 Pnt
1700 1033 Pnt
1701 1030 Pnt
1702 1023 Pnt
1702 1023 Pnt
1703 1022 Pnt
1704 1020 Pnt
1705 1019 Pnt
1705 1019 Pnt
1706 1018 Pnt
1707 1017 Pnt
1707 1016 Pnt
1708 1015 Pnt
1709 1014 Pnt
1710 1013 Pnt
1710 1011 Pnt
1711 1010 Pnt
1712 1008 Pnt
1713 1006 Pnt
1713 1005 Pnt
1714 1004 Pnt
1715 1004 Pnt
1715 1004 Pnt
1716 1003 Pnt
1717 1002 Pnt
1718 1001 Pnt
1718 1001 Pnt
1719 1000 Pnt
1720 998 Pnt
1721 994 Pnt
1721 991 Pnt
1722 988 Pnt
1723 986 Pnt
1723 985 Pnt
1724 984 Pnt
1725 981 Pnt
1726 981 Pnt
1726 979 Pnt
1727 979 Pnt
1728 978 Pnt
1729 979 Pnt
1729 977 Pnt
1730 977 Pnt
1731 977 Pnt
1731 976 Pnt
1732 975 Pnt
1733 975 Pnt
1734 974 Pnt
1734 973 Pnt
1735 972 Pnt
1736 972 Pnt
1737 971 Pnt
1737 971 Pnt
1738 969 Pnt
1739 969 Pnt
1739 968 Pnt
1740 969 Pnt
1741 967 Pnt
1742 967 Pnt
1742 967 Pnt
1743 965 Pnt
1744 964 Pnt
1745 962 Pnt
1745 961 Pnt
1746 960 Pnt
1747 959 Pnt
1747 958 Pnt
1748 956 Pnt
1749 956 Pnt
1750 954 Pnt
1750 954 Pnt
1751 953 Pnt
1752 953 Pnt
1753 952 Pnt
1753 952 Pnt
1754 951 Pnt
1755 950 Pnt
1755 951 Pnt
1756 950 Pnt
1757 948 Pnt
1758 949 Pnt
1758 948 Pnt
1759 948 Pnt
1760 948 Pnt
1761 947 Pnt
1761 947 Pnt
1762 946 Pnt
1763 947 Pnt
1763 946 Pnt
1764 945 Pnt
1765 945 Pnt
1766 945 Pnt
1766 944 Pnt
1767 944 Pnt
1768 943 Pnt
1769 943 Pnt
1769 943 Pnt
1770 941 Pnt
1771 940 Pnt
1771 939 Pnt
1772 937 Pnt
1773 938 Pnt
1774 937 Pnt
1774 936 Pnt
1775 934 Pnt
1776 934 Pnt
1776 934 Pnt
1777 933 Pnt
1778 933 Pnt
1779 932 Pnt
1779 932 Pnt
1780 931 Pnt
1781 932 Pnt
1782 932 Pnt
1782 931 Pnt
1783 930 Pnt
1784 930 Pnt
1784 930 Pnt
1785 930 Pnt
1786 930 Pnt
1787 930 Pnt
1787 930 Pnt
1788 929 Pnt
1789 929 Pnt
1790 929 Pnt
1790 929 Pnt
1791 929 Pnt
1792 928 Pnt
1792 928 Pnt
1793 928 Pnt
1794 928 Pnt
1795 927 Pnt
1795 927 Pnt
1796 926 Pnt
1797 925 Pnt
1798 925 Pnt
1798 923 Pnt
1799 923 Pnt
1800 923 Pnt
1800 922 Pnt
1801 922 Pnt
1802 921 Pnt
1803 921 Pnt
1803 922 Pnt
1804 922 Pnt
1805 921 Pnt
1806 921 Pnt
1806 921 Pnt
1807 922 Pnt
1808 920 Pnt
1808 920 Pnt
1809 920 Pnt
1810 919 Pnt
1811 920 Pnt
1811 920 Pnt
1812 921 Pnt
1813 919 Pnt
1814 920 Pnt
1814 919 Pnt
1815 919 Pnt
1816 918 Pnt
1816 917 Pnt
1817 918 Pnt
1818 920 Pnt
1819 919 Pnt
1819 919 Pnt
1820 918 Pnt
1821 917 Pnt
1822 916 Pnt
1822 915 Pnt
1823 914 Pnt
1824 915 Pnt
1824 914 Pnt
1825 915 Pnt
1826 913 Pnt
1827 915 Pnt
1827 914 Pnt
1828 914 Pnt
1829 914 Pnt
1830 914 Pnt
1830 913 Pnt
1831 915 Pnt
1832 914 Pnt
1832 913 Pnt
1833 913 Pnt
1834 914 Pnt
1835 914 Pnt
1835 912 Pnt
1836 914 Pnt
1837 913 Pnt
1838 913 Pnt
1838 914 Pnt
1839 913 Pnt
1840 914 Pnt
1840 915 Pnt
1841 915 Pnt
1842 914 Pnt
1843 913 Pnt
1843 914 Pnt
1844 915 Pnt
1845 915 Pnt
1846 915 Pnt
1846 915 Pnt
1847 914 Pnt
1848 914 Pnt
1848 915 Pnt
1849 914 Pnt
1850 915 Pnt
1851 914 Pnt
1851 915 Pnt
1852 913 Pnt
1853 914 Pnt
1853 914 Pnt
1854 915 Pnt
1855 914 Pnt
1856 914 Pnt
1856 915 Pnt
1857 917 Pnt
1858 916 Pnt
1859 916 Pnt
1859 915 Pnt
1860 917 Pnt
1861 917 Pnt
1861 916 Pnt
1862 917 Pnt
1863 918 Pnt
1864 917 Pnt
1864 917 Pnt
1865 918 Pnt
1866 919 Pnt
1867 919 Pnt
1867 919 Pnt
1868 918 Pnt
1869 920 Pnt
1869 920 Pnt
1870 920 Pnt
1871 920 Pnt
1872 921 Pnt
1872 921 Pnt
1873 920 Pnt
1874 920 Pnt
1875 920 Pnt
1875 921 Pnt
1876 922 Pnt
1877 921 Pnt
1878 921 Pnt
1878 922 Pnt
1879 923 Pnt
1880 924 Pnt
1880 923 Pnt
1881 923 Pnt
1882 925 Pnt
1883 925 Pnt
1883 924 Pnt
1884 926 Pnt
1885 1343 Pnt
1888 2099 Pnt
1889 2027 Pnt
1890 1885 Pnt
1891 1836 Pnt
1891 1761 Pnt
1892 1719 Pnt
1893 1661 Pnt
1893 1633 Pnt
1894 1607 Pnt
1895 1580 Pnt
1896 1560 Pnt
1896 1538 Pnt
1897 1522 Pnt
1898 1504 Pnt
1899 1491 Pnt
1899 1472 Pnt
1900 1462 Pnt
1901 1444 Pnt
1901 1434 Pnt
1902 1423 Pnt
1903 1417 Pnt
1904 1404 Pnt
1904 1402 Pnt
1905 1390 Pnt
1906 1387 Pnt
1907 1374 Pnt
1907 1372 Pnt
1908 1360 Pnt
1909 1357 Pnt
1909 1350 Pnt
1910 1349 Pnt
1911 1343 Pnt
1912 1340 Pnt
1912 1334 Pnt
1913 1334 Pnt
1914 1325 Pnt
1915 1322 Pnt
1915 1315 Pnt
1916 1316 Pnt
1917 1472 Pnt
1917 1489 Pnt
1918 2119 Pnt
1919 2177 Pnt
1924 2376 Pnt
1925 2360 Pnt
1925 2215 Pnt
1926 2205 Pnt
1927 2100 Pnt
1928 2097 Pnt
1928 2020 Pnt
1929 2015 Pnt
1930 1940 Pnt
1931 1934 Pnt
1931 1886 Pnt
1932 1882 Pnt
1933 1845 Pnt
1933 1841 Pnt
1934 1813 Pnt
1935 1810 Pnt
1936 1779 Pnt
1936 1775 Pnt
1937 1747 Pnt
1938 1741 Pnt
1939 1718 Pnt
1939 1716 Pnt
1940 1704 Pnt
1941 1701 Pnt
1941 1684 Pnt
1942 1680 Pnt
1943 1665 Pnt
1944 1661 Pnt
1944 1645 Pnt
1945 1642 Pnt
1946 1635 Pnt
1947 1630 Pnt
1947 1623 Pnt
1948 1619 Pnt
1949 1610 Pnt
1949 1603 Pnt
1950 1596 Pnt
1951 1591 Pnt
1952 1592 Pnt
1952 1587 Pnt
1953 1581 Pnt
1954 1576 Pnt
1955 1574 Pnt
1955 1567 Pnt
1956 1563 Pnt
1957 1562 Pnt
1957 1563 Pnt
1958 1559 Pnt
1959 1555 Pnt
1960 1551 Pnt
1960 1548 Pnt
1961 1544 Pnt
1962 1544 Pnt
1962 1544 Pnt
1963 1554 Pnt
1964 1546 Pnt
1965 1547 Pnt
1965 1539 Pnt
1966 1539 Pnt
1967 1536 Pnt
1968 1538 Pnt
1968 1545 Pnt
1969 1552 Pnt
1970 1544 Pnt
1970 1541 Pnt
1971 1538 Pnt
1972 1539 Pnt
1973 1534 Pnt
1973 1546 Pnt
1974 1554 Pnt
1975 1556 Pnt
1976 1554 Pnt
1976 1553 Pnt
1977 1553 Pnt
1978 1551 Pnt
1978 1555 Pnt
1979 1566 Pnt
1980 1584 Pnt
1981 1584 Pnt
1981 1583 Pnt
1982 1583 Pnt
1983 1584 Pnt
1984 1581 Pnt
1984 1597 Pnt
1985 1639 Pnt
1986 1641 Pnt
1986 1639 Pnt
1987 1654 Pnt
1988 1658 Pnt
1989 1658 Pnt
1989 1703 Pnt
1990 1870 Pnt
1991 1919 Pnt
1992 1918 Pnt
1992 1911 Pnt
1993 1910 Pnt
1994 1907 Pnt
1994 1878 Pnt
1995 1808 Pnt
1996 1739 Pnt
1997 1743 Pnt
1997 1735 Pnt
1998 1726 Pnt
1999 1724 Pnt
2000 1701 Pnt
2000 1602 Pnt
2001 1509 Pnt
2002 1506 Pnt
2002 1504 Pnt
2003 1489 Pnt
2004 1492 Pnt
2005 1488 Pnt
2005 1366 Pnt
2006 1314 Pnt
2007 1306 Pnt
2008 1303 Pnt
2008 1300 Pnt
2009 1300 Pnt
2010 1295 Pnt
2010 1270 Pnt
2011 1252 Pnt
2012 1254 Pnt
2013 1252 Pnt
2013 1253 Pnt
2014 1250 Pnt
2015 1252 Pnt
2016 1251 Pnt
2016 1252 Pnt
2017 1253 Pnt
2018 1252 Pnt
2018 1253 Pnt
2019 1251 Pnt
2020 1252 Pnt
2021 1254 Pnt
2021 1254 Pnt
2022 1254 Pnt
2023 1254 Pnt
2024 1255 Pnt
2024 1255 Pnt
2025 1257 Pnt
2026 1258 Pnt
2026 1255 Pnt
2027 1257 Pnt
2028 1258 Pnt
2029 1258 Pnt
2029 1260 Pnt
2030 1260 Pnt
2031 1262 Pnt
2032 1262 Pnt
2032 1261 Pnt
2033 1262 Pnt
2034 1264 Pnt
2034 1264 Pnt
2035 1266 Pnt
2036 1266 Pnt
2037 1267 Pnt
2037 1269 Pnt
2038 1269 Pnt
2039 1271 Pnt
2039 1276 Pnt
2040 1276 Pnt
2041 1277 Pnt
2042 1279 Pnt
2042 1278 Pnt
2043 1283 Pnt
2044 1283 Pnt
2045 1287 Pnt
2045 1287 Pnt
2046 1290 Pnt
2047 1290 Pnt
2047 1295 Pnt
2048 1297 Pnt
2049 1299 Pnt
2050 1300 Pnt
2050 1303 Pnt
2051 1304 Pnt
2052 1307 Pnt
2053 1312 Pnt
2053 1312 Pnt
2054 1316 Pnt
2055 1317 Pnt
2055 1320 Pnt
2056 1325 Pnt
2057 1326 Pnt
2058 1330 Pnt
2058 1335 Pnt
2059 1337 Pnt
2060 1340 Pnt
2061 1346 Pnt
2061 1350 Pnt
2062 1354 Pnt
2063 1357 Pnt
2064 1361 Pnt
2064 1370 Pnt
2065 1372 Pnt
2066 1379 Pnt
2066 1384 Pnt
2067 1389 Pnt
2068 1395 Pnt
2069 1404 Pnt
2069 1411 Pnt
2070 1419 Pnt
2071 1437 Pnt
2071 1444 Pnt
2072 1455 Pnt
2073 1461 Pnt
2074 1472 Pnt
2074 1481 Pnt
2075 1491 Pnt
2076 1506 Pnt
2077 1510 Pnt
2077 1527 Pnt
2078 1533 Pnt
2079 1576 Pnt
2079 1593 Pnt
2080 1628 Pnt
2081 1667 Pnt
2082 1695 Pnt
2082 1744 Pnt
2083 1756 Pnt
2084 1769 Pnt
2085 1795 Pnt
2085 1806 Pnt
2086 1826 Pnt
2087 1838 Pnt
2087 1883 Pnt
2088 1911 Pnt
2089 1933 Pnt
2090 1956 Pnt
2090 2024 Pnt
2091 2211 Pnt
2092 2229 Pnt
2093 2317 Pnt
2093 2350 Pnt
2097 1773 Pnt
2098 1672 Pnt
2098 1486 Pnt
2099 1471 Pnt
2100 1467 Pnt
2101 1472 Pnt
2101 1472 Pnt
2102 1476 Pnt
2103 1482 Pnt
2103 1480 Pnt
2104 1489 Pnt
2105 1495 Pnt
2106 1503 Pnt
2106 1513 Pnt
2107 1522 Pnt
2108 1530 Pnt
2109 1541 Pnt
2109 1551 Pnt
2110 1561 Pnt
2111 1574 Pnt
2111 1582 Pnt
2112 1598 Pnt
2113 1609 Pnt
2114 1624 Pnt
2114 1639 Pnt
2115 1654 Pnt
2116 1674 Pnt
2117 1694 Pnt
2117 1717 Pnt
2118 1740 Pnt
2119 1766 Pnt
2119 1792 Pnt
2120 1824 Pnt
2121 1855 Pnt
2122 1890 Pnt
2122 1930 Pnt
2123 1969 Pnt
2124 2022 Pnt
2125 2072 Pnt
2125 2139 Pnt
2126 2219 Pnt
2127 2315 Pnt
2133 678 Pnt
2134 678 Pnt
2135 678 Pnt
2135 678 Pnt
2136 676 Pnt
2137 674 Pnt
2138 675 Pnt
2138 673 Pnt
2139 673 Pnt
2140 671 Pnt
2141 672 Pnt
2141 668 Pnt
2142 668 Pnt
2143 668 Pnt
2143 668 Pnt
2144 667 Pnt
2145 666 Pnt
2146 665 Pnt
2146 663 Pnt
2147 663 Pnt
2148 662 Pnt
2148 660 Pnt
2149 661 Pnt
2150 659 Pnt
2151 658 Pnt
2151 656 Pnt
2152 656 Pnt
2153 654 Pnt
2154 652 Pnt
2154 652 Pnt
2155 650 Pnt
2156 650 Pnt
2156 649 Pnt
2157 648 Pnt
2158 648 Pnt
2159 647 Pnt
2159 646 Pnt
2160 645 Pnt
2161 645 Pnt
2162 643 Pnt
2162 643 Pnt
2163 643 Pnt
2164 642 Pnt
2164 641 Pnt
2165 641 Pnt
2166 641 Pnt
2167 638 Pnt
2167 638 Pnt
2168 637 Pnt
2169 637 Pnt
2170 635 Pnt
2170 636 Pnt
2171 635 Pnt
2172 634 Pnt
2172 634 Pnt
2173 633 Pnt
2174 633 Pnt
2175 632 Pnt
2175 631 Pnt
2176 632 Pnt
2177 631 Pnt
2178 630 Pnt
2178 631 Pnt
2179 630 Pnt
2180 631 Pnt
2180 630 Pnt
2181 630 Pnt
2182 630 Pnt
2183 629 Pnt
2183 629 Pnt
2184 628 Pnt
2185 630 Pnt
2186 633 Pnt
2186 633 Pnt
2187 635 Pnt
2188 634 Pnt
2188 634 Pnt
2189 635 Pnt
2190 634 Pnt
2191 633 Pnt
2191 634 Pnt
2192 632 Pnt
2193 633 Pnt
2194 631 Pnt
2194 631 Pnt
2195 631 Pnt
2196 630 Pnt
2196 629 Pnt
2197 629 Pnt
2198 630 Pnt
2199 628 Pnt
2199 625 Pnt
2200 624 Pnt
2201 624 Pnt
2202 623 Pnt
2202 621 Pnt
2203 622 Pnt
2204 620 Pnt
2204 620 Pnt
2205 620 Pnt
2206 618 Pnt
2207 619 Pnt
2207 617 Pnt
2208 615 Pnt
2209 614 Pnt
2210 616 Pnt
2210 616 Pnt
2211 615 Pnt
2212 614 Pnt
2212 614 Pnt
2213 613 Pnt
2214 613 Pnt
2215 610 Pnt
2215 610 Pnt
2216 609 Pnt
2217 608 Pnt
2218 608 Pnt
2218 608 Pnt
2219 607 Pnt
2220 607 Pnt
2220 605 Pnt
2221 605 Pnt
2222 604 Pnt
2223 604 Pnt
2223 602 Pnt
2224 601 Pnt
2225 601 Pnt
2225 601 Pnt
2226 600 Pnt
2227 600 Pnt
2228 599 Pnt
2228 599 Pnt
2229 598 Pnt
2230 598 Pnt
2231 597 Pnt
2231 597 Pnt
2232 600 Pnt
2233 599 Pnt
2233 602 Pnt
2234 602 Pnt
2235 602 Pnt
2236 601 Pnt
2236 601 Pnt
2237 599 Pnt
2238 598 Pnt
2239 598 Pnt
2239 600 Pnt
2240 599 Pnt
2241 602 Pnt
2241 602 Pnt
2242 602 Pnt
2243 604 Pnt
2244 604 Pnt
2244 603 Pnt
2245 602 Pnt
2246 602 Pnt
2247 601 Pnt
2247 602 Pnt
2248 602 Pnt
2249 601 Pnt
2250 602 Pnt
2250 602 Pnt
2251 602 Pnt
2252 601 Pnt
2252 601 Pnt
2253 599 Pnt
2254 599 Pnt
2255 600 Pnt
2255 599 Pnt
2256 599 Pnt
2257 597 Pnt
2257 598 Pnt
2258 597 Pnt
2259 598 Pnt
2260 597 Pnt
2260 596 Pnt
2261 596 Pnt
2262 595 Pnt
2263 596 Pnt
2263 595 Pnt
2264 595 Pnt
2265 595 Pnt
2265 594 Pnt
2266 594 Pnt
2267 593 Pnt
2268 594 Pnt
2268 593 Pnt
2269 593 Pnt
2270 592 Pnt
2271 592 Pnt
2271 591 Pnt
2272 591 Pnt
2273 591 Pnt
2273 590 Pnt
2274 591 Pnt
2275 590 Pnt
2276 590 Pnt
2276 590 Pnt
2277 589 Pnt
2278 589 Pnt
2279 587 Pnt
2279 588 Pnt
2280 587 Pnt
2281 587 Pnt
2281 587 Pnt
2282 585 Pnt
2283 586 Pnt
2284 585 Pnt
2284 586 Pnt
2285 585 Pnt
2286 585 Pnt
2287 585 Pnt
2287 582 Pnt
2288 583 Pnt
2289 585 Pnt
2289 588 Pnt
2290 588 Pnt
2291 587 Pnt
2292 587 Pnt
2292 586 Pnt
2293 587 Pnt
2294 587 Pnt
2295 586 Pnt
2295 586 Pnt
2296 587 Pnt
2297 588 Pnt
2297 588 Pnt
2298 589 Pnt
2299 588 Pnt
2300 589 Pnt
2300 590 Pnt
2301 589 Pnt
2302 589 Pnt
2303 589 Pnt
2303 588 Pnt
2304 589 Pnt
2305 588 Pnt
2305 590 Pnt
2306 589 Pnt
2307 589 Pnt
2308 590 Pnt
2308 589 Pnt
2309 589 Pnt
2310 588 Pnt
2311 588 Pnt
2311 587 Pnt
2312 587 Pnt
2313 587 Pnt
2313 587 Pnt
2314 586 Pnt
2315 587 Pnt
2316 586 Pnt
2316 586 Pnt
2317 585 Pnt
2318 585 Pnt
2319 584 Pnt
2319 584 Pnt
2320 584 Pnt
2321 583 Pnt
2321 584 Pnt
2322 583 Pnt
2323 583 Pnt
2324 582 Pnt
2324 582 Pnt
2325 581 Pnt
2326 582 Pnt
2327 581 Pnt
2327 580 Pnt
2328 581 Pnt
2329 580 Pnt
2329 580 Pnt
2330 579 Pnt
2331 580 Pnt
2332 579 Pnt
2332 579 Pnt
2333 578 Pnt
2334 578 Pnt
2334 578 Pnt
2335 578 Pnt
2336 578 Pnt
2337 576 Pnt
2337 577 Pnt
2338 576 Pnt
2339 577 Pnt
2340 577 Pnt
2340 576 Pnt
2341 576 Pnt
2342 575 Pnt
2342 575 Pnt
2343 574 Pnt
2344 575 Pnt
2345 574 Pnt
2345 574 Pnt
2346 574 Pnt
2347 574 Pnt
2348 570 Pnt
2348 570 Pnt
2349 569 Pnt
2350 568 Pnt
2350 569 Pnt
2351 568 Pnt
2352 566 Pnt
2353 567 Pnt
2353 567 Pnt
2354 567 Pnt
2355 563 Pnt
2356 559 Pnt
2356 559 Pnt
2357 555 Pnt
2358 555 Pnt
2358 553 Pnt
2359 550 Pnt
2360 551 Pnt
2361 550 Pnt
2361 550 Pnt
2362 549 Pnt
2363 549 Pnt
2364 549 Pnt
2364 547 Pnt
2365 547 Pnt
2366 546 Pnt
2366 545 Pnt
2367 544 Pnt
2368 544 Pnt
2369 544 Pnt
2369 544 Pnt
2370 544 Pnt
2371 543 Pnt
2372 543 Pnt
2372 542 Pnt
2373 542 Pnt
2374 542 Pnt
2374 542 Pnt
2375 541 Pnt
2376 541 Pnt
2377 541 Pnt
2377 540 Pnt
2378 541 Pnt
2379 540 Pnt
2380 540 Pnt
2380 540 Pnt
2381 540 Pnt
2382 540 Pnt
2382 540 Pnt
2383 538 Pnt
2384 539 Pnt
2385 538 Pnt
2385 538 Pnt
2386 538 Pnt
2387 538 Pnt
2388 538 Pnt
2388 538 Pnt
2389 536 Pnt
2390 537 Pnt
2390 536 Pnt
2391 536 Pnt
2392 536 Pnt
2393 535 Pnt
2393 535 Pnt
2394 535 Pnt
2395 534 Pnt
2396 533 Pnt
2396 534 Pnt
2397 533 Pnt
2398 533 Pnt
2398 533 Pnt
2399 533 Pnt
2400 533 Pnt
2401 533 Pnt
2401 532 Pnt
2402 533 Pnt
2403 532 Pnt
2404 532 Pnt
2404 532 Pnt
2405 532 Pnt
2406 531 Pnt
2406 531 Pnt
2407 530 Pnt
2408 531 Pnt
2409 530 Pnt
2409 531 Pnt
2410 530 Pnt
2411 530 Pnt
2411 530 Pnt
2412 530 Pnt
2413 529 Pnt
2414 529 Pnt
2414 528 Pnt
2415 528 Pnt
2416 526 Pnt
2417 526 Pnt
2417 525 Pnt
2418 525 Pnt
2419 525 Pnt
2419 523 Pnt
2420 524 Pnt
2421 523 Pnt
2422 524 Pnt
2422 523 Pnt
2423 522 Pnt
2424 522 Pnt
2425 522 Pnt
2425 521 Pnt
2426 522 Pnt
2427 521 Pnt
2427 520 Pnt
2428 520 Pnt
2429 521 Pnt
2430 520 Pnt
2430 520 Pnt
2431 519 Pnt
2432 519 Pnt
2433 519 Pnt
2433 518 Pnt
2434 519 Pnt
2435 518 Pnt
2436 518 Pnt
2436 519 Pnt
2437 519 Pnt
2438 519 Pnt
2438 518 Pnt
2439 517 Pnt
2440 518 Pnt
2441 517 Pnt
2441 517 Pnt
2442 518 Pnt
2443 517 Pnt
2443 517 Pnt
2444 516 Pnt
2445 517 Pnt
2446 517 Pnt
2446 516 Pnt
2447 516 Pnt
2448 516 Pnt
2449 515 Pnt
2449 515 Pnt
2450 515 Pnt
2451 515 Pnt
2451 515 Pnt
2452 514 Pnt
2453 515 Pnt
2454 514 Pnt
2454 514 Pnt
2455 515 Pnt
2456 514 Pnt
2457 514 Pnt
2457 513 Pnt
2458 514 Pnt
2459 514 Pnt
2459 513 Pnt
2460 513 Pnt
2461 513 Pnt
2462 512 Pnt
2462 512 Pnt
2463 512 Pnt
2464 512 Pnt
2465 512 Pnt
2465 512 Pnt
2466 511 Pnt
2467 512 Pnt
2467 511 Pnt
2468 511 Pnt
2469 511 Pnt
2470 510 Pnt
2470 510 Pnt
2471 510 Pnt
2472 510 Pnt
2473 510 Pnt
2473 510 Pnt
2474 510 Pnt
2475 510 Pnt
2475 509 Pnt
2476 509 Pnt
2477 509 Pnt
2478 509 Pnt
2478 508 Pnt
2479 508 Pnt
2480 507 Pnt
2481 508 Pnt
2481 507 Pnt
2482 507 Pnt
2483 507 Pnt
2483 506 Pnt
2484 506 Pnt
2485 506 Pnt
2486 506 Pnt
2486 506 Pnt
2487 505 Pnt
2488 505 Pnt
2489 506 Pnt
2489 504 Pnt
2490 504 Pnt
2491 504 Pnt
2491 504 Pnt
2492 504 Pnt
2493 503 Pnt
2494 503 Pnt
2494 503 Pnt
2495 504 Pnt
2496 503 Pnt
2497 503 Pnt
2497 502 Pnt
2498 502 Pnt
2499 502 Pnt
2499 502 Pnt
2500 502 Pnt
2501 502 Pnt
2502 501 Pnt
2502 501 Pnt
2503 502 Pnt
2504 501 Pnt
2505 501 Pnt
2505 501 Pnt
2506 501 Pnt
2507 500 Pnt
2507 501 Pnt
2508 500 Pnt
2509 501 Pnt
2510 500 Pnt
2510 500 Pnt
2511 500 Pnt
2512 500 Pnt
2513 500 Pnt
2513 499 Pnt
2514 499 Pnt
2515 499 Pnt
2515 500 Pnt
2516 499 Pnt
2517 499 Pnt
2518 498 Pnt
2518 498 Pnt
2519 498 Pnt
2520 498 Pnt
2520 498 Pnt
2521 498 Pnt
2522 498 Pnt
2523 498 Pnt
2523 497 Pnt
2524 497 Pnt
2525 497 Pnt
2526 498 Pnt
2526 497 Pnt
2527 496 Pnt
2528 497 Pnt
2528 497 Pnt
2529 497 Pnt
2530 496 Pnt
2531 497 Pnt
2531 496 Pnt
2532 496 Pnt
2533 496 Pnt
2534 496 Pnt
2534 496 Pnt
2535 496 Pnt
2536 496 Pnt
2536 495 Pnt
2537 496 Pnt
2538 495 Pnt
2539 496 Pnt
2539 495 Pnt
2540 495 Pnt
2541 495 Pnt
2542 495 Pnt
2542 495 Pnt
2543 495 Pnt
2544 495 Pnt
2544 494 Pnt
2545 494 Pnt
2546 494 Pnt
2547 494 Pnt
2547 494 Pnt
2548 494 Pnt
2549 493 Pnt
2550 493 Pnt
2550 492 Pnt
2551 493 Pnt
2552 493 Pnt
2552 492 Pnt
2553 492 Pnt
2554 492 Pnt
2555 491 Pnt
2555 491 Pnt
2556 491 Pnt
2557 491 Pnt
2558 491 Pnt
2558 491 Pnt
2559 491 Pnt
2560 490 Pnt
2560 491 Pnt
2561 490 Pnt
2562 490 Pnt
2563 489 Pnt
2563 489 Pnt
2564 489 Pnt
2565 489 Pnt
2566 489 Pnt
2566 488 Pnt
2567 489 Pnt
2568 489 Pnt
2568 488 Pnt
2569 488 Pnt
2570 489 Pnt
2571 488 Pnt
2571 488 Pnt
2572 488 Pnt
2573 488 Pnt
2574 488 Pnt
2574 487 Pnt
2575 488 Pnt
2576 488 Pnt
2576 487 Pnt
2577 487 Pnt
2578 487 Pnt
2579 487 Pnt
2579 487 Pnt
2580 487 Pnt
2581 487 Pnt
2582 487 Pnt
2582 486 Pnt
2583 487 Pnt
2584 486 Pnt
2584 487 Pnt
2585 486 Pnt
2586 486 Pnt
2587 486 Pnt
2587 486 Pnt
2588 486 Pnt
2589 486 Pnt
2590 485 Pnt
2590 486 Pnt
2591 486 Pnt
2592 485 Pnt
2592 486 Pnt
2593 485 Pnt
2594 485 Pnt
2595 485 Pnt
2595 486 Pnt
2596 485 Pnt
2597 484 Pnt
2597 485 Pnt
2598 485 Pnt
2599 485 Pnt
2600 484 Pnt
2600 485 Pnt
2601 484 Pnt
2602 484 Pnt
2603 484 Pnt
2603 484 Pnt
2604 484 Pnt
2605 484 Pnt
2605 483 Pnt
2606 484 Pnt
2607 484 Pnt
2608 483 Pnt
2608 484 Pnt
2609 483 Pnt
2610 484 Pnt
2611 483 Pnt
2611 483 Pnt
2612 483 Pnt
2613 483 Pnt
2613 483 Pnt
2614 483 Pnt
2615 482 Pnt
2616 483 Pnt
2616 482 Pnt
2617 483 Pnt
2618 482 Pnt
2619 482 Pnt
2619 482 Pnt
2620 482 Pnt
2621 482 Pnt
2622 482 Pnt
2622 481 Pnt
2623 481 Pnt
2624 481 Pnt
2624 481 Pnt
2625 480 Pnt
2626 480 Pnt
2627 481 Pnt
2627 480 Pnt
2628 480 Pnt
2629 480 Pnt
2629 480 Pnt
2630 480 Pnt
2631 480 Pnt
2632 480 Pnt
2632 479 Pnt
2633 480 Pnt
2634 479 Pnt
2635 480 Pnt
2635 479 Pnt
2636 479 Pnt
2637 479 Pnt
2637 479 Pnt
2638 479 Pnt
2639 478 Pnt
2640 478 Pnt
2640 478 Pnt
2641 478 Pnt
2642 478 Pnt
2643 478 Pnt
2643 479 Pnt
2644 478 Pnt
2645 478 Pnt
2645 478 Pnt
2646 478 Pnt
2647 478 Pnt
2648 478 Pnt
2648 478 Pnt
2649 477 Pnt
2650 478 Pnt
2651 478 Pnt
2651 477 Pnt
2652 477 Pnt
2653 478 Pnt
2653 477 Pnt
2654 477 Pnt
2655 477 Pnt
2656 477 Pnt
2656 477 Pnt
2657 477 Pnt
2658 476 Pnt
2659 477 Pnt
2659 477 Pnt
2660 476 Pnt
2661 476 Pnt
2661 476 Pnt
2662 476 Pnt
2663 476 Pnt
2664 476 Pnt
2664 476 Pnt
2665 476 Pnt
2666 476 Pnt
2667 475 Pnt
2667 476 Pnt
2668 476 Pnt
2669 476 Pnt
2669 476 Pnt
2670 475 Pnt
2671 475 Pnt
2672 475 Pnt
2672 475 Pnt
2673 475 Pnt
2674 475 Pnt
2675 475 Pnt
2675 475 Pnt
2676 475 Pnt
2677 474 Pnt
2677 475 Pnt
2678 474 Pnt
2679 475 Pnt
2680 474 Pnt
2680 474 Pnt
2681 474 Pnt
2682 474 Pnt
2683 474 Pnt
2683 474 Pnt
2684 474 Pnt
2685 474 Pnt
2685 474 Pnt
2686 474 Pnt
2687 474 Pnt
2688 474 Pnt
2688 474 Pnt
2689 474 Pnt
2690 474 Pnt
2691 474 Pnt
2691 473 Pnt
2692 473 Pnt
2693 473 Pnt
2693 473 Pnt
2694 473 Pnt
2695 472 Pnt
2696 472 Pnt
2696 472 Pnt
2697 472 Pnt
2698 472 Pnt
2699 472 Pnt
2699 472 Pnt
2700 471 Pnt
2701 471 Pnt
2701 471 Pnt
2702 471 Pnt
2703 471 Pnt
2704 471 Pnt
2704 471 Pnt
2705 471 Pnt
2706 471 Pnt
2706 471 Pnt
2707 471 Pnt
2708 470 Pnt
2709 471 Pnt
2709 470 Pnt
2710 471 Pnt
2711 471 Pnt
2712 470 Pnt
2712 471 Pnt
2713 471 Pnt
2714 470 Pnt
2714 471 Pnt
2715 470 Pnt
2716 471 Pnt
2717 470 Pnt
2717 470 Pnt
2718 470 Pnt
2719 470 Pnt
2720 470 Pnt
2720 470 Pnt
2721 469 Pnt
2722 469 Pnt
2722 470 Pnt
2723 470 Pnt
2724 469 Pnt
2725 470 Pnt
2725 469 Pnt
2726 469 Pnt
2727 470 Pnt
2728 469 Pnt
2728 469 Pnt
2729 469 Pnt
2730 469 Pnt
2730 469 Pnt
2731 469 Pnt
2732 469 Pnt
2733 468 Pnt
2733 469 Pnt
2734 469 Pnt
2735 469 Pnt
2736 468 Pnt
2736 468 Pnt
2737 469 Pnt
2738 468 Pnt
2738 468 Pnt
2739 468 Pnt
2740 468 Pnt
2741 468 Pnt
2741 468 Pnt
2742 468 Pnt
2743 468 Pnt
2744 468 Pnt
2744 469 Pnt
2745 468 Pnt
2746 469 Pnt
2746 468 Pnt
2747 468 Pnt
2748 468 Pnt
2749 468 Pnt
2749 468 Pnt
2750 468 Pnt
2751 468 Pnt
2752 468 Pnt
2752 468 Pnt
2753 467 Pnt
2754 468 Pnt
2754 467 Pnt
2755 468 Pnt
2756 467 Pnt
2757 467 Pnt
2757 467 Pnt
2758 468 Pnt
2759 467 Pnt
2760 467 Pnt
2760 467 Pnt
2761 467 Pnt
2762 468 Pnt
2762 468 Pnt
2763 467 Pnt
2764 468 Pnt
2765 468 Pnt
2765 467 Pnt
2766 467 Pnt
2767 467 Pnt
2768 467 Pnt
2768 467 Pnt
2769 467 Pnt
2770 467 Pnt
2770 467 Pnt
2771 467 Pnt
2772 466 Pnt
2773 466 Pnt
2773 466 Pnt
2774 466 Pnt
2775 467 Pnt
2776 466 Pnt
2776 467 Pnt
2777 466 Pnt
2778 466 Pnt
2778 466 Pnt
2779 466 Pnt
2780 466 Pnt
2781 466 Pnt
2781 466 Pnt
2782 466 Pnt
2783 466 Pnt
2783 465 Pnt
2784 466 Pnt
2785 466 Pnt
2786 465 Pnt
2786 465 Pnt
2787 466 Pnt
2788 465 Pnt
2789 465 Pnt
2789 465 Pnt
2790 465 Pnt
2791 465 Pnt
2791 465 Pnt
2792 466 Pnt
2793 466 Pnt
2794 465 Pnt
2794 465 Pnt
2795 465 Pnt
2796 465 Pnt
2797 465 Pnt
2797 465 Pnt
2798 465 Pnt
2799 466 Pnt
2799 465 Pnt
2800 465 Pnt
2801 465 Pnt
2802 465 Pnt
2802 465 Pnt
2803 465 Pnt
2804 465 Pnt
2805 465 Pnt
2805 465 Pnt
2806 464 Pnt
2807 465 Pnt
2808 464 Pnt
2808 465 Pnt
2809 464 Pnt
2810 465 Pnt
2810 465 Pnt
2811 465 Pnt
2812 465 Pnt
2813 464 Pnt
2813 465 Pnt
2814 464 Pnt
2815 464 Pnt
2815 465 Pnt
2816 464 Pnt
2817 465 Pnt
2818 464 Pnt
2818 465 Pnt
2819 464 Pnt
2820 465 Pnt
2821 464 Pnt
2821 464 Pnt
2822 464 Pnt
2823 464 Pnt
2823 464 Pnt
2824 464 Pnt
2825 464 Pnt
2826 464 Pnt
2826 464 Pnt
2827 465 Pnt
2828 465 Pnt
2829 464 Pnt
2829 465 Pnt
2830 464 Pnt
2831 464 Pnt
2831 465 Pnt
2832 464 Pnt
2833 464 Pnt
2834 464 Pnt
2834 464 Pnt
2835 464 Pnt
2836 464 Pnt
2837 464 Pnt
2837 464 Pnt
2838 464 Pnt
2839 464 Pnt
2839 464 Pnt
2840 465 Pnt
2841 464 Pnt
2842 465 Pnt
2842 464 Pnt
2843 464 Pnt
2844 464 Pnt
2845 464 Pnt
2845 465 Pnt
2846 464 Pnt
2847 463 Pnt
2847 464 Pnt
2848 464 Pnt
2849 464 Pnt
2850 464 Pnt
2850 463 Pnt
2851 464 Pnt
2852 463 Pnt
2853 464 Pnt
2853 463 Pnt
2854 463 Pnt
2855 464 Pnt
2855 463 Pnt
2856 463 Pnt
2857 463 Pnt
2858 464 Pnt
2858 464 Pnt
2859 464 Pnt
2860 463 Pnt
2861 463 Pnt
2861 463 Pnt
2862 463 Pnt
2863 463 Pnt
2863 463 Pnt
2864 463 Pnt
2865 463 Pnt
2866 464 Pnt
2866 463 Pnt
2867 463 Pnt
2868 463 Pnt
2869 463 Pnt
2869 464 Pnt
2870 464 Pnt
2871 464 Pnt
2871 463 Pnt
2872 463 Pnt
2873 463 Pnt
2874 463 Pnt
2874 463 Pnt
2875 463 Pnt
2876 464 Pnt
2877 463 Pnt
2877 463 Pnt
2878 464 Pnt
2879 463 Pnt
2879 463 Pnt
2880 463 Pnt
2881 463 Pnt
2882 463 Pnt
2882 464 Pnt
2883 464 Pnt
2884 475 Pnt
2885 600 Pnt
2885 599 Pnt
2886 608 Pnt
2887 1298 Pnt
2887 1301 Pnt
2888 1298 Pnt
2889 1254 Pnt
2890 1248 Pnt
2890 1248 Pnt
2891 1101 Pnt
2892 1075 Pnt
2892 1075 Pnt
2893 1025 Pnt
2894 1012 Pnt
2895 1012 Pnt
2895 892 Pnt
2896 842 Pnt
2897 844 Pnt
2898 829 Pnt
2898 819 Pnt
2899 821 Pnt
2900 795 Pnt
2900 773 Pnt
2901 773 Pnt
2902 767 Pnt
2903 757 Pnt
2903 757 Pnt
2904 748 Pnt
2905 733 Pnt
2906 733 Pnt
2906 729 Pnt
2907 719 Pnt
2908 719 Pnt
2908 715 Pnt
2909 700 Pnt
2910 699 Pnt
2911 699 Pnt
2911 691 Pnt
2912 690 Pnt
2913 691 Pnt
2914 681 Pnt
2914 681 Pnt
2915 683 Pnt
2916 673 Pnt
2916 673 Pnt
2917 673 Pnt
2918 667 Pnt
2919 666 Pnt
2919 666 Pnt
2920 661 Pnt
2921 659 Pnt
2922 659 Pnt
2922 656 Pnt
2923 653 Pnt
2924 654 Pnt
2924 650 Pnt
2925 648 Pnt
2926 647 Pnt
2927 646 Pnt
2927 643 Pnt
2928 643 Pnt
2929 642 Pnt
2930 637 Pnt
2930 637 Pnt
2931 636 Pnt
2932 633 Pnt
2932 633 Pnt
2933 633 Pnt
2934 626 Pnt
2935 628 Pnt
2935 628 Pnt
2936 625 Pnt
2937 623 Pnt
2938 625 Pnt
2938 620 Pnt
2939 621 Pnt
2940 620 Pnt
2940 618 Pnt
2941 619 Pnt
2942 618 Pnt
2943 615 Pnt
2943 614 Pnt
2944 614 Pnt
2945 613 Pnt
2946 613 Pnt
2946 613 Pnt
2947 611 Pnt
2948 609 Pnt
2948 609 Pnt
2949 608 Pnt
2950 608 Pnt
2951 607 Pnt
2951 607 Pnt
2952 603 Pnt
2953 604 Pnt
2954 603 Pnt
2954 602 Pnt
2955 603 Pnt
2956 602 Pnt
2956 599 Pnt
2957 598 Pnt
2958 598 Pnt
2959 598 Pnt
2959 597 Pnt
2960 597 Pnt
2961 596 Pnt
2962 595 Pnt
2962 594 Pnt
2963 595 Pnt
2964 595 Pnt
2964 594 Pnt
2965 594 Pnt
2966 592 Pnt
2967 592 Pnt
2967 593 Pnt
2968 591 Pnt
2969 591 Pnt
2969 592 Pnt
2970 589 Pnt
2971 589 Pnt
2972 589 Pnt
2972 589 Pnt
2973 589 Pnt
2974 589 Pnt
2975 585 Pnt
2975 586 Pnt
2976 586 Pnt
2977 584 Pnt
2977 585 Pnt
2978 585 Pnt
2979 583 Pnt
2980 583 Pnt
2980 582 Pnt
2981 582 Pnt
2982 583 Pnt
2983 582 Pnt
2983 602 Pnt
2984 632 Pnt
2985 632 Pnt
2985 633 Pnt
2986 637 Pnt
2987 637 Pnt
2988 657 Pnt
2988 838 Pnt
2989 838 Pnt
2990 838 Pnt
2991 853 Pnt
2991 856 Pnt
2992 856 Pnt
2993 1049 Pnt
2994 1098 Pnt
2994 1095 Pnt
2995 1109 Pnt
2996 1118 Pnt
2996 1116 Pnt
2997 1210 Pnt
2998 1303 Pnt
2999 1306 Pnt
2999 1308 Pnt
3000 1316 Pnt
3001 1316 Pnt
3001 1256 Pnt
3002 1012 Pnt
3003 1014 Pnt
3004 1013 Pnt
3004 989 Pnt
3005 989 Pnt
3006 987 Pnt
3007 925 Pnt
3007 915 Pnt
3008 917 Pnt
3009 911 Pnt
3009 912 Pnt
3010 910 Pnt
3011 884 Pnt
3012 864 Pnt
3012 866 Pnt
3013 863 Pnt
3014 861 Pnt
3015 861 Pnt
3015 853 Pnt
3016 828 Pnt
3017 828 Pnt
3017 828 Pnt
3018 825 Pnt
3019 827 Pnt
3020 827 Pnt
3020 805 Pnt
3021 801 Pnt
3022 802 Pnt
3023 800 Pnt
3023 801 Pnt
3024 799 Pnt
3025 786 Pnt
3025 777 Pnt
3026 775 Pnt
3027 775 Pnt
3028 774 Pnt
3028 775 Pnt
3029 770 Pnt
3030 759 Pnt
3031 759 Pnt
3031 758 Pnt
3032 756 Pnt
3033 757 Pnt
3033 757 Pnt
3034 747 Pnt
3035 746 Pnt
3036 744 Pnt
3036 745 Pnt
3037 743 Pnt
3038 744 Pnt
3039 738 Pnt
3039 736 Pnt
3040 734 Pnt
3041 734 Pnt
3041 735 Pnt
3042 733 Pnt
3043 731 Pnt
3044 723 Pnt
3044 723 Pnt
3045 723 Pnt
3046 722 Pnt
3047 722 Pnt
3047 722 Pnt
3048 715 Pnt
3049 713 Pnt
3049 713 Pnt
3050 711 Pnt
3051 711 Pnt
3052 711 Pnt
3052 707 Pnt
3053 704 Pnt
3054 703 Pnt
3055 704 Pnt
3055 702 Pnt
3056 702 Pnt
3057 703 Pnt
3057 698 Pnt
3058 698 Pnt
3059 698 Pnt
3060 697 Pnt
3060 699 Pnt
3061 697 Pnt
3062 694 Pnt
3063 690 Pnt
3063 692 Pnt
3064 691 Pnt
3065 691 Pnt
3065 691 Pnt
3066 688 Pnt
3067 686 Pnt
3068 686 Pnt
3068 685 Pnt
3069 685 Pnt
3070 683 Pnt
3071 685 Pnt
3071 679 Pnt
3072 680 Pnt
3073 678 Pnt
3073 678 Pnt
3074 677 Pnt
3075 679 Pnt
3076 676 Pnt
3076 675 Pnt
3077 675 Pnt
3078 675 Pnt
3078 674 Pnt
3079 674 Pnt
3080 674 Pnt
3081 670 Pnt
3081 671 Pnt
3082 671 Pnt
3083 670 Pnt
3084 669 Pnt
3084 670 Pnt
3085 667 Pnt
3086 667 Pnt
3086 666 Pnt
3087 667 Pnt
3088 664 Pnt
3089 665 Pnt
3089 664 Pnt
3090 662 Pnt
3091 662 Pnt
3092 663 Pnt
3092 660 Pnt
3093 660 Pnt
3094 660 Pnt
3094 660 Pnt
3095 661 Pnt
3096 661 Pnt
3097 660 Pnt
3097 657 Pnt
3098 659 Pnt
3099 658 Pnt
3100 657 Pnt
3100 656 Pnt
3101 657 Pnt
3102 656 Pnt
3102 654 Pnt
3103 656 Pnt
3104 654 Pnt
3105 654 Pnt
3105 655 Pnt
3106 652 Pnt
3107 651 Pnt
3108 653 Pnt
3108 651 Pnt
3109 650 Pnt
3110 650 Pnt
3110 650 Pnt
3111 650 Pnt
3112 650 Pnt
3113 650 Pnt
3113 650 Pnt
3114 650 Pnt
3115 650 Pnt
3116 649 Pnt
3116 647 Pnt
3117 649 Pnt
3118 648 Pnt
3118 646 Pnt
3119 648 Pnt
3120 646 Pnt
3121 646 Pnt
3121 645 Pnt
3122 646 Pnt
3123 644 Pnt
3124 644 Pnt
3124 645 Pnt
3125 643 Pnt
3126 643 Pnt
3126 643 Pnt
3127 644 Pnt
3128 643 Pnt
3129 643 Pnt
3129 643 Pnt
3130 643 Pnt
3131 643 Pnt
3132 643 Pnt
3132 645 Pnt
3133 646 Pnt
3134 646 Pnt
3134 644 Pnt
3135 642 Pnt
3136 643 Pnt
3137 644 Pnt
3137 643 Pnt
3138 644 Pnt
3139 642 Pnt
3140 641 Pnt
3140 640 Pnt
3141 640 Pnt
3142 642 Pnt
3142 640 Pnt
3143 640 Pnt
3144 640 Pnt
3145 639 Pnt
3145 639 Pnt
3146 640 Pnt
3147 640 Pnt
3148 640 Pnt
3148 641 Pnt
3149 642 Pnt
3150 642 Pnt
3150 642 Pnt
3151 644 Pnt
3152 643 Pnt
3153 644 Pnt
3153 642 Pnt
3154 642 Pnt
3155 640 Pnt
3155 641 Pnt
3156 639 Pnt
3157 641 Pnt
3158 639 Pnt
3158 640 Pnt
3159 639 Pnt
3160 640 Pnt
3161 639 Pnt
3161 639 Pnt
3162 639 Pnt
3163 639 Pnt
3163 637 Pnt
3164 637 Pnt
3165 640 Pnt
3166 641 Pnt
3166 641 Pnt
3167 642 Pnt
3168 643 Pnt
3169 643 Pnt
3169 643 Pnt
3170 644 Pnt
3171 644 Pnt
3171 643 Pnt
3172 644 Pnt
3173 644 Pnt
3174 642 Pnt
3174 643 Pnt
3175 643 Pnt
3176 642 Pnt
3177 643 Pnt
3177 642 Pnt
3178 643 Pnt
3179 642 Pnt
3180 641 Pnt
3180 643 Pnt
3181 641 Pnt
3182 642 Pnt
3182 642 Pnt
3183 644 Pnt
3184 645 Pnt
3185 646 Pnt
3185 646 Pnt
3186 648 Pnt
3187 651 Pnt
3187 651 Pnt
3188 651 Pnt
3189 651 Pnt
3190 651 Pnt
3190 650 Pnt
3191 651 Pnt
3192 651 Pnt
3193 651 Pnt
3193 650 Pnt
3194 651 Pnt
3195 651 Pnt
3195 650 Pnt
3196 651 Pnt
3197 650 Pnt
3198 651 Pnt
3198 649 Pnt
3199 649 Pnt
3200 650 Pnt
3201 652 Pnt
3201 654 Pnt
3202 655 Pnt
3203 659 Pnt
3203 667 Pnt
3204 667 Pnt
3205 667 Pnt
3206 667 Pnt
3206 669 Pnt
3207 667 Pnt
3208 665 Pnt
3209 667 Pnt
3209 667 Pnt
3210 669 Pnt
3211 671 Pnt
3211 671 Pnt
3212 672 Pnt
3213 671 Pnt
3214 672 Pnt
3214 672 Pnt
3215 671 Pnt
3216 673 Pnt
3217 673 Pnt
3217 681 Pnt
3218 686 Pnt
3219 685 Pnt
3219 708 Pnt
3220 737 Pnt
3221 735 Pnt
3222 740 Pnt
3222 750 Pnt
3223 750 Pnt
3224 750 Pnt
3225 752 Pnt
3225 750 Pnt
3226 750 Pnt
3227 749 Pnt
3227 748 Pnt
3228 748 Pnt
3229 748 Pnt
3230 748 Pnt
3230 748 Pnt
3231 748 Pnt
3232 747 Pnt
3233 745 Pnt
3233 747 Pnt
3234 740 Pnt
3235 738 Pnt
3235 736 Pnt
3236 729 Pnt
3237 717 Pnt
3238 715 Pnt
3238 714 Pnt
3239 694 Pnt
3240 696 Pnt
3241 694 Pnt
3241 697 Pnt
3242 695 Pnt
3243 697 Pnt
3243 694 Pnt
3244 693 Pnt
3245 694 Pnt
3246 692 Pnt
3246 690 Pnt
3247 690 Pnt
3248 690 Pnt
3249 691 Pnt
3249 690 Pnt
3250 690 Pnt
3251 685 Pnt
3251 683 Pnt
3252 683 Pnt
3253 672 Pnt
3254 651 Pnt
3254 653 Pnt
3255 651 Pnt
3256 625 Pnt
3257 625 Pnt
3257 625 Pnt
3258 623 Pnt
3259 624 Pnt
3259 624 Pnt
3260 622 Pnt
3261 623 Pnt
3262 622 Pnt
3262 622 Pnt
3263 617 Pnt
3264 618 Pnt
3264 617 Pnt
3265 619 Pnt
3266 618 Pnt
3267 618 Pnt
3267 619 Pnt
3268 617 Pnt
3269 617 Pnt
3270 609 Pnt
3270 581 Pnt
3271 580 Pnt
3272 580 Pnt
3272 566 Pnt
3273 564 Pnt
3274 564 Pnt
3275 563 Pnt
3275 562 Pnt
3276 562 Pnt
3277 562 Pnt
3278 561 Pnt
3278 561 Pnt
3279 561 Pnt
3280 559 Pnt
3280 560 Pnt
3281 560 Pnt
3282 560 Pnt
3283 559 Pnt
3283 560 Pnt
3284 560 Pnt
3285 558 Pnt
3286 559 Pnt
3286 557 Pnt
3287 551 Pnt
3288 550 Pnt
3288 551 Pnt
3289 546 Pnt
3290 546 Pnt
3291 545 Pnt
3291 545 Pnt
3292 546 Pnt
3293 545 Pnt
3294 545 Pnt
3294 545 Pnt
3295 546 Pnt
3296 545 Pnt
3296 545 Pnt
3297 545 Pnt
3298 545 Pnt
3299 544 Pnt
3299 544 Pnt
3300 544 Pnt
3301 544 Pnt
3302 544 Pnt
3302 544 Pnt
3303 544 Pnt
3304 544 Pnt
3304 544 Pnt
3305 543 Pnt
3306 544 Pnt
3307 545 Pnt
3307 545 Pnt
3308 544 Pnt
3309 545 Pnt
3310 545 Pnt
3310 544 Pnt
3311 545 Pnt
3312 544 Pnt
3312 545 Pnt
3313 544 Pnt
3314 545 Pnt
3315 544 Pnt
3315 545 Pnt
3316 543 Pnt
3317 544 Pnt
3318 543 Pnt
3318 544 Pnt
3319 544 Pnt
3320 545 Pnt
3320 544 Pnt
3321 544 Pnt
3322 544 Pnt
3323 545 Pnt
3323 544 Pnt
3324 544 Pnt
3325 544 Pnt
3326 544 Pnt
3326 544 Pnt
3327 544 Pnt
3328 544 Pnt
3328 544 Pnt
3329 544 Pnt
3330 544 Pnt
3331 543 Pnt
3331 544 Pnt
3332 544 Pnt
3333 544 Pnt
3334 544 Pnt
3334 543 Pnt
3335 545 Pnt
3336 545 Pnt
3336 544 Pnt
3337 545 Pnt
3338 545 Pnt
3339 544 Pnt
3339 545 Pnt
3340 544 Pnt
3341 545 Pnt
3341 544 Pnt
3342 545 Pnt
3343 544 Pnt
3344 545 Pnt
3344 544 Pnt
3345 544 Pnt
3346 545 Pnt
3347 544 Pnt
3347 544 Pnt
3348 545 Pnt
3349 544 Pnt
3349 545 Pnt
3350 545 Pnt
3351 545 Pnt
3352 545 Pnt
3352 546 Pnt
3353 545 Pnt
3354 545 Pnt
3355 545 Pnt
3355 546 Pnt
3356 546 Pnt
3357 546 Pnt
3357 546 Pnt
3358 546 Pnt
3359 544 Pnt
3360 545 Pnt
3360 545 Pnt
3361 545 Pnt
3362 546 Pnt
3363 546 Pnt
3363 545 Pnt
3364 546 Pnt
3365 546 Pnt
3366 545 Pnt
3366 546 Pnt
3367 546 Pnt
3368 545 Pnt
3368 546 Pnt
3369 546 Pnt
3370 547 Pnt
3371 546 Pnt
3371 547 Pnt
3372 546 Pnt
3373 547 Pnt
3373 546 Pnt
3374 547 Pnt
3375 546 Pnt
3376 546 Pnt
3376 548 Pnt
3377 547 Pnt
3378 547 Pnt
3379 548 Pnt
3379 547 Pnt
3380 547 Pnt
3381 547 Pnt
3381 547 Pnt
3382 548 Pnt
3383 547 Pnt
3384 548 Pnt
3384 549 Pnt
3385 549 Pnt
3386 549 Pnt
3387 549 Pnt
3387 549 Pnt
3388 549 Pnt
3389 549 Pnt
3389 549 Pnt
3390 549 Pnt
3391 549 Pnt
3392 548 Pnt
3392 550 Pnt
3393 550 Pnt
3394 549 Pnt
3395 549 Pnt
3395 548 Pnt
stroke
grestore
end
showpage
%%Trailer
%%DocumentFonts: Helvetica

%%EndDocument
 @endspecial Black 699 5251 a(Figure)f(7.13:)43 b(The)34
b(stationary)e(PDF)g(graph)g(of)g(DPLL)g(with)h Fr(n)28
b Fu(=)f(4096)p Black Black Black Black eop
%%Page: 53 62
53 61 bop Black Black Black Black 1714 150 a Fn(Chapter)53
b(8)p Black Black 1055 581 a(CONCLUDING)g(REMARKS)464
1283 y Fu(In)36 b(this)e(dissertation)g(w)m(e)i(ha)m(v)m(e)h(dev)m
(elop)s(ed)f(a)e(fast)h(and)g(e\016cien)m(t)h(parallel)d(quasi-Mon)m
(te)300 1403 y(Carlo)38 b(algorithm)e(for)i(the)h(n)m(umerical)f
(computation)f(of)i(absolutely)f(con)m(tin)m(uous)h(in)m(v)-5
b(arian)m(t)300 1524 y(measures.)44 b(The)33 b(algorithm)d(is)h(based)j
(on)e(the)g(piecewise)h(constan)m(t)h(appro)m(ximation)c(sc)m(heme)300
1644 y(prop)s(osed)48 b(b)m(y)h(Ulam,)h(and)e(the)g(tec)m(hniques)h(w)m
(e)g(emplo)m(y)m(ed)f(are)g(the)g(quasi-Mon)m(te)g(Carlo)300
1764 y(approac)m(h)c(and)g(the)g(parallel)d(pro)s(cessing.)78
b(The)44 b(\014rst)g(tec)m(hnique)i(is)d(motiv)-5 b(ated)42
b(from)h(the)300 1885 y(consideration)30 b(of)h(e\016cien)m(t)g(ev)-5
b(aluation)30 b(of)g(the)i(Ulam)d(matrix)g(for)i(the)g(practical)f
(purp)s(ose)h(of)300 2005 y(the)37 b(algorithm,)d(and)j(the)g(second)h
(tec)m(hnique)g(is)e(for)g(the)h(reduction)g(of)f(the)h(computational)
300 2126 y(time)29 b(b)m(y)i(taking)e(adv)-5 b(an)m(tage)30
b(of)f(the)i(natural)e(structure)i(of)e(the)i(Ulam)d(matrix.)41
b(T)-8 b(o)30 b(calculate)300 2246 y(the)e(\014xed)h(left)e(eigen)m(v)m
(ector)i(of)e(the)h(computed)g(Ulam)e(matrix)g(for)h(the)h(appro)m
(ximation)d(of)j(the)300 2366 y(exact)34 b(densit)m(y)g(function)f(of)g
(the)g(F)-8 b(rob)s(enius-P)m(erron)33 b(op)s(erator,)g(w)m(e)h(simply)
e(used)i(the)g(direct)300 2487 y(iteration)c(sc)m(heme,)k(and)f(so)f
(the)h(resulting)f(iteration)e(algorithm)g(is)h(m)m(uc)m(h)i(more)f
(faster)h(than)300 2607 y(the)i(traditional)c(Gaussian)i(elimination.)
45 b(Suc)m(h)35 b(n)m(umerical)e(issues)j(lead)d(to)h(the)h(creation)e
(of)300 2728 y(t)m(w)m(o)f(reliable)d(algorithms,)g(the)i(Ulam)f
(matrix)g(parallel)e(quasi-Mon)m(te)k(Carlo)e(algorithm)e(and)300
2848 y(the)42 b(completely)f(parallel)f(quasi-Mon)m(te)i(Carlo)f
(algorithm.)69 b(In)43 b(the)f(\014rst)h(algorithm)38
b(only)300 2968 y(the)31 b(ev)-5 b(aluation)29 b(of)h(the)g(Ulam)f
(matrix)g(is)h(parallelized,)e(while)i(in)g(the)g(second)i(algorithm)c
(the)300 3089 y(complete)41 b(n)m(umerical)g(w)m(ork)i(is)e
(parallelized.)69 b(In)43 b(other)f(w)m(ords,)j(the)e(computation)d(of)
i(the)300 3209 y(appro)m(ximate)32 b(\014xed)h(densit)m(y)h(is)e(also)g
(parallelized)d(with)k(the)g(direct)f(iteration)f(metho)s(d.)446
3329 y(W)-8 b(e)38 b(ha)m(v)m(e)g(presen)m(ted)i(extensiv)m(e)f(n)m
(umerical)d(exp)s(erimen)m(ts)i(for)e(sev)m(eral)i(one)g(dimension-)300
3450 y(al)g(mappings)g(and)h(w)m(e)i(ha)m(v)m(e)f(also)e(applied)g(our)
h(new)h(metho)s(ds)f(to)g(an)g(in)m(teresting)g(applied)300
3570 y(problem.)i(The)29 b(n)m(umerical)e(results)h(ha)m(v)m(e)h
(demonstrated)g(that)f(the)g(new)h(quasi-Mon)m(te)g(Carlo)300
3691 y(approac)m(h,)j(whic)m(h)g(is)e(based)i(on)f(the)h(idea)f(of)f
(quasi-random)g(n)m(um)m(b)s(er)i(generators,)g(p)s(erforms)300
3811 y(outstandingly)25 b(as)i(compared)f(with)f(the)i(standard)g(Mon)m
(te)g(Carlo)e(approac)m(h,)j(whic)m(h)e(is)g(based)300
3931 y(on)32 b(the)g(usual)f(random)g(n)m(um)m(b)s(er)h(generation.)43
b(Moreo)m(v)m(er,)33 b(our)f(parallel)d(computation)h(prac-)300
4052 y(tice)36 b(suggests)h(that)f(the)h(Ulam)d(metho)s(d)h(can)i(b)s
(e)f(com)m(bined)g(with)f(some)h(mo)s(dern)g(scien)m(ti\014c)300
4172 y(computing)29 b(tec)m(hniques)j(to)e(compute)g(complicated,)g
(high)f(dimensional)f(ph)m(ysical)i(measures)300 4293
y(in)i(man)m(y)g(applied)g(\014elds.)446 4413 y(Besides)48
b(the)f(computational)d(w)m(ork)k(in)e(the)h(thesis,)j(w)m(e)e(ha)m(v)m
(e)g(also)e(giv)m(en)h(a)f(rigorous)300 4533 y(appro)m(ximation)23
b(order)i(analysis)f(for)g(the)i(higher)e(order)h(metho)s(d)f(of)h
(piecewise)g(linear)f(Mark)m(o)m(v)300 4654 y(appro)m(ximations,)43
b(using)e(the)i(functional)d(analysis)h(to)s(ol.)70 b(The)43
b(theoretical)e(result)h(on)g(the)300 4774 y(error)j(b)s(ound)h(is)f
(compatible)e(with)i(the)h(previous)g(published)f(computational)e
(results)j(b)m(y)300 4894 y(other)33 b(researc)m(hers.)446
5015 y(A)28 b(con)m(tin)m(uation)f(of)h(the)g(w)m(ork)h(in)e(the)i
(thesis)f(ma)m(y)g(b)s(e)g(n)m(umerical)e(exp)s(erimen)m(ts)j(to)f(m)m
(ulti-)300 5135 y(dimensional)40 b(transformations)h(with)h(the)h
(parallel)d(quasi-Mon)m(te)j(Carlo)e(algorithm.)70 b(An-)300
5256 y(other)31 b(p)s(ossible)g(researc)m(h)h(topic)f(is)f(the)i(dev)m
(elopmen)m(t)f(of)g(parallel)d(algorithms)h(based)j(on)f(the)300
5376 y(piecewise)37 b(linear)e(Mark)m(o)m(v)j(appro)m(ximation)c(since)
j(this)f(metho)s(d)g(has)g(a)h(higher)e(order)i(error)300
5496 y(b)s(ound)c(than)f(Ulam's)g(metho)s(d)g(but)h(without)f(m)m(uc)m
(h)h(more)f(n)m(umerical)f(w)m(ork)i(in)m(v)m(olv)m(ed.)p
Black 2021 5764 a(53)p Black eop
%%Page: 54 63
54 62 bop Black Black Black Black 1638 150 a Fn(App)t(endix)53
b(A)p Black Black 1174 581 a(BRIEF)i(MA)-13 b(TH)54 b(REVIEW)461
1283 y Fu(In)35 b(order)f(to)f(de\014ne)i(F)-8 b(rob)s(enius-P)m(erron)
34 b(op)s(erators)g(and)g(study)h(their)e(basic)h(prop)s(erties,)300
1403 y(as)39 b(a)g(preliminary)e(step,)k(w)m(e)f(in)m(tro)s(duce)f
(some)g(essen)m(tial)g(concepts)i(from)d(measure)h(theory)-8
b(,)300 1524 y(the)33 b(theory)g(of)f(Leb)s(esgue)i(in)m(tegration,)d
(and)i(the)g(theory)g(of)f(linear)f(functional)g(analysis.)446
1644 y(W)-8 b(e)33 b(start)g(with)f(the)h(de\014nition)f(of)g(a)g
Fr(\033)t Fu(-algebra.)42 b(Let)33 b Fr(X)40 b Fu(b)s(e)33
b(a)f(set.)p Black 300 1806 a Fj(De\014nition)i(A.1.)p
Black 48 w Fu([36])f(A)f(class)h(\006)g(of)f(subsets)j(of)d
Fr(X)40 b Fu(is)32 b(called)g(a)g Fr(\033)t Fu(-algebra)f(if)446
1926 y(\(i\))h Fr(A)c Fq(2)g Fu(\006)33 b(implies)d Fr(A)1284
1890 y Fo(c)1346 1926 y Fq(2)e Fu(\006)33 b(where)h Fr(A)1898
1890 y Fo(c)1961 1926 y Fu(=)27 b Fq(f)p Fr(x)h Fq(2)g
Fr(X)36 b Fq(j)27 b Fr(x)h Fq(62)g Fr(A)p Fq(g)p Fu(;)446
2047 y(\(ii\))p Fr(A)651 2062 y Fo(n)724 2047 y Fq(2)g
Fu(\006)p Fr(;)45 b(n)28 b Fu(=)g(1)p Fr(;)17 b Fu(2)p
Fr(;)g(:)g(:)g(:)47 b Fu(implies)30 b(the)j(union)f Fq([)2334
2062 y Fo(n)2382 2047 y Fr(A)2455 2062 y Fo(n)2529 2047
y Fq(2)c Fu(\006;)34 b(and)446 2167 y(\(iii\))c Fr(X)35
b Fq(2)29 b Fu(\006.)p Black 300 2329 a Fj(De\014nition)34
b(A.2.)p Black 48 w Fu(A)g(real-v)-5 b(alued)32 b(\(including)g
Fq(1)p Fu(\))h(nonnegativ)m(e)i(set)f(function)f Fr(\026)h
Fu(de\014ned)h(on)300 2449 y(a)h Fr(\033)t Fu(-algebra)f(\006)h(is)g(a)
g(p)s(ositiv)m(e)g(measure)h(if)e Fr(\026)p Fu(\()p Fq(;)p
Fu(\))e(=)h(0)i(and)h Fr(\026)p Fu(\()p Fq([)2727 2464
y Fo(n)2774 2449 y Fr(A)2847 2464 y Fo(n)2894 2449 y
Fu(\))d(=)3076 2375 y Fi(P)3181 2478 y Fo(n)3245 2449
y Fr(\026)p Fu(\()p Fr(A)3415 2464 y Fo(n)3461 2449 y
Fu(\))i(for)g(an)m(y)300 2570 y(\014nite)31 b(or)g(in\014nite)g
(sequence)j Fq(f)p Fr(A)1522 2585 y Fo(n)1569 2570 y
Fq(g)e Fu(of)f(pairwise)f(disjoin)m(t)h(sets)i(from)d(\006,)i(that)f
(is)h Fr(A)3415 2585 y Fo(i)3463 2570 y Fq(\\)20 b Fr(A)3622
2585 y Fo(j)3687 2570 y Fu(=)27 b Fq(;)300 2690 y Fu(for)32
b Fr(i)c Fq(6)p Fu(=)g Fr(j)6 b Fu(.)43 b(In)33 b(other)g(w)m(ords,)g
Fr(\026)g Fu(is)f(a)g(coun)m(tably)h(additiv)m(e)f(nonnegativ)m(e)h
(set)g(function.)p Black 300 2852 a Fj(De\014nition)h(A.3.)p
Black 48 w Fu(The)43 b(ordered)g(triple)e(\()p Fr(X)r(;)17
b Fu(\006)p Fr(;)g(\026)p Fu(\))42 b(is)f(called)g(a)h(measure)g(space)
h(giv)m(en)g(a)e Fr(\033)t Fu(-)300 2972 y(algebra)34
b(\006)h(and)g(a)g(p)s(ositiv)m(e)f(measure)i Fr(\026)e
Fu(de\014ned)j(on)e(\006.)51 b(If)35 b(the)g(p)s(ositiv)m(e)g(measure)g
Fr(\026)g Fu(is)f(not)300 3093 y(sp)s(eci\014cally)c(indicated,)g(the)g
(ordered)i(pair)d(\()p Fr(X)r(;)17 b Fu(\006\))31 b(is)f(called)f(a)h
(measurable)g(space,)i(and)e(an)m(y)300 3213 y Fr(A)e
Fq(2)g Fu(\006)33 b(is)f(called)f(a)i(measurable)f(set.)446
3375 y(Let)i Fr(X)40 b Fu(b)s(e)33 b(a)g(lo)s(cally)e(compact)h(metric)
g(space,)i(let)f Fe(B)g Fu(b)s(e)g(the)g(Borel)f Fr(\033)t
Fu(-algebra)g(whic)m(h)h(is)300 3496 y(the)h(smallest)d
Fr(\033)t Fu(-algebra)h(con)m(taining)f(op)s(en)j(subsets)h(of)d
Fr(X)8 b Fu(,)33 b(and)h(let)e Fr(\026)h Fu(b)s(e)g(a)g(measure)g(on)g
(\006.)300 3616 y(Then)d(\()p Fr(X)r(;)17 b Fe(B)p Fr(;)g(\026)p
Fu(\))28 b(is)h(called)e(a)i(Borel)f(measure)h(space.)44
b(In)29 b(particular,)f(if)g Fr(X)35 b Fu(=)28 b([0)p
Fr(;)17 b Fu(1])28 b(or)h Fr(R)q Fu(,)h(the)300 3736
y(real)38 b(line,)h(then)g(there)h(exists)f(a)f(unique)i(Borel)d
(measure)i Fr(\026)g Fu(on)f(the)i(Borel)d Fr(\033)t
Fu(-algebra)g(suc)m(h)300 3857 y(that)31 b Fr(\026)p
Fu(\([)p Fr(a;)17 b(b)p Fu(]\))28 b(=)f Fr(b)20 b Fq(\000)g
Fr(a)p Fu(.)43 b(This)32 b(measure)f Fr(\026)g Fu(will)e(b)s(e)i
(denoted)i(b)m(y)f Fr(m)p Fu(.)43 b(Whenev)m(er)34 b(considering)300
3977 y(spaces)k Fr(X)k Fu(=)35 b([0)p Fr(;)17 b Fu(1])36
b(\(or)g Fr(R)q Fu(\),)i(or)e Fr(X)42 b Fu(=)35 b([0)p
Fr(;)17 b Fu(1])1961 3941 y Fo(d)2035 3977 y Fq(\021)35
b Fu([0)p Fr(;)17 b Fu(1])24 b Fq(\002)i(\001)17 b(\001)g(\001)23
b(\002)i Fu([0)p Fr(;)17 b Fu(1])36 b(\(or)g Fr(R)3181
3941 y Fo(d)3222 3977 y Fu(\))h(or)f(subsets)i(of)300
4097 y(these,)c(w)m(e)g(alw)m(a)m(ys)f(assume)g(this)f(Borel)g(measure)
h(unless)g(indicated)f(otherwise.)p Black 300 4259 a
Fj(De\014nition)i(A.4.)p Black 48 w Fu(A)f(measure)g(space)h(\()p
Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(is)g(called)f
Fr(\033)t Fu(-\014nite)h(if)1126 4479 y Fr(X)k Fu(=)27
b Fq([)1412 4438 y Fl(1)1412 4504 y Fo(n)p Fp(=1)1550
4479 y Fr(A)1623 4494 y Fo(n)1670 4479 y Fr(;)44 b(\026)p
Fu(\()p Fr(A)1911 4494 y Fo(n)1958 4479 y Fu(\))28 b
Fr(<)f Fq(1)p Fr(;)44 b(n)28 b Fu(=)g(1)p Fr(;)17 b Fu(2)p
Fr(;)g(:)g(:)g(:)31 b(:)p Black 768 w Fu(\(A.1\))p Black
Black 300 4699 a Fj(R)-5 b(emark)34 b(A.1.)p Black 49
w Fu(The)d(Borel)f(measure)h(space)g(\()p Fr(R)2096 4663
y Fo(d)2137 4699 y Fr(;)17 b Fe(B)p Fr(;)g(m)p Fu(\))29
b(is)h(ob)m(viously)g Fr(\033)t Fu(-\014nite;)h(the)g
Fr(A)3584 4714 y Fo(n)3661 4699 y Fu(ma)m(y)300 4820
y(b)s(e)i(c)m(hosen)h(as)f(balls)e(of)h(radius)g Fr(n)p
Fu(.)p Black 300 4982 a Fj(De\014nition)i(A.5.)p Black
48 w Fu(A)45 b(measure)f(space)i(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))44 b(is)f(said)h(to)g(b)s(e)g(\014nite)g(if)f
Fr(\026)p Fu(\()p Fr(X)8 b Fu(\))47 b Fr(<)h Fq(1)p Fu(.)78
b(In)300 5102 y(particular,)38 b(if)f Fr(\026)p Fu(\()p
Fr(X)8 b Fu(\))37 b(=)g(1,)j(then)f(the)g(measure)f(space)i(is)d
(called)h(a)g(probabilit)m(y)e(space)j(or)f(a)300 5222
y(normalized)31 b(measure)h(space.)446 5384 y(If)37 b(a)f(certain)g
(prop)s(ert)m(y)h(in)m(v)m(olving)e(the)i(p)s(oin)m(ts)f(of)g(a)g
(measure)g(space)i(is)e(true)g(except)i(for)300 5505
y(a)45 b(set)g(of)g(measure)g(zero,)k(then)d(w)m(e)g(sa)m(y)g(that)e
(the)i(prop)s(ert)m(y)g(is)e(true)h(almost)f(ev)m(erywhere)p
Black 2021 5764 a(54)p Black eop
%%Page: 55 64
55 63 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33
b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(55)p Black 300 274
a(\(abbreviated)48 b(as)f(a.e.\).)89 b(The)48 b(notation)f
Fr(\026)p Fu(-a.e.)87 b(\(or)47 b(simply)g(a.e.)88 b(if)46
b Fr(\026)i Fu(is)f(understo)s(o)s(d\))300 395 y(is)d(sometimes)f(used)
j(if)d(the)i(prop)s(ert)m(y)g(is)f(true)h(almost)e(ev)m(erywhere)48
b(with)c(resp)s(ect)h(to)g(the)300 515 y(measure)33 b
Fr(\026)p Fu(.)p Black 300 677 a Fj(De\014nition)h(A.6.)p
Black 48 w Fu(Let)25 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))24 b(b)s(e)g(a)g(measure)h(space.)41 b(A)25 b(real-v)-5
b(alued)22 b(function)i Fr(f)38 b Fu(:)28 b Fr(X)36 b
Fq(!)27 b Fr(R)300 797 y Fu(is)32 b(called)f(measurable)h(if)g
Fr(f)1333 761 y Fl(\000)p Fp(1)1427 797 y Fu(\()p Fr(O)s
Fu(\))27 b Fq(2)h Fu(\006)33 b(for)f(ev)m(ery)i(op)s(en)f(set)g
Fr(O)d Fq(\032)e Fr(R)q Fu(.)446 959 y(More)k(generally)-8
b(,)31 b(a)h(transformation)d Fr(f)39 b Fu(:)28 b Fr(X)35
b Fq(!)27 b Fr(Y)53 b Fu(from)31 b(a)g(measurable)g(space)i(\()p
Fr(X)r(;)17 b Fu(\006\))32 b(to)300 1080 y(a)g(measurable)g(space)i(\()
p Fr(Y)5 b(;)17 b Fe(A)p Fu(\))32 b(is)g(said)g(to)g(b)s(e)h
(measurable)f(if)f Fr(f)2652 1043 y Fl(\000)p Fp(1)2746
1080 y Fu(\()p Fr(A)p Fu(\))d Fq(2)g Fu(\006)33 b(for)f(an)m(y)h
Fr(A)28 b Fq(2)g Fe(A)p Fu(.)p Black 300 1241 a Fj(De\014nition)34
b(A.7.)p Black 48 w Fu(A)23 b(measurable)e(function)h
Fr(f)38 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fu([0)p Fr(;)17
b Fq(1)p Fu(\))k(on)h(a)g(measurable)f(space)j(\()p Fr(X)r(;)17
b Fu(\006\))300 1362 y(is)29 b(called)f(a)h(simple)f(function)h(if)f
(its)h(range)g(consists)h(of)f(only)g(\014nitely)g(man)m(y)g(p)s(oin)m
(ts.)42 b(In)30 b(other)300 1482 y(w)m(ords,)k Fr(f)43
b Fu(is)32 b(a)g(simple)f(function)h(if)1498 1773 y Fr(f)39
b Fu(=)1739 1648 y Fo(n)1688 1678 y Fi(X)1703 1888 y
Fo(i)p Fp(=1)1849 1773 y Fr(\013)1911 1788 y Fo(i)1939
1773 y Fr(\037)2000 1788 y Fo(A)2053 1798 y Ff(i)2084
1773 y Fr(;)44 b(A)2228 1788 y Fo(i)2284 1773 y Fq(2)28
b Fu(\006)p Fr(;)p Black 1140 w Fu(\(A.2\))p Black 300
2081 a(where)k Fr(\037)641 2096 y Fo(A)694 2106 y Ff(i)755
2081 y Fu(is)e(the)h(c)m(haracteristic)f(function)g(of)g
Fr(A)2176 2096 y Fo(i)2232 2081 y Fu(:)55 b Fr(\037)2375
2096 y Fo(A)2428 2106 y Ff(i)2459 2081 y Fu(\()p Fr(x)p
Fu(\))28 b(=)f(1)j(if)g Fr(x)e Fq(2)g Fr(A)3138 2096
y Fo(i)3197 2081 y Fu(and)i Fr(\037)3445 2096 y Fo(A)3498
2106 y Ff(i)3529 2081 y Fu(\()p Fr(x)p Fu(\))e(=)f(0)300
2201 y(if)k Fr(x)e Fq(62)f Fr(A)640 2216 y Fo(i)668 2201
y Fu(.)p Black 300 2363 a Fj(De\014nition)34 b(A.8.)p
Black 48 w Fu(Let)41 b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))41 b(b)s(e)f(a)h(measure)g(space.)68 b(If)41 b
Fr(f)52 b Fu(:)41 b Fr(X)49 b Fq(!)41 b Fu([0)p Fr(;)17
b Fq(1)p Fu(\))40 b(is)g(a)g(simple)300 2483 y(function)32
b(of)g(the)h(form)1681 2754 y Fr(f)38 b Fu(=)1921 2630
y Fo(n)1871 2660 y Fi(X)1886 2870 y Fo(i)p Fp(=1)2031
2754 y Fr(\013)2093 2769 y Fo(i)2122 2754 y Fr(\037)2183
2769 y Fo(A)2236 2779 y Ff(i)2266 2754 y Fr(;)p Black
1322 w Fu(\(A.3\))p Black 300 3062 a(where)33 b Fq(f)p
Fr(\013)693 3077 y Fo(i)721 3062 y Fq(g)e Fu(are)g(the)h(distinct)f(v)
-5 b(alues)31 b(of)g Fr(f)11 b Fu(,)31 b(and)h(if)e Fr(A)e
Fq(2)g Fu(\006,)k(then)g(the)g(Leb)s(esgue)h(in)m(tegral)c(of)300
3183 y Fr(f)43 b Fu(o)m(v)m(er)34 b Fr(A)f Fu(is)f(de\014ned)i(b)m(y)
1424 3337 y Fi(Z)1479 3563 y Fo(A)1553 3473 y Fr(f)11
b(d\026)27 b Fu(=)1903 3348 y Fo(n)1852 3378 y Fi(X)1867
3588 y Fo(i)p Fp(=1)2013 3473 y Fr(\013)2075 3488 y Fo(i)2103
3473 y Fr(\026)p Fu(\()p Fr(A)2273 3488 y Fo(i)2323 3473
y Fq(\\)c Fr(A)p Fu(\))p Fr(;)p Black 1065 w Fu(\(A.4\))p
Black 300 3775 a(where)34 b(the)f(con)m(v)m(en)m(tion)h(0)21
b Fq(\001)h(1)28 b Fu(=)f(0)32 b(is)h(used.)p Black 300
3937 a Fj(De\014nition)h(A.9.)p Black 48 w Fu(Let)g(\()p
Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(b)s(e)h(a)g(measure)g
(space,)i Fr(f)k Fu(:)28 b Fr(X)36 b Fq(!)28 b Fr(R)34
b Fu(an)f(arbitrary)f(nonneg-)300 4058 y(ativ)m(e)k(measurable)g
(function,)i(and)e Fr(A)f Fq(2)g Fu(\006.)56 b(Then)38
b(the)f(Leb)s(esgue)h(in)m(tegral)d(of)h Fr(f)47 b Fu(o)m(v)m(er)38
b Fr(A)e Fu(is)300 4178 y(de\014ned)e(as)746 4286 y Fi(Z)801
4511 y Fo(A)875 4421 y Fr(f)11 b(d\026)26 b Fu(=)i(sup)q
Fq(f)1371 4286 y Fi(Z)1426 4511 y Fo(A)1500 4421 y Fr(sd\026)f
Fq(j)g Fu(0)g Fq(\024)i Fr(s)e Fq(\024)h Fr(f)5 b(;)45
b(s)28 b Fu(are)k(simple)f(functions)p Fq(g)p Fr(:)p
Black 387 w Fu(\(A.5\))p Black 300 4700 a(If)i Fr(A)27
b Fu(=)h Fr(X)8 b Fu(,)32 b(then)972 4619 y Fi(R)1020
4734 y Fo(X)1103 4700 y Fr(f)11 b(d\026)32 b Fu(is)g(simply)f(called)h
(the)h(Leb)s(esgue)h(in)m(tegral)d(of)h Fr(f)11 b Fu(.)446
4861 y(Giv)m(en)33 b(a)f(real)g(function)g Fr(f)11 b
Fu(,)32 b(let)1152 5082 y Fr(f)1211 5040 y Fp(+)1298
5082 y Fu(=)27 b(max)p Fq(f)p Fr(f)5 b(;)17 b Fu(0)p
Fq(g)27 b Fu(and)h Fr(f)2100 5040 y Fl(\000)2186 5082
y Fu(=)g(max)o Fq(f\000)p Fr(f)5 b(;)17 b Fu(0)p Fq(g)p
Fr(:)p Black 794 w Fu(\(A.6\))p Black 300 5302 a Fr(f)359
5265 y Fp(+)457 5302 y Fu(and)39 b Fr(f)712 5265 y Fl(\000)810
5302 y Fu(are)g(called)f(the)h(p)s(ositiv)m(e)g(and)g(negativ)m(e)g
(parts)h(of)f Fr(f)11 b Fu(,)40 b(resp)s(ectiv)m(ely)-8
b(.)64 b(W)-8 b(e)40 b(ha)m(v)m(e)300 5422 y Fq(j)p Fr(f)11
b Fq(j)27 b Fu(=)g Fr(f)604 5386 y Fp(+)685 5422 y Fu(+)22
b Fr(f)842 5386 y Fl(\000)933 5422 y Fu(and)33 b Fr(f)39
b Fu(=)27 b Fr(f)1372 5386 y Fp(+)1453 5422 y Fq(\000)c
Fr(f)1612 5386 y Fl(\000)1670 5422 y Fu(.)p Black Black
eop
%%Page: 56 65
56 64 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33
b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(56)p Black Black 300
274 a Fj(De\014nition)34 b(A.10.)p Black 48 w Fu(Let)39
b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))38
b(b)s(e)h(a)f(measure)h(space,)i Fr(f)48 b Fu(:)38 b
Fr(X)45 b Fq(!)37 b Fr(R)j Fu(a)e(real)g(measurable)300
395 y(function,)32 b(and)h Fr(A)28 b Fq(2)g Fu(\006.)44
b(Then)33 b(the)g(Leb)s(esgue)h(in)m(tegral)d(of)h Fr(f)44
b Fu(o)m(v)m(er)33 b Fr(A)g Fu(is)f(de\014ned)i(b)m(y)1356
503 y Fi(Z)1411 728 y Fo(A)1485 638 y Fr(f)11 b(d\026)27
b Fu(=)1784 503 y Fi(Z)1839 728 y Fo(A)1913 638 y Fr(f)1972
597 y Fp(+)2031 638 y Fr(d\026)21 b Fq(\000)2262 503
y Fi(Z)2317 728 y Fo(A)2391 638 y Fr(f)2450 597 y Fl(\000)2509
638 y Fr(d\026)p Black 996 w Fu(\(A.7\))p Black 300 897
a(if)31 b(at)i(least)f(one)h(of)f(the)h(terms)1466 817
y Fi(R)1513 932 y Fo(A)1587 897 y Fr(f)1646 861 y Fp(+)1705
897 y Fr(d\026)f Fu(and)2036 817 y Fi(R)2083 932 y Fo(A)2157
897 y Fr(f)2216 861 y Fl(\000)2275 897 y Fr(d\026)g Fu(is)g(\014nite.)p
Black 300 1051 a Fj(Pr)-5 b(op)g(osition)34 b(A.1.)p
Black 49 w Fu(Supp)s(ose)e(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))31 b(is)g(a)g(measure)h(space)h(and)e
Fr(f)42 b Fu(and)32 b Fr(g)i Fu(are)e(measurable)300
1171 y(functions)h(on)f Fr(X)8 b Fu(.)446 1291 y(\(i\))32
b(If)g Fr(g)k Fu(is)c(in)m(tegrable,)g(and)h Fq(j)p Fr(f)11
b Fq(j)26 b(\024)i Fr(g)t Fu(,)k(then)i Fr(f)43 b Fu(is)32
b(in)m(tegrable)f(and)1568 1540 y Fq(j)1613 1405 y Fi(Z)1667
1630 y Fo(X)1751 1540 y Fr(f)11 b(d\026)p Fq(j)27 b(\024)2080
1405 y Fi(Z)2135 1630 y Fo(X)2219 1540 y Fr(g)t(d\026:)p
Black 1208 w Fu(\(A.8\))p Black 446 1799 a(\(ii\))609
1719 y Fi(R)656 1834 y Fo(X)740 1799 y Fq(j)p Fr(f)11
b Fq(j)p Fr(d\026)26 b Fu(=)i(0)k(if)f(and)i(only)f(if)f
Fr(f)39 b Fu(=)27 b(0)33 b(a.e..)446 1920 y(\(iii\))23
b(If)i Fr(f)35 b Fu(and)26 b Fr(g)i Fu(are)d(in)m(tegrable)f(and)h
Fr(\013)h Fu(and)f Fr(\014)31 b Fu(are)25 b(n)m(um)m(b)s(ers,)j(then)d
Fr(\013)q(f)18 b Fu(+)7 b Fr(\014)f(g)27 b Fu(is)e(in)m(tegrable)300
2040 y(and)1136 2128 y Fi(Z)1191 2354 y Fo(X)1259 2264
y Fu(\()p Fr(\013)q(f)32 b Fu(+)22 b Fr(\014)6 b(g)t
Fu(\))p Fr(d\026)26 b Fu(=)i Fr(\013)2007 2128 y Fi(Z)2062
2354 y Fo(X)2146 2264 y Fr(f)11 b(d\026)22 b Fu(+)g Fr(\014)2512
2128 y Fi(Z)2567 2354 y Fo(X)2651 2264 y Fr(g)t(d\026:)p
Black 776 w Fu(\(A.9\))p Black 446 2517 a(\(iv\))32 b(Supp)s(ose)i
Fr(f)43 b Fu(is)32 b(in)m(tegrable)g(and)g Fq(f)p Fr(A)1970
2532 y Fo(n)2017 2517 y Fq(g)h Fu(are)f(disjoin)m(t)g(measurable)g
(sets.)44 b(Then)1443 2672 y Fi(X)1494 2881 y Fo(n)1604
2631 y Fi(Z)1659 2856 y Fo(A)1712 2864 y Ff(n)1775 2766
y Fr(f)11 b(d\026)27 b Fu(=)2075 2631 y Fi(Z)2130 2856
y Fl([)2177 2864 y Ff(n)2219 2856 y Fo(A)2272 2864 y
Ff(n)2336 2766 y Fr(f)11 b(d\026:)p Black 1034 w Fu(\(A.10\))p
Black 446 3049 a(Measurable)39 b(functions)f(can)g(b)s(e)g(used)h(to)f
(construct)h(new)g(measures)g(on)f(a)g(measurable)300
3169 y(space,)c(as)f(the)g(follo)m(wing)c(theorem)k(indicates.)p
Black 300 3323 a Fj(The)-5 b(or)g(em)34 b(A.1.)p Black
49 w Fu(Supp)s(ose)f Fr(f)39 b Fu(:)27 b Fr(X)36 b Fq(!)27
b Fu([0)p Fr(;)17 b Fq(1)p Fu(\))32 b(is)g(measurable,)g(and)1464
3572 y Fr(\026)1523 3587 y Fo(f)1568 3572 y Fu(\()p Fr(A)p
Fu(\))c(=)1849 3436 y Fi(Z)1904 3662 y Fo(A)1978 3572
y Fr(f)11 b(d\026;)43 b(A)28 b Fq(2)g Fu(\006)p Fr(:)p
Black 1057 w Fu(\(A.11\))p Black 300 3819 a(Then)34 b
Fr(\026)614 3834 y Fo(f)691 3819 y Fu(is)e(a)h(measure)g(on)f(\006,)h
(and)1570 3936 y Fi(Z)1626 4161 y Fo(X)1710 4071 y Fr(g)t(d\026)1871
4086 y Fo(f)1942 4071 y Fu(=)2046 3936 y Fi(Z)2101 4161
y Fo(X)2185 4071 y Fr(g)t(f)11 b(d\026)p Black 1161 w
Fu(\(A.12\))p Black 300 4325 a(for)32 b(ev)m(ery)i(measurable)e
Fr(g)f Fu(:)d Fr(X)36 b Fq(!)27 b Fu([0)p Fr(;)17 b Fq(1)p
Fu(\).)446 4478 y(The)45 b(measure)e Fr(\026)1107 4493
y Fo(f)1196 4478 y Fu(satis\014es)h(that)f Fr(\026)1847
4493 y Fo(f)1892 4478 y Fu(\()p Fr(A)p Fu(\))j(=)g(0)d(whenev)m(er)j
Fr(\026)p Fu(\()p Fr(A)p Fu(\))g(=)g(0.)75 b(Moreo)m(v)m(er,)48
b Fr(\026)3795 4493 y Fo(f)300 4599 y Fu(is)39 b(a)f(\014nite)h
(measure)g(if)f(and)h(only)g(if)f Fr(f)50 b Fu(is)38
b(in)m(tegrable.)62 b(The)40 b(follo)m(wing)c(theorem)j(is)g(a)f(v)m
(ery)300 4719 y(imp)s(ortan)m(t)d(con)m(v)m(erse)k(of)e(the)g(ab)s(o)m
(v)m(e)h(theorem,)g(whic)m(h)f(is)g(of)f(fundamen)m(tal)g(imp)s
(ortance)f(for)300 4839 y(the)e(dev)m(elopmen)m(t)g(of)f(F)-8
b(rob)s(enius-P)m(erron)33 b(op)s(erators.)p Black 300
4993 a Fj(De\014nition)h(A.11.)p Black 48 w Fu(Let)h
Fr(\026)f Fu(and)g Fr(\027)41 b Fu(b)s(e)35 b(t)m(w)m(o)g(measures)g
(on)f(a)g Fr(\033)t Fu(-algebra)f(\006.)49 b(W)-8 b(e)35
b(sa)m(y)g(that)g Fr(\027)40 b Fu(is)300 5113 y(absolutely)32
b(con)m(tin)m(uous)h(with)f(resp)s(ect)i(to)e Fr(\026)p
Fu(,)h(and)f(write)1853 5314 y Fr(\027)i Fq(\034)27 b
Fr(\026)p Black 1445 w Fu(\(A.13\))p Black 300 5515 a(if)k
Fr(\027)6 b Fu(\()p Fr(A)p Fu(\))29 b(=)e(0)32 b(for)g(ev)m(ery)j
Fr(A)28 b Fq(2)g Fu(\006)33 b(for)f(whic)m(h)h Fr(\026)p
Fu(\()p Fr(A)p Fu(\))27 b(=)h(0.)p Black Black eop
%%Page: 57 66
57 65 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33
b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(57)p Black Black 300
274 a Fj(The)-5 b(or)g(em)34 b(A.2.)p Black 49 w Fm(Radon-Nik)m(o)s
(dym)54 b(Theorem)47 b Fu(Let)h(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))47 b(b)s(e)h(a)f Fr(\033)t Fu(-\014nite)g(measure)
300 395 y(space)37 b(and)f(let)f Fr(\027)42 b Fu(b)s(e)37
b(a)e(\014nite)h(measure)g(whic)m(h)g(is)g(absolutely)f(con)m(tin)m
(uous)i(with)e(resp)s(ect)i(to)300 515 y Fr(\026)p Fu(,)32
b(then)i(there)f(is)f(a)g Fr(\026)p Fu(-in)m(tegrable)f(function)h
Fr(f)38 b Fu(:)28 b Fr(X)36 b Fq(!)27 b Fr(R)33 b Fu(suc)m(h)i(that)
1344 778 y Fr(\027)6 b Fu(\()p Fr(A)p Fu(\))28 b(=)1678
642 y Fi(Z)1734 868 y Fo(A)1807 778 y Fr(f)11 b(d\026)55
b Fu(for)32 b(all)53 b Fr(A)28 b Fq(2)g Fu(\006)p Fr(:)p
Black 936 w Fu(\(A.14\))p Black 300 1045 a Fr(f)46 b
Fu(is)35 b(called)f(the)h(Radon-Nik)m(o)s(dym)f(deriv)-5
b(ativ)m(e)35 b(of)f Fr(\027)42 b Fu(with)35 b(resp)s(ect)h(to)f
Fr(\026)g Fu(and)g(is)g(sometimes)300 1165 y(written)d(as)h
Fr(f)39 b Fu(=)27 b Fr(d\027)6 b(=d\026)p Fu(.)446 1327
y(W)-8 b(e)33 b(no)m(w)h(in)m(tro)s(duce)e(the)h(concept)h(of)e(an)g
Fr(L)2089 1291 y Fo(p)2129 1327 y Fu(-space.)p Black
300 1489 a Fj(De\014nition)i(A.12.)p Black 48 w Fu(Let)28
b(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p Fu(\))28
b(b)s(e)g(a)g(measure)g(space)h(and)f Fr(p)g Fu(a)f(real)g(n)m(um)m(b)s
(er,)i(1)f Fq(\024)g Fr(p)g(<)f Fq(1)p Fu(.)300 1610
y(The)34 b(family)c(of)i(all)e(measurable)i(functions)h
Fr(f)38 b Fu(:)28 b Fr(X)35 b Fq(!)28 b Fr(R)33 b Fu(satisfying)1690
1737 y Fi(Z)1746 1962 y Fo(X)1829 1872 y Fq(j)p Fr(f)11
b Fq(j)p Fr(d\026)27 b(<)g Fq(1)p Black 1282 w Fu(\(A.15\))p
Black 300 2145 a(is)41 b(denoted)i(b)m(y)g Fr(L)996 2109
y Fo(p)1036 2145 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\).)72 b(The)43 b(space)g Fr(L)2057 2109 y Fl(1)2132
2145 y Fu(\()p Fr(X)r(;)17 b Fu(\006)p Fr(;)g(\026)p
Fu(\))42 b(is)f(de\014ned)i(as)g(the)f(family)e(of)h(all)300
2265 y(b)s(ounded)34 b Fr(\026)p Fu(-a.e.)43 b(measurable)32
b(functions.)45 b(Here)33 b Fr(f)2228 2280 y Fp(1)2268
2265 y Fr(;)44 b(f)2387 2280 y Fp(2)2455 2265 y Fq(2)28
b Fr(L)2615 2229 y Fo(p)2655 2265 y Fu(\()p Fr(X)r(;)17
b Fu(\006)p Fr(;)g(\026)p Fu(\))33 b(are)g(considered)h(the)300
2386 y(same)e(if)g Fr(f)682 2401 y Fp(1)721 2386 y Fu(\()p
Fr(x)p Fu(\))c(=)g Fr(f)1032 2401 y Fp(2)1071 2386 y
Fu(\()p Fr(x)p Fu(\))p Fr(;)45 b(x)28 b Fq(2)g Fr(X)41
b Fu(a.e.)i(for)32 b Fr(p)c Fq(2)g Fu([1)p Fr(;)17 b
Fq(1)p Fu(].)446 2566 y(The)31 b(n)m(um)m(b)s(er)f Fq(k)p
Fr(f)11 b Fq(k)1155 2581 y Fo(p)1221 2566 y Fu(=)28 b(\()1363
2486 y Fi(R)1410 2601 y Fo(X)1494 2566 y Fq(j)p Fr(f)11
b Fq(j)1609 2530 y Fo(p)1648 2566 y Fr(d\026)p Fu(\))1807
2493 y Fg(1)p 1805 2505 33 3 v 1805 2546 a Ff(p)1880
2566 y Fu(is)29 b(called)g(the)h Fr(L)2480 2530 y Fo(p)2520
2566 y Fu(-norm)e(of)h Fr(f)38 b Fq(2)28 b Fr(L)3158
2530 y Fo(p)3228 2566 y Fu(for)h Fr(p)e(<)h Fq(1)h Fu(and)300
2687 y(the)f(n)m(um)m(b)s(er)g Fq(k)p Fr(g)t Fq(k)964
2702 y Fl(1)1066 2687 y Fu(=)f(ess)18 b(sup)1453 2710
y Fo(x)p Fl(2)p Fo(X)1624 2687 y Fq(j)p Fr(g)t Fu(\()p
Fr(x)p Fu(\))p Fq(j)27 b Fu(is)g(referred)i(to)e(as)h(the)g
Fr(L)2796 2650 y Fl(1)2871 2687 y Fu(-norm)f(of)g Fr(g)k
Fq(2)d Fr(L)3498 2650 y Fl(1)3573 2687 y Fu(.)42 b Fq(k)p
Fr(f)11 b Fq(k)3801 2702 y Fp(1)300 2807 y Fu(is)32 b(often)h(written)f
(as)h Fq(k)p Fr(f)11 b Fq(k)32 b Fu(or)g Fq(k)p Fr(f)11
b Fq(k)1575 2822 y Fo(\026)1621 2807 y Fu(.)43 b(These)35
b(norms)d(satisfy)g(the)h(three)h(axioms)d(of)h(a)h(norm:)446
2927 y(\(i\))f Fq(k)p Fr(f)11 b Fq(k)741 2942 y Fo(p)808
2927 y Fu(=)27 b(0)32 b(if)g(and)g(only)h(if)e Fr(f)38
b Fu(=)28 b(0,)k(or)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))28
b(=)g(0)k(a.e..)446 3048 y(\(ii\))f Fq(k)p Fr(\013)q(f)11
b Fq(k)831 3063 y Fo(p)897 3048 y Fu(=)28 b Fq(j)p Fr(\013)q
Fq(jk)p Fr(f)11 b Fq(k)1279 3063 y Fo(p)1345 3048 y Fu(for)27
b Fr(f)38 b Fq(2)28 b Fr(L)1735 3012 y Fo(p)1775 3048
y Fr(;)45 b(\013)28 b Fq(2)g Fr(C)7 b Fu(.)446 3168 y(\(iii\))30
b Fq(k)p Fr(f)j Fu(+)22 b Fr(g)t Fq(k)966 3183 y Fo(p)1032
3168 y Fq(\024)28 b(k)p Fr(f)11 b Fq(k)1296 3183 y Fo(p)1357
3168 y Fu(+)22 b Fq(k)p Fr(g)t Fq(k)1606 3183 y Fo(p)1673
3168 y Fu(for)27 b Fr(f)5 b(;)17 b(g)31 b Fq(2)d Fr(L)2152
3132 y Fo(p)2225 3168 y Fu(\(triangle)i(inequalit)m(y\).)446
3289 y(Under)g(the)f(usual)f(algebraic)g(op)s(erations)f(and)i(the)h
(ab)s(o)m(v)m(e)f(norm,)g Fr(L)3000 3252 y Fo(p)3069
3289 y Fu(is)f(a)g(Banac)m(h)i(space,)300 3409 y(that)40
b(is,)j(a)d(complete)g(normed)g(space.)69 b(Moreo)m(v)m(er,)44
b(under)e(the)f(natural)e(ordering)h(relation)300 3529
y(among)31 b(functions,)i Fr(L)1128 3493 y Fo(p)1201
3529 y Fu(b)s(ecomes)g(a)f(Banac)m(h)h(lattice.)446 3650
y(The)44 b(dual)d(of)h(a)g(Banac)m(h)h(space,)j(b)m(y)d(de\014nition,)h
(is)e(the)h(space)g(of)f(all)e(b)s(ounded)k(linear)300
3770 y(functionals)31 b(on)i(it.)42 b(The)34 b(follo)m(wing)c(c)m
(haracterizes)k(the)f(dual)e(of)h Fr(L)2819 3734 y Fo(p)2859
3770 y Fu(.)p Black 300 3932 a Fj(The)-5 b(or)g(em)34
b(A.3.)p Black 49 w Fu(Let)46 b(\()p Fr(X)r(;)17 b Fu(\006)p
Fr(;)g(\026)p Fu(\))45 b(b)s(e)h(a)g(measure)g(space)h(and)f(1)k
Fq(\024)g Fr(p)h(<)f Fq(1)p Fu(.)83 b(The)46 b(dual)f(of)300
4052 y Fr(L)366 4016 y Fo(p)406 4052 y Fu(\()p Fr(X)r(;)17
b Fu(\006)p Fr(;)g(\026)p Fu(\))32 b(is)g Fr(L)978 4016
y Fo(p)1014 3993 y Fh(0)1041 4052 y Fu(\()p Fr(X)r(;)17
b Fu(\006)p Fr(;)g(\026)p Fu(\),)32 b(where)i(1)p Fr(=p)22
b Fu(+)g(1)p Fr(=p)2172 4016 y Fl(0)2222 4052 y Fu(=)28
b(1)k(for)g Fr(p)c(>)f Fu(1)33 b(and)f Fr(p)3056 4016
y Fl(0)3107 4052 y Fu(=)c Fq(1)k Fu(if)f Fr(p)d Fu(=)f(1.)446
4214 y(The)34 b(dual)e(relation)e(b)s(et)m(w)m(een)35
b Fr(f)j Fq(2)28 b Fr(L)1844 4178 y Fo(p)1917 4214 y
Fu(and)33 b Fr(g)e Fq(2)d Fr(L)2345 4178 y Fo(p)2381
4155 y Fh(0)2440 4214 y Fu(is)k(giv)m(en)g(b)m(y)1579
4477 y Fr(<)c(f)5 b(;)17 b(g)31 b(>)p Fu(=)2037 4342
y Fi(Z)2092 4567 y Fo(X)2176 4477 y Fr(f)11 b(g)t(d\026)p
Black 1170 w Fu(\(A.16\))p Black 300 4744 a(whic)m(h)33
b(satis\014es)g(the)g(Cauc)m(h)m(y-H\177)-49 b(older)34
b(inequalit)m(y)1469 4964 y Fq(j)28 b Fr(<)f(f)5 b(;)17
b(g)31 b(>)d Fq(j)f(\024)h(k)p Fr(f)11 b Fq(k)2226 4979
y Fo(p)2265 4964 y Fq(k)p Fr(g)t Fq(k)2416 4979 y Fo(p)2452
4960 y Fh(0)2477 4964 y Fr(:)p Black 1062 w Fu(\(A.17\))p
Black 300 5184 a(In)35 b(ergo)s(dic)f(theory)-8 b(,)36
b(w)m(e)g(often)f(use)h(v)-5 b(arious)34 b(notions)h(of)f(the)h(con)m
(v)m(ergence)j(for)c(sequences)k(of)300 5305 y(functions.)p
Black Black eop
%%Page: 58 67
58 66 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33
b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(58)p Black Black 300
274 a Fj(De\014nition)34 b(A.13.)p Black 48 w Fu(A)i(sequence)i(of)d
(functions)h Fq(f)p Fr(f)2192 289 y Fo(n)2239 274 y Fq(g)c(\032)h
Fr(L)2497 238 y Fo(p)2537 274 y Fr(;)50 b Fu(1)32 b Fq(\024)i
Fr(p)e(<)h Fq(1)i Fu(is)g(w)m(eekly)i(Ces\023)-49 b(aro)300
395 y(con)m(v)m(ergen)m(t)35 b(to)d Fr(f)38 b Fq(2)28
b Fr(L)1153 358 y Fo(p)1226 395 y Fu(if)987 691 y(lim)963
751 y Fo(n)p Fl(!1)1178 623 y Fu(1)p 1174 668 59 4 v
1174 759 a Fr(n)1264 566 y Fo(n)p Fl(\000)p Fp(1)1258
596 y Fi(X)1273 806 y Fo(i)p Fp(=0)1430 691 y Fr(<)g(f)1582
706 y Fo(i)1610 691 y Fr(;)17 b(g)30 b(>)e Fu(=)g Fr(<)f(f)5
b(;)17 b(g)31 b(>)83 b Fu(for)32 b(all)53 b Fr(g)31 b
Fq(2)d Fr(L)2921 650 y Fo(p)2957 626 y Fh(0)2984 691
y Fr(;)p Black 555 w Fu(\(A.18\))p Black 300 985 a(and)33
b(is)f(strongly)g(Ces\023)-49 b(aro)33 b(con)m(v)m(ergen)m(t)i(to)d
Fr(f)39 b Fq(2)28 b Fr(L)2139 949 y Fo(p)2211 985 y Fu(if)1482
1281 y(lim)1457 1341 y Fo(n)p Fl(!1)1658 1281 y Fq(k)1723
1214 y Fu(1)p 1718 1258 V 1718 1350 a Fr(n)1808 1157
y Fo(n)p Fl(\000)p Fp(1)1803 1187 y Fi(X)1817 1396 y
Fo(i)p Fp(=0)1963 1281 y Fr(f)2011 1296 y Fo(i)2062 1281
y Fq(\000)22 b Fr(f)11 b Fq(k)2270 1296 y Fo(p)2337 1281
y Fu(=)28 b(0)p Fr(:)p Black 1049 w Fu(\(A.19\))p Black
Black 300 1581 a Fj(De\014nition)34 b(A.14.)p Black 48
w Fu(A)h(sequence)i(of)d(functions)h Fq(f)p Fr(f)2188
1596 y Fo(n)2235 1581 y Fq(g)c(\032)g Fr(L)2490 1545
y Fo(p)2530 1581 y Fr(;)48 b Fu(1)31 b Fq(\024)g Fr(p)h(<)e
Fq(1)35 b Fu(is)f(w)m(eekly)i(con)m(v)m(er-)300 1701
y(gen)m(t)d(to)f Fr(f)39 b Fq(2)28 b Fr(L)880 1665 y
Fo(p)952 1701 y Fu(if)1106 1913 y(lim)1081 1973 y Fo(n)p
Fl(!1)1293 1913 y Fr(<)g(f)1445 1928 y Fo(n)1492 1913
y Fr(;)17 b(g)30 b(>)e Fu(=)f Fr(<)h(f)5 b(;)17 b(g)31
b(>)83 b Fu(for)32 b(all)53 b Fr(g)31 b Fq(2)d Fr(L)2803
1872 y Fo(p)2839 1848 y Fh(0)2866 1913 y Fr(;)p Black
673 w Fu(\(A.20\))p Black 300 2151 a(and)33 b(is)f(strongly)g(con)m(v)m
(ergen)m(t)j(to)d Fr(f)38 b Fq(2)28 b Fr(L)1818 2115
y Fo(p)1891 2151 y Fu(if)1600 2363 y(lim)1576 2423 y
Fo(n)p Fl(!1)1776 2363 y Fq(k)p Fr(f)1874 2378 y Fo(n)1943
2363 y Fq(\000)23 b Fr(f)11 b Fq(k)2152 2378 y Fo(p)2219
2363 y Fu(=)27 b(0)p Fr(:)p Black 1168 w Fu(\(A.21\))p
Black Black 300 2601 a Fj(R)-5 b(emark)34 b(A.2.)p Black
49 w Fu(F)-8 b(rom)42 b(the)j(Cauc)m(h)m(y-H\177)-49
b(older)44 b(inequalit)m(y)-8 b(,)46 b(the)e(strong)g(con)m(v)m
(ergence)i(implies)300 2722 y(the)35 b(w)m(eek)h(con)m(v)m(ergence.)50
b(The)36 b(con)m(v)m(erse)g(is)e(not)g(true,)h(as)f(giv)m(en)g(b)m(y)h
(the)g(classic)f(example)f(of)300 2842 y Fr(f)348 2857
y Fo(n)395 2842 y Fu(\()p Fr(x)p Fu(\))28 b(=)g(sin)o(\()p
Fr(nx)p Fu(\))33 b(in)f Fr(L)1179 2806 y Fp(2)1219 2842
y Fu(\(0)p Fr(;)17 b Fu(1\).)446 3001 y(No)m(w)39 b(w)m(e)f(review)h
(some)e(concepts)i(and)f(results)g(on)g(the)g(appro)m(ximation)d(order)
j(of)f(a)h(se-)300 3121 y(quence)25 b(of)e(p)s(ositiv)m(e)f(linear)g
(op)s(erators)g(of)h(\014nite)g(rank)g(to)g(appro)m(ximate)f(the)i
(iden)m(tit)m(y)f(op)s(erator)300 3241 y Fr(I)45 b Fu(from)35
b([10].)56 b(Let)38 b Fr(L)d Fu(:)g Fr(X)43 b Fq(!)34
b Fr(X)45 b Fu(b)s(e)37 b(a)g(linear)e(op)s(erator)h(on)h(a)g(Banac)m
(h)g(lattice)f Fr(X)8 b Fu(.)56 b(W)-8 b(e)37 b(sa)m(y)300
3362 y Fr(L)g Fu(is)e(p)s(ositiv)m(e)h(if)f Fr(L)h Fu(maps)g(a)g
(nonnegativ)m(e)h(elemen)m(t)f Fr(x)g Fu(\(i.e.,)h Fr(x)d
Fq(\025)g Fu(0)i(under)h(the)g(ordering)e(of)300 3482
y Fr(X)8 b Fu(\))38 b(to)g(a)g(nonnegativ)m(e)g(elemen)m(t)g
Fr(Lx)p Fu(.)61 b(It)39 b(is)e(w)m(ell)h(kno)m(wn)h(that)f(a)g(p)s
(ositiv)m(e)g(linear)f(op)s(erator)300 3602 y(is)42 b(con)m(tin)m
(uous.)75 b(Let)43 b Fr(C)1227 3566 y Fo(k)1269 3602
y Fu([0)p Fr(;)17 b Fu(1])43 b(b)s(e)g(the)g(Banac)m(h)g(space)h(of)e
(real)g(functions)h(on)f([0)p Fr(;)17 b Fu(1])42 b(whic)m(h)300
3723 y(deriv)-5 b(ativ)m(es)35 b(of)f(order)g(up)h(to)f
Fr(k)k Fu(are)c(con)m(tin)m(uous.)50 b(The)36 b(norm)d(of)h
Fr(f)42 b Fq(2)31 b Fr(C)3042 3687 y Fo(k)3085 3723 y
Fu([0)p Fr(;)17 b Fu(1])34 b(is)g(de\014ned)i(as)300
3843 y Fq(k)p Fr(f)11 b Fq(k)459 3858 y Fo(k)r(;)p Fl(1)629
3843 y Fu(=)37 b(max)o Fq(fj)p Fr(f)1060 3807 y Fp(\()p
Fo(i)p Fp(\))1143 3843 y Fu(\()p Fr(x)p Fu(\))p Fq(j)g
Fu(:)g Fr(x)h Fq(2)g Fu([0)p Fr(;)17 b Fu(1])p Fr(;)53
b(i)38 b Fu(=)f(0)p Fr(;)17 b Fu(1)p Fr(;)g(:)g(:)g(:)32
b(;)17 b(k)s Fq(g)p Fu(.)60 b(W)-8 b(e)39 b(write)e Fq(k)h(k)3194
3858 y Fl(1)3306 3843 y Fu(=)f Fq(k)g(k)3556 3858 y Fp(0)p
Fo(;)p Fl(1)3723 3843 y Fu(for)300 3964 y Fr(C)7 b Fu([0)p
Fr(;)17 b Fu(1])27 b Fq(\021)h Fr(C)782 3927 y Fp(0)822
3964 y Fu([0)p Fr(;)17 b Fu(1].)446 4084 y(Let)29 b Fr(L)683
4099 y Fo(n)758 4084 y Fu(:)f Fr(C)7 b Fu([0)p Fr(;)17
b Fu(1])27 b Fq(!)g Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])28
b(b)s(e)h(a)g(sequence)i(of)e(p)s(ositiv)m(e)f(linear)f(op)s(erators)h
(that)h(appro)m(x-)300 4204 y(imate)34 b(the)i(iden)m(tit)m(y)g(op)s
(erator)f Fr(I)41 b Fu(:)33 b Fr(C)7 b Fu([0)p Fr(;)17
b Fu(1])33 b Fq(!)f Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1].)53
b(The)36 b(follo)m(wing)d(Bohman-Koro)m(vkin)300 4325
y(Theorem)43 b(is)f(a)h(classical)e(result)i(on)f(the)i(con)m(v)m
(ergence)h(of)d(the)i(sequence)h Fr(L)3242 4340 y Fo(n)3332
4325 y Fu(to)e Fr(I)8 b Fu(,)45 b(whose)300 4445 y(pro)s(of)32
b(is)g(referred)h(to)f([10].)p Black 300 4603 a Fj(The)-5
b(or)g(em)34 b(A.4.)p Black 49 w Fu(A)e(necessary)j(and)e(su\016cien)m
(t)g(condition)f(that)1351 4815 y(lim)1326 4875 y Fo(n)p
Fl(!1)1527 4815 y Fq(k)p Fr(L)1643 4830 y Fo(n)1690 4815
y Fr(f)h Fq(\000)23 b Fr(f)11 b Fq(k)1980 4830 y Fl(1)2082
4815 y Fu(=)27 b(0)p Fr(;)44 b Fq(8)p Fr(f)39 b Fq(2)28
b Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1])300 5054 y(is)32 b(that)1377
5265 y(lim)1353 5325 y Fo(n)p Fl(!1)1554 5265 y Fq(k)p
Fr(L)1670 5280 y Fo(n)1717 5265 y Fr(e)1762 5280 y Fo(i)1812
5265 y Fq(\000)23 b Fr(e)1957 5280 y Fo(i)1986 5265 y
Fq(k)2036 5280 y Fl(1)2138 5265 y Fu(=)k(0)p Fr(;)44
b(i)28 b Fu(=)g(0)p Fr(;)17 b Fu(1)p Fr(;)g Fu(2)p Fr(;)300
5515 y Fu(where)34 b Fr(e)627 5530 y Fo(i)655 5515 y
Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(x)973 5478 y Fo(i)1001
5515 y Fu(.)p Black Black eop
%%Page: 59 68
59 67 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33
b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(59)p Black 446 274
a(It)40 b(follo)m(ws)f(from)f(this)i(theorem)f(that)h(to)f(c)m(hec)m(k)
k(the)d(uniform)e(con)m(v)m(ergence)k(of)e Fr(L)3603
289 y Fo(n)3650 274 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))300
395 y(to)43 b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))44 b(on)f([0)p
Fr(;)17 b Fu(1])43 b(for)h(all)d Fr(f)57 b Fq(2)47 b
Fr(C)7 b Fu([0)p Fr(;)17 b Fu(1],)46 b(it)d(is)g(enough)h(to)f(do)h(so)
g(for)f(the)h(three)g(simplest)300 515 y(monomials)36
b(1)p Fr(;)17 b(x)p Fu(,)42 b(and)d Fr(x)1263 479 y Fp(2)1303
515 y Fu(.)65 b(The)40 b(next)h(lemmas)d(giv)m(e)h(more)g(quan)m
(titativ)m(e)h(information)c(on)300 635 y(the)24 b(con)m(v)m(ergence)i
(of)d Fr(L)1157 650 y Fo(n)1204 635 y Fr(f)34 b Fu(to)24
b Fr(f)11 b Fu(.)40 b(F)-8 b(or)22 b(this)h(purp)s(ose)i(let)d
Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fq(\001)p Fu(\))22
b(b)s(e)i(the)g Fj(mo)-5 b(dulus)23 b Fu(of)g(con)m(tin)m(uit)m(y)300
756 y(of)32 b Fr(f)43 b Fu(de\014ned)34 b(b)m(y)869 976
y Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))26
b(=)i(max)o Fq(fj)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22
b Fq(\000)g Fr(f)11 b Fu(\()p Fr(y)t Fu(\))p Fq(j)27
b Fu(:)g Fr(x;)45 b(y)31 b Fq(2)d Fu([0)p Fr(;)17 b Fu(1])p
Fr(;)44 b Fq(j)p Fr(x)22 b Fq(\000)h Fr(y)t Fq(j)j(\024)i
Fr(r)s Fq(g)p Fr(:)446 1196 y Fu(W)-8 b(e)33 b(will)e(use)i(the)g
(follo)m(wing)d(fundamen)m(tal)i(prop)s(erties)g(\(see)i([10)o(]\))f
(of)f Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\):)446
1316 y(\(i\))32 b Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b
Fr(r)s Fu(\))31 b(is)h(non-decreasing)h(and)f(con)m(tin)m(uous)h(with)g
(resp)s(ect)h(to)e Fr(r)e Fq(\025)e Fu(0.)446 1437 y(\(ii\))j
Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(\025r)s Fu(\))26
b Fq(\024)i Fu(\()p Fr(\025)22 b Fu(+)g(1\))p Fr(w)s
Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))31 b(for)h Fr(\025;)17
b(r)30 b(>)d Fu(0.)446 1557 y(In)34 b(the)g(remainder)f(of)g(the)i(pap)
s(er)e(w)m(e)i(often)f(write)f Fr(L)2465 1572 y Fo(n)2513
1557 y Fr(f)11 b Fu(\()p Fr(x)p Fu(\))33 b(as)h Fr(L)2923
1572 y Fo(n)2970 1557 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\).)48
b(Although)33 b(the)300 1677 y(pro)s(of)f(of)g(the)i(next)g(lemma)c(is)
j(standard)g(and)g(can)g(b)s(e)g(found)g(in)f([10],)h(w)m(e)h(include)e
(it)g(for)h(the)300 1798 y(completeness)g(purp)s(ose.)p
Black 300 1960 a Fj(L)-5 b(emma)34 b(A.1.)p Black 49
w Fu(Let)29 b Fr(f)38 b Fq(2)28 b Fr(C)7 b Fu([0)p Fr(;)17
b Fu(1])28 b(and)h(let)e Fr(x)i Fq(2)f Fu([0)p Fr(;)17
b Fu(1])28 b(b)s(e)g(\014xed.)44 b(Denote)28 b(b)m(y)i
Fr(\013)3177 1975 y Fo(n)3224 1960 y Fu(\()p Fr(x)p Fu(\))e(=)f(\()p
Fr(L)3590 1975 y Fo(n)3638 1960 y Fu(\(\()p Fr(t)14 b
Fq(\000)300 2080 y Fr(x)p Fu(\))393 2044 y Fp(2)433 2080
y Fr(;)j(x)p Fu(\)\))608 2044 y Fp(1)p Fo(=)p Fp(2)718
2080 y Fu(.)43 b(Then)771 2300 y Fq(j)p Fr(L)865 2315
y Fo(n)912 2300 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))22
b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83
b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p
Fr(e)2042 2315 y Fp(0)2081 2300 y Fu(\()p Fr(x)p Fu(\))22
b Fq(\000)h Fr(L)2400 2315 y Fo(n)2447 2300 y Fu(\()p
Fr(e)2530 2315 y Fp(0)2570 2300 y Fr(;)17 b(x)p Fu(\))p
Fq(j)1563 2445 y Fu(+)84 b(\()p Fr(L)1827 2460 y Fo(n)1874
2445 y Fu(\()p Fr(e)1957 2460 y Fp(0)1997 2445 y Fr(;)17
b(x)p Fu(\))22 b(+)g(\()p Fr(L)2358 2460 y Fo(n)2406
2445 y Fu(\()p Fr(e)2489 2460 y Fp(0)2528 2445 y Fr(;)17
b(x)p Fu(\)\))2703 2404 y Fp(1)p Fo(=)p Fp(2)2813 2445
y Fu(\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(\013)3127
2460 y Fo(n)3173 2445 y Fu(\()p Fr(x)p Fu(\)\))p Fr(:)p
Black 197 w Fu(\(A.22\))p Black 300 2665 a(Moreo)m(v)m(er,)34
b(if)e(in)f(addition)g Fr(f)39 b Fq(2)28 b Fr(C)1601
2629 y Fp(1)1640 2665 y Fu([0)p Fr(;)17 b Fu(1],)32 b(then)578
2885 y Fq(j)p Fr(L)672 2900 y Fo(n)719 2885 y Fu(\()p
Fr(f)5 b(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p
Fr(x)p Fu(\))p Fq(j)83 b(\024)g(j)p Fr(f)11 b Fu(\()p
Fr(x)p Fu(\))p Fq(jj)p Fr(e)1849 2900 y Fp(0)1888 2885
y Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(L)2207 2900
y Fo(n)2254 2885 y Fu(\()p Fr(e)2337 2900 y Fp(0)2377
2885 y Fr(;)17 b(x)p Fu(\))p Fq(j)22 b Fu(+)g Fq(j)p
Fr(f)2749 2844 y Fl(0)2771 2885 y Fu(\()p Fr(x)p Fu(\))p
Fq(jj)p Fr(L)3024 2900 y Fo(n)3071 2885 y Fu(\(\()p Fr(t)h
Fq(\000)f Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))p Fq(j)1370
3031 y Fu(+)84 b(\(1)22 b(+)g(\()p Fr(L)1841 3046 y Fo(n)1888
3031 y Fu(\()p Fr(e)1971 3046 y Fp(0)2011 3031 y Fr(;)17
b(x)p Fu(\)\))2186 2989 y Fp(1)p Fo(=)p Fp(2)2296 3031
y Fu(\))p Fr(\013)2396 3046 y Fo(n)2443 3031 y Fu(\()p
Fr(x)p Fu(\))p Fr(w)s Fu(\()p Fr(f)2744 2989 y Fl(0)2766
3031 y Fu(;)g Fr(\013)2872 3046 y Fo(n)2919 3031 y Fu(\()p
Fr(x)p Fu(\)\))p Fr(:)p Black 451 w Fu(\(A.23\))p Black
446 3251 a Fm(Pro)s(of.)44 b Fu(Let)32 b Fr(t)c Fq(2)g
Fu([0)p Fr(;)17 b Fu(1])32 b(and)h Fr(r)d(>)e(\013)1782
3266 y Fo(n)1829 3251 y Fu(\()p Fr(x)p Fu(\).)44 b(Prop)s(ert)m(y)33
b(\(ii\))e(of)h Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s
Fu(\))31 b(ab)s(o)m(v)m(e)i(giv)m(es)920 3471 y Fq(j)p
Fr(f)11 b Fu(\()p Fr(t)p Fu(\))22 b Fq(\000)h Fr(f)11
b Fu(\()p Fr(x)p Fu(\))p Fq(j)27 b(\024)h Fr(w)s Fu(\()p
Fr(f)11 b Fu(;)17 b Fq(j)p Fr(t)k Fq(\000)i Fr(x)p Fq(j)p
Fu(\))k Fq(\024)i Fu(\(1)21 b(+)h Fr(r)2495 3429 y Fl(\000)p
Fp(1)2589 3471 y Fq(j)p Fr(t)g Fq(\000)h Fr(x)p Fq(j)p
Fu(\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))p
Fr(:)300 3691 y Fu(Since)32 b Fr(L)620 3706 y Fo(n)667
3691 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))k Fq(\000)f
Fr(f)11 b Fu(\()p Fr(x)p Fu(\))28 b(=)g Fr(L)1401 3706
y Fo(n)1448 3691 y Fu(\()p Fr(f)j Fq(\000)21 b Fr(f)11
b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))j(+)g Fr(L)2172
3706 y Fo(n)2219 3691 y Fu(\()p Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))p Fr(;)17 b(x)p Fu(\))k Fq(\000)f Fr(f)11 b Fu(\()p
Fr(x)p Fu(\),)32 b(since)g Fr(L)3255 3706 y Fo(n)3334
3691 y Fu(is)f(a)h(p)s(ositiv)m(e)300 3811 y(linear)f(op)s(erator,)h
(and)h(since)g Fr(w)s Fu(\()p Fr(af)11 b Fu(;)17 b Fr(r)s
Fu(\))26 b(=)h Fq(j)p Fr(a)p Fq(j)p Fr(w)s Fu(\()p Fr(f)11
b Fu(;)17 b Fr(r)s Fu(\))31 b(for)h(an)m(y)h(constan)m(t)h
Fr(a)p Fu(,)754 4031 y Fq(j)p Fr(L)848 4046 y Fo(n)895
4031 y Fu(\()p Fr(f)5 b(;)17 b(x)p Fu(\))22 b Fq(\000)h
Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)83 b(\024)g(j)p
Fr(L)1800 4046 y Fo(n)1847 4031 y Fu(\()p Fr(f)33 b Fq(\000)23
b Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))p
Fq(j)22 b Fu(+)g Fq(j)p Fr(L)2635 4046 y Fo(n)2682 4031
y Fu(\()p Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p
Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p
Fq(j)1546 4176 y(\024)83 b Fr(L)1772 4191 y Fo(n)1820
4176 y Fu(\()p Fq(j)p Fr(f)32 b Fq(\000)23 b Fr(f)11
b Fu(\()p Fr(x)p Fu(\))p Fq(j)p Fr(;)17 b(x)p Fu(\))22
b(+)g Fq(j)p Fr(L)2635 4191 y Fo(n)2682 4176 y Fu(\()p
Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fr(;)17 b(x)p Fu(\))22
b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p Fu(\))p Fq(j)1546
4322 y(\024)83 b Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s
Fu(\)\()p Fr(L)2109 4337 y Fo(n)2155 4322 y Fu(\()p Fr(e)2238
4337 y Fp(0)2277 4322 y Fr(;)g(x)p Fu(\))23 b(+)f Fr(r)2582
4280 y Fl(\000)p Fp(1)2676 4322 y Fr(L)2742 4337 y Fo(n)2789
4322 y Fu(\()p Fq(j)p Fr(t)g Fq(\000)h Fr(x)p Fq(j)p
Fr(;)17 b(x)p Fu(\)\))1762 4467 y(+)27 b Fq(j)p Fr(f)11
b Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)2205 4482 y Fo(n)2252
4467 y Fu(\()p Fr(e)2335 4482 y Fp(0)2374 4467 y Fr(;)17
b(x)p Fu(\))22 b Fq(\000)h Fr(e)2678 4482 y Fp(0)2718
4467 y Fu(\()p Fr(x)p Fu(\))p Fq(j)p Fr(:)300 4687 y
Fu(In)k(the)g(ab)s(o)m(v)m(e)g Fr(f)21 b Fq(\000)10 b
Fr(f)h Fu(\()p Fr(x)p Fu(\))27 b(means)g(the)g(function)f
Fr(t)i Fq(!)f Fr(f)11 b Fu(\()p Fr(t)p Fu(\))f Fq(\000)g
Fr(f)h Fu(\()p Fr(x)p Fu(\).)42 b(No)m(w)27 b(the)g(Cauc)m(h)m(y-Sc)m
(h)m(w)m(arz)300 4807 y(inequalit)m(y)32 b(for)g(p)s(ositiv)m(e)f
(functionals)h(implies)e(that)650 5027 y Fr(L)716 5042
y Fo(n)763 5027 y Fu(\()p Fq(j)p Fr(t)22 b Fq(\000)h
Fr(x)p Fq(j)p Fr(;)17 b(x)p Fu(\))27 b Fq(\024)i Fu(\()p
Fr(L)1443 5042 y Fo(n)1490 5027 y Fu(\(\()p Fr(t)22 b
Fq(\000)h Fr(x)p Fu(\))1816 4986 y Fp(2)1855 5027 y Fr(;)17
b(x)p Fu(\)\))2040 4959 y Fg(1)p 2040 4971 31 3 v 2040
5012 a(2)2085 5027 y Fu(\()p Fr(L)2189 5042 y Fo(n)2236
5027 y Fu(\()p Fr(e)2319 5042 y Fp(0)2359 5027 y Fr(;)g(x)p
Fu(\)\))2544 4959 y Fg(1)p 2544 4971 V 2544 5012 a(2)2616
5027 y Fu(=)28 b(\()p Fr(L)2824 5042 y Fo(n)2871 5027
y Fu(\()p Fr(e)2954 5042 y Fp(0)2993 5027 y Fr(;)17 b(x)p
Fu(\)\))3178 4959 y Fg(1)p 3178 4971 V 3178 5012 a(2)3223
5027 y Fr(\013)3285 5042 y Fo(n)3332 5027 y Fu(\()p Fr(x)p
Fu(\))p Fr(:)300 5247 y Fu(Therefore,)34 b(since)f Fr(r)d(>)e(\013)1248
5262 y Fo(n)1295 5247 y Fu(\()p Fr(x)p Fu(\))33 b(and)f(b)s(ecause)i
(of)e(prop)s(ert)m(y)i(\(i\))d(of)h Fr(w)s Fu(\()p Fr(f)11
b Fu(;)17 b Fr(r)s Fu(\))31 b(ab)s(o)m(v)m(e,)357 5467
y Fq(j)p Fr(L)451 5482 y Fo(n)498 5467 y Fu(\()p Fr(f)5
b(;)17 b(x)p Fu(\))23 b Fq(\000)f Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))p Fq(j)28 b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))p Fq(jj)p Fr(L)1539 5482 y Fo(n)1585 5467 y Fu(\()p
Fr(e)1668 5482 y Fp(0)1708 5467 y Fr(;)17 b(x)p Fu(\))22
b Fq(\000)h Fr(e)2012 5482 y Fp(0)2051 5467 y Fu(\()p
Fr(x)p Fu(\))p Fq(j)f Fu(+)g(\()p Fr(L)2434 5482 y Fo(n)2482
5467 y Fu(\()p Fr(e)2565 5482 y Fp(0)2604 5467 y Fr(;)17
b(x)p Fu(\))22 b(+)h(\()p Fr(L)2966 5482 y Fo(n)3013
5467 y Fu(\()p Fr(e)3096 5482 y Fp(0)3135 5467 y Fr(;)17
b(x)p Fu(\)\))3310 5426 y Fp(1)p Fo(=)p Fp(2)3420 5467
y Fu(\))p Fr(w)s Fu(\()p Fr(f)11 b Fu(;)17 b Fr(r)s Fu(\))p
Fr(:)p Black Black eop
%%Page: 60 69
60 68 bop Black 300 10 a Fk(APPENDIX)34 b(A.)65 b(BRIEF)33
b(MA)-8 b(TH)33 b(REVIEW)1635 b Fu(60)p Black 300 274
a(Since)33 b Fr(r)d(>)e(\013)795 289 y Fo(n)842 274 y
Fu(\()p Fr(x)p Fu(\))k(is)h(arbitrary)-8 b(,)31 b(w)m(e)j(get)e
(\(A.22\).)446 395 y(If)h(in)f(addition)e Fr(f)39 b Fq(2)28
b Fr(C)1300 358 y Fp(1)1339 395 y Fu([0)p Fr(;)17 b Fu(1],)32
b(then)i(from)850 615 y Fr(f)11 b Fu(\()p Fr(t)p Fu(\))27
b(=)h Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b(+)g Fr(f)1520
574 y Fl(0)1543 615 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)g
Fq(\000)h Fr(x)p Fu(\))f(+)h(\()p Fr(f)11 b Fu(\()p Fr(t)p
Fu(\))21 b Fq(\000)i Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22
b Fq(\000)h Fr(f)2783 574 y Fl(0)2806 615 y Fu(\()p Fr(x)p
Fu(\)\()p Fr(t)f Fq(\000)h Fr(x)p Fu(\)\))p Fr(;)578
934 y Fq(j)p Fr(L)672 949 y Fo(n)719 934 y Fu(\()p Fr(f)5
b(;)17 b(x)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))p Fq(j)83 b(\024)g(j)p Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))p Fq(jj)p Fr(L)1870 949 y Fo(n)1916 934 y Fu(\()p
Fr(e)1999 949 y Fp(0)2039 934 y Fr(;)17 b(x)p Fu(\))22
b Fq(\000)h Fr(e)2343 949 y Fp(0)2382 934 y Fu(\()p Fr(x)p
Fu(\))p Fq(j)g Fu(+)f Fq(j)p Fr(f)2749 893 y Fl(0)2771
934 y Fu(\()p Fr(x)p Fu(\))p Fq(jj)p Fr(L)3024 949 y
Fo(n)3071 934 y Fu(\(\()p Fr(t)h Fq(\000)f Fr(x)p Fu(\))p
Fr(;)17 b(x)p Fu(\))p Fq(j)1370 1080 y Fu(+)84 b Fr(L)1596
1095 y Fo(n)1643 1080 y Fu(\()p Fq(j)p Fr(f)11 b Fu(\()p
Fr(t)p Fu(\))22 b Fq(\000)h Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))22 b Fq(\000)g Fr(f)2371 1038 y Fl(0)2394 1080
y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)h Fq(\000)g Fr(x)p Fu(\))p
Fq(j)p Fr(;)17 b(x)p Fu(\))p Fr(:)300 1300 y Fu(Let)33
b Fr(r)d(>)e(\013)715 1315 y Fo(n)762 1300 y Fu(\()p
Fr(x)p Fu(\).)43 b(Since)33 b Fq(j)p Fr(f)11 b Fu(\()p
Fr(t)p Fu(\))22 b Fq(\000)g Fr(f)11 b Fu(\()p Fr(x)p
Fu(\))23 b Fq(\000)f Fr(f)1908 1263 y Fl(0)1931 1300
y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)h Fq(\000)f Fr(x)p Fu(\))p
Fq(j)28 b(\024)g(j)p Fr(t)22 b Fq(\000)h Fr(x)p Fq(j)p
Fu(\(1)f(+)g Fr(r)3033 1263 y Fl(\000)p Fp(1)3127 1300
y Fq(j)p Fr(t)g Fq(\000)h Fr(x)p Fq(j)p Fu(\))p Fr(w)s
Fu(\()p Fr(f)3603 1263 y Fl(0)3625 1300 y Fu(;)17 b Fr(r)s
Fu(\),)373 1520 y Fr(L)439 1535 y Fo(n)486 1520 y Fu(\()p
Fq(j)p Fr(f)11 b Fu(\()p Fr(t)p Fu(\))21 b Fq(\000)i
Fr(f)11 b Fu(\()p Fr(x)p Fu(\))22 b Fq(\000)h Fr(f)1214
1478 y Fl(0)1237 1520 y Fu(\()p Fr(x)p Fu(\)\()p Fr(t)g
Fq(\000)f Fr(x)p Fu(\))p Fq(j)p Fr(;)17 b(x)p Fu(\))83
b Fq(\024)h Fu([)p Fr(L)2158 1535 y Fo(n)2205 1520 y
Fu(\()p Fq(j)p Fr(t)22 b Fq(\000)h Fr(x)p Fq(j)p Fr(;)17
b(x)p Fu(\))22 b(+)g Fr(r)2815 1478 y Fl(\000)p Fp(1)2909
1520 y Fr(\013)2972 1478 y Fp(2)2971 1544 y Fo(n)3018
1520 y Fu(\()p Fr(x)p Fu(\)])p Fr(w)s Fu(\()p Fr(f)3346
1478 y Fl(0)3369 1520 y Fu(;)17 b Fr(r)s Fu(\))1904 1665
y Fq(\024)84 b Fu([\()p Fr(L)2196 1680 y Fo(n)2243 1665
y Fu(\()p Fr(e)2326 1680 y Fp(0)2366 1665 y Fr(;)17 b(x)p
Fu(\)\))2541 1624 y Fp(1)p Fo(=)p Fp(2)2651 1665 y Fr(\013)2713
1680 y Fo(n)2760 1665 y Fu(\()p Fr(x)p Fu(\))22 b(+)g
Fr(\013)3074 1624 y Fp(2)3073 1690 y Fo(n)3120 1665 y
Fu(\()p Fr(x)p Fu(\))p Fr(r)3298 1624 y Fl(\000)p Fp(1)3393
1665 y Fu(])p Fr(w)s Fu(\()p Fr(f)3590 1624 y Fl(0)3612
1665 y Fu(;)17 b Fr(r)s Fu(\))p Fr(:)300 1885 y Fu(Since)33
b Fr(r)d(>)e(\013)795 1900 y Fo(n)842 1885 y Fu(\()p
Fr(x)p Fu(\))k(is)h(arbitrary)-8 b(,)31 b(w)m(e)j(get)e(\(A.23\).)p
2314 1860 89 4 v 2314 1910 4 50 v 2399 1910 V 2314 1913
89 4 v Black Black eop
%%Page: 61 70
61 69 bop Black Black Black Black 1641 118 a Fn(App)t(endix)54
b(B)p Black Black 1180 550 a(A)f(SOUR)l(CE)g(CODE)h(IN)g(C)p
Black Black 300 1314 a Fd(/*)40 b(File)g(name:)g(CpaDpll.c)339
1405 y(*)g(Updated)h(by:)e(June)i(28,)79 b(2000)339 1496
y(*)339 1588 y(*)40 b(This)g(program)h(computes)g(invarient)g(density)g
(of)e(DPLL)i(using)339 1679 y(*)f(completely)h(parallel)g(algorithm)h
(\(CPA\))339 1770 y(*)339 1862 y(*)339 1953 y(*)e(Usage:)g(\(wiglaf\))
339 2044 y(*)g(Compiling:)h(hcc)f(-O3)g(-ffloat-store)i(CpaDpll.c)f
(-lmpi)g(-lm)339 2136 y(*)f(Run:)g(\(1\))g(Check)g(host)g(file:)h(h4)
339 2227 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339
2318 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339
2410 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h(Proc\))g(a.out)
h([--)f(arg])339 2501 y(*)g(\(5\))g(Clear)g(lam:)g(wipe)g(-v)g(h4)339
2592 y(*)300 2684 y(*/)300 2958 y(#include<stdio.h>)300
3049 y(#include)h(<stdlib.h>)300 3140 y(#include<math.h>)300
3232 y(#include<time.h>)300 3323 y(#include)g("mpi.h")300
3505 y(double)g(p[5000][5000];)h(/*)e(entries)h(of)e(Ulam's)i(matrix)f
(P_n)589 b(*/)300 3597 y(int)40 b(M=1000;)433 b(/*)40
b(#)f(of)h(quasi-random)i(numbers)f(in)e(a)h(subinterval)h(*/)300
3688 y(int)f(L=3,N;)472 b(/*)40 b(N=2^L;)g(N)g(is)f(number)i(of)f
(subintervals)355 b(*/)300 3779 y(int)40 b(P,)g(id;)471
b(/*)40 b(P,)f(#)h(of)g(processors.)h(id,)f(each)g(processor)i(ID)78
b(*/)300 3871 y(MPI_Status)42 b(status;)300 4053 y(/*)e(sub_routines)i
(*/)300 4145 y(double)f(S\(double)g(t\);)510 b(/*)40
b(system)h(of)e(DPLL)590 b(*/)300 4236 y(double)41 b(mod\(double)g(x,)f
(double)g(y\);)g(/*)g(modulus)h(function)512 b(*/)300
4327 y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)197 b(/*)40
b(check)g(belong)h(to)f(?)471 b(*/)300 4419 y(void)40
b(matrix\(\);)708 b(/*)40 b(Ulam's)h(matrix)f(computing)238
b(*/)300 4510 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)119
b(/*)40 b(iteration)h(method)512 b(*/)300 4601 y(void)40
b(density\(\);)669 b(/*)40 b(density)h(computation)h(function)f(*/)300
4784 y(/*)f(The)g(main)g(routine)h(*/)300 4875 y(int)f(main\(int)h
(argc,)f(char)g(*argv[]\))300 4967 y({)614 5058 y
(MPI_Init\(&argc,&argv\);)614 5149 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q
(P\);)614 5241 y(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614
5423 y(if)g(\()f(argc)h(>)g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614
5515 y(if)h(\()f(argc)h(>)g(2)f(\))g(M)h(=)f(atoi\(argv[2]\);)p
Black 2021 5764 a Fu(61)p Black eop
%%Page: 62 71
62 70 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(62)p Black 614
274 a Fd(N)39 b(=)h(pow\(2.0,)h(\(double\)L\);)614 366
y(density\(\);)614 457 y(MPI_Finalize\(\);)614 640 y(return)f(0;)300
731 y(})300 914 y(/*)g(dynamic)h(system)f(DPLL)g(*/)300
1005 y(double)h(S\(double)g(t\))300 1096 y({)614 1187
y(double)f(y,)g(t0,)g(twoPI;)614 1279 y(double)g(k)g(=)f(8.5,)h(A)g(=)f
(0.25;)614 1461 y(twoPI)h(=)g(4.0*asin\(1.0\);)614 1553
y(t0)g(=)f(t)g(+)h(k/\(1.0+A*sin\(t\)\);)614 1644 y(y)f(=)79
b(mod\(t0)41 b(,)e(twoPI\);)614 1735 y(return)h(y;)300
1827 y(})300 2009 y(double)h(mod\(double)g(x,)f(double)g(y\))300
2101 y({)614 2192 y(double)g(remain,)h(temp;)614 2283
y(int)f(temp2;)614 2466 y(temp=x/y;)614 2557 y(temp2=\(int\)temp;)614
2649 y(remain=x-y*temp2;)614 2740 y(return)g(remain;)300
2831 y(})300 3105 y(/*)g(check)g(if)g(a)f(point)i(belong)f(to)g([ah,)g
(ah+h])g(*/)300 3197 y(int)g(be_to\(double)i(t,)e(int)f(a\))300
3288 y({)614 3379 y(double)h(twoPI,)h(h;)614 3471 y(twoPI)f(=)g
(4.0*asin\(1.0\);)614 3562 y(h=twoPI/\(double\)N;)614
3745 y(if\(\(t<=a*h+h\))i(&&)e(\(t>=a*h\)\))928 3836
y(return)g(1;)614 3927 y(else)928 4019 y(return)g(0;)300
4110 y(})300 4384 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/)
300 4475 y(void)f(matrix\(\))300 4566 y({)614 4658 y(int)g(i,)f(j,)h
(k,)g(count;)614 4749 y(double)g(h,)g(temp,)g(i_left;)614
4840 y(double)g(R[M];)h(/*)e(Array)i(of)f(random)g(numbers)h(*/)614
5023 y(h=4.0*asin\(1.0\)/\(double\)N;)614 5206 y(for\(i=0;)g(i<N;)f
(i++\))614 5297 y({)928 5388 y(i_left=i*h;)928 5480 y(for\(j=N*id/P;)i
(j<N*\(id+1\)/P;)g(j++\))p Black Black eop
%%Page: 63 72
63 71 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(63)p Black 928
274 a Fd({)1241 366 y(count)41 b(=)e(0;)967 457 y(/*)h(produce)g(M)g
(uniform)h(sampling)g(number)f(in)g([i_left,)h(i_right])967
548 y(*/)1241 640 y(for\(k=0;)h(k<M;)e(k++\))1241 731
y({)1241 822 y(R[k]=i_left+k*h/M;)1241 914 y(/*)g(MC)g(method:)1241
1005 y(R[k]=i_left+h*rand\(\)/\(doubl)q(e\)RA)q(ND_MA)q(X;)1241
1096 y(*/)1241 1187 y(temp=S\(R[k]\);)1555 1279 y(if)g(\(be_to\(temp,)i
(j\)\))1869 1370 y(count)e(+=)g(1;)1241 1461 y(})1241
1553 y(p[i][j]=\(double\)count/M;)888 1644 y(})614 1735
y(})614 1827 y(/*)g(check!)614 1918 y(for\(i=0;)h(i<10;)f(i++\))g({)928
2009 y(for\(j=0;)h(j<10;)f(j++\))g({)1241 2101 y(printf\("\0455.4f)j
(",)c(p[i][j]\);)928 2192 y(})928 2283 y(printf\("\\n"\);)614
2375 y(})614 2466 y(printf\("\\n"\);)614 2557 y(*/)300
2649 y(})300 2831 y(/*)h(Direct)g(iteration)i(with)e(parallel)h
(commmunication)h(*/)300 2923 y(void)e(iter\(int)h(n,)f(double)g(z[]\))
300 3014 y({)614 3105 y(double)g(temp;)614 3197 y(int)g(i,j,)g(r,)g
(dim,)g(s,)f(part,)i(len;)614 3288 y(long)f(start,end;)614
3379 y(double)g(h,)g(e=0.1,)h(time=0;)614 3471 y(double)f(err,)h(err1,)
f(y[N];)614 3562 y(double)g(trad[N],)h(tsad[N];)614 3653
y(int)f(sad,)g(rad;)614 3836 y(h)f(=)h(4.0*asin\(1.0\)/\(double\)n;)k
(/*)c(step)g(length)h(*/)614 3927 y(r)e(=)h(n/P;)79 b(/*)40
b(each)g(processor)h(compute)g(r)e(column)i(of)f(matrix)g(*/)614
4019 y(temp)g(=)f(log\(\(double\)P\)/log\(2.0\);)614
4110 y(dim)h(=)f(\(int\)temp;)81 b(/*)40 b(communication)i(times)e(*/)
614 4384 y(/*)g(initial)g(*/)614 4475 y(for\(i=0;)h(i<n;)f(i++\))614
4566 y({)928 4658 y(z[i])g(=)f(1.0;)928 4749 y(y[i])h(=)f(0.0;)614
4840 y(})614 4932 y(/*)h(Timing)g(the)g(iteration)h(computing)h(*/)614
5023 y(do)614 5114 y({)928 5206 y(time++;)928 5297 y(err=0.0;)928
5480 y(for\(j=n*id/P;j<n*\(id+1\)/P;j++\))p Black Black
eop
%%Page: 64 73
64 72 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(64)p Black 928
274 a Fd({)1241 366 y(y[j]=0;)1241 457 y(for\(i=0;i<n;i++\))1555
548 y(y[j])40 b(+=)g(p[i][j]*z[i];)1869 640 y(/*)g(P^*c=c)80
b(*/)928 731 y(})614 822 y(/*)40 b(Start)g(commu)g(using)h(hypercube)g
(structure)g(*/)928 914 y(sad)f(=)f(r)g(*)h(id;)g(/*)g(sender)g
(address)h(*/)928 1005 y(i)e(=)h(0;)928 1096 y(while\()g(i<dim\))928
1187 y({)1241 1279 y(temp)h(=)e(pow\(2.0,)i(\(double\)i\);)1241
1370 y(s=\(int\)temp;)1241 1461 y(part)g(=)e(id)h(^)f(s;)h(/*)g
(partner)g(ID)g(*/)1241 1553 y(len)g(=)g(s)f(*)h(r;)118
b(/*)40 b(the)f(length)i(of)f(the)g(transferring)i(data)e(*/)1241
1644 y(tsad[0])h(=)f(sad;)g(/*)g(tell)g(partner)h(the)e(sender)i
(address)g(*/)1241 1735 y(for\(j=1;)h(j<=len;)e(j++\))1555
1827 y(tsad[j])h(=)f(y[sad)g(+)f(j)h(-)f(1];)1555 1918
y(/*)h(temporary)h(sender)g(address)g(*/)1241 2009 y(MPI_Send\(tsad,)i
(len+1,)d(MPI_DOUBLE,)i(part,)1555 2101 y(id+part,MPI_COMM_WORLD\);)
1241 2192 y(MPI_Recv\(trad,)h(len+1,)d(MPI_DOUBLE,)i(part,)1555
2283 y(id+part,MPI_COMM_WORLD,)j(&status\);)1241 2375
y(rad)40 b(=)g(trad[0];)h(/*)f(receive)g(the)g(sender)h(address)g(*/)
1241 2466 y(for\(j=1;)h(j<=len;)e(j++\))1555 2557 y(y[rad)h(+)e(j)h(-)f
(1])h(=)f(trad[j];)1241 2649 y(if\(sad)i(>)f(rad\))1555
2740 y(sad)g(=)g(rad;)1241 2831 y(i)g(+=)g(1;)928 2923
y(})614 3014 y(/*)g(End)f(commu)i(*/)928 3105 y(for\(i=0;i<n;i++\))928
3197 y({)1241 3288 y(err1=fabs\(y[i]-z[i]\);)1241 3379
y(err+=err1;)1241 3471 y(z[i]=y[i];)928 3562 y(})614
3653 y(})614 3745 y(while\(err>=e\);)300 3836 y(})300
4110 y(/*)f(Density)h(function)g(vector)f(x[i])g(*/)300
4201 y(void)g(density\(\))300 4293 y({)614 4384 y(int)g(i;)614
4475 y(double)g(start,end;)614 4566 y(double)g(h,)g(Timei,)h(Tim;)614
4658 y(double)f(x[N];)158 b(/*)40 b(PDF)g(values)h(*/)614
4840 y(h)e(=)h(4.0*asin\(1.0\)/\(double\)N;)614 4932
y(/*)g(count)g(the)g(parallel)h(matrix)f(computing)i(time)e(*/)614
5023 y(start=MPI_Wtime\(\);)614 5114 y(matrix\(\);)614
5206 y(end=MPI_Wtime\(\);)614 5297 y(Tim=end-start;)614
5480 y(/*)g(Timing)g(the)g(iteration)h(computing)h(*/)p
Black Black eop
%%Page: 65 74
65 73 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(65)p Black 614
274 a Fd(start=MPI_Wtime\(\);)614 366 y(iter\(N,)41 b(x\);)614
457 y(end=MPI_Wtime\(\);)614 548 y(Timei=end-start;)614
731 y(if\(id==0\))614 822 y({)928 914 y(/*)e(printing)i(the)f(results)h
(*/)928 1005 y(printf\("\0457.0f\\n",)i(Tim+Timei\);)928
1096 y(/*)928 1187 y(for\(i=0;)e(i<N;)f(i++\))928 1279
y(printf\("\0455.4f)i(\\t)e(\0455.4f\\n",)h(\(i+1\)*h,)g(x[i]\);)928
1370 y(*/)614 1461 y(})300 1644 y(})p Black Black eop
%%Page: 66 75
66 74 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(66)p Black Black
Black 300 366 a Fd(/*)40 b(File)g(name:)g(UmpaDpll.c)339
457 y(*)g(Updated)h(by:)e(June)i(28,)e(2000)339 548 y(*)339
640 y(*)h(This)g(program)h(computes)g(invarient)g(density)g(\(DPLL\))
339 731 y(*)118 b(using)41 b(Ulam's)f(matrix)h(parallel)g(algorithm)g
(\(UMPA\))339 822 y(*)339 914 y(*)f(Usage:)g(\(wiglaf\))339
1005 y(*)g(Compiling:)h(hcc)f(-O3)g(-ffloat-store)81
b(1mpi.c)41 b(-lmpi)f(-lm)339 1096 y(*)g(Run:)g(\(1\))g(Check)g(host)g
(file:)h(h4)339 1187 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41
b(-v)e(h4)339 1279 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41
b(-v)f(h4)339 1370 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h
(Proc\))g(a.out)h([--)f(arg])339 1461 y(*)g(\(5\))g(Clear)g(lam:)g
(wipe)g(-v)g(h4)339 1553 y(*)300 1644 y(*/)300 1918 y
(#include<stdio.h>)300 2009 y(#include)h(<stdlib.h>)300
2101 y(#include<math.h>)300 2192 y(#include<time.h>)300
2283 y(#include)g("mpi.h")300 2466 y(double)g(p[5000][5000];)81
b(/*)40 b(Ulam's)h(matrix)1178 b(*/)300 2557 y(int)40
b(M=1000;)472 b(/*)40 b(#)f(of)h(quasi-random)i(numbers)f(in)f(a)f
(subinterval)j(*/)300 2649 y(int)e(L=3,N;)511 b(/*)40
b(N=2^L;)h(N)e(is)h(number)g(of)g(subintervals)356 b(*/)300
2740 y(int)40 b(P,)g(id;)510 b(/*)40 b(P)f(#)h(of)g(processors,)h(id)f
(the)g(processor's)i(ID)118 b(*/)300 2831 y(MPI_Status)42
b(status;)300 3014 y(/*)e(sub_routines)i(*/)300 3105
y(double)f(S\(double)g(t\);)550 b(/*)39 b(system)i(DPLL)785
b(*/)300 3197 y(double)41 b(mod\(double)g(x,)f(double)g(y\);)80
b(/*)39 b(modulus)i(function)590 b(*/)300 3288 y(int)40
b(be_to\(double)i(t,)e(int)f(a\);)237 b(/*)39 b(check)i(belong)f(to)g
(?)549 b(*/)300 3379 y(void)40 b(matrix\(\);)748 b(/*)39
b(Ulam's)i(matrix)f(computing)316 b(*/)300 3471 y(void)40
b(iter\(int)h(n,)f(double)g(z[]\);)159 b(/*)39 b(iteration)i(method)590
b(*/)300 3562 y(void)40 b(density\(\);)709 b(/*)39 b(density)i
(computation)h(function)119 b(*/)300 3745 y(/*)40 b(The)g(main)g
(routine)h(*/)300 3836 y(int)f(main\(int)h(argc,)f(char)g(*argv[]\))300
3927 y({)614 4019 y(MPI_Init\(&argc,&argv\);)614 4110
y(MPI_Comm_size\(MPI_COMM_WORLD,&)q(P\);)614 4201 y
(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614 4384 y(if)g(\()f(argc)h(>)
g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614 4475 y(if)h(\()f(argc)h(>)g(2)f
(\))g(M)h(=)f(atoi\(argv[2]\);)614 4566 y(N)g(=)h(pow\(2.0,)h
(\(double\)L\);)614 4658 y(density\(\);)614 4749 y(MPI_Finalize\(\);)
614 4932 y(return)f(0;)300 5023 y(})300 5206 y(/*)g(dynamic)h(system)f
(DPLL)g(*/)300 5297 y(double)h(S\(double)g(t\))300 5388
y({)614 5480 y(double)f(y,)g(t0,)g(twoPI;)p Black Black
eop
%%Page: 67 76
67 75 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(67)p Black 614
274 a Fd(double)40 b(k)g(=)f(8.5,)h(A)g(=)f(0.25;)614
457 y(twoPI)h(=)g(4.0*asin\(1.0\);)614 548 y(t0)g(=)f(t)g(+)h
(k/\(1.0+A*sin\(t\)\);)614 640 y(y)f(=)79 b(mod\(t0)41
b(,)e(twoPI\);)614 731 y(return)h(y;)300 822 y(})300
1005 y(/*)g(modulus)h(function)g(*/)300 1096 y(double)g(mod\(double)g
(x,)f(double)g(y\))300 1187 y({)614 1279 y(double)g(remain,)h(temp;)614
1370 y(int)f(temp2;)614 1553 y(temp=x/y;)614 1644 y(temp2=\(int\)temp;)
614 1735 y(remain=x-y*temp2;)614 1827 y(return)g(remain;)300
1918 y(})300 2192 y(/*)g(check)g(if)g(a)f(point)i(belong)f(to)g([ah,)g
(ah+h])g(*/)300 2283 y(int)g(be_to\(double)i(t,)e(int)f(a\))300
2375 y({)614 2466 y(double)h(h;)614 2649 y(h)f(=)h
(4.0*asin\(1.0\)/\(double\)N;)614 2740 y(if\(\(t<=a*h+h\))i(&&)e
(\(t>=a*h\)\))928 2831 y(return)g(1;)614 2923 y(else)928
3014 y(return)g(0;)300 3105 y(})300 3379 y(/*)g(Companion)h(matrix)g
(of)e(Ulam)h(method)h(*/)300 3471 y(void)f(matrix\(\))300
3562 y({)614 3653 y(int)g(i,)f(j,)h(k,)g(count;)614 3745
y(double)g(h,)g(temp,)g(i_left;)614 3836 y(int)g(part,)g(dim,)g(r,)g
(s,)g(len,)g(sad,)g(rad,)g(mask)g(=)g(0;)614 3927 y(double)g
(trad[N][N],)i(tsad[N][N];)614 4019 y(double)e(R[M];)158
b(/*)40 b(Array)h(of)e(random)i(numbers)g(*/)614 4201
y(h=4.0*asin\(1.0\)/\(double\)N;)614 4293 y(r)e(=)h(N/P;)g(/*)g(each)g
(processor)h(compute)g(r)e(rows)h(of)g(matrix)h(*/)614
4384 y(for\(i=0;)g(i<N;)f(i++\))928 4475 y(for\(j=0;)h(j<N;)f(j++\))
1241 4566 y(p[i][j])h(=)f(0.0;)614 4749 y
(for\(i=r*id;i<r*\(id+1\);i++\))614 4840 y({)928 4932
y(i_left=i*h;)928 5023 y(for\(j=0;j<N;j++\))j({)1241
5114 y(count)e(=)e(0;)614 5206 y(/*)h(produce)g(M)g(quasi)g(random)h
(numbers)g(in)e([i_left,)i(i_right])g(*/)1241 5297 y(for\(k=0;)h(k<M;)e
(k++\))1241 5388 y({)1555 5480 y(R[k]=i_left+k*h/M;)p
Black Black eop
%%Page: 68 77
68 76 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(68)p Black 1555
274 a Fd(temp=S\(R[k]\);)1555 366 y(if)40 b(\(be_to\(temp,)i(j\)\))1869
457 y(count)e(+=)g(1;)1241 548 y(})1241 640 y
(p[i][j]=\(double\)count/M;)45 b(/*)40 b(entries)h(of)e(matrix)i(*/)888
731 y(})614 822 y(})614 914 y(/*)f(commu)g(start)g(by)g(using)g
(hypercube)i(structure)80 b(*/)614 1005 y(temp)40 b(=)f
(log\(\(double\)P\)/log\(2.0\);)614 1096 y(dim)h(=)f(\(int\)temp;)81
b(/*)40 b(hypercube)h(dimension)g(*/)614 1187 y(sad)f(=)f(r)h(*)f(id;)
118 b(/*)40 b(sender)h(address)g(*/)614 1370 y(for\(i=0;)g(i<dim;)f
(i++\))614 1461 y({)928 1553 y(if\(\(id)g(&)g(mask\))g(==)g(0\))928
1644 y({)1241 1735 y(temp)h(=)e(pow\(2.0,)i(\(double\)i\);)1241
1827 y(s=\(int\)temp;)1241 1918 y(part)g(=)e(id)h(^)f(s;)h(/*)g
(partner)g(ID)g(*/)1241 2009 y(len)g(=)g(r)f(*)h(s;)118
b(/*)40 b(the)f(length)i(of)f(the)g(transferring)i(data)e(*/)1241
2101 y(if\(\(id)h(&)f(s\))f(!=)h(0\))1241 2192 y({)1555
2283 y(tsad[0][0])i(=)d(sad;)h(/*)g(tell)g(partner)h(the)f(sender)h
(address)f(*/)1555 2375 y(for\(j=1;)h(j<=len;)g(j++\))1869
2466 y(for\(k=0;)g(k<N;)f(k++\))2183 2557 y(tsad[j][k]=p[sad+j-1][k];)
1869 2649 y(MPI_Send\(tsad[0],N*\(len+1\),MP)q(I_DO)q(UBLE)q(,part)q(,)
2183 2740 y(id+part,)h(MPI_COMM_WORLD\);)1241 2831 y(})1241
2923 y(else)1241 3014 y({)1555 3105 y(MPI_Recv\(trad[0],N*\(len+1\),M)q
(PI_D)q(OUBLE)q(,par)q(t,)1869 3197 y(id+part,)g(MPI_COMM_WORLD,)i
(&status\);)1555 3288 y(rad)d(=)g(trad[0][0];)h(/*)f(receive)h(the)f
(sender's)h(address)g(*/)1555 3379 y(for\(j=1;)g(j<=len;)g(j++\))1869
3471 y(for\(k=0;)g(k<N;)f(k++\))2222 3562 y(p[rad+j-1][k]=trad[j][k];)
1555 3653 y(if\(sad)h(>)e(rad\))1869 3745 y(sad)h(=)f(rad;)1241
3836 y(})928 3927 y(})928 4019 y(mask)h(^=)f(s;)614 4110
y(})614 4201 y(/*)h(commu)g(end)g(*/)614 4293 y(/*)g(check)g(!)614
4384 y(for\(i=0;)h(i<10;)f(i++\))g({)928 4475 y(for\(j=0;)h(j<10;)f
(j++\))g({)1241 4566 y(printf\("\0455.4f)j(",)c(p[i][j]\);)928
4658 y(})928 4749 y(printf\("\\n"\);)614 4840 y(})614
4932 y(printf\("\\n"\);)614 5023 y(*/)300 5206 y(})300
5388 y(/*)h(iteration)h(method)g(*/)300 5480 y(void)f(iter\(int)h(n,)f
(double)g(z[]\))p Black Black eop
%%Page: 69 78
69 77 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(69)p Black 300
274 a Fd({)614 366 y(int)40 b(i,j;)614 457 y(double)g(e=0.1,)h(time=0;)
614 548 y(double)f(err,)h(err1,)f(TotalErri,)h(y[N];)614
731 y(/*)f(initial)g(*/)614 822 y(for\(i=0;)h(i<n;)f(i++\))928
914 y(z[i])g(=)f(1;)614 1096 y(do)h({)928 1187 y(time++;)928
1279 y(err=0;)928 1461 y(for\(i=0;i<n;i++\))j({)1359
1553 y(y[i]=0;)1359 1644 y(for\(j=0;j<n;j++\))1673 1735
y(y[i])d(+=)g(p[j][i]*z[j];)81 b(/*)40 b(P^*c=c)80 b(*/)928
1827 y(})1006 2009 y(for\(i=0;i<n;i++\))43 b({)1359 2101
y(err1=fabs\(y[i]-z[i]\);)1359 2192 y(err+=err1;)1359
2283 y(z[i]=y[i];)1045 2375 y(})653 2466 y(})653 2557
y(while\(err>=e\);)300 2649 y(})300 2923 y(/*)d(Density)h(function)g
(vector)f(x[i])g(*/)300 3014 y(void)g(density\(\))300
3105 y({)614 3197 y(int)g(i;)614 3288 y(double)g(start,end;)614
3379 y(double)g(h,)g(Timei,)h(Tim;)614 3471 y(double)f(x[N];)80
b(/*)40 b(PDF)g(value)g(*/)614 3653 y(h=4.0*asin\(1.0\)/\(double\)N;)
614 3745 y(/*)g(timing)g(the)g(Ulam's)h(matrix)f(computation)i(*/)614
3836 y(start=MPI_Wtime\(\);)614 3927 y(matrix\(\);)614
4019 y(end=MPI_Wtime\(\);)614 4110 y(Tim=end-start;)614
4201 y(/*)e(set)f(other)i(processors)g(idle)f(*/)614
4293 y(if\(id>0\))614 4384 y({)888 4475 y(MPI_Finalize\(\);)888
4566 y(exit\(1\);)614 4658 y(})614 4840 y(/*)g(Timing)g(the)g
(iteration)h(computing)h(*/)614 4932 y(start=MPI_Wtime\(\);)614
5023 y(iter\(N,)f(x\);)614 5114 y(end=MPI_Wtime\(\);)614
5206 y(Timei=end-start;)614 5388 y(/*)f(printing)h(the)e(results)i(*/)
614 5480 y(printf\("p#\\t)h(N\\t)e(matrixT\(s\)\\t)i(iterT\(s\)\\t)f
(Total)g(Time\\n"\);)p Black Black eop
%%Page: 70 79
70 78 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(70)p Black 614
274 a Fd(printf\("\\n\045d\\t)42 b(\045d\\t)e(\0457.0f\\t)h
(\0457.0f\\t)g(\0457.0f\\n",)928 366 y(P,)e(N,)h(Tim,)g(Timei,)h
(Tim+Timei\);)614 457 y(/*)614 548 y(printf\("\\n"\);)614
640 y(for\(i=0;i<N;i++\))928 731 y(printf\("\0455.4f)h(\\t)e
(\0455.4f\\n",)h(\(i+1\)*h,)g(x[i]\);)614 822 y(*/)300
914 y(})p Black Black eop
%%Page: 71 80
71 79 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(71)p Black Black
Black 300 366 a Fd(/*)40 b(File)g(name:)g(cpa.c)339 457
y(*)g(Updated)h(by:)e(June)i(25,)e(2000)339 548 y(*)339
640 y(*)236 b(This)40 b(program)h(computes)g(invarient)g(density)g
(\(1-D)f(on)g([0,)g(1]\))339 731 y(*)236 b(using)40 b(CPA)339
822 y(*)339 914 y(*)g(Usage:)g(\(wiglaf\))339 1005 y(*)g(Compiling:)h
(hcc)79 b(-O3)40 b(-ffloat-store)i(cpa.c)f(-lmpi)f(-lm)339
1096 y(*)g(Run:)g(\(1\))g(Check)g(host)g(file:)h(h4)339
1187 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339
1279 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339
1370 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h(Proc\))g(a.out)
h([--)f(arg])339 1461 y(*)g(\(5\))g(Clear)g(lam:)g(wipe)g(-v)g(h4)339
1553 y(*)339 1644 y(*)236 b(PLEASE)40 b(see)g(former)h(code)f(for)g
(MORE)g(comments)300 1735 y(*/)300 2009 y(#include<stdio.h>)300
2101 y(#include)h(<stdlib.h>)300 2192 y(#include<math.h>)300
2283 y(#include<time.h>)300 2375 y(#include)g("mpi.h")300
2557 y(double)g(p[5000][5000],x[5000];)j(/*)c(Ulam's)g(matrix)h(and)f
(density)g(function)120 b(*/)300 2649 y(int)40 b(M=1000;)198
b(/*)39 b(number)i(of)f(quasi-random)i(numbers)e(in)g(a)g(subinterval)
159 b(*/)300 2740 y(int)40 b(MAX=1000;)120 b(/*)39 b(#)h(of)f
(rand-number)j(in)e(MC)g(L1-error,)747 b(*/)300 2831
y(int)40 b(L=3,N;)237 b(/*)39 b(N=2^L;)i(N)e(is)h(number)h(of)e
(subintervals)j(of)e([0,)g(1])275 b(*/)300 2923 y(int)40
b(P,)g(id;)236 b(/*)39 b(P,)h(#)f(of)h(processors.)i(id,)e(each)g
(processor)h(ID)393 b(*/)300 3014 y(MPI_Status)42 b(status;)300
3197 y(/*)e(sub_routines)i(*/)300 3288 y(double)f(S\(double)g(t\);)471
b(/*)40 b(system)g(models)433 b(*/)300 3379 y(double)41
b(function\(double)h(v\);)197 b(/*)40 b(real)g(density)472
b(*/)300 3471 y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)158
b(/*)40 b(check)g(belong)h(to)e(?)275 b(*/)300 3562 y(void)40
b(matrix\(\);)669 b(/*)40 b(Ulam's)g(matrix)h(computing)g(*/)300
3653 y(double)g(TE\(\);)746 b(/*)40 b(L1)f(error)629
b(*/)300 3745 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)80
b(/*)40 b(iteration)h(function)237 b(*/)300 3836 y(void)40
b(density\(\);)630 b(/*)40 b(density)h(function)315 b(*/)300
4019 y(/*)40 b(The)g(main)g(routine)h(*/)300 4110 y(int)f(main\(int)h
(argc,)f(char)g(*argv[]\))300 4201 y({)614 4293 y
(MPI_Init\(&argc,&argv\);)614 4384 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q
(P\);)614 4475 y(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614
4658 y(if)g(\()f(argc)h(>)g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614
4749 y(if)h(\()f(argc)h(>)g(2)f(\))g(M)h(=)f(atoi\(argv[2]\);)614
4840 y(N)g(=)h(pow\(2.0,)h(\(double\)L\);)614 4932 y(density\(\);)614
5023 y(MPI_Finalize\(\);)614 5206 y(return)f(0;)300 5297
y(})300 5480 y(/*)g(dynamic)h(systems)f(and)g(their)h(densities)g(*/)p
Black Black eop
%%Page: 72 81
72 80 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(72)p Black 300
274 a Fd(/*)300 366 y(\(S2\))300 457 y(double)41 b(S\(double)g(t\))300
548 y({)614 640 y(double)f(y,)g(t1,)g(t2,)g(t3;)614 731
y(t1=fabs\(t-0.5\);)614 822 y(t2=2.0*t1*t1*t1;)614 914
y(t1=1.0/8.0-t2;)614 1005 y(t2=1.0/3.0;)614 1096 y(if\(t1>=0\))928
1187 y(t3=pow\(t1,)h(t2\);)614 1279 y(else)928 1370 y
(t3=-pow\(\(-t1\),)h(t2\);)614 1461 y(y=0.5+t3;)614 1553
y(return)e(y;)300 1644 y(})300 1735 y(double)h(function\(double)h(v\))
300 1827 y({)614 1918 y(double)e(temp,w;)614 2009 y(temp=v-0.5;)575
2101 y(w=12.0*temp*temp;)614 2192 y(return)g(w;)300 2283
y(})300 2466 y(\(S4)g(--)g(logistic)h(modal\))300 2649
y(double)g(S\(double)g(t\))300 2740 y({)614 2831 y(double)f(y;)614
2923 y(y=4*t*\(1-t\);)614 3105 y(return)g(y;)300 3197
y(})300 3288 y(double)h(function\(double)h(v\))300 3379
y({)275 b(double)40 b(temp,w;)614 3471 y(temp=v*\(1-v\);)614
3562 y(if\(temp<=0\))614 3653 y({)275 b(printf\("Wrong!)42
b(Retry!\\n"\);)928 3745 y(exit\(1\);)614 3836 y(})614
3927 y(else)e(w=1/\(3.1415926535*sqrt\(temp\)\))q(;)614
4019 y(return)g(w;)300 4110 y(})300 4293 y(\(S1\))300
4475 y(double)h(S\(double)g(t\))300 4566 y({)275 b(double)40
b(y,)g(temp;)614 4658 y(if\(t==0\))928 4749 y(y=0;)614
4840 y(else)614 4932 y({)275 b(temp=1/t;)928 5023 y(y=temp)40
b(-)g(floor\(temp\);)614 5114 y(})614 5206 y(return)g(y;)300
5297 y(})300 5388 y(double)h(function\(double)h(v\))300
5480 y({)275 b(double)40 b(w;)p Black Black eop
%%Page: 73 82
73 81 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(73)p Black 614
274 a Fd(w=1.0/\(log\(2.0\)*\(1.0+v\)\);)614 366 y(return)40
b(w;)300 457 y(})300 640 y(\(S3\))300 731 y(*/)300 822
y(double)h(S\(double)g(t\))300 914 y({)275 b(double)40
b(y,)g(t0,)g(t1,)g(temp;)614 1096 y(t0=1.0/sqrt\(8.0\);)614
1187 y(t1=fabs\(1.0-2*t\);)614 1279 y(if\()g(\(t>t0\))g(&&)g(\()f
(t<\(1-t0\))j(\))d(\))614 1370 y({)275 b
(temp=1.0-\(1.0-t1\)*\(1.0-t1\);)928 1461 y(y=1.0-sqrt\(temp/2.0\);)614
1553 y(})614 1644 y(else)928 1735 y(y=\(1.0-t1\)/sqrt\(2.0\);)614
1827 y(return)40 b(y;)300 1918 y(})300 2009 y(double)h
(function\(double)h(v\))300 2101 y({)275 b(double)40
b(w;)614 2192 y(w=2-fabs\(2-4*v\);)614 2283 y(return)g(w;)300
2375 y(})300 2649 y(/****************************)q(****)q(*****)q
(****)q(*****)q(****)q(****)q(*****)q(**/)300 2831 y(/*)g(check)g(if)g
(a)f(point)i(belong)f(to)g([ah,)g(ah+h])g(*/)300 2923
y(int)g(be_to\(double)i(t,)e(int)f(a\))300 3014 y({)614
3105 y(double)h(h;)614 3197 y(h=1.0/\(double\)N;)614
3288 y(if\(\(t<=a*h+h\))i(&&)e(\(t>=a*h\)\))928 3379
y(return)g(1;)614 3471 y(else)928 3562 y(return)g(0;)300
3653 y(})300 3927 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/)
300 4019 y(void)f(matrix\(\))300 4110 y({)614 4201 y(int)g(i,)f(j,)h
(k,)g(count;)614 4293 y(double)g(h,)g(temp,)g(i_left;)614
4384 y(double)g(R[M];)158 b(/*)40 b(Array)h(of)e(random)i(numbers)g(*/)
614 4566 y(h=1.0/\(double\)N;)614 4658 y(for\(i=0;)g(i<N;)f(i++\))614
4749 y({)928 4840 y(i_left=i*h;)928 4932 y(for\(j=N*id/P;)i
(j<N*\(id+1\)/P;)g(j++\))928 5023 y({)1241 5114 y(count)f(=)e(0;)614
5206 y(/*)h(produce)g(M)g(quasi-random)i(number)e(in)g([i_left,)h
(i_right])g(*/)1241 5297 y(for\(k=0;)h(k<M;)e(k++\))1241
5388 y({)1555 5480 y(R[k]=i_left+k*h/M;)p Black Black
eop
%%Page: 74 83
74 82 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(74)p Black 1555
274 a Fd(temp=S\(R[k]\);)1555 366 y(if)40 b(\(be_to\(temp,)i(j\)\))1869
457 y(count)e(+=)g(1;)1241 548 y(})1241 640 y
(p[i][j]=\(double\)count/M;)888 731 y(})614 822 y(})614
914 y(/*)614 1005 y(for\(i=0;)h(i<10;)f(i++\))g({)928
1096 y(for\(j=0;)h(j<10;)f(j++\))g({)1241 1187 y(printf\("\0455.4f)j
(",)c(p[i][j]\);)928 1279 y(})928 1370 y(printf\("\\n"\);)614
1461 y(})614 1553 y(printf\("\\n"\);)614 1644 y(*/)300
1735 y(})300 1918 y(/*)h(using)g(MC)g(integration)h(to)f(compute)h
(L1-error)g(*/)300 2009 y(double)g(TE\(\))300 2101 y({)614
2192 y(double)f(value=0.0;)614 2283 y(int)g(i,)f(temp;)614
2375 y(double)h(var;)614 2557 y(for\(i=0;)h(i<MAX;)f(i++\))614
2649 y({)928 2740 y(var=\(double\)rand\(\)/RAND_MAX;)928
2831 y(temp=var*N;)928 2923 y(value)g(+=)g
(fabs\(function\(var\)-x[temp]\);)614 3014 y(})614 3105
y(value)g(/=)g(MAX;)614 3197 y(return)g(value;)300 3288
y(})300 3471 y(/*)g(Direct)g(iteration)i(with)e(parallel)h(commmu)f(*/)
300 3562 y(void)g(iter\(int)h(n,)f(double)g(z[]\))300
3653 y({)614 3745 y(double)g(temp;)614 3836 y(int)g(i,j,)g(r,)g(dim,)g
(s,)f(part,)i(len;)614 3927 y(long)f(start,end;)614 4019
y(double)g(h,)g(e=0.1,)h(time=0;)614 4110 y(double)f(err,)h(err1,)f
(y[N];)614 4201 y(double)g(trad[N],)h(tsad[N];)614 4293
y(int)f(sad,)g(rad;)614 4475 y(h)f(=)h(4.0*asin\(1.0\)/\(double\)n;)k
(/*)c(step)g(length)h(*/)614 4566 y(r)e(=)h(n/P;)g(/*)g(each)g
(processor)h(compute)g(r)e(column)i(of)f(matrix)g(*/)614
4658 y(temp)g(=)f(log\(\(double\)P\)/log\(2.0\);)614
4749 y(dim)h(=)f(\(int\)temp;)81 b(/*)40 b(communication)i(times)e(*/)
614 5023 y(/*)g(initial)g(*/)614 5114 y(for\(i=0;)h(i<n;)f(i++\))614
5206 y({)928 5297 y(z[i])g(=)f(1.0;)928 5388 y(y[i])h(=)f(0.0;)614
5480 y(})p Black Black eop
%%Page: 75 84
75 83 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(75)p Black 614
274 a Fd(/*)40 b(Timing)g(the)g(iteration)h(computing)h(*/)614
366 y(do)614 457 y({)928 548 y(time++;)928 640 y(err=0.0;)928
822 y(for\(j=n*id/P;j<n*\(id+1\)/P;j++\))928 914 y({)1241
1005 y(y[j]=0;)1241 1096 y(for\(i=0;i<n;i++\))1555 1187
y(y[j])e(+=)g(p[i][j]*z[i];)1869 1279 y(/*)g(P^*c=c)80
b(*/)928 1370 y(})300 1461 y(/*)40 b(Start)g(commu)g(*/)928
1553 y(sad)g(=)f(r)g(*)h(id;)928 1644 y(i)f(=)h(0;)928
1735 y(while\()g(i<dim\))928 1827 y({)1241 1918 y(temp)h(=)e(pow\(2.0,)
i(\(double\)i\);)1241 2009 y(s=\(int\)temp;)1241 2101
y(part)g(=)e(id)h(^)f(s;)1241 2192 y(len)h(=)g(s)f(*)h(r;)1241
2283 y(tsad[0])h(=)f(sad;)1241 2375 y(for\(j=1;)i(j<=len;)e(j++\))1555
2466 y(tsad[j])h(=)f(y[sad)g(+)f(j)h(-)f(1];)1241 2649
y(MPI_Send\(tsad,)k(len+1,)d(MPI_DOUBLE,)i(part,)1555
2740 y(id+part,MPI_COMM_WORLD\);)1241 2831 y(MPI_Recv\(trad,)h(len+1,)d
(MPI_DOUBLE,)i(part,)1555 2923 y(id+part,MPI_COMM_WORLD,)j(&status\);)
1241 3014 y(rad)40 b(=)g(trad[0];)1241 3105 y(for\(j=1;)i(j<=len;)e
(j++\))1555 3197 y(y[rad)h(+)e(j)h(-)f(1])h(=)f(trad[j];)1241
3288 y(if\(sad)i(>)f(rad\))1555 3379 y(sad)g(=)g(rad;)1241
3471 y(i)g(+=)g(1;)928 3562 y(})300 3653 y(/*)g(End)g(commu)g(*/)928
3745 y(for\(i=0;i<n;i++\))928 3836 y({)1241 3927 y
(err1=fabs\(y[i]-z[i]\);)1241 4019 y(err+=err1;)1241
4110 y(z[i]=y[i];)928 4201 y(})614 4293 y(})614 4384
y(while\(err>=e\);)300 4475 y(})300 4658 y(/*)g(Density)h(function)g
(vector)f(x[i])g(*/)300 4749 y(void)g(density\(\))300
4840 y({)614 4932 y(double)g(TotalErri;)614 5023 y(int)g(i;)614
5114 y(double)g(start,end;)614 5206 y(double)g(h,)g(Timei,)h(Tim;)614
5388 y(/*)f(timing)g(Ulam's)h(matrix)f(computing)i(*/)614
5480 y(start=MPI_Wtime\(\);)p Black Black eop
%%Page: 76 85
76 84 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(76)p Black 614
274 a Fd(matrix\(\);)614 366 y(end=MPI_Wtime\(\);)614
457 y(Tim=end-start;)614 640 y(/*)40 b(Timing)g(the)g(iteration)h
(computing)h(*/)614 731 y(start=MPI_Wtime\(\);)614 822
y(iter\(N,)f(x\);)614 914 y(end=MPI_Wtime\(\);)614 1005
y(Timei=end-start;)614 1187 y(TotalErri=TE\(\);)121 b(/*)40
b(L^1)g(error)g(*/)614 1370 y(if\(id==0\))614 1461 y({)928
1553 y(/*)f(printing)i(the)f(results)928 1644 y(printf\("p#\\t)i(N\\t)e
(matrixT\(s\)\\t)h(iterT\(s\)\\t)1202 1735 y(Total)g(Time)f(\\t)f
(L1-Error\\n"\);)928 1827 y(*/)928 1918 y(printf\("\\n\045d\\t)j
(\045d\\t)e(\0457.2f\\t)h(\0457.2f\\t)g(\0457.2f)f(\\t)g(\0457.6f)g
(\\t)g(\045d\\n",)1241 2009 y(P,)g(N,)g(Tim,)g(Timei,)h(Tim+Timei,)g
(TotalErri,)h(M\);)928 2101 y(/*)928 2192 y(for\(i=0;)f(i<N;)f(i++\))
1241 2283 y(printf\(")159 b(\0455.4f\\n",)41 b(x[i]\);)928
2375 y(*/)614 2466 y(})300 2649 y(})p Black Black eop
%%Page: 77 86
77 85 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(77)p Black Black
Black 300 548 a Fd(/*)40 b(File)g(name:)g(umpa.c)339
640 y(*)g(Updated)h(by:)e(May)h(6,)g(2000)339 731 y(*)339
822 y(*)g(This)g(program)h(computes)g(invarient)g(density)g(\(1-D)f(on)
g([0,)g(1]\))339 914 y(*)79 b(using)40 b(UMPA)339 1005
y(*)339 1096 y(*)g(Usage:)g(\(wiglaf\))339 1187 y(*)g(Compiling:)h(hcc)
79 b(-O3)40 b(-ffloat-store)160 b(umpa.c)41 b(-lmpi)f(-lm)339
1279 y(*)g(Run:)g(\(1\))g(Check)g(host)g(file:)h(h4)339
1370 y(*)f(\(2\))g(Check)g(lam:)79 b(recon)41 b(-v)e(h4)339
1461 y(*)h(\(3\))g(Boot)g(lam:)118 b(lamboot)41 b(-v)f(h4)339
1553 y(*)g(\(4\))g(Run:)g(mpirun)g(-w)g(-c)g(\(#)f(of)h(Proc\))g(a.out)
h([--)f(arg])339 1644 y(*)g(\(5\))g(Clear)g(lam:)g(wipe)g(-v)g(h4)339
1735 y(*)339 1827 y(*)236 b(PLEASE)40 b(see)g(former)h(code)f(for)g
(MORE)g(comments)300 1918 y(*/)300 2192 y(#include<stdio.h>)300
2283 y(#include)h(<stdlib.h>)300 2375 y(#include<math.h>)300
2466 y(#include<time.h>)300 2557 y(#include)g("mpi.h")300
2740 y(double)g(p[5000][5000],x[5000];)j(/*)c(Ulam's)g(matix,)h
(density)g(function)786 b(*/)300 2831 y(int)40 b(M=1000;)747
b(/*)40 b(number)g(of)g(quasi-random)i(numbers)f(in)e(a)h(subinterval)
120 b(*/)300 2923 y(int)40 b(MAX=1000;)669 b(/*)40 b(#)f(of)h
(rand-number)h(in)f(MC)g(L1-error)747 b(*/)300 3014 y(int)40
b(L=3,N;)786 b(/*)40 b(N=2^L;)g(N)g(is)f(number)i(of)f(subintervals)h
(of)f([0,)g(1])236 b(*/)300 3105 y(int)40 b(P,)g(id;)785
b(/*)40 b(P,)f(#)h(of)f(Working)i(processors.)h(id,)e(each)g(processor)
h(ID)f(*/)300 3197 y(MPI_Status)i(status;)300 3379 y(/*)e(sub_routines)
i(*/)300 3471 y(double)f(S\(double)g(t\);)432 b(/*)40
b(system)g(models)433 b(*/)300 3562 y(double)41 b(function\(double)h
(v\);)158 b(/*)40 b(real)g(density)472 b(*/)300 3653
y(int)40 b(be_to\(double)i(t,)e(int)f(a\);)119 b(/*)40
b(check)g(belong)g(to)g(?)275 b(*/)300 3745 y(void)40
b(matrix\(\);)630 b(/*)40 b(Ulam's)g(matrix)h(computing)g(*/)300
3836 y(double)g(TE\(\);)707 b(/*)40 b(L1)f(error)629
b(*/)300 3927 y(void)40 b(iter\(int)h(n,)f(double)g(z[]\);)h(/*)f
(iteration)h(function)237 b(*/)300 4019 y(void)40 b(density\(\);)591
b(/*)40 b(density)g(function)316 b(*/)300 4201 y(/*)40
b(The)g(main)g(routine)h(*/)300 4293 y(int)f(main\(int)h(argc,)f(char)g
(*argv[]\))300 4384 y({)614 4475 y(MPI_Init\(&argc,&argv\);)614
4566 y(MPI_Comm_size\(MPI_COMM_WORLD,&)q(P\);)614 4658
y(MPI_Comm_rank\(MPI_COMM_WORLD,&)q(id\);)614 4840 y(if)g(\()f(argc)h
(>)g(1)f(\))g(L)h(=)f(atoi\(argv[1]\);)614 4932 y(if)h(\()f(argc)h(>)g
(2)f(\))g(M)h(=)f(atoi\(argv[2]\);)614 5023 y(N)g(=)h(pow\(2.0,)h
(\(double\)L\);)614 5114 y(density\(\);)614 5206 y(MPI_Finalize\(\);)
614 5388 y(return)f(0;)300 5480 y(})p Black Black eop
%%Page: 78 87
78 86 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(78)p Black 300
366 a Fd(/*)40 b(dynamic)h(systems)f(and)g(their)h(densities)g(*/)300
457 y(/*)300 548 y(\(S2\))300 640 y(double)g(S\(double)g(t\))300
731 y({)614 822 y(double)f(y,)g(t1,)g(t2,)g(t3;)614 914
y(t1=fabs\(t-0.5\);)614 1005 y(t2=2.0*t1*t1*t1;)614 1096
y(t1=1.0/8.0-t2;)614 1187 y(t2=1.0/3.0;)614 1279 y(if\(t1>=0\))928
1370 y(t3=pow\(t1,)h(t2\);)614 1461 y(else)928 1553 y
(t3=-pow\(\(-t1\),)h(t2\);)614 1644 y(y=0.5+t3;)614 1735
y(return)e(y;)300 1827 y(})300 1918 y(double)h(function\(double)h(v\))
300 2009 y({)614 2101 y(double)e(temp,w;)614 2192 y(temp=v-0.5;)575
2283 y(w=12.0*temp*temp;)614 2375 y(return)g(w;)300 2466
y(})300 2649 y(\(S4)g(--)g(logistic)h(model\))300 2831
y(double)g(S\(double)g(t\))300 2923 y({)614 3014 y(double)f(y;)614
3105 y(y=4*t*\(1-t\);)614 3288 y(return)g(y;)300 3379
y(})300 3471 y(double)h(function\(double)h(v\))300 3562
y({)275 b(double)40 b(temp,w;)614 3653 y(temp=v*\(1-v\);)614
3745 y(if\(temp<=0\))614 3836 y({)275 b(printf\("Wrong!)42
b(Retry!\\n"\);)928 3927 y(exit\(1\);)614 4019 y(})614
4110 y(else)e(w=1/\(3.1415926535*sqrt\(temp\)\))q(;)614
4201 y(return)g(w;)300 4293 y(})300 4475 y(\(S1\))300
4658 y(double)h(S\(double)g(t\))300 4749 y({)275 b(double)40
b(y,)g(temp;)614 4840 y(if\(t==0\))928 4932 y(y=0;)614
5023 y(else)614 5114 y({)275 b(temp=1/t;)928 5206 y(y=temp)40
b(-)g(floor\(temp\);)614 5297 y(})614 5388 y(return)g(y;)300
5480 y(})p Black Black eop
%%Page: 79 88
79 87 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(79)p Black 300
274 a Fd(double)41 b(function\(double)h(v\))300 366 y({)275
b(double)40 b(w;)614 457 y(w=1.0/\(log\(2.0\)*\(1.0+v\)\);)614
548 y(return)g(w;)300 640 y(})300 822 y(\(S2\))300 914
y(*/)300 1005 y(double)h(S\(double)g(t\))300 1096 y({)275
b(double)40 b(y,)g(t0,)g(t1,)g(temp;)614 1279 y(t0=1.0/sqrt\(8.0\);)614
1370 y(t1=fabs\(1.0-2*t\);)614 1461 y(if\()g(\(t>t0\))g(&&)g(\()f
(t<\(1-t0\))j(\))d(\))614 1553 y({)275 b
(temp=1.0-\(1.0-t1\)*\(1.0-t1\);)928 1644 y(y=1.0-sqrt\(temp/2.0\);)614
1735 y(})614 1827 y(else)928 1918 y(y=\(1.0-t1\)/sqrt\(2.0\);)614
2009 y(return)40 b(y;)300 2101 y(})300 2192 y(double)h
(function\(double)h(v\))300 2283 y({)275 b(double)40
b(w;)614 2375 y(w=2-fabs\(2-4*v\);)614 2466 y(return)g(w;)300
2557 y(})300 2831 y(/****************************)q(****)q(*****)q
(****)q(*****)q(****)q(****)q(*****)q(**/)300 3014 y(/*)g(check)g(if)g
(a)f(point)i(belong)f(to)g([ah,)g(ah+h])g(*/)300 3105
y(int)g(be_to\(double)i(t,)e(int)f(a\))300 3197 y({)300
3288 y(double)i(h;)300 3379 y(h=1.0/\(double\)N;)614
3471 y(if\(\(t<=a*h+h\))h(&&)e(\(t>=a*h\)\))928 3562
y(return)g(1;)614 3653 y(else)928 3745 y(return)g(0;)300
3836 y(})300 4110 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/)
300 4201 y(void)f(matrix\(\))300 4293 y({)614 4384 y(int)g(i,)f(j,)h
(k,)g(count;)614 4475 y(double)g(h,)g(temp,)g(i_left;)614
4566 y(int)g(part,)g(dim,)g(r,)g(s,)g(len,)g(sad,)g(rad,)g(mask)g(=)g
(0;)614 4658 y(double)g(trad[N][N],)i(tsad[N][N];)614
4749 y(double)e(R[M];)158 b(/*)40 b(Array)h(of)e(random)i(numbers)g(*/)
614 4932 y(h=1.0/\(double\)N;)614 5023 y(r)e(=)h(N/P;)614
5114 y(for\(i=0;)h(i<N;)f(i++\))614 5206 y(for\(j=0;)h(j<N;)f(j++\))614
5297 y(p[i][j])h(=)e(0.0;)614 5480 y(for\(i=r*id;i<r*\(id+1\);i++\))p
Black Black eop
%%Page: 80 89
80 88 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(80)p Black 614
274 a Fd({)928 366 y(i_left=i*h;)928 457 y(for\(j=0;j<N;j++\))43
b({)1241 548 y(count)e(=)e(0;)1241 640 y(/*)h(produce)h(M)e(random)i
(number)g(in)e([i_left,)i(i_right])g(*/)1241 731 y(for\(k=0;)h(k<M;)e
(k++\))1241 822 y({)1555 914 y(R[k]=i_left+k*h/M;)1555
1005 y(temp=S\(R[k]\);)1555 1096 y(if)g(\(be_to\(temp,)i(j\)\))1869
1187 y(count)e(+=)g(1;)1241 1279 y(})1241 1370 y
(p[i][j]=\(double\)count/M;)888 1461 y(})614 1553 y(})300
1644 y(/*)g(commu)g(start)g(*/)614 1735 y(temp)g(=)f
(log\(\(double\)P\)/log\(2.0\);)614 1827 y(dim)h(=)f(\(int\)temp;)614
1918 y(sad)h(=)f(r)h(*)f(id;)614 2101 y(for\(i=0;)i(i<dim;)f(i++\))614
2192 y({)928 2283 y(if\(\(id)g(&)g(mask\))g(==)g(0\))928
2375 y({)1241 2466 y(temp)h(=)e(pow\(2.0,)i(\(double\)i\);)1241
2557 y(s=\(int\)temp;)1241 2649 y(part)g(=)e(id)h(^)f(s;)1241
2740 y(len)h(=)g(r)f(*)h(s;)1241 2831 y(if\(\(id)h(&)f(s\))f(!=)h(0\))
1241 2923 y({)1555 3014 y(tsad[0][0])i(=)d(sad;)1555
3105 y(for\(j=1;)i(j<=len;)g(j++\))1869 3197 y(for\(k=0;)g(k<N;)f
(k++\))2104 3288 y(tsad[j][k]=p[sad+j-1][k];)2104 3379
y(MPI_Send\(tsad[0],N*\(len+1\),)q(MPI_)q(DOUBL)q(E,pa)q(rt,)2418
3471 y(id+part,)h(MPI_COMM_WORLD\);)1241 3562 y(})1241
3653 y(else)1241 3745 y({)1555 3836 y(MPI_Recv\(trad[0],N*\(len+1\),M)q
(PI_D)q(OUBLE)q(,par)q(t,)1869 3927 y(id+part,)g(MPI_COMM_WORLD,)i
(&status\);)1555 4019 y(rad)d(=)g(trad[0][0];)1555 4110
y(for\(j=1;)h(j<=len;)g(j++\))1869 4201 y(for\(k=0;)g(k<N;)f(k++\))1555
4293 y(p[rad+j-1][k]=trad[j][k];)1555 4384 y(if\(sad)h(>)e(rad\))1555
4475 y(sad)h(=)g(rad;)1281 4566 y(})928 4658 y(})928
4749 y(mask)g(^=)f(s;)535 4840 y(})300 4932 y(/*)h(commu)g(end)g(*/)535
5023 y(/*)g(print)g(part)h(of)e(Ulam's)i(matrix)535 5114
y(for\(i=0;)g(i<10;)g(i++\))f({)928 5206 y(for\(j=0;)h(j<10;)f(j++\))g
({)1241 5297 y(printf\("\0455.4f)j(",)c(p[i][j]\);)928
5388 y(})928 5480 y(printf\("\\n"\);)p Black Black eop
%%Page: 81 90
81 89 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(81)p Black 535
274 a Fd(})535 366 y(printf\("\\n"\);)535 457 y(*/)300
640 y(})300 822 y(/*)40 b(using)g(MC)g(integration)h(to)f(compute)h
(L1-error)g(*/)300 914 y(double)g(TE\(\))300 1005 y({)614
1096 y(double)f(value=0.0;)614 1187 y(int)g(i,)f(temp;)614
1279 y(double)h(var;)614 1461 y(for\(i=0;)h(i<MAX;)f(i++\))614
1553 y({)928 1644 y(var=\(double\)rand\(\)/RAND_MAX;)928
1735 y(temp=var*N;)928 1827 y(value)g(+=)g
(fabs\(function\(var\)-x[temp]\);)614 1918 y(})614 2009
y(value)g(/=)g(MAX;)614 2101 y(return)g(value;)300 2192
y(})300 2375 y(/*)g(iteration)h(function)g(*/)300 2466
y(void)f(iter\(int)h(n,)f(double)g(z[]\))300 2557 y({)614
2649 y(int)g(i,j;)614 2740 y(double)g(e=0.1,)h(time=0;)614
2831 y(double)f(err,)h(err1,)f(TotalErri,)h(y[N];)614
3014 y(/*)f(initial)g(*/)614 3105 y(for\(i=0;)h(i<n;)f(i++\))928
3197 y(z[i])g(=)f(1;)614 3379 y(do)h({)1006 3471 y(time++;)1006
3562 y(err=0;)1006 3745 y(for\(i=0;i<n;i++\))j({)1320
3836 y(y[i]=0;)1320 3927 y(for\(j=0;j<n;j++\))1320 4019
y(y[i])d(+=)g(p[j][i]*z[j];)81 b(/*)40 b(P^*c=c)80 b(*/)1006
4110 y(})1006 4293 y(for\(i=0;i<n;i++\))43 b({)1320 4384
y(err1=fabs\(y[i]-z[i]\);)1320 4475 y(err+=err1;)1320
4566 y(z[i]=y[i];)1006 4658 y(})614 4749 y(})614 4840
y(while\(err>=e\);)300 4932 y(})300 5114 y(/*)d(Density)h(function)g
(vector)f(x[i])g(*/)300 5206 y(void)g(density\(\))300
5297 y({)614 5388 y(double)g(TotalErri;)614 5480 y(int)g(i;)p
Black Black eop
%%Page: 82 91
82 90 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(82)p Black 614
274 a Fd(double)40 b(start,end;)614 366 y(double)g(h,)g(Timei,)h(Tim;)
300 548 y(/*)f(timing)g(Ulam's)h(matrix)f(computing)i(*/)614
640 y(start=MPI_Wtime\(\);)614 731 y(matrix\(\);)614
822 y(end=MPI_Wtime\(\);)614 914 y(Tim=end-start;)614
1096 y(if\(id>0\))80 b(/*)40 b(set)g(other)g(processors)i(idle)e(*/)614
1187 y({)928 1279 y(MPI_Finalize\(\);)928 1370 y(exit\(1\);)614
1461 y(})614 1735 y(/*)g(Timing)g(the)g(iteration)h(computing)h(*/)614
1827 y(start=MPI_Wtime\(\);)614 1918 y(iter\(N,)f(x\);)614
2009 y(end=MPI_Wtime\(\);)614 2101 y(Timei=end-start;)614
2283 y(TotalErri=TE\(\);)h(/*)e(L^1)g(error)g(*/)614
2466 y(/*)g(printing)h(the)e(results)614 2557 y(printf\("p#\\t)j(N\\t)e
(matrixT\(s\)\\t)i(iterT\(s\)\\t)f(Total)g(Time)f(\\t)f
(L1-Error\\n"\);)614 2649 y(*/)614 2740 y(printf\("\\n\045d\\t)j
(\045d\\t)e(\0457.2f\\t)h(\0457.2f\\t)g(\0457.2f)f(\\t)g(\0457.6f)g
(\\t)g(\045d\\n",)928 2831 y(P,)f(N,)h(Tim,)g(Timei,)h(Tim+Timei,)g
(TotalErri,)h(M\);)614 2923 y(/*)614 3014 y(for\(i=0;)f(i<N;)f(i++\))
928 3105 y(printf\(")158 b(\0455.4f\\n",)42 b(x[i]\);)614
3197 y(*/)300 3288 y(})p Black Black eop
%%Page: 83 92
83 91 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(83)p Black Black
Black 300 366 a Fd(/*)236 b(File)40 b(name:)119 b(qmc.c)339
457 y(*)236 b(Updated)41 b(by)e(Oct.)h(29,)g(1999)339
548 y(*)339 640 y(*)236 b(This)40 b(program)h(computes)g(density)g
(function)g(with)f(MC/QMC)339 731 y(*)236 b(and)40 b(IA/GA)g
(\(sequential\))339 822 y(*)339 914 y(*)236 b(PLEASE)40
b(see)g(former)h(code)f(for)g(MORE)g(comments)300 1005
y(*/)300 1187 y(#include<stdio.h>)300 1279 y(#include)h(<stdlib.h>)300
1370 y(#include<math.h>)300 1461 y(#include<time.h>)300
1644 y(double)g(p[2000][2000],x[2000];)83 b(/*)40 b(Ulam)g(matrix)g
(and)g(density)h(function)355 b(*/)300 1735 y(double)41
b(R[2000];)629 b(/*)40 b(store)g(the)g(random)h(number)707
b(*/)300 1827 y(int)40 b(M=1000;)786 b(/*)40 b(number)g(of)g(random)h
(numbers)f(in)g(a)g(interval)119 b(*/)300 1918 y(int)40
b(L=3,N;)825 b(/*)40 b(N=2^L;)g(N)g(is)f(number)i(of)f(sub-intervals)
238 b(*/)300 2101 y(/*)40 b(sub_routines)i(*/)300 2192
y(double)f(S\(double)g(t\);)942 b(/*)39 b(systems)865
b(*/)300 2283 y(double)41 b(function\(double)h(v\);)668
b(/*)39 b(real)i(density)f(function)316 b(*/)300 2375
y(int)40 b(be_to\(double)i(t,)e(double)g(a,)g(double)g(b\);)119
b(/*)39 b(check)i(if)f(t)f(belongs)i(to)e([a,)h(b])g(*/)300
2466 y(void)g(matrix\(\);)1140 b(/*)39 b(Ulam's)i(matrix)g(evaluation)
198 b(*/)300 2557 y(double)41 b(Err\(double)g(a,)f(double)g(b,)g
(double)h(ex\);)f(/*)f(error)i(function)g(in)f(TE\(\))275
b(*/)300 2649 y(double)41 b(TE\(\);)1217 b(/*)39 b(L^1)h(error)h
(computation)316 b(*/)300 2740 y(void)40 b(iter\(int)h(n,)f(double)g
(z[]\);)551 b(/*)39 b(iteration)j(method)511 b(*/)300
2831 y(void)40 b(gauss\(int)h(n,)f(double)h(z[]\);)511
b(/*)39 b(Gaussian)j(elimination)355 b(*/)300 2923 y(void)40
b(density\(\);)300 3105 y(/*)g(The)g(main)g(routine)h(*/)300
3197 y(int)f(main\(int)h(argc,)f(char)g(*argv[]\))300
3288 y({)614 3379 y(if)g(\()f(argc)h(>)g(1)f(\))g(L)h(=)f
(atoi\(argv[1]\);)614 3471 y(if)h(\()f(argc)h(>)g(2)f(\))g(M)h(=)f
(atoi\(argv[2]\);)614 3562 y(N)g(=)h(pow\(2.0,)h(\(double\)L\);)614
3653 y(density\(\);)614 3836 y(return)f(0;)300 3927 y(})300
4110 y(/*)g(dynamic)h(systems)f(and)g(their)h(unique)f(density)h
(functions)81 b(*/)300 4201 y(/*)300 4293 y(\(S2\))300
4475 y(double)41 b(S\(double)g(t\))300 4566 y({)614 4658
y(double)f(y,)g(t1,)g(t2,)g(t3;)614 4749 y(t1=fabs\(t-0.5\);)614
4840 y(t2=2.0*t1*t1*t1;)614 4932 y(t1=1.0/8.0-t2;)614
5023 y(t2=1.0/3.0;)614 5114 y(if\(t1>=0\))928 5206 y(t3=pow\(t1,)h
(t2\);)614 5297 y(else)928 5388 y(t3=-pow\(\(-t1\),)h(t2\);)614
5480 y(y=0.5+t3;)p Black Black eop
%%Page: 84 93
84 92 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(84)p Black 614
274 a Fd(return)40 b(y;)300 366 y(})300 457 y(double)h
(function\(double)h(v\))300 548 y({)614 640 y(double)e(temp,w;)614
731 y(temp=v-0.5;)575 822 y(w=12.0*temp*temp;)614 914
y(return)g(w;)300 1005 y(})300 1187 y(\(S4)g(--)g(logistic)h(model\))
300 1279 y(*/)300 1370 y(double)g(S\(double)g(t\))300
1461 y({)614 1553 y(double)f(y;)614 1644 y(y=4*t*\(1-t\);)614
1827 y(return)g(y;)300 1918 y(})300 2009 y(double)h(function\(double)h
(v\))300 2101 y({)275 b(double)40 b(temp,w;)614 2192
y(temp=v*\(1-v\);)614 2283 y(if\(temp<=0\))614 2375 y({)275
b(printf\("Wrong!)42 b(Retry!\\n"\);)928 2466 y(exit\(1\);)614
2557 y(})614 2649 y(else)e(w=1/\(3.1415926535*sqrt\(temp\)\))q(;)614
2740 y(return)g(w;)300 2831 y(})300 2923 y(/*)300 3014
y(\(S1\))300 3197 y(double)h(S\(double)g(t\))300 3288
y({)275 b(double)40 b(y,)g(temp;)614 3379 y(if\(t==0\))928
3471 y(y=0;)614 3562 y(else)614 3653 y({)275 b(temp=1/t;)928
3745 y(y=temp)40 b(-)g(floor\(temp\);)614 3836 y(})614
3927 y(return)g(y;)300 4019 y(})300 4110 y(double)h(function\(double)h
(v\))300 4201 y({)275 b(double)40 b(w;)614 4293 y
(w=1.0/\(log\(2.0\)*\(1.0+v\)\);)614 4384 y(return)g(w;)300
4475 y(})300 4658 y(\(S3\))300 4840 y(double)h(S\(double)g(t\))300
4932 y({)275 b(double)40 b(y,)g(t0,)g(t1,)g(temp;)614
5023 y(t0=1.0/sqrt\(8.0\);)614 5114 y(t1=fabs\(1.0-2*t\);)614
5206 y(if\()g(\(t>t0\))g(&&)g(\()f(t<\(1-t0\))j(\))d(\))614
5297 y({)g(temp=1.0-\(1.0-t1\)*\(1.0-t1\);)928 5388 y
(y=1.0-sqrt\(temp/2.0\);)614 5480 y(})p Black Black eop
%%Page: 85 94
85 93 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(85)p Black 614
274 a Fd(else)928 366 y(y=\(1.0-t1\)/sqrt\(2.0\);)614
457 y(return)40 b(y;)300 548 y(})300 640 y(double)h(function\(double)h
(v\))300 731 y({)275 b(double)40 b(w;)614 822 y(w=2-fabs\(2-4*v\);)614
914 y(return)g(w;)300 1005 y(})300 1096 y(*/)300 1279
y(/****************************)q(****)q(*****)q(****)q(*****)q(****)q
(****)q(*****)q(**/)300 1461 y(/*)g(check)g(if)g(a)f(point)i(belong)f
(to)g([a,)g(b])f(*/)300 1553 y(int)h(be_to\(double)i(t,)e(double)g(a,)g
(double)g(b\))300 1644 y({)614 1735 y(if\(\(t<=b\))h(&&)f(\(t>=a\)\))
928 1827 y(return)g(1;)614 1918 y(else)928 2009 y(return)g(0;)300
2101 y(})300 2375 y(/*)g(Companion)h(matrix)g(of)e(Ulam)h(method)h(*/)
300 2466 y(void)f(matrix\(\))300 2557 y({)614 2649 y(int)g(i,)f(j,)h
(k,)g(count;)614 2740 y(double)g(h,)g(temp,)g(i_left,)h(i_right;)614
2831 y(double)f(j_left,)h(j_right;)614 3014 y(h=1.0/\(double\)N;)614
3105 y(for\(i=1;i<=N;i++\))i({)928 3197 y(i_left=\(i-1\)*h;)928
3288 y(i_right=i*h;)888 3379 y(/*)d(produce)h(M)e(random)i(number)g(in)
e([i_left,)i(i_right])g(*/)928 3471 y(for\(k=0;)g(k<M;)f(k++\))g({)888
3562 y(/*)g(QMC)g(*/)1241 3653 y(R[k]=i_left)i(+)e(k*h/M;)888
3745 y(/*)g(MC)1241 3836 y(temp)h(=)e(rand\(\)/\(double\)RAND_MAX;)1241
3927 y(R[k]=i_left=\(i-1\)*h+)44 b(h)c(*)f(temp;)928
4019 y(*/)928 4110 y(})928 4201 y(for\(j=1;j<=N;j++\))k({)1241
4293 y(j_left=\(j-1\)*h;)1241 4384 y(j_right=j*h;)1241
4475 y(count)e(=)e(0;)1241 4566 y(for\(k=0;)j(k<M;)e(k++\))1241
4658 y({)275 b(temp=S\(R[k]\);)1555 4749 y(if)40 b(\(be_to\(temp,)i
(j_left,)f(j_right\)\))1830 4840 y(count)f(+=)g(1;)1241
4932 y(})1281 5023 y(p[i][j]=\(double\)count/M;)928 5114
y(})614 5206 y(})300 5297 y(/*)236 b(for\(i=1;)41 b(i<10;)f(i++\))g({)
928 5388 y(for\(j=1;)h(j<10;)f(j++\))g({)1241 5480 y(printf\("\0455.4f)
j(",)c(p[i][j]\);)p Black Black eop
%%Page: 86 95
86 94 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(86)p Black 928
274 a Fd(})928 366 y(printf\("\\n"\);)614 457 y(})300
548 y(*/)300 640 y(})300 822 y(/*)79 b(function)41 b(used)f(in)g
(TE\(\))g(*/)300 914 y(double)h(Err\(double)g(a,)f(double)g(b,)g
(double)h(ex\))300 1005 y({)275 b(double)40 b(tem1,tem2;)614
1096 y(double)g(err1,err2,err3,err;)614 1279 y
(err1=0.888888889*fabs\(function)q(\(\(a+)q(b\)/2\))q(-ex\))q(;)614
1370 y(tem1=\(b+a\)/2+0.7745966692*\(b-a)q(\)/2;)614
1461 y(tem2=\(b+a\)/2-0.7745966692*\(b-a)q(\)/2;)614
1553 y(err2=0.555555556*fabs\(function)q(\(tem)q(1\)-ex)q(\);)614
1644 y(err3=0.555555556*fabs\(function)q(\(tem)q(2\)-ex)q(\);)614
1735 y(err=\(err1+err2+err3\)*\(b-a\)/2;)614 1827 y(return\(err\);)300
1918 y(})300 2101 y(/*)g(Gaussian)h(integration)g(method)g(to)f
(compute)h(the)e(L1-eror)300 2192 y(/*)h(in)f(function)i(Err)f(and)g
(TE)g(*/)300 2283 y(double)h(TE\(\))300 2375 y({)275
b(int)40 b(i;)614 2466 y(double)g(h,a,b,err,Totalerr=0;)614
2649 y(h=1/\(double\)N;)614 2740 y(for\(i=1;i<=N;i++\))614
2831 y({)275 b(a=\(i-1\)*h;)888 2923 y(b=i*h;)888 3014
y(err=Err\(a,b,x[i]\);)888 3105 y(Totalerr+=err;)614
3197 y(})614 3288 y(return\(Totalerr\);)300 3379 y(})300
3562 y(/*)40 b(Iteration)h(method)g(*/)300 3653 y(void)f(iter\(int)h
(n,)f(double)g(z[]\))300 3745 y({)614 3836 y(int)g(i,)f(j;)614
3927 y(double)h(e=0.1,)h(time=0,)g(err,)f(err1,)80 b(y[2000];)614
4110 y(/*)40 b(initial)g(*/)614 4201 y(for\(i=1;)h(i<=n;)f(i++\))928
4293 y(z[i])g(=)f(1;)614 4475 y(do)h({)1045 4566 y(time++;)1045
4658 y(err=0;)1045 4840 y(for\(i=1;i<=n;i++\))j({)1359
4932 y(y[i]=0;)1359 5023 y(for\(j=1;j<=n;j++\))1359 5114
y(y[i])d(+=)g(p[j][i]*z[j];)81 b(/*)40 b(P^*c=c)80 b(*/)1045
5206 y(})1006 5388 y(for\(i=1;i<=n;i++\))43 b({)1359
5480 y(err1=fabs\(y[i]-z[i]\);)p Black Black eop
%%Page: 87 96
87 95 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(87)p Black 1359
274 a Fd(err+=err1;)1359 366 y(z[i]=y[i];)1045 457 y(})614
548 y(})614 640 y(while\(err>=e\);)300 731 y(})300 914
y(/*)40 b(Gaussian)h(Elimination)g(*/)300 1005 y(void)f(gauss\(int)h
(n,)f(double)h(z[]\))300 1096 y({)614 1187 y(double)f(b[2000],)h
(t[2000];)614 1279 y(double)f(temp,)h(sum=0;)614 1370
y(int)f(s,i,j,point;)614 1553 y(for\(s=1;s<=n;s++\))928
1644 y(p[s][s]-=1;)928 1735 y(for\(s=1;s<=n;s++\))1241
1827 y(b[s]=0;)614 2009 y(for\(s=1;s<=n-1;s++\))j({)928
2101 y(t[s]=p[s][s];)928 2192 y(point=s;)928 2283 y
(for\(i=s+1;i<=n;i++\))g({)118 b(/*)40 b(Pivotting)h(*/)1241
2375 y(t[i]=p[s][i];)1241 2466 y(if\(fabs\(t[s]\)<fabs\(t[i]\)\))k({)
1555 2557 y(t[s]=t[i];)1555 2649 y(point=i;)1241 2740
y(})928 2831 y(})928 2923 y(for\(j=s;j<=n;j++\))e({)1241
3014 y(t[j]=p[j][s];)1241 3105 y(p[j][s]=p[j][point];)1241
3197 y(p[j][point]=t[j];)928 3288 y(})928 3471 y
(if\(fabs\(p[s][s]\)<=5e-20\))h({)1241 3562 y(printf\("No)e
(solution!\\n"\);)1241 3653 y(exit\(1\);)928 3745 y(})928
3927 y(for\(j=s+1;j<=n;j++\))h({)1241 4019 y(for\(i=s+1;i<=n;i++\))1555
4110 y(p[j][i]-=p[j][s]*p[s][i]/p[s)q(][s])q(;)928 4201
y(})614 4293 y(})614 4384 y(if\(fabs\(p[n][n]\)>0.05\))614
4475 y({)275 b(printf\("No)41 b(solution!\\n"\);)928
4566 y(exit\(1\);)614 4658 y(})614 4840 y(z[n]=1;)614
4932 y(for\(j=1;j<=n-1;j++\))83 b(/*)39 b(backward)i(solving)g(*/)575
5023 y({)314 b(for\(i=1;i<=n-j;i++\))1241 5114 y
(b[i]-=p[n+1-j][i]*z[n+1-j];)928 5206 y(z[n-j]=b[n-j]/p[n-j][n-j];)614
5297 y(})614 5480 y(for\(i=1;i<=n;i++\))82 b(/*)40 b(Nomorlizing)i(*/)p
Black Black eop
%%Page: 88 97
88 96 bop Black 300 10 a Fk(APPENDIX)34 b(B.)65 b(A)33
b(SOUR)m(CE)g(CODE)g(IN)g(C)1642 b Fu(88)p Black 928
274 a Fd(sum+=z[i];)614 366 y(temp=\(float\)n/sum;)614
457 y(for\(i=1;i<=n;i++\))928 548 y(z[i]*=temp;)300 640
y(})300 822 y(/*)40 b(Density)h(function)g(vector)f(x[i])g(*/)300
914 y(void)g(density\(\))300 1005 y({)614 1096 y(double)g
(Err,TotalErr,)j(TotalErri;)614 1187 y(int)d(i,j;)614
1279 y(long)g(start,end;)614 1370 y(double)g(Timei,)h(Time,)f(Tim;)300
1553 y(/*)g(timing)g(Ulam's)h(matrix)f(computation)i(*/)614
1644 y(start=clock\(\);)614 1735 y(matrix\(\);)614 1827
y(end=clock\(\);)614 1918 y(Tim=\(\(double\)end-start\)/\(10000)q(.0*C)
q(LK_TC)q(K\);)614 2101 y(/*)e(Timing)g(the)g(Iteration)h(Algorithm)h
(*/)614 2192 y(start=clock\(\);)614 2283 y(iter\(N,)f(x\);)614
2375 y(TotalErri=TE\(\);)82 b(/*)d(/*)39 b(L^1)h(error)h(for)e(IA)h(*/)
614 2466 y(end=clock\(\);)614 2557 y
(Timei=\(\(double\)end-start\)/\(100)q(00.0)q(*CLK_)q(TCK\))q(;)614
2740 y(/*)g(Timing)g(Gaussian)h(Algorithm)g(*/)614 2831
y(start=clock\(\);)614 2923 y(gauss\(N,)g(x\);)614 3014
y(TotalErr=TE\(\);)81 b(/*)e(L^1)40 b(error)h(for)f(GA)f(*/)614
3105 y(end=clock\(\);)614 3197 y(Time=\(\(double\)end-start\)/\(1000)q
(0*CL)q(K_TCK)q(\);)614 3471 y(/*)614 3562 y(for\(i=1;i<=N;i++\))928
3653 y(printf\("\0455.4f\\n",)k(x[i]\);)614 3836 y(*/)614
3927 y(printf\("L)e(\\t)f(N)f(\\t)h(L^1_Err_i)h(\\t)f(L^1_Err_g)h(\\t)f
(matrixT\(s\)\\t)928 4019 y(iterT\(s\))h(\\t)e(GuauT\(s\))81
b(rand_num\\n"\);)614 4110 y(printf\("\\n\045d)42 b(\\t)79
b(\045d)39 b(\\t)h(\0457.6f)g(\\t)g(\0457.6f)g(\\t)g(\0455.2f)h(\\t)e
(\0455.2f)i(\\t)928 4201 y(\0455.2f)f(\\t)g(\045d\\n",)g(L,)g(N,)g
(TotalErri,TotalErr,)j(Tim,)d(Timei,Time,)i(M\);)300
4384 y(})p Black Black eop
%%Page: 89 98
89 97 bop Black Black Black Black 1422 136 a Fn(BIBLIOGRAPHY)p
Black 345 831 a Fc([1])p Black 50 w(C.)27 b(Bec)m(k)i(and)e(F.)g(Sc)m
(hl\177)-45 b(ogl.)35 b Fb(Thermo)-5 b(dynamics)33 b(of)d(Chaotic)h
(Systems)p Fc(.)36 b(Cam)m(bridge)27 b(Univ)m(ersit)m(y)490
943 y(Press,)j(1993.)p Black 345 1128 a([2])p Black 50
w(C.)c(Bose)g(and)g(R.)f(Murra)m(y)-8 b(.)34 b(The)25
b(exact)i(rate)g(of)f(appro)m(ximation)e(in)h(ulam's)f(metho)s(d.)33
b Fb(pr)-5 b(eprint)p Fc(,)490 1241 y(1999.)p Black 345
1425 a([3])p Black 50 w(A.)23 b(Bo)m(y)m(arsky)g(and)f(P)-8
b(.)22 b(G\023)-45 b(ora.)28 b Fb(L)-5 b(aws)26 b(of)f(Chaos:)40
b(Invariant)26 b(Me)-5 b(asur)g(es)26 b(and)f(Chaotic)i(Dynamic)-5
b(al)490 1538 y(Systems)34 b(in)e(One)g(Dimension)p Fc(.)41
b(Birkh\177)-45 b(auser,)29 b(1997.)p Black 345 1722
a([4])p Black 50 w(A.)53 b(Bo)m(y)m(arsky)i(and)d(Y.)h(S.)g(Lou.)107
b(Appro)m(ximating)51 b(measures)i(in)m(v)-5 b(arian)m(t)52
b(under)f(higher-)490 1835 y(dimensional)28 b(c)m(haotic)j
(transformations.)40 b Fb(J.)32 b(Appr)-5 b(ox.)34 b(The)-5
b(ory)p Fc(,)33 b(65:231{244,)i(1991.)p Black 345 2019
a([5])p Black 50 w(A.)29 b(Bo)m(y)m(arsky)h(and)d(Y.)i(S.)f(Lou.)37
b(A)28 b(compactness)h(theorem)g(for)f(appro)m(ximating)f(the)i(in)m(v)
-5 b(arian)m(t)490 2132 y(densities)30 b(of)i(higher)f(dimensional)e
(transformations.)44 b Fb(J.)34 b(Math.)g(A)n(naly.)g(Appl.)p
Fc(,)f(65:231{244,)490 2245 y(1993.)p Black 345 2430
a([6])p Black 50 w(A.)i(Bo)m(y)m(arsky)-8 b(,)38 b(P)-8
b(.Gora,)37 b(and)d(Y.)h(S.)g(Lou.)53 b(Constructiv)m(e)34
b(appro)m(ximations)g(to)h(the)g(in)m(v)-5 b(arian)m(t)490
2542 y(densities)21 b(of)j(higher-dimensional)19 b(transformations.)28
b Fb(Constructive)e(Appr)-5 b(ox.)p Fc(,)26 b(10:1{13,)i(1994.)p
Black 345 2727 a([7])p Black 50 w(C.)g(Chiu,)f(Q.)i(Du,)g(and)e(T.)i
(Y.)f(Li.)37 b(Error)27 b(estimates)i(of)g(the)g(mark)m(o)m(v)g
(\014nite)e(appro)m(ximation)h(of)490 2840 y(the)j(frob)s(enius-p)s
(erron)26 b(op)s(erator.)41 b Fb(Nonline)-5 b(ar)34 b(A)n(nalysis)p
Fc(,)d(19\(4\):291{308,)36 b(1992.)p Black 345 3024 a([8])p
Black 50 w(I.)29 b(P)-8 b(.)29 b(Cornfeld,)e(S.)h(V.)h(F)-8
b(omin,)29 b(and)f(Y)-8 b(a.)30 b(G.)f(Sinai.)35 b Fb(Er)-5
b(go)g(dic)33 b(The)-5 b(ory)p Fc(.)39 b(Springer-V)-8
b(erlag,)28 b(New)490 3137 y(Y)-8 b(ork,)31 b(1982.)p
Black 345 3321 a([9])p Black 50 w(D.)k(Daems)g(and)e(G.)i(Nicolis.)50
b(Cluster)33 b(expansion)g(for)h(the)g(p)s(erron-frob)s(enius)c(op)s
(erator)35 b(in)e(a)490 3434 y(system)e(of)f(coupled)g(map)g(lattices.)
40 b Fb(R)-5 b(ese)g(ar)g(ch)35 b(R)-5 b(ep)g(ort,)35
b(1050)f(Bruxel)5 b(les,)33 b(Belgium)p Fc(,)d(1995.)p
Black 300 3618 a([10])p Black 50 w(R.)21 b(A.)g(DeV)-8
b(ore.)27 b(The)21 b(appro)m(ximation)f(of)h(con)m(tin)m(uous)f
(functions)g(b)m(y)g(p)s(ositiv)m(e)g(linear)g(op)s(erators.)490
3731 y(In)30 b(Springer-V)-8 b(erlag,)29 b(editor,)h
Fb(L)-5 b(e)g(ctur)g(e)34 b(Notes)f(in)f(Math,)h(293)p
Fc(,)f(1972.)p Black 300 3916 a([11])p Black 50 w(J.)24
b(Ding.)30 b(Computing)22 b(in)m(v)-5 b(arian)m(t)23
b(measures)h(for)g(piecewise)f(con)m(v)m(ex)j(transformations.)j
Fb(J.)d(Stat.)490 4029 y(Phys.)p Fc(,)31 b(83\(3/4\):623{635,)37
b(1996.)p Black 300 4213 a([12])p Black 50 w(J.)22 b(Ding.)k(A)21
b(maxim)m(um)g(en)m(trop)m(y)h(metho)s(d)f(for)h(solving)e(frob)s
(enius-p)s(erron)e(op)s(erator)k(equations.)490 4326
y Fb(Applie)-5 b(d)34 b(Math.)f(Comp.)p Fc(,)f(93:155{168,)j(1998.)p
Black 300 4510 a([13])p Black 50 w(J.)42 b(Ding.)77 b(The)41
b(p)s(oin)m(t)h(sp)s(ectrum)f(of)i(frob)s(enius-p)s(erron)38
b(and)k(k)m(o)s(opman)h(op)s(erators.)76 b Fb(Pr)-5 b(o)g(c.)490
4623 y(A)n(mer.)32 b(Math.)h(So)-5 b(c.)p Fc(,)32 b
(126\(5\):1355{1361,)37 b(1998.)p Black 300 4807 a([14])p
Black 50 w(J.)21 b(Ding,)i(Q.)e(Du,)j(and)c(T.)i(Y.)f(Li.)k(High)c
(order)f(appro)m(ximation)h(of)g(frob)s(enius-p)s(erron)d(op)s
(erators.)490 4920 y Fb(Appl.)33 b(Math.)g(Comp.)p Fc(,)f(53:151{171,)j
(1993.)p Black 300 5104 a([15])p Black 50 w(J.)28 b(Ding,)f(Q.)h(Du,)g
(and)f(T.)g(Y.)h(Li.)35 b(The)27 b(sp)s(ectral)g(analysis)f(of)i(frob)s
(enius-p)s(erron)23 b(op)s(erators.)36 b Fb(J.)490 5217
y(Math.)d(A)n(nal.)g(Appl.)p Fc(,)e(184\(2\):285{301,)36
b(1994.)p Black 300 5402 a([16])p Black 50 w(J.)j(Ding)g(and)f(T.)h(Y.)
g(Li.)65 b(Mark)m(o)m(v)41 b(\014nite)d(appro)m(ximation)g(of)h(frob)s
(enius-p)s(erron)c(op)s(erator,.)490 5515 y Fb(Nonlin.)e(A)n(nal.)f
(Th.)h(Meth.)g(Appl.)p Fc(,)e(17\(8\):759{772,)36 b(1991.)p
Black 2021 5764 a Fu(89)p Black eop
%%Page: 90 99
90 98 bop Black 300 10 a Fk(BIBLIOGRAPHY)2663 b Fu(90)p
Black Black 300 274 a Fc([17])p Black 50 w(J.)32 b(Ding)g(and)f(T.)h
(Y.)g(Li.)44 b(Pro)5 b(jection)32 b(solutions)e(of)i(frob)s(enius-)e(p)
s(erron)g(op)s(erators.)46 b Fb(Internat.)490 387 y(J.)32
b(Math.)h(&)g(Math.)g(Sci.)p Fc(,)d(16\(3\):465{484,)36
b(1993.)p Black 300 575 a([18])p Black 50 w(J.)c(Ding)f(and)g(T.)h(Y.)g
(Li.)43 b(A)32 b(con)m(v)m(ergence)i(rate)f(analysis)d(for)i(mark)m(o)m
(v)g(\014nite)f(appro)m(ximations)490 688 y(to)26 b(a)g(class)f(of)h
(frob)s(enius-p)s(erron)21 b(op)s(erators.)33 b Fb(Nonlin.)28
b(A)n(nal.)g(Th.)g(Meth.)g(Appl.)p Fc(,)f(31\(5/6\):765{)490
801 y(777,)32 b(1998.)p Black 300 988 a([19])p Black
50 w(J.)g(Ding,)h(M.)f(P)m(aprzyc)m(ki,)h(and)f(Z.)g(W)-8
b(ang.)47 b(E\016cien)m(t)32 b(computation)g(of)g(un)m(b)s(ounded)e(in)
m(v)-5 b(arian)m(t)490 1101 y(densities.)34 b(In)27 b
Fb(Pr)-5 b(o)g(c)g(e)g(e)g(dings)32 b(of)e(the)g(14th)i(Confer)-5
b(enc)g(e)30 b(on)h(Applie)-5 b(d)31 b(Mathematics)p
Fc(,)e(pages)f(126{)490 1214 y(131,)k(1998.)p Black 300
1402 a([20])p Black 50 w(J.)40 b(Ding)f(and)g(Z.)h(W)-8
b(ang.)69 b(A)40 b(mo)s(di\014ed)d(mon)m(te)k(carlo)f(approac)m(h)g(to)
g(the)g(appro)m(ximation)f(of)490 1515 y(in)m(v)-5 b(arian)m(t)39
b(measures.)66 b(In)39 b Fb(R)-5 b(ese)g(ar)g(ch)43 b(Notes)e(in)g
(Math,)i(418)p Fc(,)g(pages)d(125{130.)i(Chapman)c(&)490
1628 y(Hall/CPC,)30 b(2000.)p Black 300 1815 a([21])p
Black 50 w(J.)h(Ding)f(and)f(Z.)i(W)-8 b(ang.)42 b(Appro)m(ximation)29
b(order)h(analysis)f(for)h(the)g(piecewise)g(linear)f(mark)m(o)m(v)490
1928 y(metho)s(d.)40 b Fb(Sto)-5 b(chastic)35 b(A)n(nalysis)e(and)g
(Applic)-5 b(ations)p Fc(,)33 b(submitted.)p Black 300
2116 a([22])p Black 50 w(J.)d(Ding)f(and)g(Z.)g(W)-8
b(ang.)40 b(P)m(arallel)29 b(computation)g(of)h(in)m(v)-5
b(arian)m(t)28 b(measures.)39 b Fb(A)n(nnals)32 b(in)g(Op)-5
b(er)g(a-)490 2229 y(tions)34 b(R)-5 b(ese)g(ar)g(ch)p
Fc(,)32 b(to)f(app)s(ear,)f(2000.)p Black 300 2416 a([23])p
Black 50 w(J.)e(Ding)g(and)f(A.)h(Zhou.)36 b(The)27 b(pro)5
b(jection)28 b(metho)s(d)g(for)f(computing)g(m)m(ulti-dimensional)d
(abso-)490 2529 y(lutely)29 b(con)m(tin)m(uous)h(in)m(v)-5
b(arian)m(t)30 b(measures.)40 b Fb(J.)32 b(Stat.)i(Phys.)p
Fc(,)d(77\(3/4\):899{908,)37 b(1994.)p Black 300 2717
a([24])p Black 50 w(J.)g(Ding)f(and)g(A.)h(Zhou.)58 b(Piecewise)37
b(linear)e(mark)m(o)m(v)i(appro)m(ximations)f(of)h(frob)s(enius-p)s
(erron)490 2830 y(op)s(erators)23 b(asso)s(ciated)f(with)f(m)m
(ulti-dimensional)d(transformations.)27 b Fb(Nonline)-5
b(ar)26 b(A)n(nal.,)h(TMA)p Fc(,)490 2943 y(25\(4\):399{408,)36
b(1995.)p Black 300 3130 a([25])p Black 50 w(J.)29 b(Ding)f(and)g(A.)h
(Zhou.)37 b(Finite)27 b(appro)m(ximation)h(of)h(frob)s(enius-p)s(erron)
24 b(op)s(erators.)29 b(a)g(solution)490 3243 y(of)22
b(ulam's)e(conjecture)i(to)g(m)m(ulti-dimensional)17
b(transformations.)25 b Fb(Physic)-5 b(a)25 b(D)p Fc(,)c(92:61{68,)27
b(1996.)p Black 300 3431 a([26])p Black 50 w(J.)f(Ding)g(and)f(A.)i
(Zhou.)32 b(On)25 b(the)i(sp)s(ectrum)e(of)h(frob)s(enius-p)s(erron)c
(op)s(erators.)34 b Fb(J.)28 b(Math.)h(A)n(nal.)490 3544
y(Appl.)p Fc(,)i(to)g(app)s(ear.)p Black 300 3731 a([27])p
Black 50 w(P)-8 b(.)40 b(G\023)-45 b(ora)39 b(and)g(A.)g(Bo)m(y)m
(arsky)-8 b(.)68 b(Absolutely)38 b(con)m(tin)m(uous)g(in)m(v)-5
b(arian)m(t)38 b(measures)h(for)g(piecewise)490 3844
y(expanding)29 b Fa(c)966 3811 y Fp(2)1036 3844 y Fc(transformations)h
(in)f Fa(r)1842 3811 y Fo(n)1888 3844 y Fc(.)41 b Fb(Isr)-5
b(ael)34 b(J.)e(Math.)p Fc(,)f(67\(3\):272{286,)36 b(1989.)p
Black 300 4032 a([28])p Black 50 w(P)-8 b(.)30 b(G\023)-45
b(ora)29 b(and)g(A.)g(Bo)m(y)m(arsky)-8 b(.)40 b(Higher)28
b(dimensional)e(p)s(oin)m(t)i(transformations)g(and)h(asymptotic)490
4145 y(measures)h(for)g(cellular)f(automata.)42 b Fb(Comput.)34
b(Math.)f(Appl.)p Fc(,)e(19:13{31,)j(1990.)p Black 300
4332 a([29])p Black 50 w(F.)c(Hun)m(t)f(and)f(W.)i(Miller.)37
b(On)28 b(the)h(appro)m(ximation)f(of)i(in)m(v)-5 b(arian)m(t)28
b(measures.)38 b Fb(J.)31 b(Stat.)h(Phys.)p Fc(,)490
4445 y(66:535{548,)j(1992.)p Black 300 4633 a([30])p
Black 50 w(F.)k(Y.)g(Hun)m(t.)64 b(A)39 b(mon)m(te)g(carlo)f(approac)m
(h)h(to)g(the)g(appro)m(ximation)e(of)h(in)m(v)-5 b(arian)m(t)38
b(measures.)490 4746 y Fb(R)-5 b(andom)35 b(&)d(Comput)i(Dynamics)p
Fc(,)d(2\(1\):111{133,)36 b(1994.)p Black 300 4933 a([31])p
Black 50 w(F.)j(Y.)g(Hun)m(t.)64 b(Erratum:)55 b(`a)39
b(mon)m(te)h(carlo)e(approac)m(h)h(to)g(the)f(appro)m(ximation)f(of)i
(in)m(v)-5 b(arian)m(t)490 5046 y(measures'.)41 b Fb(R)-5
b(andom)35 b(&)d(Comput.)i(Dynam.)p Fc(,)d(5\(4\):361{362,)36
b(1998.)p Black 300 5234 a([32])p Black 50 w(D.)d(L.)g(Isaacson)g(and)f
(R.)g(W.)i(Madsen.)46 b Fb(Markov)35 b(Chains,)h(The)-5
b(ory)36 b(and)g(Applic)-5 b(ations)p Fc(.)49 b(John)490
5347 y(Wiley)30 b(&)g(Sons,)g(New)g(Y)-8 b(ork,)31 b(1976.)p
Black Black eop
%%Page: 91 100
91 99 bop Black 300 10 a Fk(BIBLIOGRAPHY)2663 b Fu(91)p
Black Black 300 274 a Fc([33])p Black 50 w(M.)48 b(Jablonski.)90
b(On)47 b(in)m(v)-5 b(arian)m(t)47 b(measures)g(for)g(piecewise)g
Fa(c)2718 241 y Fp(2)2758 274 y Fc(-transformations)g(of)g(the)h
Fa(n)p Fc(-)490 387 y(dimensional)28 b(cub)s(e.)40 b
Fb(A)n(nn.)31 b(Polon.)j(Math.)p Fc(,)d(XLI)s(I)s(I:185{195,)h(1983.)p
Black 300 575 a([34])p Black 50 w(G.)24 b(Keller.)k(Sto)s(c)m(hastic)c
(p)s(erturbation)e(of)h(some)h(strange)g(attractors.)32
b Fb(L)-5 b(e)g(ctur)g(e)27 b(Notes)f(in)g(Phys.)p Fc(,)490
688 y(179:192{193,)36 b(1983.)p Black 300 875 a([35])p
Black 50 w(V.)23 b(Kumar,)g(A.)g(Grama,)i(A.)d(Gupta,)j(and)d(G.)g
(Karypis.)k Fb(Intr)-5 b(o)g(duction)28 b(to)e(Par)-5
b(al)5 b(lel)27 b(Computing)p Fc(.)490 988 y(Benjamin/Cummings,)h(San)i
(F)-8 b(rancisco,)31 b(1994.)p Black 300 1176 a([36])p
Black 50 w(A.)i(Lasota)g(and)f(M.)h(Mac)m(k)m(ey)-8 b(.)49
b Fb(Chaos,)36 b(F)-7 b(r)i(actals,)37 b(and)e(Noise)p
Fc(.)46 b(Springer-V)-8 b(erlag,)32 b(New)g(Y)-8 b(ork,)490
1289 y(1994.)p Black 300 1476 a([37])p Black 50 w(A.)42
b(Lasota)g(and)f(J.)g(A.)g(Y)-8 b(ork)m(e.)75 b(On)40
b(the)i(existence)f(of)h(in)m(v)-5 b(arian)m(t)40 b(measures)h(for)g
(piecewise)490 1589 y(monotonic)31 b(transformations.)39
b Fb(T)-7 b(r)i(ans.)34 b(A)n(mer.)f(Math.)g(So)-5 b(c.)p
Fc(,)31 b(186:481{488,)k(1973.)p Black 300 1777 a([38])p
Black 50 w(T.)24 b(Y.)h(Li.)k(Finite)23 b(appro)m(ximation)g(for)h(the)
h(frob)s(enius-p)s(erron)20 b(op)s(erator,)26 b(a)e(solution)f(to)i
(ulam's)490 1890 y(conjecture.)42 b Fb(J.)32 b(Appr)-5
b(ox.)34 b(The)-5 b(ory)p Fc(,)32 b(17:177{186,)j(1976.)p
Black 300 2077 a([39])p Black 50 w(T.)45 b(Y.)g(Li.)82
b Fb(Er)-5 b(go)g(dic)47 b(the)-5 b(ory)47 b(on)f Fc([0)p
Fa(;)15 b Fc(1].)85 b(Lecture)45 b(Notes)h(at)f(the)g(Dept.)h(of)f
(Math,)k(Ky)m(oto)490 2190 y(Univ)m(ersit)m(y)-8 b(,)30
b(1988.)p Black 300 2378 a([40])p Black 50 w(T.)48 b(Y.)g(Li)f(and)g
(J.)g(A.)h(Y)-8 b(ork)m(e.)94 b(P)m(erio)s(d)47 b(three)h(implies)d(c)m
(haos.)93 b Fb(A)n(mer.)49 b(Math.)g(Monthly)p Fc(,)490
2491 y(82\(10\):985{992,)37 b(1975.)p Black 300 2679
a([41])p Black 50 w(G.)31 b(G.)g(Loren)m(tz.)42 b Fb(Appr)-5
b(oximations)35 b(of)e(F)-7 b(unctions)p Fc(.)42 b(Holt,)31
b(Rinehart)e(and)h(Winston,)g(1966.)p Black 300 2866
a([42])p Black 50 w(E.)42 b(N.)h(Lorenz.)75 b(Deterministic)41
b(nonp)s(erio)s(dic)e(\015o)m(ws.)75 b Fb(J.)43 b(A)n(tmospheric)i
(Sci.)p Fc(,)f(20:130{141,)490 2979 y(1963.)p Black 300
3167 a([43])p Black 50 w(R.)35 b(M.)h(Ma)m(y)-8 b(.)56
b(Biological)35 b(p)s(opulations)e(with)h(nono)m(v)m(erlapping)g
(generations:)50 b(stable)35 b(p)s(oin)m(ts,)490 3280
y(stable)30 b(cycles,)h(and)f(c)m(haos.)42 b Fb(Scienc)-5
b(e)p Fc(,)30 b(186:645{647,)35 b(1974.)p Black 300 3467
a([44])p Black 50 w(W.)44 b(J.)f(Morok)m(o\013.)82 b(Generating)43
b(quasi-random)f(paths)h(for)g(sto)s(c)m(hastic)i(pro)s(cesses.)79
b Fb(SIAM)490 3580 y(R)-5 b(eview)p Fc(,)31 b(40\(4\):765{788,)36
b(1998.)p Black 300 3768 a([45])p Black 50 w(R.)k(Murra)m(y)-8
b(.)67 b(Appro)m(ximation)38 b(error)h(for)g(in)m(v)-5
b(arian)m(t)38 b(densit)m(y)h(calculations.)66 b Fb(J.)41
b(Discr)-5 b(ete)40 b(&)490 3881 y(Continuous)34 b(Dyn.)e(Sys.)p
Fc(,)f(4:535{558,)j(1998.)p Black 300 4068 a([46])p Black
50 w(P)-8 b(.)41 b(P)m(ac)m(heco.)74 b Fb(Par)-5 b(al)5
b(lel)44 b(Pr)-5 b(o)g(gr)g(amming)45 b(with)e(MPI)p
Fc(.)70 b(Morgan)42 b(Kaufmann,)g(San)e(F)-8 b(rancisco,)490
4181 y(1996.)p Black 300 4369 a([47])p Black 50 w(S.)29
b(M.)h(Ulam.)39 b Fb(A)31 b(Col)5 b(le)-5 b(ction)33
b(of)f(Mathematic)-5 b(al)34 b(Pr)-5 b(oblems)p Fc(.)40
b(In)m(ter-science,)31 b(New)e(Y)-8 b(ork,)31 b(1960.)p
Black 300 4557 a([48])p Black 50 w(M.)37 b(A.)g(v)-5
b(an)36 b(Wyk)h(and)f(T.)g(S.)h(Durrani.)57 b(Classi\014cation)34
b(of)j(system)g(resp)s(onse)e(using)g(proba-)490 4669
y(bilistic)28 b(mo)s(delling.)38 b Fb(R)-5 b(ese)g(ar)g(ch)34
b(R)-5 b(ep)g(ort,)35 b(Kentr)-5 b(on,)34 b(South)f(Afric)-5
b(a)p Fc(,)31 b(1999.)p Black 300 4857 a([49])p Black
50 w(M.)h(A.)g(v)-5 b(an)31 b(Wyk)h(and)e(W.)i(H.)g(Steeb.)44
b(Chaos)31 b(in)f(electronics.)43 b(In)31 b Fb(Mathematic)-5
b(al)36 b(Mo)-5 b(del)5 b(ling:)490 4970 y(The)-5 b(ory)34
b(and)g(Applic)-5 b(ations,)34 b(No.2)p Fc(,)d(South)f(Africa,)g(1997.)
j(Klu)m(w)m(er)c(Academic)i(Publishers.)p Black 300 5158
a([50])p Black 50 w(P)-8 b(.)31 b(W)-8 b(alters.)41 b
Fb(A)n(n)32 b(Intr)-5 b(o)g(duction)35 b(to)f(Er)-5 b(go)g(dic)33
b(The)-5 b(ory)p Fc(.)42 b(Springer-V)-8 b(erlag,)30
b(New)g(Y)-8 b(ork,)32 b(1982.)p Black Black eop
%%Trailer
end
userdict /end-hook known{end-hook}if
%%EOF

Stv3n404 - 2023