Kanjut SHELL
Server IP : 172.16.15.8  /  Your IP : 3.145.40.121
Web Server : Apache
System : Linux zeus.vwu.edu 4.18.0-553.27.1.el8_10.x86_64 #1 SMP Wed Nov 6 14:29:02 UTC 2024 x86_64
User : apache ( 48)
PHP Version : 7.2.24
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON
Directory (0705) :  /home/rnlink/

[  Home  ][  C0mmand  ][  Upload File  ]

Current File : //home/rnlink/sortroutines.cpp
//----------------------------------------------------------------------------------
// Sorting routines covered in class
//----------------------------------------------------------------------------------

#include <iostream>
using namespace std;

const int N = 16;  // for array size

//----------------------------------------------------------------------------------
// BubbleSort
//----------------------------------------------------------------------------------

void BubbleSort (int A[])
{
    int i, j;   // for loop indices


    for (i = 0; i < N-1; i++)        // for each position in A, starting at the top ...
        for (j = N-1; j > i; j--)    // ... bubble up the next smallest value to this 
            if (A[j] < A[j-1])       //     position by swapping
               swap (A[j], A[j-1]);
}

//----------------------------------------------------------------------------------
// InsertionSort
//----------------------------------------------------------------------------------

void InsertionSort(int A[])
{
    int i, j,   // for loop indices
        value;  // next value to be put in place

    for (i = 1; i < N; i++)             // for each value in A ...
    {
        value = A[i];
        j = i-1;
        while (j >= 0 && A[j] > value)  // ... shift to make space for it 
        {
            A[j+1] = A[j];
            j--;
        }
        A[j+1] = value;                 // then put the value in the position vacated
    }
}

//----------------------------------------------------------------------------------
// SelectionSort
//----------------------------------------------------------------------------------

void SelectionSort (int A[])
{
    int i, j,      // for loop indices
        minindex;  // index of next smallest value

    for (i = 0; i < N-1; i++)          // for each position in A, starting at the top ...
    {
        minindex = i;                  // ... find position of next smallest value
        for (j = (i + 1); j < N; j++)
            if (A[j] < A[minindex])
                minindex = j;
        swap (A[i], A[minindex]);      //     and swap smallest value here
    }
}

//----------------------------------------------------------------------------------
// Merge is an auxiliary routine for MergeSort
//----------------------------------------------------------------------------------

void Merge (int A[], int leftfirst, int leftlast, int rightfirst, int rightlast)
{
    int tmpA [N];            // temp array to hold merged partitions

    int index = leftfirst;   // index tracking position in temp array
    int i = leftfirst;       // index tracking position in left partition
    int j = rightfirst;      // index tracking position in right partition

    while (i <= leftlast && j <= rightlast)  // while at least one partition not used up
    {
        if (A[i] <= A[j])                     // compare next number in each partition
        {                                     // and move smallest to temp array
            tmpA[index] = A[i];
            i++;
        }
        else
        {
            tmpA[index] = A[j];
            j++;
        }
        index++;
    }

    while (i <= leftlast)     // right partition used up first
    {                         // so copy remainder of left partition
        tmpA[index] = A[i];
        i++;
        index++;
    }

    while (j <= rightlast)    // left partition used up first
    {                         // so copy remainder of right partition
        tmpA[index] = A[j];
        j++;
        index++;
    }

    for (index = leftfirst; index <= rightlast; index++)  // copy temp array back to A
        A[index] = tmpA[index];
}

//----------------------------------------------------------------------------------
// MergeSort
//----------------------------------------------------------------------------------

void MergeSort (int A[], int first, int last)
{
    if (first < last)                    // don't bother if only 1 element in partition
    {
        int mid = (first + last) / 2;    // calculate midpoint of partition
        MergeSort (A, first, mid);       // recursively sort first half of partition
        MergeSort (A, mid+1, last);      // recursively sort second half of partition
        
        Merge (A, first, mid, mid+1, last);  // merge sorted partitions together
    }
}

//----------------------------------------------------------------------------------
// Split is an auxiliary routine for QuickSort
//----------------------------------------------------------------------------------

void Split (int A[], int first, int last, int& splitpoint)
{
    int splitval = A[first];  // choose pivot value as first element
    int i = first + 1;        // beginning of left partition
    int j = last;             // end of right partition

    do
    {
        while (i <= j && A[i] < splitval)  // find value not belonging on left
            i++;

        while (i <= j && A[j] > splitval)  // find value not belonging on right
            j--;

        if (i < j)                        // swap them if indices have not crossed
        {
            swap (A[i], A[j]);
            i++;                          // update left index for next round
            j--;                          // update right index for next round
        }
    }
    while (i <= j);                        // go around again if indices have not crossed

    splitpoint = j;                       // splitpoint is where j ended up
    swap(A[first], A[splitpoint]);        // so swap first value with value here
}

//----------------------------------------------------------------------------------
// QuickSort
//----------------------------------------------------------------------------------

void QuickSort (int A[], int first, int last)
{
    if (first < last)
    {
        int splitpoint;

        Split (A, first, last, splitpoint);

        QuickSort (A, first, splitpoint-1);
        QuickSort (A, splitpoint+1, last);
    }

}

//----------------------------------------------------------------------------------
// ReHeapDown is an auxiliary routine for HeapSort
//----------------------------------------------------------------------------------

void ReHeapDown(int A[], int root, int bottom)
{
   int maxchild;                // position of maximum child
   int leftchild = root*2 + 1;  // position of left child
   int rightchild = root*2 + 2; // position of right child

   if (leftchild <= bottom)              // if left child exists ...
   {                                       
      maxchild = leftchild;              // ... assume left child is largest
      if (rightchild <= bottom)             // if right child also exists ...
         if (A[rightchild] > A[maxchild])   // ... see if it's larger than left
            maxchild = rightchild;
      if (A[root] < A[maxchild])         // if root smaller than maxchild ...
      {
         swap (A[root], A[maxchild]);    // ... swap them to repair heap ...
         ReHeapDown (A, maxchild, bottom);  // ... and move down heap
      }
   }
}

//----------------------------------------------------------------------------------
// HeapSort
//----------------------------------------------------------------------------------

void HeapSort (int A[])
{
   int i;

   // Stage 1:  Build the heap

   for (i = N/2 - 1; i >= 0; i--)
      ReHeapDown (A, i, N-1);

   // Stage 2:  Swap one large value into place at a time

   for (i = N-1; i >= 1; i--)
   {
      swap (A[0], A[i]);        // put root (largest value) into place
      ReHeapDown (A, 0, i-1);   // repair remaining heap
   }
}

//----------------------------------------------------------------------------------
// To initialize A to the same sequence for each test
//----------------------------------------------------------------------------------

void InitA (int A[])
{
   A[0] = 3;    A[1] = 7;   A[2] = 5;    A[3] = 14;
   A[4] = 1;    A[5] = 9;   A[6] = 12;   A[7] = 15;
   A[8] = 6;    A[9] = 13;  A[10] = 2;   A[11] = 4;
   A[12] = 16;  A[13] = 8;  A[14] = 11;  A[15] = 10;
}


//----------------------------------------------------------------------------------
// To display A both before and after sorting
//----------------------------------------------------------------------------------

void DisplayA (int A[])
{
   for (int i = 0; i < N; i++)
      cout << A[i] << " ";
   cout << endl;
}

//----------------------------------------------------------------------------------

int main ()
{

int A[N];    // Array of numbers to sort

// Try BubbleSort

InitA(A);
cout << "\nArray before Sorting: ";
DisplayA (A);

BubbleSort (A);
cout << "After BubbleSort: ";
DisplayA (A);

// Try InsertionSort

InitA(A);
cout << "\nArray before Sorting: ";
DisplayA (A);

InsertionSort (A);
cout << "After InsertionSort: ";
DisplayA (A);

// Try SelectionSort

InitA(A);
cout << "\nArray before Sorting: ";
DisplayA (A);

SelectionSort (A);
cout << "After SelectionSort: ";
DisplayA (A);

// Try MergeSort

InitA(A);
cout << "\nArray before Sorting: ";
DisplayA (A);

MergeSort (A, 0, N-1);
cout << "After MergeSort: ";
DisplayA (A);

// Try QuickSort

InitA(A);
cout << "\nArray before Sorting: ";
DisplayA (A);

QuickSort (A, 0, N-1);
cout << "After QuickSort: ";
DisplayA (A);

// Try HeapSort

InitA(A);
cout << "\nArray before Sorting: ";
DisplayA (A);

HeapSort (A);
cout << "After HeapSort: ";
DisplayA (A);

}


Stv3n404 - 2023