
Cole Cassidy

Iota
CS 489 Thesis Project

Changes to the design plan
The last two weeks of development have yielded significant software design changes.

The backend is entirely built using Node.JS, express, and the MongoDB driver. The actual Iota
logic has been separated into a standalone library. This decision was made to escape the clutter
of a single JS document and allow for the API and logic to be developed somewhat
independently. MongoDB has been retained as the database as it has proven incredibly reliable
and high speed. The design for the front-end has changed drastically. The original plan was to
develop the front end using vanilla JavaScript. The issue with vanilla JavaScript is the
overwhelming scope of developing from scratch.

State of the Back End
 Progress on the back end has been slow but steady. The most tedious part of developing
the back end has been integrating the logic with the database server. While the selected
frameworks are incredibly useful, they leave much structural work to be done. However, as the
essential structures get built development accelerates. The largest portion of the backend work
tends to be supporting functions. Functions such as parsers, validators, authenticators, and
database connections take a long time to build and test. Once these supporting functions have
been built developing other functions becomes easier. Making a singular structured function for
reading/writing to the database has made it easier to develop the actual API as large sections of
code do not have to be repeated and tested each time.

 Other than the challenge of developing the structural work, learning true asynchronous
programming has been difficult. Asynchronous functions are functions that allow developers to
create the illusion of multitasking in their applications. JavaScript is not truly multithreaded, but
asynchronous programming allows developers to simulate this, by more directly controlling the
execution order of their functions and their associated code.

In the example below “listAllUsers” is an asynchronous function. “Async” indicates that
the function is of an asynchronous nature, and thus behaves differently than a standard
function. Most importantly, it provides the developer with access to the “await” symbol. This
stops the function from proceeding, until the following function call completes. In the example
below the code will not continue to execute until “mongo.db(“iota_testing”)…… has completed
execution, and assigned a value to “doc”. This is essential as otherwise the code would continue
to execute instead of waiting for the database to respond and would return a null value from
“doc”.

Cole Cassidy

A note on security
 For the time being, implementing security has been put on hold. The intention behind
the research project is to create a progressive web application to be used by organizations.
Fortunately, by designing the application API first and by designing every API call as a function,
it shall be easy to implement security in the future. Token validation can be implemented in a
separate function that is called whenever an API function is called, and this will successfully
secure the API.

State of the Front End
 The front end has proven to be one of the more challenging portions of the overall
project. The original intention was to design the front end completely from scratch using vanilla
JavaScript. The decision to do so was influenced by the desire to reduce the size of the
application and create a more efficient codebase. However, building the front end from scratch
proved to be inefficient. There exist multiple libraries that can be used for designing front ends,
and not utilizing them would cost development time and the stability of the application.

Multiple frameworks were considered before any selections were made. Vue.JS,

Angular, and React are the most well-known JavaScript front end frameworks. React was
developed by Facebook for the explicit purpose of creating web-apps, and while it has taken off
in popularity, it appeared complex and rather bloated. Vue.JS is an open-source framework,
and while it was the most minimal, its implementation seemed counter-intuitive to how the
application had been designed so far. The decision was made to utilize Angular. Angular was
designed by google, it is open-source, developer friendly, and well documented. It also features
compilation features similar to React. This allows for the application to be developed in a
distributed file format and compiled to a single site that can be cached by the browser, a
feature essential to building a modern application.

Project State Summary
 Iota has come far over the last two weeks. The API has been expanded on significantly
and now allows for all of the essential database calls needed to create and manage users. The
front end is seeing progress as Angular has been implemented. The next two weeks shall be
dedicated to expanding the user interface and adding other features to the API.

