
Cole Cassidy

Iota
CS 489 Thesis Project

The Greek IT problem.
Currently in the market there exist several platforms for Greek organizations, all of which focus

heavily on the financials, and very little on the bureaucratic aspects. They are also held back by poor

technological implementation on the behalf of the larger organizations that often house these chapters.

Many parent organizations struggle with outdated, or disorganized IT systems, as many are internally

developed and thus, limited by the organizations budget. The same can be said for their child

organizations, the larger chapters are dependent on external services to aid in their business. Services

such as the Google suite, Discord, Zoom, and various other webtools. This requires lots of coordination,

and often fails to be implemented in an effective way. Smaller chapters often avoid technology

altogether in an attempt to manage budget, and because they don’t have the means to operate

technology for group management. Those that do utilize organizational technology, frequently

mismanage it.

The Iota Solution

 Iota is designed to address these issues and create a platform that makes managing

organizations simpler. After looking at the needs of various Greek organizations there are several things

Iota must accomplish.

User Agency -
Users must be able to create and maintain their accounts independently,
and in a modern way.

Organizational
Groups

-
Organizations shall be created containing users, and users can be given
administrative privileges.

Organizational
Storage

-
Organizations must have file storage capacity, for documents that are to be
shared across the organization.

Member Polling - Organizations must be able to poll, quiz, and call votes from their members.

Directory -
Organization settings must allow for the creation of a “member directory”
with various levels of discretion.

Accessibility - The application must be usable across multiple platforms.

These goals would span the issue of document distribution, as well as vote collection during online

forums. Both of these issues have presented themselves in various ways as Greek organizations have

attempted to traverse covid.

Stretch Goals
 While the above list serves to identify the core issues Iota shall address, there are several stretch

goals that would serve to better the life of Iota users. These goals would most likely not be built into the

Cole Cassidy

initial project. They are intended to serve as indicators as to how the project could expand. By keeping

them in mind during development, its ensured that the application is built in a responsive way that

allows for future growth.

Organizational
Roles

-
Organizations can create internal roles for simple classification and access
purposes.

Discord
Integration

-
This would allow users to sign into their account via Discord, as well as allow
organizations to utilize the service to manage existing communities. It would
also allow users to interact with the service via Discord.

Google Calendar
Integration

-
Organizations would be able to have a managed calendar by multiple users,
that users can subscribe to in external calendar applications.

Cloud Storage
integration

-
Document archives could be handled externally, for larger storage and
different sharing options.

Administration
Panel

-
System administrators would be able to see advanced user statistics, and
would open the door to making Iota a monetizable service.

Whitelabel -
Parent organizations could instance Iota in a way that allows it to be
branded for their organization, similar to blackboard.

While these features are not immediately imperative, they would place Iota in a unique place as a tool

for various organizations, not only Greek organizations.

How this will be built.
 Iota will be built using modern web practices. The tool itself shall be divided into multiple

components, allowing for expandability and efficiency.

Front End
 The web application shall be hosted on a simple web server and shall be designed to operate

from the end users cache. This is standard in modern web design and would allow for all future server

calls to be significantly smaller, and almost exclusively API calls. It will be build in HTML5, CSS, and

Javascript.

Back End
 The back end application shall be 3 core components. The authentication server, the API/Logic

server, and the database. The auth server will issues tokens to users for them to use over their routine

API calls, allowing for stateless server architecture. The API/Logic server will be the primary platform by

witch users receive content. It will send rudimentary responses to the webapp, which will parse them

into readable content. The database server will not be accessible by the users, and will simply exist to

manage all of the systems data.

Simplified
 While this system sounds complicated, it actually simplifies the development process, as each

element can be developed in whichever means best suits its purpose. It also would allow for

Cole Cassidy

redundancy. By separating Authentication and Logic, a down Auth server would not impact any active

users.

