
Cole Cassidy 1

Iota
A tool for managing student organizations

Cole Cassidy
Dr. Wang CS 489

Abstract

 There are many organization management tools available on the market today. Some

are purpose built and designed for specific applications. Some are more flexible and can be

configured to fit the needs of a particular student organization. The problem is that there are

not many purpose-built applications for student organizations and the more flexible systems

require some sort of administrative oversight. Most student groups do not have the time or

resources to maintain an IT service for their organization. Students need an application that

“just works” and requires little to no configuration. The Iota solution features group

membership, shared minutes/reports, user profiles, and a modern webapp. These features give

student organizations the core tools they need in a reliable format that behaves consistently

across various devices. Two programs were created to provide these features. The iotaEngine

software runs on a webserver. It provides the API, interfaces with the database, and handles

authentication. The iotaApp software is a compiled static website that is stored in the user’s

cache. It connects to iotaEngine and provides the user interface. These programs were built

using a combination of Angular2, Bootstrap, and Express.js. They are coded in JavaScript and

iotaEngine runs in the Node.JS runtime. The database software used is MongoDB.

Cole Cassidy 2

Contents
Introduction .. 3

The Database .. 3

The API server (iotaEngine) ... 4

Express and Callbacks ... 4

Security, Middleware, and JWTs ... 6

API Summary ... 7

The Front-End iotaApp .. 7

The Angular Framework.. 7

Bootstrap .. 8

Application Overview .. 9

Application endpoints ... 9

./login .. 10

./register ... 10

./dash .. 11

./register/join .. 11

./usr/<mode>/<userID> .. 12

./org/<orgID> .. 13

./min/<mode>/<ID> .. 14

Supporting Application Files ... 14

app-routing.module.ts .. 14

user.service.ts ... 14

auth.service.ts ... 15

token-interceptor.interceptor.ts .. 15

Application Summary .. 15

Project Summary ... 15

Bibliography .. 16

Cole Cassidy 3

Introduction
 In order for Iota to provide a meaningful user experience and become a practical tool it

had to be reliable and behave in a way comparable to other organizational tools available

today. This realization is what led to the selection of the libraries used in the project. All

libraries utilized to build Iota were selected for their use in software maintained by companies

such as Google, Facebook, Netflix, Airbnb and more. The architecture of the application needed

to be reliable, fast, and improvable. For these reasons, the project was split into the two

software components of a Front-End user interface (iotaApp) and a Back-End server software

(iotaEngine). By splitting the software into its two core elements, the server load is reduced

significantly as rendering the user interface is handled entirely by the user device. This allows

the server to be built in a stateless way where sessions are replaced with authentication tokens.

This increases the response speed of the server, as no local variables are referenced in

processing responses. By using a document driven database (MongoDB) rather than a more

traditional SQL database response time and compatibility is further increased.

The Database
 MySQL and other SQL variants are an incredibly common database type and continue to

be used in many large-scale projects. However, the relational nature of data stored on SQL

servers can be a downside. Complex data can be difficult to store and recall with accuracy, and

while many programming languages are object oriented, SQL is not. The benefit to a document

driven database is that entries are treated as objects with associated values, rather than rows

of values. The following screenshot depicts how an object is stored in MongoDB.

Figure 1- Document Database Example

This is a complex dataset that represents a user account. In a SQL database, the array of

organizations would typically be a reference to a separate table of organizations. This would

make it simple to create changes across all user accounts but requires either multiple or

complex queries to return a dataset containing the same information. By storing the user data

in the document format, all needed values are accounted for, and ID that references a different

object can be stored in case additional retrievals are needed for more verbose information. This

Cole Cassidy 4

reduces the number of API endpoints needed, allows for faster retrieval of essential data, and

decreases the computational load placed on the database server.

The API server (iotaEngine)
 The last several years have seen a shift in how webservers are built. Historically a

webserver could be static, where it provided simple HTML, CSS, JS documents to the client to

render a website, and there would be no dynamic content on the site. Alternatively, a dynamic

website would send unique content to different users based off provided input. These dynamic

sites were typically built in PHP. While PHP is still commonly used, the transition to native

phone applications, and websites that share the same data has created a new web topology.

API servers are built to send simple data from an application to the user interface such as a

native phone application or webapp. The receiving application which made the request

processes the response and adjusts the interface accordingly.

 By removing the burden of rendering from the webserver, it is free to solely handle

these API requests and authentication. The decision was made to develop the API server in

JavaScript as MongoDB returns documents as JavaScript objects, and any web based front end

would be able to process them using its own JavaScript environment. This meant that the

server could easily form responses without frequent variable type conversions.

 The most common runtime for server-side JavaScript is Node.JS. It is reliable, high

speed, and there are a vast array of open-source libraries built for it. One of these libraries is

Express. Express is a webserver library that allows developers to create webservers that return

the output of different functions. The following code excerpt demonstrates the creation of an

express webserver.

var express = require('express'),

 app = express(),

 port = 3000;

This segment creates a new express instance named “app” which listens on port 3000

app.get('/auth', (req, res) => {

 res.send("Future Authentication Endpoint")

 console.log("Auth Request Received");

});

Express and Callbacks
The second code segment appears more complicated but is actually rather simple. The

Express get() function creates a new endpoint for HTTP get requests. It takes two inputs, a

String for the URL path to listen on, and a callback function.

A callback function put simply is a function provided to another function to execute in

place of a return statement. While it could be provided as a standard function it is possible to

Cole Cassidy 5

use the error operator and define the callback inline. Express executes callbacks with the inputs

req which contains the request data and res which can be used to send responses to a request.

In short, the above function sends a response of “Future Authentication Endpoint” whenever a

get request is received at localhost:3000/auth. The following screenshot depicts the browser

response.

Figure 2- Simple API response

Developing in this manner allows for the creation of custom functions to be executed for each

endpoint. These functions can call other functions to create a request and therefor allow for

complicated responses that may compound multiple database values before ultimately

returning an object. The following code demonstrates this behavior.

app.get('/user/:uid', async (req, res) => {

 try{

 console.log("User Request: "+req.params.uid+" From: "+req.ip);

 const userInfo = await users.findUser(req.params.uid);

 res.json(userInfo);

 } catch(e) {

 console.log(e);

 }

});

When the user makes a request to “/user/:uid” where :uid is the unique ID referencing a user

document. The callback function logs the requested uid and the requestion machines IP to the

console. It then creates a userInfo object containing the response from the custom findUser()

function which takes the uid as input. Once this function returns the document to be sent, the

server responds with the userInfo object. The following screenshot depicts the browser

response.

Figure 3- complex JSON response

Note that this is a raw JSON object which matches the previous database example of a user

document.

Cole Cassidy 6

Security, Middleware, and JWTs
 In order to secure certain endpoints of the API, the user is provided with a JSON Web

Token (JWT). This token is a simple JavaScript object, which is then encoded and signed by the

server. It contains user information and is used to authenticate the user. The flow for JWT

authentication is as follows.

1. The user sends the username and password for authentication.

2. The server validates the password against the database

- If the password is valid it continues.

- If not, it returns an error.

3. The server retrieves the document matching the username from the database.

4. The server encodes the document and generates a signature using a private key.

5. The server responds to the user with the signed token.

6. The user includes this token with all subsequent API requests.

Whenever a request is made to a secured resource, the server checks that the payload of the

token matches the signature. If the token is a valid match the server uses the payload to

confirm access to the desired resource. If there is no match, the token is considered invalid, and

the connection is terminated.

 The use of JWTs allows the service to be secured without the use of sessions. As long as

the token is valid, access is permitted. This eliminates the need for tracking connection

information in server memory or repeated authentication database lookups. Without the

weight of session tracking and processing, the server runs with less overhead, and at a greater

speed than cookies or sessions allow.

In order to authenticate the tokens with each request custom middleware functions

were written. The Express library also provides a method for “middleware” these are functions

that process input before the final callback function. The following code is an example of using

middleware in an Express function.

router.get('/s/:oid/full', validator.checkToken, validator.authUser, async (req,

res) => {

 res.json(await findOrgVerbose(req.params.oid));

})

In the above example, the validator.checkToken is run first to check the token validity. Then the

validator.authUser function is executed to ensure that the user has sufficient privileges. So long

as neither of these functions returns an error, the callback function is executed. Additional

details on these functions can be found in the codebook.

Cole Cassidy 7

API Summary
 By building the iotaEngine API server in JavaScript, and utilizing the Express library, the

necessary functions of the API server are performed with speed and security. The design of the

codebase allows for modular development, where new features and endpoints can be

developed quickly.

 An overview of the API endpoints is included in the codebook.

The Front-End iotaApp
 Static webpages have historically had little use for projects with changing data. As

mentioned in the previous section, the solution for websites that needed to have customized

information was to use PHP. However, as the processing power of personal computers has

expanded and JavaScript has risen in popularity, it has become more common to use

“WebApps” in place of PHP servers.

 What sets a webapp apart from a traditional website is that a webapp is a static

webpage. The HTML, CSS, and JavaScript files for the website do not change after being loaded

into the browser. In a traditional website, JavaScript would be used to add animations and

effects. In a webapp, JavaScript controls the entire user experience. Functions are used to

retrieve information from outside sources, and to update the user interface accordingly. This

removes the rendering workload from the webserver. It also allows for faster load times, as the

site can be cached to the user’s computer and recalled without loading the entirety of its

contents from a remote server.

The Angular Framework
 Building a reliable webapp from the ground up is an exhaustive task. Fortunately, there

are several frameworks with which to do so. React.JS, Vue, Angular, and more are open-source

projects which provide the groundwork for building modern web applications. Each one has its

own benefits and drawbacks. Angular was selected for this project for several reasons.

- Extensive documentation

- Built-in development environment

o Debugging tools

o Component Compilation

o File minimization

- Built-in development server

While other frameworks offered similar features, Angular seemed to be the most commonly

used framework. Its website includes multiple introductory projects, examples and guides, as

well as thorough developer documentation.

 To develop with the Angular framework, it must be installed on the local machine, after

doing so it can be used to generate the file structure needed for a project. There are several

Cole Cassidy 8

command line utilities that handle compilation, the development server, and minimization. The

development and coding take place in the developers text editor of choice. It has built in debug

tools that can be used by an advanced text editor to check for common errors. The

environment also includes a compiler that combines multiple JavaScript, TypeScript, Stylesheet,

and HTML files into individual files for deployment. It also can minimize these files by replacing

human-readable variables with shorter names, removing unnecessary newline and space

characters, and removing unused functions. These features are useful not only for building a

reliable application, but also for reducing file size to decrease loading times.

The local development server allowed for rapid development. Once running, it hosts the

webapp so that it may be tested in a browser, and it monitors the files so that the site is

refreshed as changes are made.

All these features made Angular an ideal environment to build the iotaApp front-end.

Using its component driven design, each core element of the site could be developed, and then

integrated into pages to allow for dynamic content with reusable code.

Bootstrap
 While Angular makes building web applications more convenient. It does not provide

any type of styling, UI customizations, or color palette. Angular does support CSS, LESS, and

SCSS or “Sassy CSS”. LESS and SCSS are variations of CSS that are more friendly for building large

stylesheets, and they allow for variables, imports, and basic math. For this project the focus was

on creating a usable application, and while an interface was necessary, there was no time to

waste on building a custom color palette and aesthetic button/form themes.

 Bootstrap is a widely used “design framework” it provides a stylesheet and JavaScript

library that strips away the differences between various browsers, and then applies several

unique options for making modern interfaces. This includes a simple color palette, font

selection, and customized page elements. Bootstrap is designed to allow developers to build

and test a visually pleasing application, without wasting time on interface design. It also is

designed to be modified. Its stylesheets can be overridden, and colors, shapes, and behaviors

can be changed without rewriting the design.

 Iota utilizes the Bootstrap 5 design framework by including its files in the import

statements for the application. As part of compiling the application Angular includes the

Bootstrap files and minimizes them with the rest of the code base. This made it easier to build a

functional application while focusing on the programming that was the focus of this project.

Future plans include modifying or replacing Bootstrap in order to build a more customized user

experience.

Cole Cassidy 9

Application Overview
The following flow chart demonstrates the navigation through the web application. The red

lines indicate routes that require an authentication token to be used.

Figure 4- Application flowchart

Application endpoints
 The following subsection provides screenshots of the Iota user interface, their url

endpoints, and the context of each. The screenshots provided depict the mobile version of the

application. However the behavior is

Cole Cassidy 10

./login

 This url endpoint provides the application login interface. Users input their credentials

here to gain access to the application. This is provided by the login-form and the authpage

components.

Figure 5- Authentication endpoint

./register

 This endpoint provides a means for user registration. Creates an account and signs the

user into the application. It is provided by the regpage and register-form components.

Figure 6- User registration endpoint

Cole Cassidy 11

./dash

 This application endpoint provides the user dashboard. It only populates with user

information if the user has been signed in. Otherwise it protects the other endpoints by not

allowing further access. It is provided by the dashboard and org-panel components.

Figure 7 - Dashboard endpoint

./register/join

 Provides an interface for users to join an organization using a registration code. This

code is provided by a user that is actively a member of the organization the new user wishes to

join. This is provided by the add-org component.

Figure 8- Registration endpoint

Cole Cassidy 12

./usr/<mode>/<userID>

 This is one of the more complex endpoints. It allows for a user to view and edit profiles.

The mode variable in the path indicates whether the endpoint is in view mode (0) or edit mode

(1). The userID variable selects the user that is to be edited. The API server prevents users from

writing edits to other user profiles. The flowing screenshots demonstrate both these modes.

These views are provided by the user-panel component.

Figure 9- User Editor Figure 10- User Viewer

Cole Cassidy 13

./org/<orgID>

 This endpoint displays information for the organization ID provided if the user has

access to that organization. It includes a list of members that links to the user viewer for each

member, a list of reports that leads to the report viewer, and a button for generating new

minutes to report. At the bottom the application provides a “join code” to be used for

registering new members. This is provided by the org-page, user-panel, and minutes-panel

components.

Figure 11- Organization Page endpoint

Cole Cassidy 14

./min/<mode>/<ID>

 This is another complex endpoint provided by the minute-editor component. It provides

an interface for viewing and editing minutes. Mode 0 is used to submit new minutes, and the ID

field is used to select which organization to attach the minutes to. Mode 1 is used to view

reported minutes and the ID field is used to identify which report document should be

displayed.

Figure 12- Minute Editor Figure 13- Minute Viewer

Supporting Application Files
 Angular builds web applications that defy the traditional website structure. The user

navigates through router endpoints that display various pages. However, not all files in an

angular project are represented as pages and there are many supporting files that are used to

ensure the application behaves properly. The following section describes some of the most

notable files that are not represented with a user interface.

app-routing.module.ts

 This supporting file provides all the routes to various endpoints. When the user visits the

site, this module determines which components to load to the viewport using the URL path. It

also handles redirecting users when they land on an invalid endpoint.

user.service.ts

 This file generates a service used by the application. A service in Angular runs in the

background and shares its data with any component which imports it. In Iota, the user service

serves as the connection between the application and the API server. When an API call needs to

be made by a component, it executes a shared function in the user service, and reads the value

from a shared variable within the service.

 This topology is useful, as any component can request an API call, but all components

subscribed to a variable effected by the result receive the change. It also centralizes all the

functions needed to make API calls to one central file.

Cole Cassidy 15

auth.service.ts

 Similar to user.service.ts the auth service handles any API calls that deal with

authentication. It maintains the login state for the application and stores the token for

reference by other functions.

token-interceptor.interceptor.ts

 The interceptor is another special component in Angular. Whenever the application

makes an API call, the interceptor is run immediately before the request is made. It injects the

current user token into the request header to ensure that the API is provided with the token on

each request.

Further documentation on the utility of other project files is included in the codebook.

Application Summary
 Building the application using Angular and Bootstrap allowed for more focus on the

mechanics of the application, rather than rewriting commonly used functions. Angular

specifically allowed for the development of modular elements which could be employed

repeatedly in various locations in the application and thus improved code reusability. Bootstrap

made building a user friendly interface easy, and allowed for quick deployment of developed

features.

Project Summary
 The Iota application has been a success. By employing modern design standards it has

become a responsive, secure, user-friendly application. The project is currently hosted on

Amazon AWS servers and is available at iotaengine.org. Future plans for the project include

continuing to develop new features, building a more customized user interface, and rewriting

portions of the codebase for increased efficiency. Using Node.JS and Express to build the API

server has proven to create a stable, responsive server and has itself been considered a success.

The Angular/Bootstrap frontend has proven to be reliable and performs equally well across

devices. Early testing with students on campus has shown that they find the interface easy to

navigate and use.

Cole Cassidy 16

Bibliography
Amazon. (2022, April). AWS. Retrieved from AWS: https://aws.amazon.com

Auth0. (2022, April). JWT. Retrieved from JWT: https://jwt.io/

Bootstrap Team. (2022, April). Bootstrap. Retrieved from Bootstrap: https://getbootstrap.com/

Cassidy, C. (2022, April). Iota. Retrieved from Iota: http://iotaengine.org

Google. (2022, April). Angular. Retrieved from Angular: https://angular.io/

MongoDB. (2022, April). MongoDB. Retrieved from MongoDB: https://www.mongodb.com/

OpenJS Foundation. (2022, April). Express. Retrieved from Express: https://www.expressjs.com

